
Trinity: On Using Trinary Trees for Unsupervised
Web Data Extraction
Hassan A. Sleiman and Rafael Corchuelo

Abstract—Web data extractors are used to extract data from web documents in order to feed automated processes. In this article, we
propose a technique that works on two or more web documents generated by the same server-side template and learns a regular
expression that models it and can later be used to extract data from similar documents. The technique builds on the hypothesis that
the template introduces some shared patterns that do not provide any relevant data and can thus be ignored. We have evaluated and
compared our technique to others in the literature on a large collection of web documents; our results demonstrate that our proposal
performs better than the others and that input errors do not have a negative impact on its effectiveness; furthermore, its efficiency can
be easily boosted by means of a couple of parameters, without sacrificing its effectiveness.

Index Terms—Web data extraction, automatic wrapper generation, wrappers, unsupervised learning

1 INTRODUCTION

THE Web is a huge repository in which data are usu-
ally presented using friendly formats, which makes it

difficult for automated processes to use them.
The literature provides many proposals to create so-

called web data extractors, which are tools that facilitate
extracting relevant data from typical web documents [9],
[35]. Many web data extractors rely on extraction rules,
which can be classified into ad-hoc or built-in rules. The
costs involved in handcrafting ad-hoc rules motivated
many researchers to work on proposals to learn them
automatically using supervised techniques, i.e., techniques
that require the user to provide samples of the data to
be extracted, aka annotations [4]–[7], [10], [15]–[17], [20],
[23], [24], [27], [29], [37], [38], or using unsupervised tech-
niques, i.e., techniques that learn rules that extract as much
prospective data as they can, and the user then gathers the
relevant data from the results [2], [8], [11], [19], [21], [25],
[26], [38]–[40]. Web data extractors that rely on built-in rules
are based on a collection of heuristic rules that have proven
to work well on many typical web documents [1], [14], [18],
[32], [36]. Since such documents are growing in complexity,
some authors are also working on techniques whose goal
is to identify the region within a web document where the
relevant data is most likely to reside [35]. Some authors
have also paid attention to the problem of structuring the
data extracted [3], [30].

In this article, we introduce a technique called Trinity,
which is an unsupervised proposal that learns extraction
rules from a set of web documents that were generated by

• The authors are with the University of Sevilla, ETSI Informática, Sevilla
E-41012, Spain. E-mail: {hassansleiman, corchu}@us.es.

the same server-side template. It builds on the hypothesis
that shared patterns are not likely to provide any rele-
vant data and are, thus, part of the template. Whenever
it finds a shared pattern, it partitions the input documents
into the prefixes, separators and suffixes that they induce
and analyses the results recursively, until no more shared
patterns are found. Prefixes, separators, and suffixes are
organised into a trinary tree that is later traversed to build
a regular expression with capturing groups that represents
the template that was used to generate the input docu-
ments. Thanks to the capturing groups, the expression can
be used to extract data from similar documents. Note that
our technique does not require the user to provide any
annotations; instead, he or she must interpret the result-
ing regular expression and map the capturing groups that
represent the information of interest onto the appropriate
structures.

The three most closely-related proposals are Road-
Runner [11]–[13], ExAlg [2], and FiVaTech [21], which differ
significantly from Trinity: RoadRunner is a parsing-based
approach that uses a partial rule (which is initialised to
any of the input documents) to parse another document
and applies a number of generalisation strategies to cor-
rect the partial rule when mismatches are found; ExAlg
finds maximal classes of tokens that occur in every input
document, which are thus very likely to belong to the tem-
plate, and then refines them using a token differentiation
and a nesting criteria in order to construct the extraction
rule; FiVaTech first identifies nodes in the input DOM trees
that have a similar structure and then aligns their children
and mines repetitive and optional patterns to create the
extraction rule.

We analysed the complexity of our proposal and proved
that it is polynomial in both space and time. We also
conducted a series of experiments with 55 real-world web
sites and our results confirm that our proposal can achieve
a mean precision as high as 0.96 ± 0.07, a mean recall as
high as 0.95±0.11, with a mean learning time of 0.13±0.16

Fig. 1. General view of our proposal.

CPU seconds and a mean extraction time of 0.02 ± 0.03
CPU seconds. We conducted the same experiments using
two of the most closely-related techniques available and
two well-known supervised proposals in the literature, and
we then analysed the results using sound statistical tech-
niques. Our conclusion was that our proposal performs
better than the others and that its effectiveness does not
depend at all on whether the input web documents are
well- or malformed. Other techniques require the input to
be correct XHTML, which requires to repair the source doc-
uments beforehand; experimentally, we found out that this
has a negative impact on their effectiveness. Our proposal
relies on two simple parameters that may introduce a bias
in order to boost its performance, without sacrificing its
effectiveness. Other techniques have parameters that need
to be fined-tuned so that they work well.

The rest of the article is organised as follows: Section 2
presents the algorithms that lie at the heart of Trinity;
Section 3 analyses both their space and time complexity;
Section 4 reports on our experimental results; Section 5
compares it to the most closely-related proposals from a
conceptual point of view; Section 6 concludes our work.
A short paper on Trinity was presented elsewhere [34].

2 DESCRIPTION OF OUR ALGORITHMS

In this section, we first provide an intuitive introduction
to our proposal, then report on its limitations, and finally
provide an algorithmic description.

2.1 Overview
Fig. 1 sketches our proposal, which takes a collection of
web documents and a natural range [min . . max] as input.
The web documents need to be tokenised, but they do not
need to be correct XHTML documents; the range indicates
the minimum and maximum size of the shared patterns for
which the algorithm searches.

Our proposal relies on the following data types: a
sequence of tokens is called Text and represents either a

whole input document or a fragment; a trinary tree is
a collection of Nodes, each of which is a tuple of the form
(T, a, p, e, s), where T is a collection of Text, a is of type Text
and contains a shared pattern in T, p is a Node called pre-
fixes, e is a Node called separators, and s is a Node called
suffixes.

The algorithm first creates a root node with the input
web documents and sets a variable called s to max. Starting
with this node, the algorithm loops and searches for a
shared pattern of size s. If such a pattern is found in the
current node, then it is used to create three new child nodes
with the prefixes, the separators, and the suffixes that this
pattern induces; the prefixes are the fragments from the
beginning of a Text up to the first occurrence of a shared
pattern, the separators are the fragments in between suc-
cessive occurrences, and the suffixes are the fragments from
the last occurrence until the end of a Text. These nodes are
analysed recursively in order to find new shared patterns
that induce new nodes. If no shared pattern is found, that
is, the tree is not expanded, but variable s is greater or
equal to the minimum pattern size, then s is decreased and
the procedure is repeated again until a node in which no
shared pattern of size greater or equal to min is found.

Fig. 2 shows a sample trinary tree. Node N1 represents
three sample input documents; the algorithm searches for
the longest shared pattern, which is underlined, and then
creates three new nodes with the prefixes, the separators,
and the suffixes that it induces. Note that the shared pat-
tern is found at the beginning of the input documents, so
the prefixes are empty strings that we represent using sym-
bol ε; note that the shared pattern occurs only once, which
implies that there are not actually any separators, which we
represent with symbol nil. The processing continues recur-
sively on the new nodes. Note that leaf nodes that have
variability, that is, contain different fragments, have data
that is not likely at all to belong to the template.

Once the trinary tree is built, we need to use an
additional algorithm to learn the regular expression that
represents the template used to generate the input web
documents. This algorithm traverses the trinary tree in pre-
order; every time it reaches a leaf node that has variability,
it outputs a fresh capturing group to extract the data that
corresponds to that node; otherwise, it outputs the shared
pattern that corresponds to the node being analysed and
a closure or an optional operator depending on whether
that node is repeatable (there can be multiple occurrences
of the shared pattern) or optional (if some of the Texts it
has are empty, but not all of them). Fig. 3(a) shows the
regular expression that Trinity learns for the sample tri-
nary tree in Fig. 2; capturing groups are represented as
{A}, {B}, . . . , {F}.

2.2 Limitations
Note that when the input documents have listings of
records of different lengths, Trinity tends to deal with the
first few attributes of the first record and the last few
attributes of the last record differently from the attributes
of the remaining records. For instance, in our illustrating
example, the algorithm works on a collection of three web
documents that have lists of book records, each of which
has three attributes: title, authors, and price. Note, however,

Fig. 2. Sample trinary tree. (Shared patterns are underlined in each node.)

that the regular expression that Trinity learns has six cap-
turing groups: A corresponds to the title of the first record, E
and F correspond to the authors and price of the last record;
B, C, and D correspond to the remaining authors, prices, and
titles, respectively. This limitation is not so uncommon in
other proposals; fortunately, some authors have worked on
techniques that allow to map the data returned by extrac-
tion rules onto more appropriate data structures [3], [30].
We have, however, found quite a simpler approach to over-
come this limitation: Trinity is an unsupervised technique,
which means that it is the user who has to assign a semantic
label to each capturing group; after that, several computer-
generated labels may be assigned to the same semantic
label, which results in a regular expression that can be
very easily simplified as follows: transform it into a deter-
ministic finite automata, then minimise the automata, and
transform the results back into a regular expression. This
results in the regular expression in Fig. 3(b), which rep-
resents faithfully the structure of the records in the input
documents.

Trinity learns union-free regular expressions. On a
first reading, this might seem to prevent our proposal
from working well with templates that have alternating
formattings for the same data. Although this is true,
we did not find this a serious limitation in practice

Fig. 3. Regular expression learnt from our sample tree: (a) Before
simplification. (b) After simplification.

because typical web documents that use alternat-
ing formattings rely on CSS classes. For instance,
a special price is typically output as follows: $99.95; and a normal price is output
as follows: $125.00. That is,
the internal structure is almost identical although the
rendering seems to suggest that it is not. There are cases
in which the alternating formatting relies on tags like
strong, emph, or strike, which are output or not depending
on whether a piece of data is going to be highlighted or
not. Since we do not rely on a fixed tokenisation scheme,
we may easily deal with such tags as if they were regular
text. This is the same approach that was used in the
implementation of RoadRunner and it has proved to work
quite well in practice.

An additional limitation occurs when the same sequence
of tokens is used to separate different attributes in a data
record. For instance, assume that data attributes are sep-
arated only by tag
; in such cases, Trinity is likely
to find that the data record includes multiple instances of
the same attribute. This limitation was not usual at all in
the datasets we used to evaluate our proposal; we only
had trouble with the Major League and the IAF datasets,
in which data were rendered in a simple table and we
achieved an F1 measure of 0.70 and 0.52, respectively. In
the rest of datasets, different formattings are used inside
the data records to render different attributes, and this helps
our technique extract them independently. This limitation
was also detected in ExAlg [2]; the authors suggested that
human effort and more HTML knowledge are necessary in
this case.

2.3 Creating a Trinary Tree
We present Algorithm createTrinaryTree in Fig. 4. It takes a
node and a range of naturals as input and expands the
node to create a trinary tree. The loop at lines 4-7 iter-
ates over every possible size from max down to min as
long as Algorithm expand cannot expand the current node,

Fig. 4. Algorithm createTrinaryTree.

which happens if it can find a shared pattern of the indi-
cated size. If the loop finishes and the current node was
expanded, then the algorithm is executed recursively on
the new leaves that have been added to the current node.

We present Algorithm expand in Fig. 5. Line 3 checks if
node contains more than one Text; if so, it searches for a
shared pattern by invoking Algorithm findPattern at line 4,
which is described below; the algorithm checks if findPattern
has found a shared pattern at line 5 and invokes Algorithm
createChildren at line 7. Algorithm createChildren, which is
described below, partitions the Text collection inside the
input Node, and creates its child nodes; if no shared pattern
is found, then the input Node remains unchanged.

The previous algorithms were relatively intuitive. The
key to their performance is the algorithm to find shared
patterns, which we present in Fig. 6. First, it searches for
the shortest non-empty Text inside node at line 3 and stores
it in base. The main loop at lines 5-16 allows to implement
a sliding window over base: index i iterates from 0 until
size(base) − s as long as no shared pattern is found. The
actual search is performed in the inner loop at lines 8-12: in
this loop, the algorithm iterates over every Text in the input
Node, and finds all of the matches of the subsequence of base
that starts at position i and has size s. Algorithm findMatches
is implemented using the well-known Knuth-Pratt-Morris
pattern search algorithm [22]. This algorithm returns a list
of naturals that indicate the non-overlapping positions at
which the previous subsequence of base matches text; if
there is at least one match, we record it in variable result
and go ahead to examine the next Text in node; otherwise,
the inner loop finishes and the outer loop slides the win-
dow on base and resets map, if possible. If the algorithm
returns an empty map, this means that no shared pattern

Fig. 5. Algorithm expand.

Fig. 6. Algorithm findPattern.

has been found; otherwise, the map indicates the positions
at which the shared pattern is found in each Text in the
node being analysed.

When a shared pattern is found in a Node, Algorithm
createChildren creates the new child nodes: prefixes, sepa-
rators, and suffixes. We present Algorithm createChildren in
Fig. 7. This algorithm works on a Node, a map, and a pat-
tern. Lines 3-5 create three empty Nodes, namely prefixes,
separators, and suffixes. Line 6 sets the node’s shared pat-
tern to pattern. Then, the loop at lines 7-12 iterates over the
Texts in map: for each Text text in the map, lines 9-11 get the
matches where the shared pattern occurs, computes the pre-
fix, separators, and suffix of the pattern in text, and adds
them to the prefixes, separators, and suffixes Nodes respec-
tively. If pattern is found at the beginning of text, the prefix
is then an empty Text; if pattern is found at the end of text,
the suffix is then an empty Text; if two occurrences of pattern
are consecutive in text, their separator is an empty Text, but
if text contains only one occurrence of pattern, we then add
the special value nil to separators. We do not provide a pseu-
docode to the algorithms to compute prefixes, separators,
and suffixes since they are quite straightforward.

Fig. 7. Algorithm createChildren.

Fig. 8. Algorithm learnTemplate.

2.4 Algorithm learnTemplate
Algorithm learnTemplate works on a trinary tree whose root
is node, constructs a regular expression that represents a
template, and returns it, cf. Fig. 8. It relies on two ancillary
algorithms, namely: isOptional and isRepeatable. A Node is
optional if one or more of its Texts, but not all, are empty.
A Node is repeatable if one or more of its non-empty Texts
have more than one occurrence of the shared pattern.

The algorithm proceeds as follows: it works on a node
and a regular expression that is expected to be empty ini-
tially; the algorithm constructs its result by adding text to
this parameter on each recursive invocation. The core is
the if-then-else sentence at lines 3-31, which distinguishes
between leaf and non-leaf nodes. If node is a leaf and has
variability, i.e., not all of its Texts are the same, this means
that it contains variable data. In such cases, line 5 creates
a new capturing group that represents a piece of text to be
extracted. If node is not a leaf, then line 8 builds the regular
expression that corresponds to the prefixes, which is per-
formed recursively. The shared pattern is added to result at
line 9 and the regular expression that corresponds to the
separators is built at lines 10-18: if the node is repeatable,
then the regular expression of the separators Node is built at
line 12, the shared pattern is added to result at line 13, and
the plus or star closures are added at lines 14-18. If the sep-
arators node contains the special value nil, this means that
the shared pattern has appeared only once in at least one of
the Texts in node, thus a star closure must be used; contrarily,
if the shared pattern has two or more occurrences in each
Text in node, then a plus closure must be added. The algo-
rithm builds now the regular expression that corresponds
to the suffixes at line 20, which is performed recursively.

Lines 2 and 22 check if the node being processed is
optional, in which case parenthesis and an optional opera-
tor are added to the resulting regular expression.

3 COMPLEXITY ANALYSIS

In this section, we first present the results of our complexity
analysis and then prove the lemmata that support them
regarding space and time requirements.

3.1 Complexity Results
Let n denote the number of documents that Trinity has
to analyse and let m denote the size in tokens of the
longest such document. From Lemmata 1 and 2, which
we present below, we conclude that n �m

2 � is an upper
bound to the maximum size of a node and that 3 m is
an upper bound to the maximum number of nodes the
algorithm creates; as a conclusion, O(n �m

2 � 3 m) ⊆ O(n m2)

is an upper bound to the space required to execute our
proposal.

Furthermore, according to Lemmata 6 and 7,
which we present below, Algorithms createTrinary-
Tree and learnTemplate require no more than O(n m5)

and O(n m2) time to complete, respectively. This
implies that O(n m5 + n m2) ⊆ O(n m5) is an upper
bound to the worst-case time required to execute our
proposal.

In our experiments, it was common that n � m since the
average value of n was 37.89±41.67 and the average value
of m was 1 842.40±1 445.31; in such cases, we can conclude
that O(m2) and O(m5) are upper bounds to the worst-case
space and time complexity of Trinity. That is: our proposal
is computationally tractable.

3.2 Space Requirements
Lemma 1 (Maximum size of a Node). n �m

2 � is an upper
bound to maximum size of a Node created by Algorithm
createTrinaryTree.

Proof. Algorithm expand is the only algorithm that creates
new Nodes, which correspond to the prefixes, separators,
and suffixes that a shared pattern p induces. Regarding
the prefix and suffix Nodes, note that there cannot be
more than n such prefixes or suffixes since a document
may not have more than one prefix or one suffix; that is,
n is an upper bound to the maximum size of a Node that
contains prefixes or suffixes. Regarding separators Nodes
the worst-case happens when p is a one-token pattern
that occurs every two tokens; that is, �m

2 � is an upper
bound to the number of separators in this case, that is,
n �m

2 � is an upper bound to the maximum size of a Node
that contains separators. As a conclusion, n �m

2 � is an
upper bound to the maximum size of a Node created by
createTrinaryTree.

Lemma 2 (Maximum number of Nodes). 3 m is an upper
bound to the number of Nodes created by Algorithm createTri-
naryTree.

Proof. Algorithm expand creates three new Nodes when a
shared pattern p is found in a given Node. The new Nodes
correspond to the prefixes, separators, and suffixes to
which p leads. We know that m is an upper bound to
the number of partitions of a Text of size m, which means
that m is an upper bound to the number of levels of the
trinary tree in the worst-case. Since each level has three
nodes, then 3 m is an upper bound to the number of
Nodes created by createTrinaryTree.

3.3 Time Requirements
Lemma 3 (Algorithm createChildren). Let a be a Node, r a

map from the Texts in a onto lists of indices that denote where
a shared pattern occurs, and p the shared pattern. O(n m2)

is an upper bound to the worst-case time required to execute
createChildren(a, r, p).

Proof. The algorithm iterates through every Text in a.
According to Lemma 1, n �m

2 � is an upper bound to
the maximum size of a Node, which means that the n m
is an upper bound to the number of iterations of this
loop. Inside this loop, accessing the map and calculat-
ing the prefix and suffix of the shared pattern can be
performed in O(1) time, whereas computing the separa-
tors requires variable time. According to Lemma 1, the
maximum number of separators in a given Text is �m

2 �,
which is less than m. Then, O(m) is an upper bound to
the time required to compute the separators. The instruc-
tions to create new nodes at lines 3-5 and the instructions
to link them to the input Node at lines 13-15 require
O(1) time. As a conclusion, O(n m m) = O(n m2) is an
upper bound to the worst-case time required to execute
createChildren(a, r, p).

Lemma 4 (Algorithm findPattern). Let a be a Node and s
the size of the pattern for which the algorithm searches.
O(n m3) is an upper bound to the worst-case time required
to execute findPattern(a, s).

Proof. The algorithm first searches for the shortest Text in a.
According to Lemma 1, n �m

2 � is an upper bound to the
maximum size of a Node, which implies that n �m

2 � is an
upper bound to the maximum time required to find the
shortest Text in a Node. The main loop iterates through
base until finding a pattern of s tokens that occurs in
every other Text in a. In the worst-case, base has the max-
imum size m and the shared pattern is found at the end
of base, which means that the main loop iterates m − s
times, i.e., O(m) times. In each iteration of the main loop,
the inner loop iterates through the Texts in a. According
to Lemma 1, n �m

2 � is an upper bound to the maximum
size of a Node, which implies that the inner loop does
not iterate more than n �m

2 � times. In each iteration, it
invokes Algorithm findMatches, whose worst-time com-
plexity is O(k), where k denotes the size of the text in
which a pattern is searched [22]. This implies that O(m)

is an upper bound to the worst-case time complexity of
the instructions inside the inner loop. As a conclusion,
O(n �m

2 �+m n �m
2 � m) ⊆ O(n m3) is an upper bound to the

worst-case time required to execute findPattern(a, s).

Lemma 5 (Algorithm expand). Let a be a Node, and s be a
pattern size. O(n m3) is an upper bound to the worst-case time
required to execute expand(a, s).

Proof. In the worst-case, the invocation to Algorithm expand
requires to invoke Algorithms findPattern and createChil-
dren in sequence, which according to Lemmata 4 and 3
require no more than O(n m3) and O(n m2) time in the
worst-case. As a conclusion, O(n m3 + n m2) ⊆ O(n m3)

is an upper bound to the worst-case time required to
execute expand(a, s).

Lemma 6 (Algorithm createTrinaryTree). Let a be a Node,
min and max be the minimum and maximum sizes of the

shared patterns for which the algorithm searches, respectively.
O(n m5) is an upper bound to the worst-case time required
to execute createTrinaryTree(a, min, max).

Proof. The algorithm first iterates through every possible
size between min and max, which amounts to m times in
the worst-case. In each iteration, the algorithm executes
Algorithm expand, which according to Lemma 5 requires
no more than O(n m3) time. Then, O(n m4) is an upper
bound to the first loop. If a is expanded, then another
loop iterates through its leaves and executes Algorithm
createTrinaryTree recursively. According to Lemma 2, 3 m
is an upper bound to the number of Nodes created by cre-
ateTrinaryTree. As a conclusion, O(n m4 3 m) ⊆ O(n m5)

is an upper bound to the worst-case time required to
execute createTrinaryTree(a, min, max).

Lemma 7 (Algorithm learnTemplate). Let a be a Node.
O(n m2) is an upper bound to the worst-case time required
to execute learnTemplate(a, “”).

Proof. The algorithm works on a maximum of 3 m Nodes
according to Lemma 2. If a Node is a leaf, the algorithm
iterates on its Texts no more than m

2 times according to
Lemma 1. Otherwise, the algorithm is invoked recur-
sively on the children of this node, namely: prefixes,
separators, and suffixes. In the case of the separators,
whose number is limited by the upper bound n �m

2 �, the
algorithm iterates on them twice to check for repeata-
bility and searching for nil values. As a conclusion,
O(3 m 2 n �m

2 �) ⊆ O(n m2) is an upper bound to the
worst-case time required to execute learnTemplate(a, “”).

4 EXPERIMENTAL EVALUATION

In this section, we first describe our experimentation envi-
ronment, then report on our experimental results, and
finally analyse them statistically.

4.1 Experimentation Environment
We have developed a Java 1.7 prototype of our proposal
using the CEDAR framework [33]1. We performed a series
of experiments on a cloud computer that was equipped with
a four-threaded Intel Core i7 processor that ran at 2.93 GHz,
had 4 GiB of RAM, Windows 7 Pro 64-bit, Oracle’s Java
Development Kit 1.7.0_02, and GNU Regex 1.1.4.

We performed our experiments on a collection 2 084
web documents from 55 datasets; 41 datasets were col-
lected from real-world web sites and the remaining were
downloaded from the RoadRunner and the RISE public
repositories. The first group contains datasets on books,
cars, conferences, doctors, jobs, movies, real estates, and
sports. These categories were randomly sampled from The
Open Directory sub-categories, and the web sites inside
each category were randomly selected from the 100 best
ranked web sites between December 2010 and March 2011
according to Google’s search engine. We downloaded 30
web documents from each web site and handcrafted a set
of annotations with the data that we would like to extract
from each document. The second group contains all of

1. http://www.tdg-seville.info/Download.ashx?id=341

the datasets available at the RoadRunner repository [11]
and the datasets from the RISE repository that provide
semi-structured web documents [28].

The most closely-related proposals are RoadRunner
[11]–[13], ExAlg [2], and FiVaTech [21]. Unfortunately,
we could not find a public implementation of ExAlg
or get it from the authors. To complete the collection
of baseline proposals, we selected two supervised clas-
sical proposals that rank amongst the most cited in the
literature, namely: SoftMealy [20] and WIEN [24]. Our
goal was to prove that Trinity improves on the most
closely-related proposals for which we have found an
implementation and that the fact that it is unsuper-
vised does not actually have a negative impact on its
effectiveness.

4.2 Experimental Results
We ran Trinity, the latest version of RoadRunner [12],
FiVaTech, SoftMealy, and WIEN on our datasets in order
to learn extraction rules. Regarding Trinity, we set min = 1
and max = �0.05 m�, where m denotes the size in tokens
of the shortest input document. We measured the standard
effectiveness measures (precision, recall, and the F1 mea-
sure) and two efficiency measures (learning and extraction
time).

In the case of SoftMealy and WIEN, it was easy to
compute the precision and recall since both techniques are
supervised, i.e., they require the user to provide annotations
with the data to be extracted so that an extraction rule can
be learnt and evaluated. Contrarily, Trinity, RoadRunner,
and FiVaTech are unsupervised, i.e., they learn a rule that
extracts as much data as possible, give each capturing
group a computer-generated label, and it is the responsi-
bility of the user to assign a meaning to these labels. Since
we handcrafted annotations for every web document in
our datasets, we could find which extracted data group
was the closest to each annotation. To do so, we compared
each piece of text extracted to every annotation, and com-
puted the number of true positives (tp), false negatives (fn),
and false positives (fp), since this allowed us to compute
precision as P = tp

tp+fp , recall as R = tp
tp+fn , and the F1 mea-

sure as F1 = 2 P R
P+R . Given a group of annotations, we can

consider that the precision and recall to extract them cor-
responds to the extracted data group with the highest
F1 measure.

Table 1 presents the results of our experiments. The
columns report on the number of web documents in each
dataset (N), their average size in KiB (S), average num-
ber of errors reported by JTidy (E), precision (P), recall
(R), the F1 measure (F1), learning time in CPU seconds
(LT), and extraction time in CPU seconds (ET); in the case
of Trinity, we also report on the CPU time in seconds to
learn a rule without introducing any biases (LT′), that is
setting min to one and max to the size in tokens of the
shortest input document. Since the results are rounded to
two decimal digits, times that were smaller than 0.005 sec-
onds are reported as 0.00 in the table, but at least four
decimal digits were internally taken into account to com-
pute the means and the standard deviations. A dash in a
cell means that the corresponding technique was not able

to learn an extraction rule in 15 CPU minutes or that it
threw an exception. The first two rows provide a summary
of these measures in terms of mean values and standard
deviations.

Our first conclusion is that the bias that Trinity allows
to introduce, indeed helps boost its efficiency since the
average learning time is 0.13 ± 0.16 CPU seconds if the
bias is introduced, whereas it is 10.82 ± 33.85 CPU sec-
onds without the bias. Finding a good bias is always a
difficult task, since it requires to fine-tune the parameters
on which a proposal relies so as to find an appropri-
ate trade-off between efficiency and effectiveness; this, in
turn, requires to have a good training set on which pre-
cision and recall can be computed. We experimentally
found that setting min = 1 and max = �0.05 m�, where
m denotes the size in tokens of the shortest input docu-
ment, was the maximum allowable bias, that is, a bias that
boosts efficiency, but does not have a negative impact on
the efficiency. In practice, our results suggest that Trinity
can be used without introducing any biases since the
learning times are quite competitive regarding the other
proposal.

To draw more conclusions from our experimental results,
we summarised the F1 measures, the learning times, and
extraction times in Figs. 9, 10, and 11, respectively. The
summaries are presented as box plots, since they help intu-
itively compare these measures taking into account the
whole range of values.

Note that all of the techniques can achieve the maxi-
mum F1, which means that they can extract information
with perfect precision and recall in some cases; what dif-
ferentiates Trinity from the others is that its interquartile
range is the smallest one and the highest one, which indi-
cates that it can achieve high effectiveness in the majority
of cases. These results suggest that the other techniques
perform more irregularly and worst than Trinity regarding
effectiveness.

The results are similar regarding efficiency: note that the
range from the first to the third quartile is smaller for Trinity
than for the other techniques regarding the learning time
and similar to RoadRunner’s regarding the extraction time,
but clearly smaller than for the other techniques; the dis-
persion from the minimum values to the first quartile and
from the third quartile to the maximum are also a clear indi-
cation that our technique performs more homogeneously
than the others regarding learning and extraction time, with
the only exception of RoadRunner regarding the extrac-
tion time. These results suggest that the other techniques
perform worst than Trinity regarding efficiency, except for
RoadRunner.

Table 1 also reports on the average number of errors
JTidy found in each dataset. Our goal was to check that
Trinity is not affected by the fact that typical web doc-
uments are malformed XHTML documents. To draw a
conclusion, we plotted the F1 measures we gathered for
every pair of datasets and techniques and the number of
errors in a radial chart, cf. Fig. 12. Unfortunately, it is diffi-
cult to discern whether variations to the number of errors
has an impact on the F1 measure. Therefore, we defer draw-
ing a conclusion on this topic to the statistical analysis in
the following section.

TABLE 1
Experimental Results

4.3 Statistical Analysis
To confirm that the conclusions we have drawn from our
empirical evaluation are valid, we need to perform a statis-
tical analysis [31]. This consists in performing a statistical
ranking regarding our performance measures and deter-
mining if there is a significant correlation from the number
of errors to the effectiveness of the techniques we have
evaluated.

We have conducted a Shapiro-Wilk test at the standard
significance level α = 0.05 on every measure and we have
found out that none of them behaves normally. As a con-
clusion, we have used non-parametric analysis techniques.

The steps were the following: a) compute the rank of
each technique from the evaluation results; b) determine if
the differences in ranks are significant or not using Iman-
Davenport’s test; c) if the differences are significant, then
compute the statistical ranking using Bergmann-Hommel’s
test on every pair of techniques.

Table 2 presents the results of the analysis. (Due to space
limitations, we only report on the adjusted p-values, not
on the exact values of the statistics.) Note that the p-value
of Iman-Davenport’s statistic is nearly zero in every case,
which is a strong indication that there are statistically sig-
nificant differences in the ranks we have computed from

Fig. 9. Comparison of F1 measures.

our experiments. It then proceeds to rank the techniques
pairwise using Bergmann-Hommel’s test. For the sake of
readability, we also provide an explicit ranking in the last
column. Note that our proposal ranks the first regarding
every effectiveness and efficiency measures; the only tie is
regarding extraction time, in which case the difference with
respect to RoadRunner does not seem to be statistically sig-
nificant. As a conclusion, our experiments prove that there
is enough statistical evidence to conclude that our proposal
outperform the others.

Recall from the previous section that we could not draw
an intuitive conclusion on whether the errors in the input
web documents have an impact on the effectiveness of the
techniques we have compared. To discern if there is such
an impact from an statistical point of view, we need to
calculate the correlation from the number of errors to the
F1 measure using Kendall’s τ procedure. Table 3 presents
the results of this procedure. Note that the p-value of the
correlation coefficients is smaller than the standard signif-
icance level α = 0.05 except for the case of RoadRunner
and FiVaTech; in these cases the correlation coefficient is
negative, which means that the effectiveness of these tech-
niques is expected to decrease as the number of errors

Fig. 10. Comparison of learning times.

Fig. 11. Comparison of extraction times.

in the input documents increases. As a conclusion, our
experiments do not show any statistical evidence that the
effectiveness of our technique is sensitive to malformed
input documents.

5 RELATED WORK

In the introduction, we listed and classified many of the
proposals on data extraction that we have found in the lit-
erature. Our conclusion was that Trinity is closely related to
RoadRunner [11]–[13], ExAlg [2], and FiVaTech [21], which
are the other three proposals that learn a regular expression
that models the template used to generate the input doc-
uments. This is the reason why we restrict our conceptual
comparison to them.

RoadRunner was originally proposed by [13]. It works
on a collection of web documents and compares them side
by side in order to infer a union-free regular expression
that describes their template. Although the proposal works
on the text of the input documents, it requires them to
be repaired beforehand using tools like JTidy since the
algorithm needs the input documents to be well-formed.
The proposal constructs the extraction rule incrementally
by means of a string alignment algorithm that is specifi-
cally tailored to XHTML. The initial rule is set to any of
the input documents, and it is then used to parse the oth-
ers. During parsing, the algorithm may find mismatches

Fig. 12. Correlation from number of errors to the F1 measure.

TABLE 2
Results of the Statistical Ranking

between the partial rule and the current input document, in
which case a number of generalisation strategies are used;
simply put, these strategies try to find out if a new repeti-
tive or optional structure needs to be included in the partial
rule so that it can satisfactorily parse the current input
document. The process continues until every input docu-
ment has been parsed and used to generalise the partial
rule thus constructed. The time complexity of the algo-
rithm was proven to be exponential in the number of tokens
of the input documents; the authors introduced several
biases to the generalisation strategies in order to lower

TABLE 3
Results of the Statistical Analysis of Correlation

the time complexity, namely: limiting the number of alter-
natives to be explored, the number of backtracks to be
performed, and discarding some regular sub-expressions.
The algorithm was proven to perform well in practice
thanks to the previous biases, but no formal proof regard-
ing its resulting time or space complexity was presented.
Unfortunately, the biases had a negative impact on its
effectivity. Later, [11] presented a new version of the algo-
rithm that was proven to be polynomial for a subclass of
union-free regular expressions that is called prefix mark-
up. Unfortunately, according to the experiments that the
authors carried out, roughly 50% of the sites they anal-
ysed were not prefix markup. This motivated them to
work on a technique to transform a regular web document
into another that is prefix mark-up [12]. This technique
is applied as a pre-processing step to RoadRunner and
proved to boost its effectiveness. The technique is exponen-
tial because it includes a module to perform disambiguation
that is an instance of the set partitioning problem, which is
known to be NP-complete. The authors designed a num-
ber of heuristics that help reduce its complexity in many
common cases.

Trinity is also based on aligning the input documents
to try to discover their common template, but it differs
significantly from RoadRunner, namely: a) Both proposals,
work on the text of the input documents, but RoadRunner
requires them to be well-formed, whereas Trinity does
not; we experimentally found that there is a statistically
significant and negative correlation from the number of
errors in the input documents to the effectiveness of
RoadRunner, which is not the case of Trinity. b) Trinity
aligns all of the input documents in parallel, whereas
RoadRunner aligns a partial rule to a unique document
to produce a new version of the rule. c) Trinity searches
for shared patterns and infers repetitions and optionals
from the texts and separators in a trinary node, whereas
RoadRunner searches for mismatches and then tries to
find out if they must be generalised to a capturing group,
a repetition, or an optional expression, which is a com-
plex procedure that requires backtracking and has many
special cases. d) Trinity is polynomial in both space and
time, whereas RoadRunner was proven to be polynomial
in time for a subset of union-free regular expressions, but
remains exponential for general union-free regular expres-
sions; unfortunately, no results about RoadRunner’s space
complexity are available in the literature. e) Trinity relies on
two parameters that help introduce a bias to its algorithm
to search for shared patterns; note that it is not mandatory
to introduce this bias for the algorithm to work well, and
that introducing it helps increase its efficiency without sac-
rificing its effectiveness; contrarily RoadRunner requires a
bias to be introduced so that it is efficient enough for practi-
cal purposes; unfortunately, this bias has a negative impact
on its effectiveness; the version by [11] was polynomial but
it requires the input documents to be generated by a prefix
mark-up template, which is not the most common kind of
template. Introducing a preprocessing step to transform the
input document into prefix mark-up equivalents also has a
significant impact on complexity.

ExAlg was proposed by [2]. It works in two stages: it first
computes so-called large and frequently occurring equiva-
lence classes of tokens, or LFEQs for short, and then learns a
regular expression and a data schema from them. An LFEQ
is a sufficiently large maximal subset of tokens that occur a
sufficiently large and equal number of times in every input
document. Using a simple padding technique, the authors
can guarantee that there always exist a unique LFEQ in
which the occurrence frequency of each token is exactly
one; such an LFEQ is referred to as the root LFEQ. Note that
computing a set of LFEQs from an input set of documents
is relatively simple; the complex part of the proposal is to
purge them to exclude invalid LFEQs, which are LFEQs
whose tokens do not always appear in the same relative
order or LFEQs that are not nested within other LFEQs, that
is, whose tokens do not always occur in the same context
within other LFEQs. Furthermore, a token may have dif-
ferent roles in the same document, e.g., the role of a token
like Author is not the same when it occurs in the middle of
a paragraph and when it occurs in <td>Author:</td>; ExAlg
considers that two tokens with the same lexeme are differ-
ent if they have different paths in the parse tree or if they
appear in different contexts, that is, the surrounding tokens
are different in different occurrences. The authors sketched

an algorithm to find an initial set of LFEQs and refine them
by discarding invalid ones and differentiating roles. The
resulting LFEQs are then searched recursively for regular
patterns; unfortunately, the algorithm to find such patterns
was just sketched. The regular expression that is computed
for the root LFEQ is the one that models the template
used to generate the input document. Unfortunately, we
could not find any written record regarding the complexity
of ExAlg. The authors mentioned that the first stage run
linearly in their experiments, but no formal proof was pre-
sented. Neither is it easy to infer the complexity because
the authors did not provide an algorithm, but some defini-
tions and an intuitive sketch of how their proposal works.
The authors, however, made it explicit the assumptions that
must hold for their proposal to work well, namely: a) a
large number of template tokens must have unique roles;
b) a large number of tokens must be associated with each
type constructor (i.e., capturing group, union, repetition, or
optionality) and each type constructor must be instantiated
a large number of times in each input document; c) there
must not be any regularities in the data that can lead to
fake LFEQs; and d) there must be separators around data.

Trinity also builds on the idea that tokens that are shared
amongst a number of documents are likely to belong to the
template used to generate them, but our technique differs
significantly from ExAlg, namely: a) It is not clear whether
ExAlg can work on malformed input documents or not;
apparently, the core of the algorithm works on strings of
tokens, but it requires to compute their paths in the corre-
sponding parse trees to differentiate their roles. To create
a parse tree, the input web documents need to be repaired
if they are not well-formed, which we have found has a
negative impact on the effectiveness of RoadRunner and
FiVaTech; contrarily, Trinity works on the input documents
as they are provided b) To some extent, ExAlg creates kind
of a tree when it searches for the LFEQs that are nested
into another LFEQ; note that, to some extent, each node
in a trinary tree might be considered kind of a LFEQ, the
difference being that a trinary node focuses on the longest
patterns found in the parent node and that they are inher-
ently nested and aligned with respect to such parent nodes;
in other words: no trinary node may be invalid in the sense
of ExAlg, which makes it totally unnecessary to refine the
trinary nodes our algorithm creates. c) ExAlg can learn dis-
junctions, but, unfortunately, the algorithm to learn them
was not detailed; Trinity cannot learn disjunctions, but we
did not find that a serious shortcoming since the majority
of cases in which there was a disjunction could be dealt
with by just considering that formatting tags like strong,
emph or strike are text. d) ExAlg builds on four assump-
tions and the authors found that some of them did not hold
in some experimental datasets; chiefly, the second assump-
tion may prevent ExAlg from working well with documents
whose structure is very simple, whereas Trinity builds on
only one assumption: that the input documents were gen-
erated by the same server-side template. e) Trinity was
proven to be polynomial in both time and space, whereas
no formal proof on ExAlg’s complexity was found in the
literature. f) ExAlg relies on two parameters to determine
when a prospective LFEQ is large enough and its tokens
are recurring enough to be considered a proper LFEQ; both

parameters introduce a bias that has an impact on the effec-
tiveness of the proposal; contrarily, Trinity does not require
any biases to be introduced unless we need to boost its effi-
ciency: note that our experimental results confirm that even
without introducing the biases, Trinity is very efficient for
practical purposes. g) [21] highlighted that ExAlg does not
try to align the input documents and that the token differ-
entiation criterion does not take into account the subtree
below tag tokens; they found out that these issues lead to
accidental LFEQs that misalign the first and the last records
of a list and that the resulting regular expressions include
many disjunctive and empty expressions that do not extract
any data. None of the previous issues applies to Trinity.

FiVaTech was proposed by [21]. It proceeds in two
stages, namely: the first stage decomposes the input docu-
ments into a collection of DOM trees that are then merged
into a so-called pattern tree from which it is relatively sim-
ple to infer a regular expression that models the template
used to generate the input documents; the second stage
cleans the pattern tree to produce a scheme of the data that
the regular expression extracts. In the first stage, the DOM
trees of the input documents are compared level by level
building on a two-tree matching algorithm that returns a
similarity score; nodes whose similarity score are above
a user-defined parameter are assigned the same symbol
and considered peer nodes. Peer nodes are then aligned
using a matrix alignment algorithm; the resulting matrix
is then mined for the longest repetitive patterns and then
for optional nodes; optional nodes that are adjacent and
have complementary occurrence vectors are considered dis-
junctions. The resulting pattern tree represents a regular
expression in which leaf nodes are capturing groups, some
intermediate nodes represent the tags of the template, and
some others the repetition or the optional regular operators.
The authors mentioned the time complexity of some of the
sub-algorithms on which their proposal relies, but no for-
mal proof regarding the overall time and space complexity
was presented.

The approach that we used to devise Trinity is quite
different, namely: a) FiVaTech relies on DOM trees. This
requires to parse the input documents and correct them,
which we have found experimentally has a negative
impact on its effectiveness; contrarily, Trinity can work
on malformed input documents without correcting them.
b) FiVaTech also searches for the longest repeating patterns,
but this is done after peer nodes are identified and their
children aligned, which is a process that requires a time
that is not negligible; contrarily, Trinity first identifies the
longest shared patterns and then determines which nodes
represent repetitions or optionality using quite a simple cri-
terion whose computational cost is negligible. c) FiVaTech
can detect repetition patterns only regarding the children
of a node, whereas Trinity does not impose this limitation.
d) FiVaTech relies on a parameter that biases the proce-
dure to determine whether two nodes are peer nodes or
not; the selection of a proper value is not easy and has an
impact on the effectiveness; contrarily, the biases in Trinity
are not mandatory and can be used for efficiency purposes
only. e) We have proved that Trinity is polynomial in both
time and space; unfortunately, no record about FiVaTech’s
overall complexity was found in the literature.

6 CONCLUSION

We have presented an effective and efficient unsupervised
data extractor called Trinity. It is based on the hypothe-
sis that web documents generated by the same server-side
template share patterns that do not provide any relevant
data, but help delimit them. The rule learning algorithm
searches for these patterns and creates a trinary tree, which
is then used to learn a regular expression that represents
the template that was used to generate input web docu-
ments. Our experiments on 55 real-world web sites proved
that our technique achieves very high precision and recall
with a learning and extraction time that is almost negligi-
ble. Furthermore, errors in the input XHTML documents
do not have a negative impact on its effectiveness. We also
identified a means to introduce a bias to the search proce-
dure that improves its efficiency without a negative impact
on its effectiveness.

ACKNOWLEDGMENTS

The authors thank the referees for their insightful comments
on earlier versions of this article and the authors of the
related proposals for sharing their implementations with
us. Our results were supported by local R&D programmes
and FEDER funds through grants TIN2007-64119, P07-
TIC-2602, P08-TIC-4100, TIN2008-04718-E, TIN2010-21744,
TIN2010-09809-E, TIN2010-10811-E, TIN2010-09988-E, and
TIN2011-15497-E.

REFERENCES

[1] M. Álvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda,
“Extracting lists of data records from semi-structured web pages,”
Data Knowl. Eng., vol. 64, no. 2, pp. 491–509, Feb. 2008.

[2] A. Arasu and H. Garcia-Molina, “Extracting structured data from
web pages,” in Proc. 2003 ACM SIGMOD, San Diego, CA, USA,
pp. 337–348.

[3] J. L. Arjona, R. Corchuelo, D. Ruiz, and M. Toro, “From wrapping
to knowledge,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 2, pp.
310–323, Feb. 2007.

[4] F. Ashraf, T. Özyer, and R. Alhajj, “Employing clustering tech-
niques for automatic information extraction from HTML doc-
uments,” IEEE Trans. Syst. Man Cybern. C, vol. 38, no. 5, pp.
660–673, Sept. 2008.

[5] M. E. Califf and R. J. Mooney, “Bottom-up relational learning of
pattern matching rules for information extraction,” J. Mach. Learn.
Res., vol. 4, pp. 177–210, May 2003.

[6] A. Carlson and C. Schafer, “Bootstrapping information extraction
from semi-structured web pages,” in Proc. ECML/PKDD, Berlin,
Germany, 2008, pp. 195–210.

[7] C.-H. Chang and S.-C. Kuo, “OLERA: Semisupervised web-data
extraction with visual support,” IEEE Intell. Syst., vol. 19, no. 6,
pp. 56–64, Nov./Dec. 2004.

[8] C.-H. Chang and S.-C. Lui, “IEPAD: Information extraction based
on pattern discovery,” in Proc. 10th Int. Conf. WWW, Hong Kong,
China, 2001, pp. 681–688.

[9] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan, “A survey
of web information extraction systems,” IEEE Trans. Knowl. Data
Eng., vol. 18, no. 10, pp. 1411–1428, Oct. 2006.

[10] W. W. Cohen, M. Hurst, and L. S. Jensen, “A flexible learning
system for wrapping tables and lists in HTML documents,” in
Proc. 11th Int. Conf. WWW, 2002, pp. 232–241.

[11] V. Crescenzi and G. Mecca, “Automatic information extrac-
tion from large websites,” J. ACM, vol. 51, no. 5, pp. 731–779,
Sept. 2004.

[12] V. Crescenzi and P. Merialdo, “Wrapper inference for ambiguous
web pages,” Appl. Artif. Intel., vol. 22, no. 1–2, pp. 21–52, Jan. 2008.

[13] V. Crescenzi, G. Mecca, and P. Merialdo, “Road runner: Towards
automatic data extraction from large web sites,” in Proc. 27th Int.
Conf. VLDB, Rome, Italy, 2001, pp. 109–118.

[14] H. Elmeleegy, J. Madhavan, and A. Y. Halevy, “Harvesting rela-
tional tables from lists on the web,” in Proc. VLDB, vol. 2, no. 1,
pp. 1078–1089, Aug. 2009.

[15] D. Freitag, “Information extraction from HTML: Application of a
general machine learning approach,” in Proc. 15th Nat/10th Conf.
AAAI/IAAI, Menlo Park, CA, USA, 1998, pp. 517–523.

[16] P. Gulhane, R. Rastogi, S. H. Sengamedu, and A. Tengli,
“Exploiting content redundancy for web information extrac-
tion,” in Proc. 19th Int. Conf. WWW, Raleigh, NC, USA, 2010,
pp. 1105–1106.

[17] P. Gulhane et al., “Web-scale information extraction with vertex,”
in IEEE 27 ICDE, Hannover, Germany, 2011, pp. 1209–1220.

[18] R. Gupta and S. Sarawagi, “Answering table augmentation
queries from unstructured lists on the web,” in Proc. VLDB, vol. 2,
no. 1, pp. 289–300, Aug. 2009.

[19] J. L. Hong, E.-G. Siew, and S. Egerton, “Information extraction for
search engines using fast heuristic techniques,” Data Knowl. Eng.,
vol. 69, no. 2, pp. 169–196, Feb. 2010.

[20] C.-N. Hsu and M.-T. Dung, “Generating finite-state transducers
for semi-structured data extraction from the web,” Inform. Syst.,
vol. 23, no. 8, pp. 521–538, Dec. 1998.

[21] M. Kayed and C.-H. Chang, “FiVaTech: Page-level web data
extraction from template pages,” IEEE Trans. Knowl. Data Eng.,
vol. 22, no. 2, pp. 249–263, Feb. 2010.

[22] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt, “Fast pattern
matching in strings,” SIAM J. Comput., vol. 6, no. 2, pp. 323–350,
1977.

[23] R. Kosala, H. Blockeel, M. Bruynooghe, and J. V. den Bussche,
“Information extraction from structured documents using k-
testable tree automaton inference,” Data Knowl. Eng., vol. 58, no. 2,
pp. 129–158, Aug. 2006.

[24] N. Kushmerick, D. S. Weld, and R. B. Doorenbos, “Wrapper
induction for information extraction,” in Proc. IJCAI, 1997,
pp. 729–737.

[25] B. Liu and Y. Zhai, “NET: A system for extracting web data from
flat and nested data records,” in Proc. 6th Int. Conf. WISE, New
York, NY, USA, 2005, pp. 487–495.

[26] W. Liu, X. Meng, and W. Meng, “ViDE: A vision-based approach
for deep web data extraction,” IEEE Trans. Knowl. Data Eng.,
vol. 22, no. 3, pp. 447–460, Mar. 2010.

[27] A. Machanavajjhala, A. S. Iyer, P. Bohannon, and S. Merugu,
“Collective extraction from heterogeneous web lists,” in
Proc. 4th ACM Int. Conf. WSDM, Hong Kong, China, 2011,
pp. 445–454.

[28] I. Muslea. (1998). RISE: Repository of Online Information
Sources used in Information Extraction [Online]. Available:
http://www.isi.edu/info-agents/RISE

[29] I. Muslea, S. Minton, and C. A. Knoblock, “Hierarchical wrapper
induction for semistructured information sources,” Auton. Agents
Multi-Agent Syst., vol. 4, no. 1–2, pp. 93–114, Mar./Jun. 2001.

[30] L. Qian, M. J. Cafarella, and H. V. Jagadish, “Sample-driven
schema mapping,” in Proc. 2012 ACM SIGMOD Conf., Scottsdale,
AZ, USA, pp. 73–84.

[31] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. Boca Raton, FL, USA: Chapman and Hall/CRC, 2011.

[32] K. Simon and G. Lausen, “ViPER: Augmenting automatic infor-
mation extraction with visual perceptions,” in Proc. 14th ACM Int.
CIKM, Bremen, Germany, 2005, pp. 381–388.

[33] H. A. Sleiman and R. Corchuelo, “A reference architecture to
devise web information extractors,” in Proc. CAiSE Workshops,
Gdańsk, Poland, 2012, pp. 235–248.

[34] H. A. Sleiman and R. Corchuelo, “An unsupervised technique
to extract information from semi-structured web pages,” in Proc.
13th Int. Conf. WISE, Paphos, Cyprus, 2012, pp. 631–637.

[35] H. A. Sleiman and R. Corchuelo, “A survey on region extractors
from web documents,” IEEE Trans. Knowl. Data Eng., vol. 25, no.
9, pp. 1960–1981, Sept. 2012.

[36] H. A. Sleiman and R. Corchuelo, “TEX: An efficient and effec-
tive unsupervised web information extractor,” Knowl.-Based Syst.,
vol. 39, pp. 109–123, Feb. 2013.

[37] S. Soderland, “Learning information extraction rules for semi-
structured and free text,” Mach. Learn., vol. 34, no. 1–3,
pp. 233–272, Feb. 1999.

[38] W. Su, J. Wang, and F. H. Lochovsky, “ODE: Ontology-assisted
data extraction,” ACM Trans. Database Syst., vol. 34, no. 2, Article
12, Jun. 2009.

[39] J. Wang and F. H. Lochovsky, “Data extraction and label assign-
ment for web databases,” in Proc. 12th Int. Conf. WWW, Budapest,
Hungary, 2003, pp. 187–196.

[40] Y. Zhai and B. Liu, “Structured data extraction from the web
based on partial tree alignment,” IEEE Trans. Knowl. Data Eng.,
vol. 18, no. 12, pp. 1614–1628, Dec. 2006.

Hassan A. Sleiman received the Ph.D. degree
from the University of Sevilla, Seville, Spain,
in 2012, where he is currently a Lecturer with
the Department of Computer Languages and
Systems. Previously, he worked as a Software
Engineer for companies such as Dynagent and
set up a spin-off called Indevia. His current
research interests include researching on web
data extraction as a means to populate large
datasets in the Web of data.

Rafael Corchuelo is a Reader of Software
Engineering who is with the Department of
Computer Languages and Systems of the
University of Seville, Seville, Spain. He received
the Ph.D. degree from the University of Seville,
and has led the Research Group on Distributed
Systems since 1997. His current research inter-
ests include integration of web data islands.
Previously, he worked on advanced multi-party
synchronisation models and fairness issues.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

