JRC Scientific and Technical Reports

ELSAPSD New Testing Algorithm
Applicable to Cyclic and Pseudo-Dynamic
Experiments User Manual

PSDCYCO03.DLL Version

* Beatriz Zapico Blanco, F. Javier Molina

p Algorithm - Microsoft Visual Co+ - lalgorithm.cppl gl
[£ 5ot e imet Bt 3oid Took mdow b =lai
8 EE | me - (DR R 2w

o e [pERET R

Feturn: -

}

vmd legurubu Ell'DI.]lm-lrkH

1-_1:: lcat Neua k integration mthcnl
Perforas the updstes relstive to every integration incresent
o lor sach oy sl.mg of the ‘.m\nul oL

a1t (Coumt_t == 0) { 7~ updete for starting instant
Time_t = TimeRecHinusl:

#+PSDCYCh
Patt_t=PattRecMinusl

PSDCYC s
\mial:nm{ |
Ghoc_t * GhccRecHinusl:
ExF_t = MGhccDofl » Ghoo_t:

l{ulh! 0 {
Dis_t = Daslnit:
Yel bt = Vallnit:

ExF_t — Res_t
DupmgF Danpinghdd = Vel t.
Aduxf = kuxF - DampingF:
dec b = Mass Soll-'eunxi'l
}

} elee {
77 update for instant _t-1
//PSDCYCL1
1 f(NDof »0) {
Vel l!musl = Val_ t
dcc_tMinusl =
update inst n i

iE(NGhec>0){Ghee_t = Ghec_t + Gleelner)} < PSDCYCam
Dis_t = Das_tPlusl
Time t = Time_t + Tinslncr

PSDCYChian
if (NPatt:0){Patt_t = Patt_t + Pattlncr.}
SAPSDCYCLL
1E(FDof »0) {
!I’.IIL‘J::)M{M t HGhee2Dofl = Ghee t.) ~/PSDCTCan
Vell = Acc_tHimusl = m 5§ » Timelncr)
Vll.l VIl tllnnli o Vell:

D:g an DnB:::.:dd Vell,

dcc t - Baulxnv L lu:E -

*
G088 s o 7 i

EUR 23448 EN - 2008

BAJRC 1y

Institute for the Protection
and Security of the Citizen

The Institute for the Protection and Security of the Citizen provides research-based, systems-
oriented support to EU policies so as to protect the citizen against economic and technological
risk. The Institute maintains and develops its expertise and networks in information,
communication, space and engineering technologies in support of its mission. The strong cross-
fertilisation between its nuclear and non-nuclear activities strengthens the expertise it can bring
to the benefit of customers in both domains.

European Commission
Joint Research Centre
Institute for the Protection and Security of the Citizen

Contact information

Address: ELSA Laboratory, IPSC, Joint Research Centre, via Enrico Fermi 2749, 21027
Ispra, Italy

E-mail: beatriz.zapico@ijrc.it

Tel.: 0332785712

Fax: 0332785379

http://ipsc.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is
responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers
to your questions about the European Union

Freephone number (*):
0080067891011

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu/

JRC 45988

EUR 23448 EN

ISBN 978-92-79-09120-9
ISSN 1018-5593

DOI 10.2788/87951

Luxembourg: Office for Official Publications of the European Communities
© European Communities, 2008
Reproduction is authorised provided the source is acknowledged

Printed in Italy

http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1

[[INTRODUCTION

Pseudo-dynamic test: In a PsD test the earthquake response of a structure is
simulated. The input data for the computer running the PsD algorithm is a record of an
actual or artificially generated earthquake ground acceleration time history. The mass of
the structure must be considered as concentrated in a discrete-parameter model that has a
finite number of degrees of freedom (DoFs). The equations of motion are solved on line
using a step-by-step numerical time integration method (Explicit Newmark):

Ma(t)+Cv(t)+r(t)=Ff(t)

where M and C are the mass and damping matrices, a(t) and v(t) the acceleration and
velocity vectors, r(t) the structural restoring force vector and f{t) the external forces
applied to the system. In our case f(t) are the equivalent seismic loads

f(t)=-MJag(t)

where ag(t) is the ground acceleration vector and] is the influence matrix between ag(t)
and the DoFs.

Inertia and viscous damping forces are modeled analytically; therefore there is no
need to perform the test on the real time scale. Nonlinear structural restoring forces,
including hysteretic damping, are measured experimentally instead.

The solution at each new step is obtained in function of the values at the previous
steps so as to deliver the displacement response to any arbitrary external loading function.

Cyclic test: In a cyclic test we want the structure to follow a given pattern (or patterns)
of displacements (or forces) such as a uniform history, a sinusoidal one etc. This pattern is
characterized by a name, a number of record points and the time increment between these
points. Before using it, the pattern will be scaled and may be modified in two different ways
(see Figure 1):

Proportional span. 1t is a parameter given by the user which will multiply the value
of the pattern at every point of its history. For example, if we are using a 10-points uniform

displacement history of 100mm and we apply a proportional span of 40%, we well geta 10
points uniform displacement history of 40mm. If the experiment may continue further on,
the pattern will be assumed as zero.

Integral span. Every point of the effective pattern is calculated as the precedent
effective point (zero for the initial one) plus the current value multiplied by the integral
span and the prototype time increment. In more understandable words, we are forcing the
pattern to grow at a given rate, dictated by the pattern history and the selected span. In the
former example, with an integral span of 10%/s we will get a ramp that, starting from zero,
will increase in a constant way, 10mm per prototype second. Once the original pattern
points are over, the applied pattern will remain in the last calculated value (growing
velocity equal to zero).

A
Pattl Patt? Patt3 Pattd Patts Pattern records
o o ® ® ®
E Tilrr‘e Rec Incrs}r?ent E E
E h > E E
: : : : . Ispan=
E : : : PattR
: . Pattern ! :)
] ' Increment . ; attRe
. © Patt2
Pl N : y ~iPattR ;
o o Pratnecs | Pathecs
/'. S
."; ,o>
[f.r" ,)
\ [{ :
\ | : :
\I\ :] i . O
A [' ' L
AN : E 4 i

~ Value of the pattern
InterRec=4 PattRecl P
) for every integration

step Patt_t = Pattl +
Pattincr/TimeReclncr

Figure 1 Integral Span

In addition, the user may want the pattern to be followed in different ways by the
different actuators. To perform that, the influence matrix from patterns to targets is
defined, as it will be seen afterwards.

Dynamic Link Library (DLL). A DLL is a file of code containing functions that can be
called from other executable code (either an application or another DLL). Programmers use
DLLs to provide code that they can re-use and to parcel out distinct jobs. Unlike an
executable (EXE) file, a DLL cannot be directly run. DLLs must be called from other code
that is already executing.

Do

One of the advantages of DLL files is that, because they do not get loaded into
random access memory together with the main program, space is saved in RAM. When and
if a DLL file is needed, then it is loaded and run.

DLLs provide the standard benefits of shared libraries, such as modularity.
Modularity allows changes to be made to code and data in a single self-contained DLL
shared by several applications without any change to the applications themselves.

In our case, the advantage of working with DLLs at ELSA PSD master controller is in
the modularity for programming the testing method and algorithm by the user without the
need to work with a larger program (master.exe), which includes many variables and
operations that the user should not need to change or even know about.

The new version of the DLL described in this manual allows the implementation of
both pseudo-dynamic (PsD) tests and cyclic tests, previously covered by PSD and CYCLIC
DLLs.

Other features of this version are: strain-rate effect compensation, re-start
capabilities and a large variety of security alarms based on different variables.

In this manual you will find a full explanation of how to use the DLL throughout
some simple examples. Some more complicated and realistic examples can be found on the
Annex.

1|MASTER
CONFIGURATION

The controller consists of two main parts: the master board and the slave boards
(usually more than one). The master board contains the kernel of the PsD or cyclic
algorithm.

The control software reflects the architecture of the hardware: there is one master
program computing the target displacements that communicates with several slaves
programs.

Both master and slave programs originate two main processes: the background
process and the foreground process. The first is devoted to manage several services that
are used during the control such us the keyboard, the uploading of control parameters, the
displays refresh, the hard disk management, the LAN connection, the remote services and
the data exchange between master and remote station. Since these services are not strictly
necessary, they have lower priority than those in the foreground process.

The foreground process is the core of the control software: It performs at a fixed
sample rate the data acquisition and the computation of control variables, the data
exchange between master and slave and the DLL algorithm. For this reason it must have
absolute priority on the background processes, because, obviously, delays cannot be
accepted in the control algorithm.

The UserAlgorithimDLL gives us the possibility of writing our own algorithm
without modifying and recompiling the application MasterDLL.exe.

Beside the UserAlgorithmDLL, the user must supply some other files to the master.
They are all described in this chapter and must be stored in the c:/master directory.

IA. HOST.CFG I

The user must provide this file containing the IP number of the possible hosts of the
master.

When a FTP connection to the master is started, the master software is first
checking the file HOST.CFG for matching correspondence between the IP number of the
incoming connection and the file content.

The file is created the following way: the complete IP number of the allowed hosts,
or a part of this IP number followed by a wild char * for an entire sub net. It would be easier
for you to choose the second option if you want the whole net of your laboratory to have
access to the master.

[XXX. XXX XXX.XXX|

|141.63.54.100| complete IP number
|141. 63.54.101]|

[139.191.131. *| entire sub net
[192.168. 0. *| entire intranet

| B. USER.CFG I

Once the connection is accepted, the master checks for a valid username-password
pair in the file USER.CFG. Then, if the submitted values are present in the file, the user will
be allowed to interact with the master.

The USER.CFG file must be provided by the user and is created as follows:

|login name| password |type|
|lab | 1234 |1 | in this example

where type define the way the user can interact with the master, his or hers privileges. Use
1 for your lab account; you will be able to get/put files on the master (see Table 1 below).

Type | Privileges
1 Super
2 Privi
3 Normal
4 Guest

Table 1

| C. MASTER.INI I

The file Master.INI is read just once when the master program is started. Its use is to
configure the hardware present in the controller. The main sections of this file are:

Network configuration. You may need to ask your system administrator or to
check the hardware documentation to understand which kind of network chip you are
using. That is the only line you need to change in the block NETWORK INFO.

DEVICE Type: can be I855 for Master board with Intel Network #### Interface
Controller integrated or NE2K for ISA board NE2000 #### with jumper correct setting or
RTL fot rtl 81xx NIC

DEVICE_TYPE=I855

Number of slaves used. The tracing and the network are activated in the block
GENERAL INFO. Introduce the number of slaves you physically have under the master, even
if you are not using all of them. That is the only thing you have to change in this block.

Specify the number of slave boards used in your servo-controller
NUM_SLAVE=2

IP Address. In the block ETHER_0 INFO you will be asked the IP address of your
master. If you are not using a NE2000 ISA board you will have to change the last two lines
also.

Insert the Master IP-ADDRESS =>
Internet:
IP_ADDRESS=139.191.131.186

Specific setting for NE2000 ISA board
PORT=0x300

IRQ=5

| D. TESTNAME.TXT I

This is a very simple text file with the name of the test that is carried out on it. This
name must have up to four characters.

The DLL will read this file to know the name of the test to execute.

XXXX
***The first line of this file contains the name of the
¥ test to be executed by the dll algorithm. It should contain four

#¥* characters or less.

| E. MASTER.BAT I

This file is used to set some controller parameters that need to be fixed
independently of the DLL algorithm. They may be different for every experiment setup. The
bat file must not be opened, but edited. To do it the user have to click on the file with the
right mouse button, edit then run.

In the file the user can find different groups of variables, each group preceded by its
definition. In some cases there is also a brief explanation of how these variables values can
be modified. Those groups are explained below. Afterwards, during the test, the values may
be changed from the master console, as it will be explained later on (see The Test).

Temposonics channel used and Temposonics type. Currently we are using
Tempo2, it may be different for the user. It depends on the way wire connections have been
done.

TEMPOSONIC CHANNEL USED
USED =1
NOT USED =0

The user is probably employing the new Temposonics model, so type 2 must be
selected (check it anyway!).

TYPE OF TEMPOSONIC USED
PARALLEL (100 um) =1 #0OLD MODEL
SSI (2um) =2 #NEW MODEL

PID parameters for every controller. Place here the PID parameter values: these
will become the default ones. The current values may be modified during the test from the
master or slaves consoles. You can select different ones for each controller.

HHHAAHHHHHAHARHHHBH S H AR HHHH A AR HHHBH SRS
PID PARAMETERS

set C1.DispP=0.5

set C1.DispI=500

set C1.DispD=0

Conversion factors for every measure. Measurements of analogical signals, such
as the load cell force, must be modified before they are entered into the system by using the
conversion factors. These parameters are the actual factor between the physic unit we
want to measure (force, for example) and the value, in volts, that arrives to the converter.
In the case of digital channels, such as Temposonics or Heidenhain, conversion factors are
useful only if the sign of a measurement has to be changed. In those cases the measure
reaches the controller already in mm.

set MEASURE1-CF.Disp-T2=-1
set MEASURE1-CF.Force1=40 - means 40 kN /volt

Anti spike values. The variable used as feedback for every slave controller during
the test can be Forcel, TempoZ2, Heide or Lvdt. The value of this variable is used by the
control system to calculate the error (difference between the actual value of the position or
force and the reference one) and by the servo-valve command to reach the target. If this
value has an electrical spike, there may be problems in the control system. The anti spike
value is defined to avoid this situation. Changes in the variable value beyond the anti spike
value (in mm or kN) will be ignored, and the value of the variable will remain equal to the
last point before the spike.

set ANTISPIKE1.AntiSpikeForce1=20
set ANTISPIKE1.AntiSpikeTempo2=1
set ANTISPIKE1.AntiSpikeHeide=1
set ANTISPIKE1.AntiSpikeLvdt=1

Alarm insertion and error delta value. There is an alarm available for every slave
that stops the oil pumps if the error goes above a maximum. This error is calculated as the
difference between the target force or displacement and the measured one, depending on
the kind of feedback. This maximum is set here under the name of Error Delta, expressed in
kN or mm. An alarm is not available until it is inserted.

set ALARM1.ErrorDelta=5
set ALARM1.Inserted=1

Master algorithm type. Master.bat provides here the name of the DLL we want to
load by setting PSD.DIIAlgorithm. To avoid loading the DLL put a “#” at the beginning of the
line.

Set PSD.DIlAlgorithm=PSDCYCO03.DLL

Procedure. The procedure function allows the introduction of some commands at
master.bat that will be executed at every controller sampling. These lines can represent the
change of some variables value, for example:

Example: Displacements measured from the actuator are digital signals expressed in millimeters. Sometimes it
can be interesting to transform them to analogical signals if an external acquisition is required. In this case a
special procedure must be done in the master.bat file. Channels DAC1 and DACZ of every slave controller can be
used as analog output of the digital signals. It is important then to define the conversion factor of these channels,
so as to change the units from mm to volts.

For Tempo and Heide analog output on Dacl and Dac2 10V/1000mm=0.01

set OUTPUT4-CF.Dac1=0.01

set OUTPUT4-CF.Dac2=0.01

PROCEDURE INTERNALALGOOUTPUT1.DAC1=INTERNALALGOINPUT1.Tempo2

PROCEDURE INTERNALALGOOUTPUT1.DAC2=INTERNALALGOINPUT1.Heide
PROCEDURE START

Once the user has adjusted this file to the profile of the current setup, it won’t need
to be changed any more.

Figure 2: Example of MASTER.BAT file

I F. EXCITATION-HISTORY INPUT DATA FILES I

E1 GROUND ACCELERATION FILE

In a PsD test the earthquake response of a structure is simulated. The input data for
the computer running the PsD algorithm is a record of an actual or artificially generated
earthquake ground acceleration history. Every unidirectional history is called
accelerogram and must be given to the master as a text file. The name of these text files
must have this format:

XXXX_acc.txt
cent_acc.txt for this example

a name of no more than four characters followed by an underscore and the letters acc.

The first lines of the ground acceleration file are fixed notes: a general title, a brief
description of the used DLL and an explanation of how to comment a line:

>>>Input ground acceleration history

>>>PSDCYCO03.DLL: JRC-ELSA general PsD and/or cyclic algorithm at one master
>>>User comment lines are started with a #

Example of user comment line

The user will be asked for a title describing the accelerogram used. This description
is completely free. It usually informs about the duration, the peak acceleration and the
orientation.

>TITLE OF THE RECORD:
El Centro 3.4175 m/s/s, 20 s, N-S

In the example, the accelerogram comes from an actual earthquake, has duration of
20 s, a maximum peak acceleration of 3.4175 m/s2 and a north-south orientation.

The number of record points of the history must be specified. If the experiment
continues when the accelerogram points are already over, the input acceleration will be
assumed as zero (see PsD Equation Data).

>NUMBER OF RECORD POINTS OF THIS HISTORY NRecGAcc:
1001

The input sampling period is always expressed in prototype time. The distance, in
seconds of time, between two record points of the input is called Prototype Time Increment:

>PROTOTYPE TIME INCREMENT BETWEEN TWO RECORDS TimeRecIncr s:
0.02

ANote: this time increment must be equal to that introduced in the general input data file; otherwise the
system will return an error.

Finally, the values of the ground acceleration are required. They must be inserted in
one column, and must be expressed in m/s2.

>ACCELERATION VALUES GAcc (NRecGAcc,1) m/s/s:
0

-0.014002968

-0.10801309

-0.101011606

-0.088018656

-0.09502014

E2 PATTERN FILE

In a cyclic test we normally want the structure to follow a given pattern (or
patterns) of displacements (or forces) such as a uniform history, a sinusoid etc. Every such
unidirectional pattern is given to the master as a text file.

The name of these text files must have this format:
xxxx_pat.txt = unif_pat.txt for this example.
a name of no more than four characters followed by an underscore and the letters pat.

The first lines of the pattern file are fixed notes: a general title, a brief description of
the used DLL and an explanation of how to comment a line.

>>>Pattern history

>>>PSDCYCO03.DLL: JRC-ELSA general PsD and/or cyclic algorithm at one master
>>>User comment lines are started with a #

Example of user comment line

Then the user will be asked for a title describing the pattern used. This description
is completely free. In this example, the pattern is a uniform history of displacements of
1001 points.

>TITLE OF THE RECORD:
Uniform 100 mm, 5000 points

11

The number of record points of the history must be specified. If the experiment
continues when the pattern points are already over, the pattern will be assumed as zero
(see Pattern Data).

>NUMBER OF RECORD POINTS OF THIS HISTORY NRecPatt:
5000

The input sampling period is always expressed in prototype time. The distance, in
seconds of time, between two record points of the input is called Prototype Time Increment:

>PROTOTYPE TIME INCREMENT BETWEEN TWO RECORDS TimeRecIncr s:
0.02

A\ Note: this time increment must be equal to that introduced in the input data file; otherwise
the system will return an error:

Finally, the values of the pattern are required. They must be inserted in one column,
expressed in mm or kN.

>RECORD VALUES Patt (NRecPatt,1) mm or kN:
100
100
100

12

@DATA INPUT FILE

The data input file is a text file (.txt) that contains some information determined by
the user (e.g. the title or the velocity of the experiment). This file is given to the Master and
is read by the DLL as soon as the application is launched.

It's very important to fill the data input file in using the correct format, otherwise an
error will be generated by the main application and the experiment will not start. The
following steps are required to setup the file correctly:

The name of the data input file must be the name of the experiment, as expressed in
the testname.txt file: no longer than 4 characters, followed by an underscore and the letters
dat. For example, if we were working with the experiment xxxx, the name of the file will be

xxxx_dat.txt

Lines starting with a # are just comments, and will be ignored during the reading of
the file.

A A comment can be done before any mask but not between a mask and its value.

Comment line

Lines starting with a > are masks and cannot be modified. The application will
generate an error in case any of them is changed, or is not at the required position e.g. :

ERROR SHEARCHING FOR: ">NUMBER OF SLAVE CONTROLLERS CONSIDERED AT THIS
MASTER NCon>0:" this is the line that should be written in the input data text file
INCORRECT LINE: "SLAVE CONTROLLERS CONSIDERED AT THIS MASTER NCon>0:" this
one was written instead!

The variable is defined in these masks, while the value of it must be introduced by
the user. Attention: when a mask is headed by an if the user should enter the value if and
only if the requisite is fulfilled. For example, in the case that follows:

>]F NPatt>0, PROPORTIONAL SPAN PERCENTAGE MULTIPILIER PattSpan (1,NPatt)%:

the mask corresponds to the value of the proportional span of the pattern. The value must
be written if, and only if, the number of patterns is greater than zero. If no pattern is being
used, then nothing must be written between the mask and the following one.

>]F NPatt>0, PROPORTIONAL SPAN PERCENTAGE MULTIPILIER PattSpan (1,NPatt)%:
>]F NPatt>0, INTEGRAL SPAN PERCENTAGE MULTIPILIER PattISpan (1,NPatt)%/s:

The mask reflects also the dimensions of each variable as a matrix, dimensions that
must be respected when introducing the values. No explicit error will appear otherwise,
but the application may work wrongly or not work at all, that is why it is very important to
pay attention while typing. Such an error may be detected when checking the ECHO file,
commented afterwards.

When introducing matrices of values, columns are separated by blanks or tabs while
rows correspond to lines, separated by line brakes. For example, if we had 2 degrees of
freedom (NDof = 2) and two controllers (NCon = 2) we would write:

>IF NDof>0, INFLUENCE MATRIX FROM DoF DISPLACEMENTS TO TARGETS
Dis2Targ(NCon,NDof) mm/m:

1000.01000.0

1000.01000.0

If dimensions are not specified within the mask, then the variable is an scalar. This is
the case of the number of degrees of freedom.

>NUMBER OF PSD DEGREES OF FREEDOM NDof>=0:
1

If a mask is headed by the characters >>> it’s just a note and the user must not write
any value under it.

>>>PSDCYCO03.DLL: JRC-ELSA general PsD and/or cyclic algorithm at one master

First lines of the file are a general title, a brief description of the used DLL and an
explanation of how to comment a line.

>>>Data of the test

>>>PSDCYCO03.DLL: JRC-ELSA general PsD and/or cyclic algorithm at one master
>>>User comment lines are started with a #

Example of user comment line

This file is going to be explained more in detail trough out two examples: a cyclic
test and a PsD one that the user can find in the Annex.

14

I A. PSEUDO-DYNAMIC TEST I

In the following, a simple example of a PsD Input Data File will be explained (find
the j02_dat.txt file in the Annex). Just one slave controller and one accelerogram are used.
The considered system has one degree of freedom.

The part of the file titled Pattern Data must remain unfilled, as no pattern is used for
a pure PsD test.

A.1 GENERAL DATA

First line of this part is the test name. Use exactly the same name as inside the file
TESTNAME.txt and contained in the name of the Data Input File.

>TEST NAME: j02
Then the user will be asked a title describing the test, which is completely free.

>TITLE DESCRIBING THE TEST:
Example2 1 accelerogram 1 DoF 1 slave controller

In MASTER.INI the number of slaves that are physically attached to the master is set.
There is no need to use all of them, neither to refer to them it in the physical order (1 2
3..):

>NUMBER OF SLAVE CONTROLLERS CONSIDERED AT THIS MASTER NCon>0:
1

>EXTERNAL BOARD NUMBER OF EVERY SLAVE CONTROLLER CtrNum (1,NCon):
1

A The number of controllers from now on will be NCon. It is important to remember it in order to consider
properly the matrix dimensions.

The force applied by every piston is measured during the experiment by means of
its load cell. Additionally to this measurement, the same force is calculated based on the
pressure inside the oil chambers of the pistons, if available. This new variable is called
pressure derived force (PDF). To carry out this calculation, the section area of the piston at
those chambers must be known. The user has to supply it in KN/bar (roughly dm?2) when
pressure is measured in bar and force in kN.

>PISTON SECTION1 (TENSION CHAMBER) AT Con1 Con2 ... Section1 (1,NCon) kN/Bar:
2.75
>PISTON SECTIONZ2 (COMPRESSION CHAMBER) AT Con1 ConZ2 ... Section2 (1,NCon)
kN/Bar:
2.75

As the test is not cyclic, there are no patterns.

>NUMBER OF PATTERN INPUT FILES NPatt>=0:
0

As we have seen before, typically in a PsD test some ground acceleration input files
are required. In this case we are using just one.

>NUMBER OF PSD DEGREES OF FREEDOM NDof>=0:
1

>]F NDof>0, NUMBER OF GROUND ACCELERATION INPUT FILES NGAcc>=0:
1

The PsD method must be carried out at a relatively low velocity in order to obtain
accurate results. This velocity decrease can be up to three orders of magnitude and may
cause distortions in the behavior of the materials. This distortion is called strain rate effect
(SRE).

Luckily, SR effect is negligible in most of the materials used in construction, concrete
or steel for example. Nevertheless, the behavior of other materials like rubber or silicon for
instance can change a lot, with modifications of the apparent rigidity of even more than
20%. When working with devices using this kind of materials, a base isolator for example,
an especial SRE compensation implemented in this DLL may be introduced in the restoring
forces before the are used in the equation of motion (see Molina et al., 2002). The number
of SR dependent devices must be written here:

>]F NDof>0, NUMBER OF STRAIN-RATE DEPENDENT DEVICES TO BE COMPENSATED AT
THE RESTORING FORCES NSR>=0:
0

AFrom now on, NDof will stand for degrees of freedom in the file, NPatt for number of patterns, NGAcc for the
number of accelerograms and NSR the number of strain-rate dependent devices. They will appear in the
dimensions of the variables.

It is important to distinguish between two “kinds of time”. On one hand, the time
counting during the execution of the test, the one you can see on your watch, is called real
time. On the other hand, the input is expressed in prototype time, the time in which takes
place an earthquake or a pattern. Experiments are usually slower than earthquakes. The
rate between real time and prototype time is called time scale ().

The input is always expressed in prototype time, both for cyclic and pseudo-
dynamic test. The time increment between two points of the input (ground accelerogram,
in this case) is called prototype time increment. Having an increment of, for example, 0.02s
means that the ground acceleration file or pattern will provide a record at every 20ms
during an earthquake or a pattern history.

16

>PROTOTYPE TIME INCREMENT BETWEEN TWO RECORDS AT THE PATTERN AND
GROUND ACELERATION INPUT FILES TimeRecIncr s:
0.02

Time will be scaled by the DLL. This means that from every interval between two
record points, a number of intermediate points will be obtained. The number of points
within every interval is called InterRec and, multiplied by the controller fixed sampling
period (2ms) determines the real time increment of the experiment.

>NUMBER OF INTERNAL CONTROLLER 2ms SAMPLINGS BETWEEN TWO RECORDS
InterRec:
1000

In this case we have 1000 samplings between two records of the accelerogram. That
means that it will take 1000*0.002= 2s from one record to the next one (one step).

Time scale (A) is calculated by the formula:
>>>Time scale lambda = InterRec*0.002 /TimeRecIncr = RealTime /PrototypeTime
and its value (2/0.02=100 in this example) is written in the echo file.

It is necessary to fix a stopping time for the experiment. It would be expressed in
prototype time. The name of the variable is TimeStop.

>PROTOTYPE TIME FOR NEXT TEST STOP TimeStop s:
30.0

This implies that the application of the time stepping algorithm will be halted at a
prototype time of 30s, independently of the duration of the patterns or accelerograms. The
test may continued after such stop if the TimeStop variable is changed manually (see The
Test/Remote Control)

A.2 OTHER INFLUENCE MATRICES

Once the target that must be sent to the pistons is obtained from the equation of
motion, it is still possible to modify it by using some of the measurements done on the
structure. A signal coming from any of these channels can be added, after being multiplied
by a influence matrix. Those matrices are decided by the user. In this example we are not
using them, thus, a zero must be placed under every mask.

A Note: this matrices are mainly used on cyclic tests, and very rarely on PsD ones.

>INFLUENCE MATRIX FROM HEIDENHAIN TO TARGETS Heid2Targ (NCon,NCon) (mm OR
kN)/mm:
0.0

>INFLUENCE MATRIX FROM TEMPOSONICS TO TARGETS Temp2Targ (NCon,NCon) (mm
OR kN)/mm:

0.0
>INFLUENCE MATRIX FROM LOAD CELLS TO TARGETS LCell2Targ (NCon,NCon) (mm OR
kN)/kN:

0.0
>INFLUENCE MATRIX FROM FORCE2 CHANNEL TO TARGETS Force22Targ (NCon,NCon)
(mm OR kN)/unit:

0.0
>INFLUENCE MATRIX FROM SPEED CHANNEL TO TARGETS Speed2Targ (NCon,NCon)
(mm OR kN)/unit:

0.0
>INFLUENCE MATRIX FROM LVDT CHANNEL TO TARGETS Lvdt2Targ (NCon,NCon) (mm
OR kN)/unit:

0.0

If, for example, a Heid2Targ matrix of 0.5 is used, the target will be modified like
this:

Targetrew = Target + 0.5 x Heidenhain

A.3 PsD EQUATION DATA

This part of the file must be filled only if a PsD test is being run (NDof>0). Nothing
must be written under these masks otherwise.

AIl,“ is important to pay attention to the dimensions while introducing the data. They depend on the number of
degrees of freedom (NDof) and on the number of accelerograms used (NGAcc).

Firstly, the mass matrix is required. It will be used to compute the external forces,
together with the influence matrix from ground motion to DoF that will be commented
afterwards. Dimensions of the matrix must be NDofxNDof (x1 in our case).

>]F NDof>0, THEORETICAL MASS MATRIX Mass(NDof,NDof) kg:
8300.0

As we have seen before, the rigidity of the structure is taken into account by the
experimental measurement of the restoring forces. Moreover, the process automatically
accounts for the hysteretic damping due to inelastic deformation and damage of the
structural materials, which is usually the major source of energy dissipation. Despite of
this, the algorithm allows the user to introduce additional rigidity and/or damping.
Typically the user is not interested in using them, and a matrix of zeros is therefore written
down, respecting the specified dimensions:

>]F NDof>0, THEORETICAL ADDITIONAL STIFFNESS MATRIX StiffAdd(NDof,NDof) N/m:

18

0.0
>[F NDof>0, THEORETICAL ADDITIONAL DAMPING MATRIX DampingAdd(NDof,NDof)
Ns/m:

0.0

The algorithm allows the user to select an initial displacement and an initial
velocity, expressed in terms of DoF. Classically their value is also zero.

>[F NDof>0, INITIAL DISPLACEMENT DisInit(1,NDof) m:
0.0

>[F NDof>0, INITIAL VELOCITY Vellnit(1,NDof) m/s:
0.0

At the beginning of the test, if the structure is at a relaxed state and the ground
acceleration is equal to zero, and also the acceleration of the structure should be zero. The
restoring forces measured can be slightly different from zero because of the load cell
amplifier balance and other technical items. The acceleration may then result into non zero
after the calculation because of the spurious restoring force.

Ma(t)+Cv(t)+r(t)=f(t)

Within the experiment procedure, at the beginning of the test an offsetting is done
on the load cell force (see The Test/B1) using the F8 key. Unfortunately, in this offsetting
only a few points are used, not giving a very precise zero as a result. For granting a precise
null value of the restoring forces at the beginning, another offsetting may be used, within
the algorithm. This offsetting may use many points (the maximum is 5000, equivalent to
10s of real time) for obtaining the mean.

>>>To avoid restoring-force offset compensation introduce NFSampl=0
>IF NDof>0, NUMBER OF SAMPLINGS TO AVERAGE FOR RESTORING FORCE OFFSET
COMPUTATION NFSampl:

5000
>[F NDof>0 AND NFSampl>0, PRESCRIBED RESTORING FORCE VALUE FOR OFFSET
COMPUTATION ReslInit(1,NDof) N:

0.0

The usual value for NFSampl is the maximum, 5000 points. Exceptionally the offset
computation can be avoided by NFSampl = 0.

The most common case is using an initial value for the restoring force equal to zero,
but another value can be prescribed by ResInit different from zero.

The input in this kind of test is a ground accelerogram, characterized by a name, a
number of record points and the time increment between these points (see Ground
Acceleration File). Before using it, the accelerogram will be scaled and modified by the
application using the proportional span. (See Figure 4)

19

The proportional span is a parameter given by the user which will multiply the
value of the accelerogram at every point of its history. If the experiment may continue
when the accelerogram history is already over, the input will be assumed as zero. In this
example a proportional span of 50% is applied.

>IF NGacc>0, PROPORTIONAL SPAN PERCENTAGE MULTIPLIER GAccSpan(1,NGAcc) %:
50

The accelerograms are provided as text files to the master (see Figure 3). The name
of these text files must have this format:

Figure 3 Example of Ground Accelerogram file cent_acc.txt

xxxx_acc.txt = cent_acc.txt for this example

that is, a name of no more than four characters followed by an underscore and the letters
acc. When, in the data input file, the name of the accelerogram is required, the user must
write down just the first four characters (cent). If more than one input file is used, one
name must be written under the other.

>>>Accelerogram time increment must be equal to prototype time increment
>]F NGAcc>0, FILE NAME FOR EVERY GROUND ACCELEROGRAM (UP TO 4 CHARACTERS
PER NAME) GAccName(NGAcc,4):

cent

The ground acceleration must be converted in terms of DoFs. In this case, with just
one DoF, the ground acceleration direction coincides with the only DoF.

>[F NDof>0 AND NGAcc>0, INFLUENCE MATRIX FROM GROUND MOTION TO DoF
GAcc2Dof(NDof,NGAcc) (m/s/s)/(m/s/s):
1.0

The DoFs not always correspond to the controllers, therefore some variables can be
expressed in two ways: controller related or DoF related. The measurements at the
controller sensors and targets are reported to the controllers coordinates. Data coming in
and out of the PsD equation are reported to the DoF instead. Thus, it is necessary to use
some matrices that relate both systems, in order to connect the measurement of the forces
in the load cells with the restoring forces used in the equation and the displacements
obtained from the method with the paths the pistons must go through.

>IF NDof>0, INFLUENCE MATRIX FROM LOAD CELLS TO RESTORING FORCES
LCell2Res(NDof,NCon) N/KkN:

1000.0
>[F NDof>0, INFLUENCE MATRIX FROM DoF DISPLACEMENTS TO TARGETS
Dis2Targ(NCon,NDof) mm/m:

1000.0

A
Ground

GAccl GAcc2 GAcc3 GAcc4 GAcc5 acceleration

O records

Time Rec Increment i
. H

| Span=0.5
' : ' 1 GAccRec=
GAccx 0.5

i GAucRoczi ' i -
GAccRen) GAccRec3! GAccRecd! GAccRec5!

*® & o ¢+ o

@ ¢ ¢ o+ @
InterRec=4 \/ : Value of the ground :
: acceleration for every

: integration step

; GAcc_t

Figure 4 Proportional Span

A The units used for the variables expressed in terms of controller are mm for the displacements and kN for
the forces. In the case of the variables related to the DoFs the SI unit system is applied.

A.4 STRAIN RATE DEPENDENT DEVICES

As we have seen before, when working with strain rate dependent devices, the
behavior of the materials is affected by the velocity of the test.

Observing the force histories for different velocities it can be seen that the main
effect of the strain rate is the decrease of the amplitude of the restoring forces, without any
change of the apparent damping. A simple way to correct this effect is the insertion of a
velocity-dependent coefficient that multiplies the restoring forces. More detailed studies
developed by ELSA reveal the importance of other parameters such as displacement, force
derivative and displacement derivative in other cases (see Molina et al., 2002).

The force and the deformation on every device may be measured and given to the
master trough out some of the channels Force2, Speed and Lvdt. Sometimes the user will
need a combination of them to get the value, that’'s why several influence matrices are used:

>[F NSR>0, INFLUENCE MATRIX FROM FORCE2 CHANNEL TO FSR Force22FSR(NSR,NCon)
kN /unit:

>[F NSR>0, INFLUENCE MATRIX FROM SPEED CHANNEL TO FSR Speed2FSR(NSR,NCon)
kN /unit:

>]F NSR>0, INFLUENCE MATRIX FROM LVDT CHANNEL TO FSR Lvdt2FSR(NSR,NCon)

kN /unit:

>]F NSR>0, INFLUENCE MATRIX FROM FORCE2 CHANNEL TO DSR
Force22DSR(NSR,NCon) mm/unit:

>]F NSR>0, INFLUENCE MATRIX FROM SPEED CHANNEL TO DSR Speed2DSR(NSR,NCon)
mm/unit:

>[F NSR>0, INFLUENCE MATRIX FROM LVDT CHANNEL TO DSR Lvdt2DSR(NSR,NCon)
mm/unit:

Once the needed variables are available, the combination of all of them multiplied by
their corresponding factor will give rise to an additional force, as can be seen in the formula
that follows:

>>>Formula for strain-rate-compensation additional force at every device:
>>>FSRAdd = SRFacFO*FSR + SRFacD0O*DSR + SRFacF1*FSRdot + SRFacD1*DSRdot

The factors are specified below:

>[F NSR>0, FORCE CORRECTION FACTOR SRFacF0(1,NSR) kN/kN:

>]F NSR>0, DISPLACEMENT CORRECTION FACTOR SRFacDO(1,NSR) kN/mm:

>]F NSR>0, FORCE-DERIVATIVE CORRECTION FACTOR SRFacF1(1,NSR) kNs/kN:
>]F NSR>0, DISPLACEMENT-DERIVATIVE CORRECTION FACTOR SRFacD1(1,NSR)
kNs/mm:

Finally, the user decides the influence of the calculated additional force on the
restoring forces by defining the following matrix:

>IF NSR>0, INFLUENCE MATRIX FROM FSRAdd TO RESTORING FORCES
FSR2Res(NDof NSR) N/kN:

In this example we have no strain rate dependent devices, so the user must write
nothing under these masks.

A.5 ALGO ALARM DATA

As a difference with respect to the ErrorAlarm existing at every slave, the
AlgoAlarms serve to halt the DLL algorithm without stopping the oil pumps.

In the data input file there are 19 masks dedicated to the algo alarms. The values
selected, most of them sized 1xNCon, will be an upper or lower limit for the different
variables.

Alarms are inserted by default when the test is started. For avoiding them to be
reinserted , the user must press once F10 during the test. The variable Alarm Inserted will
toggle from 1 to 0 on the screen.

InsertedF10: 0

If during the test any limit is exceeded and the alarms are inserted, the algorithm
will halt, and the screen will show some related data (see Figure 5 below):

InsertedF10: 1 Status:1 Code:51 Contr: 1 Value:1.564

Figure 5 Alarm data on the master screen. No alarm triggered.

Status changes from 0 (no alarm exceeded) to 1. Code gives the information about
which variable has produced the stop (first digit) and of which limit has been exceeded
(second digit is 1 for the upper limit, 2 for the lower limit). The controller involved is given
in Contr, and the value of the variable at the moment of the stop is the last one.

In the example above alarms are inserted and the algorithm has been stopped
because one of the limits has been exceeded. This limit was on the Lvdt channel (5) and it
was the upper one (1), on the controller number 1. Its value at the stop was 1.564.

The variables that can be limited in this way are explained in the table below:

Number of alarm Signal
Heidenhain

Temposonics

Temposonics Abs
Load Cell Force
Lvdt channel
Error absolute value

Error average absolute value

Pressurel

O[R[N WIN| -

Pressure2

=
(e)

Servovalve

—_
—_

Energy error average absolute value
Table 2: Algo Alarms

The user must choose a very high value for the limit of an alarm if it is not needed
(negative in case of lower limits) i.e. 1e10.

A Note: some of the alarms, in particular the error related, are compared with the absolute value of the
correspondent variable. That is why only the upper limit is required.

>ALGO_ALARM SUPERIOR LIMIT AT HEIDENHAIN HeidMax (1,NCon)
10

>ALGO_ALARM INFERIOR LIMIT AT HEIDENHAIN HeidMin (1,NCon)
-10

>ALGO_ALARM SUPERIOR LIMIT AT TEMPOSONICS TempMax (1,NCon)
1e10

>ALGO_ALARM INFERIOR LIMIT AT TEMPOSONICS TempMin (1,NCon)
-lel0

>ALGO_ALARM SUPERIOR LIMIT AT TEMPOSONICS ABS TempAbsMax (1,NCon)
1el0

>ALGO_ALARM INFERIOR LIMIT AT TEMPOSONICS ABS TempAbsMin (1,NCon)
-1e10

>ALGO_ALARM SUPERIOR LIMIT AT LOAD CELL FORCE LCellMax (1,NCon)
1el0

>ALGO_ALARM INFERIOR LIMIT AT LOAD CELL FORCE LCellMin (1,NCon)
-1el0

>ALGO_ALARM LIMIT AT ABSOLUTE ERROR ErrorMax (1,NCon)
1e10

>ALGO_ALARM LIMIT AT ABSOLUTE ERROR AVERAGE ErrAvMax (1,NCon)
1el0

>ALGO_ALARM LIMIT AT ABSOLUTE ENERGY ERROR AVERAGE EneErAvMax
1el0

>ALGO_ALARM SUPERIOR LIMIT AT LVDT LvdtMax (1,NCon)

1lel0
>ALGO_ALARM INFERIOR LIMIT AT LVDT LvdtMin (1,NCon)

-1e10

>ALGO_ALARM SUPERIOR LIMIT AT PRESSION1 Press1Max (1,NCon)
1el0

>ALGO_ALARM INFERIOR LIMIT AT PRESSION1 Press1Min (1,NCon)
-1el0

>ALGO_ALARM SUPERIOR LIMIT AT PRESSION2 Press2Max (1,NCon)
1e10

>ALGO_ALARM INFERIOR LIMIT AT PRESSION2 Press2Min (1,NCon)
-1el0

>ALGO_ALARM SUPERIOR LIMIT AT SERVOVALVE ServoMax (1,NCon)
1le10

>ALGO_ALARM INFERIOR LIMIT AT SERVOVALVE ServoMin (1,NCon)
-1e10

| B. CYCLIC TEST I

In the following, a simple example of a cyclic test will be explained. Just one slave
controller and one pattern are used. The data input file we are going to talk about can be
found in the Annex. The data input file we are going to talk about can be found as an
attachment.

The part of the file titled Pseudo Dynamic Data must remain unfilled, as no degree of
freedom (DoFs) or accelerograms are used for a pure cyclic test (see Testname)

B.1 GENERAL DATA

First line of this part is the test name. Use exactly the same name as inside the file
TESTNAME.txt and contained in the name of the Data Input File.
>TEST NAME: jO1

Then the user will be asked a title describing the test, which is completely free.

>TITLE DESCRIBING THE TEST:
Examplel 1 pattern 1 slave controller

In MASTER.INI the number of slaves that are physically attached to the master is set.
There is no need to use all of them, neither to refer to them it in the physical order:

>NUMBER OF SLAVE CONTROLLERS CONSIDERED AT THIS MASTER NCon>0:
1

[\
o

>EXTERNAL BOARD NUMBER OF EVERY SLAVE CONTROLLER CtrNum (1,NCon):
1

The number of controllers from now on will be NCon. It is important to remember it
in order to consider properly the matrix dimensions.

The force applied by every piston is measured during the experiment by means of
its load cell. Additionally to this measurement, the same force is calculated based on the
pressure inside the oil chambers of the pistons, if available. This new variable is called
pressure derived force (PDF). To carry out this calculation the section area of the pistons at
those chambers must be known. The user has to supply it in KN/bar (roughly dm?2) when
pressure is measured in bar and force in kN.

>PISTON SECTION1 (TENSION CHAMBER) AT Con1 Con2 ... Section1 (1,NCon) kN/Bar:
2.75
>PISTON SECTIONZ (COMPRESSION CHAMBER) AT Con1 ConZ2 ... Section2 (1,NCon)
kN/Bar:
2.75

In a cyclic test at least one pattern file is required. In this case we are using just one.

>NUMBER OF PATTERN INPUT FILES NPatt>=0:
1

As the test is not pseudo-dynamic, there are no accelerograms, degrees of freedom
or strain-rate devices.

>NUMBER OF PSD DEGREES OF FREEDOM NDof>=0:
0
>[F NDof>0, NUMBER OF GROUND ACCELERATION INPUT FILES NGAcc>=0:

>]F NDof>0, NUMBER OF STRAIN-RATE DEPENDENT DEVICES TO BE COMPENSATED AT
THE RESTORING FORCES NSR>=0:

From now on, NDof will stand for degrees of freedom in the file, equal to zero, and
NPatt for number of patterns. They will appear in the dimensions of the variables.

It is important to distinguish between two “kinds of time”. On one hand, the time
counting during the execution of the test, the one you can see on your watch, is called real
time. On the other hand, the input is expressed in prototype time, the time in which an
earthquake or a pattern is taking place. The rate between real time and prototype time is
called time scale (7).

>>>Time scale lambda = InterRec*0.002 /TimeRecIncr = RealTime /PrototypeTime

Input is always expressed in prototype time, both for cyclic and pseudo-dynamic
test. Increment time between two points of the input (pattern, in this case) is called

prototype time increment. Having an increment of, for example, 0.02s means the ground
acceleration file or pattern will provide a record at every 20ms during an earthquake or a
pattern history.

>PROTOTYPE TIME INCREMENT BETWEEN TWO RECORDS AT THE PATTERN AND
GROUND ACELERATION INPUT FILES TimeRecIncr s:
0.02

Time will be scaled by the DLL. This means that from every interval between two
record points a number of intermediate points will be obtained. The number of points
within every interval is called InterRec and, multiplied by the controller fixed sampling
period (2ms) determines the real time increment of the experiment.

>NUMBER OF INTERNAL CONTROLLER 2ms SAMPLINGS BETWEEN TWO RECORDS
InterRec:
1000

In this case we have 1000 samplings between two records of the pattern. That
means that it will take 1000*0.002= 2s from one record to the next one (one step).

Time scale (A) is calculated by the formula:
>>>Time scale lambda = InterRec*0.002 /TimeRecIncr = RealTime /PrototypeTime
and its value (2/0.02=100 in this example) is written in the echo file.

It is necessary to fix a stopping time for the experiment. It would be expressed in
prototype time. The name of the variable is TimeStop.

>PROTOTYPE TIME FOR NEXT TEST STOP TimeStop s:
30.0

This implies that the application of the patterns will be halted at a prototype time of
30s, independently of the duration of the patterns or accelerograms. The test may
continued after such stop if the TimeStop variable is changed manually (see The
Test/Remote Control)

B.2 PATTERN DATA

This part of the file must be filled if, and only if, a cyclic test is being run (NPatt>0).
Nothing must be written under these masks otherwise.

First lines are dedicated to an explanation of how the pattern is applied. They are
just informative.

>>>Formula for computation of every pattern 1<= M <=NPatt:
>>>[ntM(Rec)=IntM(Rec-1) + PattlSpanM/100 * PattFileM(Rec-1) * TimeRecIncr
>>>PattM(Rec) = PattSpanM /100 * PattFileM(Rec) + IntM(Rec)

Then the user will be asked to introduce the proportional and integral spans, in
percentage (see Introduction). In this case we are using just the proportional one. As the
number of patterns is greater than zero (NPatt>0) a zero must be written under the
integral span mask.
>[F NPatt>0, PROPORTIONAL SPAN PERCENTAGE MULTIPILIER PattSpan (1,NPatt) %:

50
>IF NPatt>0, INTEGRAL SPAN PERCENTAGE MULTIPLIER PattISpan (1,NPatt) %/s:
0

Patterns are provided as text files to the master (see Figure 6). The name of these
text files must have this format:

xxxx_pat.txt = unif_pat.txt for this example

a name of no more than four characters followed by an underscore and the letters pat.

Figure 6 Example of Pattern file unif_pat.txt

When, in the data input file, the name of the pattern is required, the user must write
down just the first four characters.

>[F NPatt>0, FILE NAME FOR EVERY PATTERN (UP TO 4 CHARACTERS PER NAME)
PattName (NPatt, 4):
unif

If more than one pattern file is used, one name must be written under the other.
As it has been said before, the user may want the pattern to affect in different ways
the various slave controllers. The influence matrix is used to determine this. In this

[L

example there is just one controller and just one pattern, thus the influence matrix will
have one only element. On the example below the pattern will be multiplied by 1000 before
being sent to the controller as a target.

>[F NPatt>0, INFLUENCE MATRIX FROM PATTERNS TO TARGETS Patt2Targ (NCon,NPatt)
(mm OR kN)/(mm OR kN):
1

B.3 OTHER INFLUENCE MATRICES

Once the target that must be sent to the piston is obtained from the patterns as we
have seen before, it is still possible to modify it by using some of the measurements done
on the structure. A signal coming from any of the channels can be added, multiplied by a
influence matrix. Those matrices are decided by the user. In this example we are not using
them, therefore a zero must be placed under every mask.

>INFLUENCE MATRIX FROM HEIDENHAIN TO TARGETS Heid2Targ (NCon,NCon) (mm OR
kN)/mm:

0.0
>INFLUENCE MATRIX FROM TEMPOSONICS TO TARGETS TempZ2Targ (NCon,NCon) (mm
ORkN)/mm:

0.0
>INFLUENCE MATRIX FROM LOAD CELLS TO TARGETS LCell2Targ (NCon,NCon) (mm OR
kN)/kN:

0.0
>INFLUENCE MATRIX FROM FORCE2 CHANNEL TO TARGETS Force22Targ (NCon,NCon)
(mm OR kN)/unit:

0.0
>INFLUENCE MATRIX FROM SPEED CHANNEL TO TARGETS Speed2Targ (NCon,NCon)
(mm OR kN)/unit:

0.0
>INFLUENCE MATRIX FROM LVDT CHANNEL TO TARGETS Lvdt2Targ (NCon,NCon) (mm
OR kN)/unit:

0.0

If, for example, a Heid2Targ matrix of 0.5 is used, the target will be modified like
this:

Targetrew = Target + 0.5 x Heidenhain

B.4 ALGO ALARM DATA

As a difference with respect to the ErrorAlarm existing at every slave, the
AlgoAlarms serve to halt the DLL algorithm without stopping the oil pumps.

In the data input file there are 19 masks dedicated to the algo alarms. The values
selected, most of them sized 1xNCon, will be an upper or lower limit for the different
variables.

Alarms are inserted by default when the test is started. For avoiding them to be
reinserted , the user must press once F10 during the test. The variable Alarm Inserted will
toggle from 1 to 0 on the screen.

InsertedF10: 0

If any limit is exceeded during the test, the algorithm will stop, and the screen will
show some other relative data (see Figure 5 Alarm data on the master screen):

InsertedF10: 1 Status:1 Code:51 Contr: 1 Value:1.564

Status changes from 0 (no alarm exceeded) to 1. Code gives the information about
which variable has produced the stop (first number) and of which limit has been exceeded
(1 for the upper limit, 2 for the lower limit). The controller involved is given in Contr, and
the value of the variable at the moment of the stop is the last one. In the example above
alarms are inserted and the algorithm has been stopped because one of the limits has been
exceeded. This limit was on the Lvdt channel (5) and it was the upper one (1), on the
controller number 1. Its value at the stop was 1.564.

The variables that can be limited in this way are explained in the Table 2: Algo Alarms
of the previous chapter. Choose a very high value for the limit of an alarm if you don’t need
it (negative in case of lower limits)i.e. 1e10.

A Note: some of the alarms, in particular the error related, are compared with the absolute value of the
correspondent variable. That is why only the upper limit is required.

>ALGO_ALARM SUPERIOR LIMIT AT HEIDENHAIN HeidMax (1,NCon)
10
>ALGO_ALARM INFERIOR LIMIT AT HEIDENHAIN HeidMin (1,NCon)
-10
>ALGO_ALARM SUPERIOR LIMIT AT TEMPOSONICS TempMax (1,NCon)
1e10
>ALGO_ALARM INFERIOR LIMIT AT TEMPOSONICS TempMin (1,NCon)
-1e10
>ALGO_ALARM SUPERIOR LIMIT AT TEMPOSONICS ABS TempAbsMax (1,NCon)
1e10
>ALGO_ALARM INFERIOR LIMIT AT TEMPOSONICS ABS TempAbsMin (1,NCon)

(O8]

-1e10

>ALGO_ALARM SUPERIOR LIMIT AT LOAD CELL FORCE LCellMax (1,NCon)
1e10

>ALGO_ALARM INFERIOR LIMIT AT LOAD CELL FORCE LCellMin (1,NCon)
-1e10

>ALGO_ALARM LIMIT AT ABSOLUTE ERROR ErrorMax (1,NCon)
1lel0

>ALGO_ALARM LIMIT AT ABSOLUTE ERROR AVERAGE ErrAvMax (1,NCon)
1e10

>ALGO_ALARM LIMIT AT ABSOLUTE ENERGY ERROR AVERAGE EneErAvMax
1e10

>ALGO_ALARM SUPERIOR LIMIT AT LVDT LvdtMax (1,NCon)
1e10

>ALGO_ALARM INFERIOR LIMIT AT LVDT LvdtMin (1,NCon)
-1e10

>ALGO_ALARM SUPERIOR LIMIT AT PRESSION1 Press1Max (1,NCon)
1lel0

>ALGO_ALARM INFERIOR LIMIT AT PRESSION1 Press1Min (1,NCon)
-1e10

>ALGO_ALARM SUPERIOR LIMIT AT PRESSION2 Press2Max (1,NCon)
1e10

>ALGO_ALARM INFERIOR LIMIT AT PRESSION2 Press2Min (1,NCon)
-1e10

>ALGO_ALARM SUPERIOR LIMIT AT SERVOVALVE ServoMax (1,NCon)
1e10

>ALGO_ALARM INFERIOR LIMIT AT SERVOVALVE ServoMin (1,NCon)
-1e10

IV THE TEST

I A. TEST PROCEDURE I

In this chapter a standard test procedure is going to be described. It may change
from one laboratory to another and from test to test, but the conceptual aspects remain the
same.

Firstly the circulation pump must be started to allow the oil to get warm (30+40°C).
At this point there is still no pressure in the system.

Now the files described on the previous chapter have to be loaded on the
C:\MASTER folder of the master: master.bat, psdcyc03.dll, master.ini, testname.txt,
xxxx_dat.txt, and yyyy_patt.txt or zzzz_acc.txt depending on the kind of test. Once the files
have been loaded, the master must be switched off and on, in order to refresh the data.

The master controller reads the files master.ini and master.bat and starts to run the
process masterDLL.exe. This process builds on the internal data base and then loads
UserAlgorithimDLL.dII.

A Note: At this moment some problems could appear. The most usual ones are:

The system cannot load the DLL: the user must ensure that the name of the DLL is written properly on
the master.bat file, and that it has been loaded together with the other files.

The system gives no response at all: the most usual reason is that the number of slaves exceed the one
reflected in the master.ini file

Once the DLL has been loaded, the system starts reading the input data and creating
the ECHO file, which is a file containing the data the way the system is reading them. The
user should always check this file and also the parameters shown in the screen in order to
avoid “misunderstandings” with the computer. If there is any line of the input data that is
written in a wrong way, the system will return an error like this:

ERROR SHEARCHING FOR: ">NUMBER OF SLAVE CONTROLLERS CONSIDERED AT THIS
MASTER NCon=>0:" This is the line that should be written in the data input file.

(&8)

[\

INCORRECT LINE: "SLAVE CONTROLLERS CONSIDERED AT THIS MASTER NCon=>0:" This
one is written instead!!

This will happen if:

any mask is modified,

a comment is written under a mask, or

something is written under a mask starting with an if, when the condition is not
being fulfilled. For example, if the user is running a test in which no patterns are used, the
NPatt will be equal to zero and the system will give back an error if something is written
under the mask

>[F NPatt>0, PROPORTIONAL SPAN PERCENTAGE MULTIPILIER PattSpan (1,NPatt) %:

After this first initialization phase, the connection with the slave controllers,
together with the beginning of the interrupt sequence, is activated by pressing the F12 key
of the master. (The user should see the values changing on the screen at this point).

At this moment, the acquisitions on master and the acqnodes must be loaded, sent
and started (see Acquisition)

Now the variable selected for the control feedback must be chosen for every slave

controller:

Shift+H for Heidenhain control
Shift+F for Load Cell control
Shift+T for Temposonics control
Shift+L for Lvdt control

The system is now ready for low pressure (around 30+80 bar at ELSA). The
feedback variable is then made zero by pressing F9 in every slave controller keyboard. In
the case of a non-zero reference, the slave controller will introduce the required offset to
have anull error, which is necessary before the next step.

By doing F1 (toggle key) in every slave, the servo valve and the PID algorithm are
started, launching the control process at the level of each slave. Then the system can be put
in high pressure mode (210 bar).

It is time now for changing the variable ErrorDelta to impose a thinner tolerance at
the ErrorAlarm, if required. It can be done using the remote control or the command
window, as we will see later on. Load cell forces must be zero at the beginning of the test.
To accomplish this offsetting the user must press F8 on every slave.

If the initial reference is not zero (as for a restart test), the structure must be moved
to that reference in order to have a null displacement or force offset. To do so, from the
common controller command window at every slave (if the offset is equal for every slave),
the user must utilize O or Shift O (apostrophe or shift apostrophe for more accuracy). The

use of the common controller command, as well as the other capabilities of the master
interface will be explained more in detail later on.

Even though the routine implementing the algorithm is already called at each
interrupt from the moment the F12 key is pressed, new target displacements are not yet
issued to the slave controllers. That is because the active part of the algorithm is prevented
by an if-then-end-if structure involving the F11 key. As soon as the F11 key is pressed, new
target displacements are sent, the forces are read and fed back to the master to compute
the next step.

During the test, parameters can be changed using the remote control as we will see
afterwards. Pressing F11 key again will stop the test (if TimeStop has not been reached).
[s time now for switching off all the pumps and stopping the acquisitions.

I B. HOW TO COMMUNICATE WITH THE SYSTEM I

The data exchange with the master is based on an internal database called
AcqCtrlData. This database consists of some memory blocks organized in several groups.
These memory blocks contain the definition and value of the signals, key of the system.
They can be modified in the data input files before the test (see Data Input File), in real
time via the console windows or the command windows (see The Test/ Users Interface)
and via the remote control program installed on the remote station. These memory blocks
are exchanged to or from the master via a background process.

B.1 USERS INTERFACE: COMMANDS AND SHORTCUTS

The master and every slave controller show in their screens a windows interface.
TAB is used for changing window and CTRL-TAB for changing screen. The mouse is not
implemented. Just one window is active at the time; the active window has a blue caption
bar. These windows (see Table 3) are described in this section.

Slave parameters

Common controller command

Command

Computer information

Master windows
Console

Acquisition status

Generator status

Users parameters

Parameters
Slave windows Graph 1, 2,3
Command

34

Table 3: Master and slave windows

Parameters and graphs can be modified in two ways: using a keyboard shortcut or
typing a command on the console window.

[MEASURE2)

Disp-T2 = -0.004

Figure 7 Master controller slave parameters, common controller command and command
windows

Parameter window. This window shows the most important parameters of the
controller. In the master screen there is one parameter window per slave in the so called
controller slave parameter window, while every slave shows its own one. The physical slave
controller number is displayed in the caption bar. (see Figure 7 and Figure 8)

A Note: the numbering of the slaves within the DLL algorithm can be different if specified at the input file (see
Data Input File).

The shortcuts that are going to be described below can be typed on any of the slaves
keyboard, when the parameter window is active, for changing a parameter in that single
slave. The same effect will be obtained by typing those shortcuts on the master keyboard,
when the correspondent slave window is active.For changing one of the parameters
simultaneously in every slave, the user must type the same shortcut in the master
keyboard, when the common controller command window is active in it. Information about
the PsD algorithm is displayed in this window: the algorithm can be stopped or run using
the key toggle F11, and alarms can be inserted or not via toggle key F10.

Parameters are divided into several groups:

@ First group is ALGO, where the PID parameters are shown. The user can change them
with the shortcut SHIFT+p/i/d (increase)or SHIFT+p/i/d (decrease).

@ The group MEASURE shows several measurements associated to every actuator:

Disp-H is the measure of the structural digital displacement transducer Heidenhain
on the current controller, given in mm. Do SHIFT+h for selecting this measurement as
feedback.

Disp-T is the measure of the actuator Temposonic displacement transducer on the
current controller, also in mm. By doing SHIFT+t the user is selecting this measurement as
feedback.

DispAbs is the absolute displacement of the piston, usually measured by the
Temposonic transducer. It is expressed in mm.

Disp-L is the measure of an analogue displacement transducer, such as Lvdt, in mm.
It can be used as feedback by doing SHIFT+1.

Acc is the measurement of an accelerometer that can be eventually used on the
specimen. It is expressed in m/s2. Speed is the measurement of a speed sensor, in mm/s.
Press1 and PressZ are, respectively, the measurements of the pressure at the tension and
the compression chambers of the piston, expressed in bar. The hardware is ready for
admitting any of these variables in the control loop, but this current version is not
considering this possibility.

Forcel and Force2 are the measurements of two different load cells, in kN, applied to
the piston. Force1 is the piston load cell and can be used as feedback by doing SHIFT+f.

® In the group REF (reference) the following parameters are shown:

Span, in %: a multiplication factor applied to the target value coming from the
master. The user can modify it using the shortcut s, SHIFT+s.

Error: difference between the reference value and the feedback value

Offset: used to modify the offset added to the target, the user can change it span
microns by clicking o, SHIFT+o, or 2 microns by, SHIFT+".

Alarm: status of the error alarm (toggled by F4), written in red when active.

Level: this is the value of the alarm level used by the error checking routine.

@ The group SERVO appears only in the slaves screens. Some information about the
servovalve is presented in it:

ServoValve: the voltage applied to the digital to analogue converter connected to the
servo valve, output of the PID algorithm.

Spool: a return value of the spool displacement transducer in volts, indicating the
aperture.

OnOff: status of the ONOFF shut-off valve, toggled by the shortcut F1.

The former shortcuts, together with some other ones are summarized in the table 4
below.

ANote: even though, as we have seen before, it is possible to use the F1 shortcut on the master and switch on
every servovalve at once, it is recommended to open one valve at a time. In this way the user can ensure the
stability of every piston before the opening of the next one servovalve. This provides an additional security for the
specimen.

Figure 8 Slave parameters and command windows

Command window. As we have seen before, parameters and graphs can be
modified either using the shortcuts on the keyboard or using the proper commands on the
command window. (see Figure 7 and Figure 8). Table 5 below shows the most usual ones.

Note: if you are using the master keyboard, you will have to add the name of the memory block before the name
of the variable

Set PSD1.PDisp= 0.5

Information screen. In this master screen general information about the system is
shown: name of the local computer, IP address, sampling time...

The console window is identical to the command window seen in the controller slave
screen.

The acquisition and generator status are also shown in another window of the
information screen. These windows support up to ten acquisition and generator objects crated
in the master controller, and they can be exchanged in the display by doing ALT+Tab.

Figure 9 Master information screen

Command Shortcut

Switch Screen CTRL-TAB

Switch View in Window ALT-TAB

Switch Window TAB

Only on the slave | Increase the scale of signal 1 at graph SHIFT 1
Decrease the scale of signal 1 at graph 1

Increase the scale of signal 2 at graph SHIFT+ 2

Decrease the scale of signal 2 at graph 2

Increase P parameter SHIFT+ p
Decrease P parameter p
Increase | parameter SHIFT+ i
Decrease I parameter i
Increase D parameter SHIFT+d
Decrease D parameter d
Increase Offset of Span microns SHIFT+ o
Decrease Offset of Span microns 0
Increase Offset of 2 microns SHIFT+
Decrease Offset of 2 microns ‘
Increase Span of 1 SHIFT+s
Decrease Span of 1 S
Open /Close the servo valve F1 (see Note above)
Enable/Disable Alarm on Error F4

38

Command Shortcut
Reset Lvdt Transducer to zero F5
Reset Temposonics Transducer to zero Fé6
Only on the slave - -
Reset Heidenhain Transducer to zero F7
Reset Force to zero F8
Reset Feedback Transducer F9
DLL Algorithm Alarm Insert/Remove F10
Only on the master - -
DLL Algorithm Continue/Pause F11
Set the Temposonic as feedback transducer SHIFT+ t
Set the Heide as feedback transducer SHIFT+ h
Set LVDT as feedback transducer SHIFT+1
Set Forcel as feedback transducer SHIFT+ F

Table 4 Command shortcut summary

If the user wants to...

...the command must be:

Change the value of a
signal

Set [signalName]=[value]
Set ErrorDelta=0.5

Get the value of a signal

Get [signalName]
Get CHANNEL_40

Graph a signal

Graph [GraphNumber][SignalNumber][SignalName]
Graph 51 CHANNEL_40

Change a graph title

Graph [GraphNumber]title[TitleString]
Graph 3 tittle Displacement

Change directory

Cd [directory]

List the directory

Dir [directory]

Display the content of
the file

Type [filename]

Delete the file

Del [filename]

Copy filel to file2

Copy [filel][file2]

Rename the filel with
the name file2

Rename [file1][file2]

Create a new
subdirectory

Mkdir [directory]

Remove the subdirectory
if empty

Rmdir [directory]

Clean the screen

Cls [directory]

Load and execute
command in the file

Load [filename]

Test TCPIP connection
(only from the master)

Ping [IP address]

Table 5 Command summary

Figure 10 Master users parameters window

Users parameters screen. This master screen is used by the algorithm DLL for
displaying some variables and other information that is described below. Some of these
parameters values are selected by the user in the input text file, see that section for more
information about them.

Some sections of the screen change with the kind of experiment that is being carried out:
PsD, cyclic or combined. In the former case, data related to the accelerogram employed as input
and to the degrees of freedom is displayed. In the case of a cyclic test, pattern data are displayed.
Moreover, when strain-rate devices are used, some information about them can be read on the
screen. If there are no SR devices, a message in the upper part of the screen will inform of it.

@ The first part of the screen is dedicated to some information given by the user: name of the
employed DLL, name of the test and time for the next stop.

@ The second part gives mostly instantaneous information. The variables ending in _t come
from the ALGO_T group of memory of the DLL, where their value is refreshed at every substep
(2ms):

iRec and Count_t: The algorithm uses two counters: one for the input records (iRec) and
another one for the internal steps within those records(Count_t)

RunALgo-F11:1 if the algorithm is running (the F11 key has been pressed), 2 if it is not

Triggerin-CH3: sometimes an external electrical switch on input channel 3 is used, either
to coordinate more than one master or for a higher security. In those cases a 1 is displayed
when itis on and a 0 when it is not.

GAccSpan or PattSpan and PattiSpan: depending on the kind of experiment. The span,
selected by the user in the input text file, modifies the accelerogram or the pattern before it is
used for the calculation of the target.

40 L

InterRecln is the number of internal substeps between two input records.

Timelncr: is the time increment of the substep, calculated by the algorithm as time
increment from one record point to the next one, divided by the number of substeps.

Lambda is the time scale, ratio between the real time and the prototype time. It is
calculated by the algorithm using the time duration of one step of the input. In real time, every
substep lasts 2 ms, that makes 2 times the number of substeps per step. On the other hand, in
prototype time, one step last one time increment

Time_t is the prototype time, seconds of pattern or of accelerogram.

Dis_tis the displacement, in meters, calculated for of every degree of freedom considered
on the specimen (DoF 1, DoF 2...).

Res_t is the restoring force calculated for every degree of freedom. It is expressed in N.

A Note: the variables of the equation of motion are expressed in the SI.

Heid_t is the measure of the displacement transducer of every controller, expressed in

LCell_t is the measure, in kN, of the load cell of every piston (Force 1 channel)

Target_t is the final target displacement or force, depending on the selected feedback,
calculated for every piston. It is expressed in mm or kN.

DSR _t is the strain-rate device displacement, expressed in mm, for every SR device.

FSR_tis the SR device force in kN for every SR device.

EneAbs_t is the energy absorbed by the specimen, expressed in]

EneErr_t is the error energy, calculated as the difference between the energy computed
for the the target and the measured displacement.

® In the third section of the screen average information is displayed. The variables ending in
av come from the ALGOAV group of memory of the DLL, where their value is calculated as the
mean of the values of the previous record.

@ The lower part of the screen is dedicated to the alarms. (See Data Input File for further
information).

B.2 REMOTE CONTROL: VIEW AND MODIFICATION OF VARIABLES

The remote control application can connect to the real time system via the IP
address and retrieve all memories and signals information. It is also possible to create
acquisitions and generators objects with graphic interfaces (see Acquisition).

Once the remote control application has been started, the connection with the
master must be done. The user has to introduce the IP number of the master and then press
on the Connect button.

A Note: it is recommended to close the Remote Control before shutting off the master and kill the
correspondent process (ACQCTRService) in the task manager.

41

"% RemoteControl

3l Variables

Connections Dstebss-:-|

|Ready... 14May 200815354, |

Figure 11

A tree menu will appear, with the voice Variables under the selected master. By
clicking on it the list of the different variables groups will be available. Doing right click on
each group, without opening it, gives the user the possibility to View the entire group of
variables, their names, descriptions, and values.

% RemoteControl

|Ready... 14 May 2008 15:36:00

Figure 12

Right clicking on every single variable on the tree menu gives the chance either to
see the Voltmeter with the value of this variable, or to Modify this value, as it will be seen
afterwards.

Among the several groups of variables there are some than may be more interesting
for the user (see ELSA PSD Testing System):

@ PIDn, where n is the number of actuator, contains the PID parameters of the test, read
from the MASTER.BAT file and eventually modified during the experiment. Within this
group the user can find:

* Displacement and force PID parameters (P, I, D).

* Span is a percentage factor that multiplies the reference before it arrives to the PID
regulation. A span of the 100% does not modify the reference.

* During the test the PID parameters are optimized for allowing the highest accuracy
and velocity, but they must be reduced in case of an undesired oscillation or a high
feedback error. In those cases it is important to react quickly, avoiding damage on
the structure. The system is implemented with a safe mode, which is a set of safe PID
parameters decided by the user. It is possible to apply it manually using a switch
connected to the first in-port of the slaves, or changing the EnableSafePi variable
value on the remote control program.

I"- e

Name Description Value Urat
» DispP 05

Displ 500

DispD 0

ForceP 0

Forcel 10

ForceD 0

Span 100

SafeDispP 0.300000011

SaleDispl 2000

SafeDispD 0

SafeForceP 0

SaleForcel 1

SafeForceD 0

EnableS afePi 0

Figure 13

@ MEASURER: the current measurements done on the structure, such as DispH or DispT1,
are collected in this group.

A Note: The value of the variables in this block is not available to the acquisitions, which should access the
variables of the blocks INTERNALALGOINPUT and INTERNALALGOOUTPUT instead.

® MEASUREN-CF group contains the value of the conversion factors for every
measurement, initially given to the system via the MASTER.BAT file (see Master
Configuration).

@ In the ALARMn group the user can find some information about the permitted error
between reference and feedback, such as:

* ErrorDelta is the maximum difference permitted between reference and feedback
for the error alarm. It is called level in the parameter window of the slave display.

* Inserted will be 1 when this alarm is inserted and 0 when it is not (F4 in the
keyboard, see users interface)

* Status will be 0 if the error keeps beneath the given ErrorDelta and will change to 1
when it goes over.

43

* Repetition is the number of continuous alarms before the change of the status.

¥[192.168.0.99] : [MEASURE1] 1=1c.d]
Name Description | Value Uit

Name Description Value Unit Disp-H 1

» Disp-H 0.100000001 Disp-T1 1
Disp-T1 0 Disp-T2 R
Disp-T2 0 DispAbs 1
Dispabs 157.5579386 OnOffFlag 1
OnDffFlag 1 Forcel 40
Forcel -4.052776813 Force2 1
Force2 2029745578 Spool 1
Spool 0157167181 Acc 1
Acc 4082379341 Speed 1
Speed 0157777532 Disp-L 1
DispL -1.611955404 Pressurel 80
Pressurel 26.80692291 Pressure2 80
Pressure2 1337416391 AD9 1
ADS 40102845318 AD10 1
AD10 -0.039368089 ADN 1
ADNM 1.489273428 AD12 1
AD12 1.733416676 AD13 1
AD13 -1.437393069 AD14 1
AD14 -0.883798360 AD15 1
AD15 0660712540 AD16 1
AD16 1.205762147 Digln1 1
Digln1 0 Digln2 1
Digin2 0 Digin3 1
Digin3 0 Digin4 1

| Dignd 0 Digln5 1
Digin5 0 Diginé 1

| Diginb 0 Digin? 1
DigIn7 0 Digin8 1
Digin8 0

i Figure 15
Figure 14

® Several antispike values (Tempo2, Heide, Lvdt and Forcel) can be found in the
ANTISPIKE group (see Data Input File for more information about antispike).

Figure 17

Figure 16

® The PSD group gathers together some master application variables that interact with the
DLL while running the test:

* bRunAlgo changes from 0 to 1 when the algorithm is running and is toggled by F11
at the master (see The Test/Test Procedure)

* bAlarminserted refers to the set of alarms introduced by the DLL algorithm (see also
Data Input File). They are inserted by default at the beginning of the test and the
user must change to 0 the value of this variable to avoid them (F10 key, see users
interface).

* bAlarmStatus will be zero while every variable reminds below the correspondent
limit and will change into 1 if any of the limits is exceeded.

* DIlAlgorithm is the name of the DLL used for the test.

%[192.168.0.99] : [ALGOR_T] 0% ®[192.168.0.99] : [ALGORAV] EER

3

Desenphion
iRecAv Counter of st
Intetdy MNumber of int
Timedy Time
Enedbsdy Controller Ab
EneEmdy Controller En
Disfwvil Dof Displace
Velavl Dof Velocity
Acchv Dof Acceleral
Resfvil Dof Restoring
ExFavil Dof Extemal
DisTarget_t0 Dol Taiget Di GAccAv0l Scaled Groun
Gacc_t01 Scaled Groun LCebawvi Load Cell For

LCel_t01 Load Cell For -4.052776813 LCebAv02 Load Cel For
LCell_t02 Load Cell For 4.982169151 HeidAv01 Heidenhain D
Heid_t01 HeidenhainD 0.097393397 Heiddv02 Heidenhain D
Heid_t02 HeidenhainD 0.083933333 TempAv0l Temposonics
Temp_t01 Temposonics 0 TempAv02 Temposonics
Temp_t02 Temposonics -0.003997802 Temphbstn Temooson:cs
Press1_t01 Pressue atte 2868682479 TempAbsAvD Temposcnics
Press1_t02 Pressure atte 1934102325 Speeddv01 Speed Chann
Press2_t01 Presswe atc 139.8940429 SpeedAv02 Speed Chann
Press2 102 Presswe atc 1296644433 Lvdiav0l Lwdkt Channel
POFor_t01 Pressure deri -305.8198499 Lvdav02 Lwdt Channel
POFor_t02 Pressue ded 1753009185 DisConTarget Controller Tas
TempAbs 10 Temposonics 157 5579986 DisConTarget Controller Tar
Tempdbs 10 Temposonics 1339160003 Press1Av01 Pressue atte
Speed t01 SpeedChann 0166627734 Press1Av02 Pressure atte
Speed_t02 Speed Chann 0585943639 Press24v01 Presswe atc
Lvdi_to1 Lvdt Channel -1.561295747 Press2Av02 Fressure atc
Lvat_t02 Lvdt Channel -1.411147713 POFoAVOT Pressure deri
Setvo 101 Sewvovalvel 9999694824 POFoAv02 Pressure deri
Servo_t02 Servovalve C 9939694824 ServoAv01l Servovalve C
Spool_t01 Servovalve S -0.155346463 Servoiw02 Servovalve C
Spool_t02 Servovalve S 0856027066 Spoolvl Servovalve S
DisConTarget Controller Tar 0 Spoolv02 Servovalve S
DisConTarget Controller Tar 0 Endvl Controller Av
En_t01 Controller En 0 EmAv02 Controller Av
Ent02 ContolerEn 0 EnMall Conroler Ma

EnManx2 Controller Ma

f

Name

Count_t

Timelncr

Time_t

Enefbs_t

EneEn_t

Dis_t01

Vel _t0

Acc_t0

Res_th Dof Restoring
ExF_t0n Dof Extemal

o000 0000O

3zzgg3a=<n~
&
&
:

QQO&QQQOQQOQ

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

EE;;C{{<€{{<§E

Figure 18

® The group ALGOUSERINPUT is created by the DLL and contains some parameters read
from the data input file or calculated by the algorithm:

* TestName and DLLName are read from the data input file just once at the beginning
of the test and cannot been modified during it.

* TimeStop, InterRecln, GaccSpan, NFSamp and iRec are input variables read also from
the data input file but can be modified from the remote control and their value will
be applied at the beginning of the following step (see also Data Input File for more
information about the variables meaning)

* TimeLambda, also called lambda, is calculated by the algorithm at every step, and its
value is automatically refreshed with the new one, so changing its value from the

|
o

remote control will have no effect. Lambda is an informative variable used at the
display, and not an input one.

A Note: it is important to differentiate two types of alarms: the feedback on error one and the DLL or ALGO
ones. The first one checks if the difference between reference and feedback exceeds a determine limit, and it may
be able to stop the oil pumps if properly set. The second one instead is a set of limits imposed to a group of DLL
variables such as Heidenhain displacements or Load cell forces, and it is able to stop only the DLL Algorithm in a
reversible way.

Groups ALGOR_T, ALGORAv, ALGORESTART and ALGORALARM correspond to the
other four memory blocks created by the DLL. The first one stores the instantaneous values
of the used variables while the second one stores the average values. Within the third one
some variables useful for the restart values can be found. It may be interesting to view all
those variables, but not to change them, as they are measurements (see Data Input File).

The variables of the ALGORAv group of memory are average values of the different
measures, calculated at the end of every record by the algorithm. When running an
acquisition it is possible to carry out an average computation on the rest of the memory
blocks variables, ALGOR_T for example, by selecting an Average Points different from zero.
This averaging is done at the end of every sampling time, using the last “average points”
points of the sample (see Acquisition).

E TT192.160.0.99]: [ALCORUSERIPUT] |- 101X |
MName Desciiption | Yalue Urt
» TestName String withth 25
DN ame Sting withth PSDCYCO3.
TimeStop Integration wil 40 $
TimeLambda InterRec*0.00 100 $ Name Description Value Unit
InterfRecin ~ Mumber of int 1000 » bRundigo 2
GAccSpan0l Accelerogram 57.4 4 bélarminsert 1
Rec Record count 0 bélarmStatus 0
NFSampl Number of for 5000 Dialgorithm Dl used for &1 PSDCYCO3.

Figure 19

The fourth group contains the alarm limits for several variables, read from the data input
file (see Figure 20 below). Using the remote control is the most easy way for changing them
during the test. If none of the limits has been exceeded, the user can change their value
proceeding as in the other cases. If the alarm has stopped the algorithm, an special

procedure must be carried out to go on with the test:

1) Avoid the algorithm by pressing the F11 key

2) Change the alarm status to 0 on the PSD group

3) Change the variable limit on the ALGORALARM group
4)Re-launch the algorithm by pressing the F11 key

46

91192.168.0.99] : [ALGORALARM]

Algo:alam s

Algo_alam in -
Algo_alamin -

Algo_alaim s

Algo_alaim s

Algo_alamin -
Algo_alaimin -

_alaim s
alaim s

alamin -

alaim n

_alarm s

_alaim s
Algo_alarm in

_alaim in
Number of th
number of ala
value of the ¢

333888@@3333@333?

Figure 20

V| INDEX AND REFERENCES

INDEX
INTRODUCTION oo ssssssssss s ssssss s 1
MASTER CONFIGURATIONocoovrrmmmmreeeeessssssnsmesssssssssssssssssssssssssssssssssesssssssssssss s sssssssssssssssssssssssssns 4
A HOST.CFG uieeeceeeisssseseeseeseessssss s sssssssss s sssssssss s 5
B, USER.CFG coovovooveemmmeseeceesssssssseessssssssssss s sssssssss s ssssssssssss s ssssssssssnns 5
Co. MASTERIND coooottrireeeceeesssseeeeeesessssssssss s sssssssss s sessssssssss s ssssssssssons 6
D. TESTNAME.TXT ccoossvovvvvoeoessmsnenessssssssssssssesssnns 6
E. MASTERBAT ..oosioiirrrvvveeeosssesseeessssssssssssesssssssssssssssssssssssssssssss s ssssssssssons 7
F. EXCITATION-HISTORY INPUT DATA FILES..........errvvvvvveeeveennnnsnssssssnnnnns 10
F.1 GROUND ACCELERATION FILE........imrnnrnrrrrrrrreveesesssnssnssssssssssssssssseee 10
F.2 PATTERN FILE.........oooooummmnneseeesessssssnesesssssssssssssssesssssssssssssessssssssssssnns 11
DATAINPUT FILE ooeeeeeeeeeeesssssse e ssesssssss s sssss s 13
A. PSEUDO-DYNAMIC TESToessmmmmrrrrrvoveesssmsssssssssssssssssssssssssssssssssssssseses 15
A1 GENERAL DATA ..oooorrmrereeeeeesssnneessesssssssssss s ssssssssssss s sssssssssssssseeees 15
A.2 OTHER INFLUENCE MATRICEScoonrieeenenssmnnsensssssssssssssneeneseee 17
A3 PSD EQUATION DATA.......coooommmmneneseessssssnnesssssssssssssssessssssssssssssseeseees 18
A4 STRAIN RATE DEPENDENT DEVICESovccnvvvvvverrronnrnssssssssssssnnesseeee 22
A5 ALGO ALARM DATAcovvvooooressssssssssssssssssssesssssssssssssssssssssssssssssssssneees 23
B. CYCLIC TEST coooouruuieressssoesssssssssssssssssssssssssesssnes 25
B.1 GENERAL DATAoooourmmnnneeeeessssssssnesessssssssssssssesssssssssssssssssssssssssssnnns 25
B.2 PATTERN DATAoooooormmmnnnseeesssssssssesesssssssssssssesssssssssssssssessssssssssssnns 27

B.3 OTHER INFLUENCE MATRICESccciiiiiiiiiiiiiics 29

THETEST oo eeee e e e ee s 32
A TEST PROCEDUREoveveeeeeeeeeeeeeeeeeseeeees e eee s seseses s ees s se e sene 32

B. HOW TO COMMUNICATE WITH THE SYSTEMccooooeveereeereseesseesese 34

B.1 USERS INTERFACE: COMMANDS AND SHORTCUTS........ocvveerrerereenee. 34

B.2 REMOTE CONTROL: VIEW AND MODIFICATION OF VARIABLES 41

REFERENCES

* F.].Molina, G. Verzeletti, G. Magonette, Ph. Buchet, V. Renda, M. Geradin, A. Parducci, M.
Mezzi, A. Pacchiarotti, L. Federici and S. Mascelloni, ‘Pseudodynamic tests on rubber
base isolators with numerical substructuring of the superstructure and strain-rate
effect compensation’, Earthquake Engineering & Structural Dynamics, Vol. 31,
1563-1582 (2002).

* Elsa PSD Testing System, Philippe Buchet, ELSA Laboratory, Joint Research Centre,
[spra, Italy. (2004)

* Acquisition User Manual, Beatriz Zapico Blanco, F. Javier Molina, ELSA Laboratory,
Joint Research Centre, Ispra, Italy. (2008)

European Commission

EUR 23448 EN — Joint Research Centre — Institute for the Protection and Security of the Citizen
Title: PSDCYCO03.DLL User Manual

Author(s): Beatriz Zapico Blanco, F.Javier Molina

Luxembourg: Office for Official Publications of the European Communities

2008 —49 pp. — 21 x29.7 cm

EUR - Scientific and Technical Research series — ISSN 1018-5593

ISBN 978-92-79-09120-9
DOI 10.2788/87951

Abstract

A DLL (Dynamic Link Library) is a file of code containing functions that can be called from other
executable code. The advantage of working with DLLs at ELSA PsD Master controller is in the
modularity for programming the testing method and algorithm without the need to work with the
master.exe program.

This new version of DLL allows the implementation of both PsD and Cyclic test, plus strain-rate effect
compensation, re-start capabilities and a large variety of security alarms. In this manual the user will
find a full explanation of how to use the DLL throughout some simple examples. Some other examples
coming from real tests carried out at ELSA laboratory can be found in the Annex.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place
an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by
sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support
for the conception, development, implementation and monitoring of EU policies. As a
service of the European Commission, the JRC functions as a reference centre of
science and technology for the Union. Close to the policy-making process, it serves
the common interest of the Member States, while being independent of special
interests, whether private or national.

EUROPEAN COMMISSION

O-N3-8¥¥EC-VYN-G1

ISBN 978-92-79-09120-9

oli7892791091209

Publications Office
Publications.ew.int

	DLLManual.pdf
	DLLmanualdefinitivo
	DLLManualBack

