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Abstract—This paper presents a Gated Recurrent Unit (GRU)
based recurrent neural network (RNN) accelerator called Edge-
DRNN designed for portable edge computing. EdgeDRNN adopts
the spiking neural network inspired delta network algorithm to
exploit temporal sparsity in RNNs. It reduces off-chip memory
access by a factor of up to 10x with tolerable accuracy loss.
Experimental results on a 10 million parameter 2-layer GRU-
RNN, with weights stored in DRAM, show that EdgeDRNN
computes them in under 0.5 ms. With 2.42 W wall plug power on
an entry level USB powered FPGA board, it achieves latency
comparable with a 92 W Nvidia 1080 GPU. It outperforms
NVIDIA Jetson Nano, Jetson TX2 and Intel Neural Compute
Stick 2 in latency by 6X. For a batch size of 1, EdgeDRNN
achieves a mean effective throughput of 20.2 GOp/s and a wall
plug power efficiency that is over 4X higher than all other
platforms.

Index Terms—edge computing, FPGA, embedded system, deep
learning, RNN, GRU, delta network

I. INTRODUCTION

Recurrent Neural Networks (RNN) are a subset of deep

neural networks that are particularly useful for regression

and classification tasks involving time series inputs. Gated

RNNs which use Long Short-Term Memory units (LSTM) [1]

and Gated-Recurrent Unit (GRU) [2] are used to overcome

the vanishing gradient problem frequently encountered during

RNN training with backpropagation through time. RNN mod-

els are frequently used in state-of-the-art models for automatic

speech recognition tasks [3], [4].

In edge computing, computations are done locally on end-

user devices to reduce latency and protect privacy [5]. RNNs

achieve high accuracy at the cost of large memory footprint

and expensive computation. RNNs are usually computed on

the cloud with results sent to edge devices, which introduces

high and variable latency, making it hard to guarantee real

time performance for human computer interaction, robotics,

and control applications. Previous work exploits weight prun-

ing [6] [7], structured weight matrix [8], and temporal spar-

sity [9] to accelerate RNN computation by reducing the mem-

ory bottleneck of RNNs. However, these works used expensive

FPGA boards with greater than 15 W power consumption and

did not target portable edge devices with low latency demands

and a limited power budget.

This paper describes an RNN accelerator for edge appli-

cations. The accelerator exploits temporal sparsity using the

delta network (DeltaGRU) [10] algorithm. It achieves sub-

millisecond inference of big multi-layer RNNs comparable

with a desktop-level GPU, but with 38 times less power.

II. GATED-RECURRENT UNIT & DELTA NETWORK

The equations for a GRU layer of M neurons and N -

dimensional input are given as:

rt = σ (Wirxt +Whrht−1 + br)

ut = σ (Wiuxt +Whuht−1 + bu)

ct = tanh (Wicxt + rt � (Whcht−1) + bc)

ht = (1− ut)� ct + ut � ht−1

(1)

where r, u, c ∈ RM are respectively the reset gate, the update

gate and the cell state. Wi ∈ RM×N , Wh ∈ RM×M are

weight matrices and b ∈ RM are bias vectors. σ denotes the

logistic sigmoid.

Inspired by spiking neural networks, the DeltaGRU [10]

reduces operations in GRU-RNNs while maintaining high

prediction accuracy. In DeltaGRU, weights are multiplied with

the delta vectors Δxt = xt − xt−1, Δht−1 = ht−1 − ht−2

between the current and the previous time steps and then added

to a memory term Mt =
∑i=t

i=0 (WΔxi +WΔhi−1) that is

the accumulation of all previous products. The initial states

are M0 = b, x−1 = 0 and h−1 = h−2 = 0.

By setting the elements of a delta vector to zero when their

individual values are less than a defined Delta Threshold Θ,

the number of matrix-vector multiply-and-accumulate (MAC)

operations is reduced by 5X to 100X, depending on the

dynamics of the input and hidden units [10]. It allows skipping

entire columns of the weight matrix. That way, DRAM weight

memory reads are still in efficient burst mode.

III. EDGEDRNN ACCELERATOR

A. Accelerator Design

The design of EdgeDRNN aims to achieve low-latency RNN

inference with batch size of 1, which are needed for real-time

operation with minimum latency. 2D arithmetic unit arrays

are not suitable here due to limited weight reuse, scarce on-

chip memory resources and narrow external memory interface

on embedded systems like MiniZed. The vector processing

element (PE) array in EdgeDRNN is able to fully utilize the

external memory bandwidth.

Fig. 1a shows the design of the EdgeDRNN acceler-

ator. The number of PEs, K, in EdgeDRNN is K =
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Fig. 1: (a) EdgeDRNN accelerator architecture; (b) Flow chart

of the sparse matrix-vector multiplication.
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Fig. 2: Architecture of the EdgeDRNN processing element

(PE).
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Fig. 3: Top-level diagram of the EdgeDRNN implementation

on the MiniZed development board.

BWDRAM/BWW = 64/8 = 8, where BWW = 8 is the

weight precision and BWDRAM = 64 the external memory

interface bit-width. EdgeDRNN can be configured to support

1, 2, 4, 8, 16-bit fixed-point weights and 16-bit fixed-point

activations; in this paper we used only 8-bit weights. The

delta unit (DU) includes BRAM memory that records previous

states xt−1 and ht−2 to be used for calculating delta vectors

Δx and Δh. The DU checks one element in a delta vector

per cycle. Elements that exceed Θ result in non-zero elements

and are broadcast to all D-FIFOs that drive PEs. As shown in

Figs. 1a and 1b, DU computes column pointers (pcol) to non-

zero delta vector elements that are sent to the global controller

(CTRL). Using pcol, CTRL generates instructions, contain-

ing the physical start address of a weight column and the burst

length given in Fig. 1b, to control the AXI Datamover IP to

fetch weights (biases are appended to weights). On MiniZed,

DRAM data moves through the PL’s DMA and Datamover.

TABLE I: Resource utilization of MiniZed.

LUT LUTRAM FF BRAM (36Kb) DSP
Available 14400 6000 28800 50 66
Used 10464 552 11665 33 9
Percentage 72.67% 9.20% 40.50% 66% 13.64%
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Fig. 4: Mean effective throughput and word error rate evalu-

ated on the TIDIGITS test set versus various delta thresholds

(shown as hex values corresponding to 0∼0.5 floating point

threshold) used in both training and inference of a 2L-768H-

DeltaGRU network.

TABLE II: Word error rate (WER) of GRU and DeltaGRU

networks trained with Θ = 0x40, β =1e-5 on TIDIGITS.

Network Size #Param.
WER

(GRU)
WER

(DeltaGRU)
Degradation

1L-256H 0.23 M 1.83% 3.19% +1.36%
2L-256H 0.62 M 1.13% 1.83% +0.69%
1L-512H 0.85 M 1.04% 1.49% +0.44%
2L-512H 1.86 M 0.89% 1.64% +0.75%
1L-768H 2.42 M 1.27% 1.38% +0.11%
2L-768H 5.40 M 0.77% 1.30% +0.53%

Fig. 2 shows the design of the PE. The PE has a 16-bit

multiplier MUL and two adders, 32-bit ADD0 and 16-bit

ADD1. Multiplexers are placed before operands of MUL to

reuse it in both matrix-vector multiplications between delta

vectors Δ and weights W , and any element-wise multiplica-

tion. The nonlinear unit (NLU) uses look-up tables (LUT) to

compute quantized sigmoid and tanh functions. The mul-

tiplexer below ADD0 selects between BRAM data and ’0’ for

accumulation and necessary BRAM initialization respectively.

Signal s from CTRL is used to control multiplexers and select

target nonlinear function of NLU. ADD1 is responsible for

element-wise additions and sends the output activation h to

output buffer OBUF.

B. Implementation on MiniZed

Fig. 3 shows the implementation of EdgeDRNN on the

Zynq-7007S system-on-chip (SoC) on the $89 MiniZed de-

velopment board [11]. EdgeDRNN is implemented in the

programmable logic (PL). I/O is managed by an AXI Direct

Memory Access (DMA) IP. The AXI Datamover fetches

weights from DDR3 memory on the Processing System (PS)

side through an 64-bit (BWDRAM ) AXI-Full High Perfor-

mance (HP) slave port. The AXI-Lite General Purpose (GP)

master port is used for the single-core ARM Cortex-A9 CPU to



TABLE III: Latency and throughput of EdgeDRNN on DeltaGRU networks trained with Θ = 0x40, β =1e-5.

Network Sizes
Op

(Timestep)
Latency (μs) Effective Throughput (GOp/s) MAC

Efficiency
Sparsity
ΓΔx

Sparsity
ΓΔhMean (min, max) Est. Mean (min, max) Est.

1L-256H 0.45 M 46.4 (16.5, 142.4) 43.3 9.8 (3.2, 27.5) 10.5 490% 25.6% 90.0%
2L-256H 1.24 M 91.0 (29.3, 259.1) 91.6 13.6 (4.8, 42.4) 13.6 682% 78.9% 89.1%
1L-512H 1.70 M 130.7 (40.8, 331.2) 129.8 13.0 (5.1, 41.6) 13.1 649% 25.6% 89.5%
2L-512H 3.72 M 252.8 (57.2, 657.0) 262.9 19.2 (7.4, 84.6) 18.4 958% 85.5% 91.2%
1L-768H 4.84 M 224.3 (64.3, 616.8) 224.8 16.6 (6.0, 57.9) 16.6 830% 25.6% 91.3%
2L-768H 10.80 M 535.7 (96.6, 1344.7) 541.6 20.2 (8.0, 111.8) 19.9 1008% 87.0% 91.6%

��

Fig. 5: EdgeDRNN power breakdown on MiniZed.

control the DMA and write configurations, including network

size, delta threshold and offset address of weights, to the

EdgeDRNN. The PL is globally driven by a 125 MHz clock

from the PS.

Table I shows the resource utilization of the PL. BRAMs are

used to synthesize previous state memory in DU, accumulation

memory in PE and FIFOs. 8 DSPs are used for the MAC units

in 8 PEs while the remaining DSP in CTRL produces weight

column addresses. The most consumed resources are LUTs

(72%).

IV. EXPERIMENTAL RESULTS

We trained 6 different sizes of GRU and corresponding

DeltaGRU networks to compare their word error rate (WER)

on the TIDIGITS audio digit dataset, evaluated using the

greedy decoder. Inputs of all networks are 40-dimensional log

filter bank features extracted from audio sampled at 20 kHz

and framed with 25 ms frame size and 10 ms frame stride.

Networks are trained for 50 epochs using the Connectionist

Temporal Classification (CTC) loss function [12] and L1

regularizer with factor β=1e-5 [10]. The Adam optimizer was

used to update network parameters with learning rate of 3e-4

and batch size of 32. EdgeDRNN was configured to use INT16

activations and INT8 weights and these networks were trained

in PyTorch 1.2.0 with a quantization method similar to [13].

We used DeltaGRU Θ from 0 to 0.5 (0x80). Training was

coded in Python with PyTorch 1.2.0 and ran on an NVIDIA

GTX 1080 GPU with CUDA 10 and cuDNN 7.6. Latency

and throughput of EdgeDRNN were evaluated on DeltaGRU

networks of different sizes using the first 10,000 timesteps of

the test set. The latency is the elapsed time from when input

data is fetched for RNN computation to when RNN output

data is available in DRAM.

A. Accuracy and Throughput

Figure 4 shows the EdgeDRNN throughput and WER versus

the Θ used in training and testing of a 2L-768H-DeltaGRU

network. With 8 PEs at 125 MHz, EdgeDRNN has a theoretical

peak throughput of 2 GOp/s. At Θ = 0, there is still a speedup

of about 2X from natural sparsity of the delta vectors. Higher

Θ leads to better effective throughput, but with gradual slight

WER degradation. The optimal point is at Θ = 0x40 (0.25),

just before a dramatic increase of WER, where EdgeDRNN

achieves an effective throughput around 20.2 GOp/s with 1.3%

WER. We use the same Θ = 0x40 to train all other DeltaGRU

networks and their accuracy is compared with GRU networks

of the same size in Table II. The smallest network 1L-256H-

DeltaGRU has a 1.36% WER increase. The largest network

2L-768H-DeltaGRU achieves a 0.53% higher WER but 4X

more effective throughput. Setting Θ <= 0x08 shows that

INT16/INT8 arithmetic achieves the same accuracy as FP32

(Table IV), but here the effective throughput is reduced to 6.5

versus 20.2 GOp/s/W.

B. Theoretical & Measured Performance

The theoretical estimated mean effective throughput ν of

EdgeDRNN running a DeltaGRU layer is given as:

ν =
Op

τM + τA
(2)

≈ 2
(
3MN + 3M2(L− 1) + 3M2L

)

(3MN+3M2(L−1))(1−ΓΔx)+3M2L(1−ΓΔh)
Kf + 3M

Kf

(3)

where Op is the number of operations in a DeltaGRU layer

per timestep, τM the latency of MxV and τA the latency of

remaining operations to produce the activation. ΓΔx and ΓΔh

are the mean sparsity of input and hidden units respectively,

L the number of hidden layers and f the clock frequency.

Table III compares benchmark results of different sizes

of DeltaGRU networks on EdgeDRNN. Estimated results by

Eq. 3 are within 7.1% relative error to measured results,

so Eq. 3 is useful to estimate EdgeDRNN performance. On

average, EdgeDRNN can run all tested networks with less than

0.54 ms latency, which corresponds to 20.2 GOp/s effective

throughput for the 2L-768H-DeltaGRU.

C. Power Measurement

Fig. 5 shows the power breakdown of the MiniZed sys-

tem. The total power is measured by a USB power meter;

the PS, PL and static power is estimated by the Xilinx

Power Analyzer. The whole system active burns at most
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Fig. 6: (Top) Audio spectrogram filter bank features with annotated labels and (bottom) measured hardware latency per frame

of a sample (25896O4A.WAV) from the TIDIGITS test set benchmarked on different hardware platforms.

TABLE IV: Comparison of EdgeDRNN with previous work and commercial products (the 5 W Google Edge TPU does not

support RNNs).

Platform FPGA ASIC GPU
This Work DeepStore ESE NCS2 Jetson Nano Jetson TX2 GTX 1080

Chip XC7Z007S XC7Z045 XCKU060 Myriad X Tegra X1 Tegra X2 GP104
Dev. Kit Cost $89 $2,495 $3,295 $69 $99 $411 $500+PC
Bit Precision (A/W) INT 16/8 INT 16/16 INT 16/12 FP 16/16 FP 32/32 FP 32/32 FP 32/32
Test Network DeltaGRU LSTM Google LSTM LSTM GRU GRU GRU
Network Size 2L-768H 2L-128H 1L-1024H 2L-664H 2L-768H 2L-768H 2L-768H
#Parameters 5.40 M 0.26 M 3.25 M 5.40 M 5.40 M 5.40 M 5.40 M

WER on TIDIGITS Θ = 0x00 Θ = 0x08 Θ = 0x40
- - 1.07% 0.77% 0.77% 0.77%

0.69% 0.75% 1.30%
Latency (μs) 2633 1673 536 - - 3,588 5,327 3,240 715
Batch-1
Throughput (GOp/s) 4.10 6.46 20.16 1.04 79.20 3.01 2.03 3.33 15.10

On-Chip Power (W) 1.48 2.30 - - - - -
Batch-1 On-Chip
Power Efficiency (GOp/s/W) 3.20 4.36 13.62 0.45 - - - - -

Wall Plug Power (W) 2.42 - 41.00+PC 1.74 7.56 11.70 92.43+PC
Batch-1 System
Power Efficiency (GOp/s/W) 1.70 2.68 8.35 - 1.93 1.73 0.27 0.28 0.16

2.416 W. The EdgeDRNN logic burns only 87 mW. Thus the

wall plug and incremental power efficiency are 8.4 GOp/s/W

and 231.7 GOp/s/W respectively. Varying modes of opera-

tion allows inferring EdgeDRNN DRAM memory power of

358 mW, resulting in EdgeDRNN+DRAM power efficiency of

38.3 GOp/s/W. We used the wall plug power efficiency for the

following comparisons.

V. CONCLUSION

Table IV compares EdgeDRNN with other platforms. The

same task (first 10,000 timesteps of the test set) was bench-

marked on EdgeDRNN, ASIC and GPUs. The Intel Compute

Stick 2 (NCS2) does not support GRU and was bench-

marked with an LSTM network with similar parameter count

and trained on the same dataset and hyperparameters. For

benchmark of GPUs, we used the cuDNN implementation of

GRU that achieved 715μs latency on NVIDIA GTX 1080,

which is 2.4X quicker than the DeltaGRU using the NVIDIA

cuSPARSE library. We also compare this work to reported

specifications of DeepStore [14], which has similar power

consumption as EdgeDRNN, and ESE [6], which is a sparse

matrix-vector multiplication accelerator for LSTM.

The power efficiency results show that EdgeDRNN achieves

over 4.8X higher system power efficiency compared to com-

mercial ASIC and GPU products, 30X higher on-chip power

efficiency compared to [14] and 4.3X higher system power

efficiency than ESE.

Fig. 6 compares the latencies on a test set sample. Edge-

DRNN is as quick as 1080 GPU and 6X quicker than the

other platforms. EdgeDRNN latency is lower during the silent

or quieter periods (e.g. between 120 s and 140 s).

The delta threshold Θ allows instantaneous tradeoff of

accuracy versus latency. Using sparsity in delta vectors allows

the arithmetic units on this task to effectively compute ten

times more operations.

The throughput of commercial edge devices on batch-1

RNNs are a factor of more than 100X less than the claimed

peak performance offered by these platforms, which range

from 500 GOp/s for Jetson Nano [15] up to nearly 10 TOp/s

for GTX 1080 [16] It shows that an optimized RNN platform

can do better in throughput and especially power efficiency.
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