
Towards a Method for Unsupervised Web

Information Extraction�

Hassan A. Sleiman and Rafael Corchuelo

Universidad de Sevilla, ETSI Informática,
Avda. Reina Mercedes, s/n, Sevilla E-41012

{hassansleiman,corchu}@us.es

Abstract. The literature provides a variety of techniques to build the
information extractors on which some data integration systems rely. In-
formation extraction techniques are usually based on extraction rules
that require maintenance and adaptation if web sources change. We
present our preliminary steps towards an unsupervised information ex-
traction technique that searches web documents for shared patterns and
fragments them until finding the relevant information that should be ex-
tracted. Experimental results on 1230 real-web documents demonstrate
that our system performs fast and achieves promising results.

Keywords: Web Information Extraction, Unsupervised Technique.

1 Introduction

The Web is a huge and still growing information repository. Web information is
usually embedded into HTML tags and buried in other contents that are not rel-
evant for a particular purpose. Business processes that require structured infor-
mation, need to extract and structure the information they require from HTML
documents. Information extractors are usually used for this purpose and can be
broadly classified into two types: Those that work on free text, including blogs
and news documents [1], and those that work on semi-structured documents
such as search results and web documents with detailed information about some
items [2]. Our work fits within the second category.

Information extractors are usually based on rules. These rules can be hand-
crafted, learnt using semi-supervised techniques that require the user to provide
some annotated training documents [3,4], or unsupervised techniques that learn
extraction rules for all the information they consider as relevant inside some
training documents [5,6]. Rule-based information extractors need to be main-
tained or even rewritten if the web source on which they were trained changes [7].

� This work was supported by the European Commission (FEDER), the Spanish and
the Andalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
and TIN2010-09988-E).

This has motivated researchers to work on a new group of unsupervised infor-
mation extractors that are not based on extraction rules [8,9], but on a number
of hypothesis that have proven to perform well on many web sources.

In this paper, we report on our preliminary ideas on an unsupervised infor-
mation extractor based on the hypothesis that web documents, generated by the
same server-side template, share string patterns that are irrelevant.

2 System Overview

Our proposal takes two or more web documents, and searches for shared patterns
amongst them of size s = max down to s = min, where max ≥ min ≥ 1. When
a shared pattern sp is found, the text of each document is partitioned to create
3 groups: prefixes, suffixes, and separators. Prefixes contain the text fragment
from the beginning of each text until the start of the first occurrence of sp in
this text; suffixes contain the text fragment from the end of the last occurrence
of sp in each text to the end of this text, and separators include each separating
text between every two consecutive occurrences of sp inside each text.

Now that we have created three groups of text, the algorithm tries to search
for a shared pattern of the the same size s between the components of each
group. If a group shares a string pattern, it is partitioned again; if not, s is

<html><head><title>Results</title></head><body>Soups
Patch
$9.95

Jaguar
Robson
$9.49
</body></html>

<html><head><title>Results</title></head><body>Mockingjay
Collins
$9.95
</body></html>

<html><head><title>Results</title></head><body>Ascend
Amanda
$8.99

Frankenstein
Shelly
$6.5
</body></html>

Soups
Patch
$9.95

Jaguar
Robson
$9.49
</body></html>

Mockingjay
Collins
$9.95
</body></html>

Ascend
Amanda
$8.99

Frankenstein
Shelly
$6.5
</body></html>

Soups
Patch
$9.95

Jaguar
Robson
$9.49

Mockingjay
Collins
$9.95

Ascend
Amanda
$8.99

Frankenstein
Shelly
$6.5

Soups

Mockingjay

Ascend Patch
$9.95

Jaguar

Amanda
$8.99

Frankenstein

Robson
$9.49

Collins
$9.95

Shelly
$6.5

Patch

Amanda

$9.95

Jaguar

$8.99

Frankenstein

Robson

Collins

Shelly

$9.49

$9.95

$6.5

$9.95

$8.99

Jaguar

Frankenstein

B2:Prefixes B3:Separators B4:Suffixes

{}

{}

{}

B5:Prefixes B6:Separators B7:Suffixes

B1:Input

B8:Prefixes

B9:Separators

B10:Suffixes

B11:Prefixes B12:Separators B13:Suffixes

B14:Prefixes B15:Separators B16:Suffixes
B17:Prefixes B18:Separators B19:Suffixes

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

Fig. 1. An example of how our proposal works

decreased, as long as s ≥ min, and the algorithm starts again its shared pattern
search on this group. When s = min and no shared patterns are found, the
proposal considers that the remaining non-empty text fragments inside each
group can be considered as relevant text that should be extracted. The search for
shared patterns is performed using a modified version of Knuth-Morris-Pratt’s
algorithm [10] in which all the occurrences of a string sequence are detected
without overlapping.

Figure 1 illustrates an example on how our proposal works. Strings are to-
kenised in a scheme of two types HTML tags or #PCDATA. The proposal takes
the first block B1 that contains three sample web documents, max = 10, and
min = 1 as input. It searches for a shared pattern of size = 10 tokens between
the three documents in B1. Since none is found, the algorithm continues de-
creasing size to 9, then 8, until it finds a shared pattern of size = 7 tokens
(< html >< head >< title > Results < /title >< /head >< body >) between
the three strings in B1. Then, it creates prefixes B2, suffixes B4 and separators
B3. B2 and B3 are discarded since they are empty. The algorithm now searches
for patterns of size = 7 inside B4, but since no shared pattern of the given size
is found in B4, size now changes to 6, 5, 4, 3. It finds a pattern of size = 3 in B4
(< br/ >< /body >< /html >), partitions it into the prefixes B5, suffixes B7
and separators B6. It searches for shared patterns of the same size in the B7.
Since the strings in B7 do not contain a shared pattern of size = 3, size is de-
creased and the algorithm finds the shared pattern of size = 2 (< br/ >< b >)
between the strings in B7. It partitions B7 and creates the prefixes B8, suf-
fixes B10 and separators B9. Since strings inside B8 do not share a pattern
of size ∈ [2,min], then B8 is added to the output. It now repeats the previous
steps on B9 and B10 until finding blocks whose strings do not share any pattern,
which are added to the output. The output of this example is a list of blocks
that contain B8, B11, B17, B19, B14, and B16. Empty blocks like B12 and B15
are discarded. According to our experience, max and min can be automatically
determined by considering max as 5% the size of the smallest input document,
and min as 1.

3 Experimental Results

We implemented a prototype and tested it on a collection of 41 datasets from
different web sites. These web sites belong to the following categories: books,
cars, conferences, doctors, jobs, movies, real estates, and sports. These categories
were randomly sampled from The Open Directory sub-categories, and the web
sites inside each category were randomly selected from the best ranked web sites
between December 2010 and March 2011 according to Google’s search engine.
We annotated in each dataset the relevant information and then each string item
extracted by our proposal was considered as a true positive (tp), false negative
(fn), or false positive (fn). We are interested in measuring precision P = tp

tp+fp ,

recall R = tp
tp+fn and the extraction time of our proposal.

Table 1. Comparison between our proposal, RoadRunner, and FiVaTech

Precision Recall Time (seconds)

RoadRunner [5] 0.312 0.323 0.014
FiVaTech [6] 0.800 0.904 0.348
Our proposal 0.958 0.980 0.0310

We used our collection of datasets to compare our proposal to RoadRunner [5]
and to FiVaTech [6], cf. Table 1. Note that our proposal achieves a better recall
and precision than both techniques. Although the extraction time archived by
our proposal is higher than that one archived by RoadRunner, they both are
very close to 0 and the difference between them is insignificant.

4 Conclusions

We have presented an abstract of our preliminary steps towards a totally unsu-
pervised web information extraction technique. It builds on a simple heuristic
that has proven to work well in many real-world web documents since it can
achieve high precision and recall while requiring very little time. In future, we
plan on studying its complexity, comparing it to other well-known techniques
in the literature, to create extraction rules that can be reused, and to label the
information extracted semantically.

References

1. Turmo, J., Ageno, A., Català, N.: Adaptive information extraction. ACM Comput.
Surv. 38(2) (2006)

2. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006)

3. Kushmerick, N., Weld, D.S., Doorenbos, R.B.: Wrapper induction for information
extraction. IJCAI (1), 729–737 (1997)

4. Hsu, C.N., Dung, M.T.: Generating finite-state transducers for semi-structured
data extraction from the Web. Inf. Syst. 23(8), 521–538 (1998)

5. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data ex-
traction from large web sites. In: VLDB, pp. 109–118 (2001)

6. Kayed, M., Chang, C.H.: FiVaTech: Page-level web data extraction from template
pages. IEEE Trans. Knowl. Data Eng. 22(2), 249–263 (2010)

7. Chidlovskii, B., Roustant, B., Brette, M.: Documentum ECI self-repairing wrap-
pers: performance analysis. In: SIGMOD Conference, pp. 708–717 (2006)

8. Álvarez, M., Pan, A., Raposo, J., Bellas, F., Cacheda, F.: Extracting lists of data
records from semi-structured web pages. Data Knowl. Eng. 64(2), 491–509 (2008)

9. Elmeleegy, H., Madhavan, J., Halevy, A.Y.: Harvesting relational tables from lists
on the Web. PVLDB 2(1), 1078–1089 (2009)

10. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

	Towards a Method for Unsupervised WebInformation Extraction
	Introduction
	System Overview
	Experimental Results
	Conclusions
	References

