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Abstract Hydraulics is often used to actuate mecha-
nisms in the applications of heavy machinery. In this
work, a linearization approach for hydraulically driven
multibody systems is presented. The approach allows
linearizing the equations of motion of general multi-
body systems with holonomic and nonholonomic con-
straints, augmented with the hydraulic equations of the
hydraulic subsystem. The derivation of this lineariza-
tion approach is of interest in many applications, such
as the performance of linear stability analyses. The pro-
cedure is tested with a three-dimensional multibody
model of a hydraulically actuated four-bar mechanism.
The validation of the approach is performed by means
of the forward dynamics simulation of the linear and
nonlinear systems. The results show the power of the
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approach, obtaining the linearized equations of motion
around the equilibrium position of the four-bar mecha-
nism multibody model in terms of the mechanical and
hydraulic parameters. A comparison of the proposed
procedure with a conventional counterpart approach is
included, demonstrating the great accuracy and com-
putational efficiency of the approach developed in this
work.

Keywords Multibody · Linearization · Hydraulics ·
Dynamics

1 Introduction

Hydraulically actuated systems are widely used in
heavy machinery, being present in a large variety of
industries and research applications. Some examples of
hydraulic systems used in daily life are aircrafts (acti-
vation and motion of landing gears or flaps), hydraulic
lifts, mobilemachines (cranes or excavators), hydraulic
power steering, braking systems of vehicles, hydraulic
jacks or shock absorbers. The modeling and simulation
of hydraulic systems enables evaluating their behav-
ior for a wide range of operating conditions. Position-
ing accuracy of the systems or identification of peak
stresses are examples of important issues that can be
addressed bymeans of simulation of hydraulic systems.

The use of the lumped fluid theory [1] allows obtain-
ing computationally efficient models of hydraulic cir-
cuits. This theory can be applied to hydraulic systems
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in which the effect of acoustic waves is negligible,
which is generally the case of mobile working machine
applications, where the motions are relatively slow and
pipelines are usually short. The lumped fluid method is
widely used in several works with hydraulically actu-
ated multibody systems [2–5] and modeling complex
hydraulic circuits for real-time simulation [6].

Different approaches exist to include the behavior of
hydraulic actuators in the simulation of multibody sys-
tems. One simplified technique is the kinematic guid-
ance of the variable corresponding to the endpoints of
the hydraulic actuator [7]. Nevertheless, including the
dynamics of the hydraulic actuator is necessary inmany
applications [8,9]. From the standpoint of integration
of themultiphysics problem, twomain approaches exist
in the literature: the monolithic approach and multirate
integration.

The first one, known as monolithic approach or uni-
fied scheme, consists of the combination of the multi-
body system and the hydraulic equations, obtaining a
single system of differential equations that can be inte-
grated in time [10,11]. Docquier et al. [12] presented
a multibody model of a modern car equipped with a
novel suspension system using a monolithic scheme.
Ylinen et al. [13] proposed a hydraulic cylinder model
for dynamic simulations, coupling the hydraulic and
mechanical variables in a monolithic way. A mono-
lithic formulation, for combined simulation of multi-
body and hydraulic systems, based on the index-3 aug-
mented Lagrangian, was presented by Naya et al. [14].
Rahikainen et al. [15] combined the index-3 semi-
recursive formulation [16] and the lumped fluid the-
ory for hydraulically driven multibody systems, and
an improvement of the proposed monolithic formula-
tion was proposed by introducing the singular pertur-
bationmethod [2]. Lastly, within themonolithic frame-
work, the friction modeling in the hydraulic cylin-
der, which plays an important role in the accuracy
of the simulations and can introduce numerical stiff-
ness [17], was thoroughly studied by Jaiswal et al.
[5]. Four friction modeling approaches were compared
in terms of the work cycle, friction force, energy bal-
ance and numerical efficiency. As an alternative to the
monolithic schemes, in a second approach, known as
multirate integration, there exist different subsystems
that are integrated separately, exchanging information
between them in predetermined time intervals. This can
be carried out by using a single environment where
the different problems are integrated separately (co-

integration) [18,19] or resorting to a different software
for each problem (co-simulation) [20–22]. Some rele-
vant aspects have been addressed in the literature, such
as co-simulation configuration [23], energy-based cou-
pling error minimization [23,24] or the multirate co-
simulation [25].

Different possibilities exist to carry out the lineariza-
tion of the equations of motion of multibody systems,
depending on the form of these nonlinear equations.
Some approaches are based on the direct lineariza-
tion of the Differential-Algebraic system of Equations
(DAE) [26–28], while others resort to a coordinate
partitioning to reduce the nonlinear DAE system to a
nonlinear system of Ordinary Differential Equations
(ODEs) [27,29,30]. Agúndez et al. [30] proposed a
linearization approach, consisting in the linearization
of the index-2 DAE system and then the reduction to a
linear ODE system. The procedure, which showed an
excellent accuracy and computational efficiency with
complex multibody systems as the bicycle benchmark
of Meijaard et al. [31], achieves the maximum reduc-
tionof the linearized equations ofmotionof constrained
multibody systems. Nevertheless, to the best knowl-
edge of the authors, there is no procedure for system-
atically obtaining the linearized equations of motion
of hydraulically actuated multibody systems, which is
required in several applications.

First, an important application is the building of
state and input estimators, like Kalman filters, exist-
ing different works in the framework of hydraulically
driven multibody systems. Khadim et al. [32] pro-
posed a parameter estimation algorithm, consisting in
the combination of the augmented discrete extended
Kalman filter (ADEKF) with a curve-fitting method,
and Jaiswal et al. [33] presented a state estimator based
on an indirect Kalman filter. Secondly, another impor-
tant application is the performance of linear stabil-
ity analyses and the design of linear feedback con-
trollers. Hydraulic steering systems play a key role in
keeping the directional stability and tracking the steer-
handling capability of articulated steering vehicles
(ASVs). After some simplified models without con-
sidering the dynamics characteristics [34,35], where
the hydraulic steering system was modeled as a torsion
spring, the full-hydraulic steering control unit of the
steering system model was modeled as a directional
control valve by Pazooki et al. [36]. Several works
are devoted to improving the yaw stability of ASVs,
being some techniques increasing the damping at the
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articulation joint [37], introducing leakage across the
cylinders [34], or other active strategies as differential
braking [38], torque vectoring [35] and active steering
[39]. Gao et al. [40] analyzed the stability of an ASV
and designed a stability controller to avoid the oscil-
latory yaw motion, with the application of the optimal
control theory. An optimal tuned cascade control strat-
egy, based on feedback linearization, is proposed by
Nedić et al. [41] to carry out the reference trajectory
of a 6-DOF parallel robot platform. An optimal design
of the parameters of the cascade load force controller
was effectively performed. In these applications, a lin-
earized version of the equations of motion is required.

The main objective of this work is to present an
approach for systematically linearizing the equations
of motion of hydraulically actuated multibody systems
with holonomic and nonholonomic constraints. The
procedure corresponds to an extension of the approach
presented and validated by Agúndez et al. [30] for
mechanical multibody systems. The main advantages
of the proposed procedure are its computational effi-
ciency and accuracy, which are compared with a lin-
earization counterpart approach; the maximum reduc-
tion of the linearized equations ofmotion, which allows
the elimination of spurious null eigenvalues in the per-
formance of linear stability analyses; and the capac-
ity of the proposed approach to generate the exact lin-
earized equations of motion in terms of the mechani-
cal and hydraulic parameters of the multibody system
under study.

The paper is structured as follows. Following the
Introduction, Sect. 2 summarizes the main aspects
of the hydraulic modeling, using the lumped fluid
method, and presents the nonlinear equations ofmotion
of hydraulically actuated multibody systems. Next,
Sect. 3 develops in detail the linearization approach
and derives the resulting Jacobian matrix. In Sect. 4,
the use of the procedure is illustrated with a hydrauli-
cally actuated three-dimensional four-bar mechanism
model and validated bymeans of the forward dynamics
simulation of the linear and nonlinear systems. Finally,
Sect. 5 summarizes the main conclusions drawn from
the present work.

2 Formulation of the problem

In this section, the fundamental modeling aspects of a
hydraulic linear actuator system are presented. More-

over, the nonlinear equations ofmotion of hydraulically
actuated multibody systems with holonomic and non-
holonomic constraints are shown below.

2.1 Modeling of the hydraulic system

In this work, the lumped fluid theory is used to model
the hydraulic system. The hydraulic circuit is divided
into discrete volumes of uniformly distributed pressure.
Considering a discrete control volume V , the evolution
of the pressure p is given by the following first-order
differential equation:

ṗ = Be

V

( n f∑
k=1

Qk − dV

dt

)
, (1)

where Qk represents the incoming (positive value) or
outcoming (negative value) flows of the control vol-
ume, n f is the number of hydraulic flows going in or out

of the volume,
dV

dt
is the volume change term that usu-

ally represents the piston movement inside the cylinder
and Be is the effective bulk modulus of the hydraulic
volume, given by:

1

Be
= 1

Boil
+

ns∑
k=1

Vk
V Bk

. (2)

In Eq. (2), Boil is the oil bulk modulus, ns is the number
of subvolumes Vk forming the volume V and Bk is the
bulk modulus of the subvolume Vk .

The semi-empirical modeling method [42] is used
to describe the valves in the hydraulic circuit. First, the
volume flow rate through a directional control valve
Qd is:

Qd = CvdU
√|�p| �p

|�p| , (3)

where Cvd is the semi-empirical flow rate coefficient
of the directional control valve; �p is the pressure
difference, which presents the same direction as the
volume flow rate; and U is a normalized spool dis-
placement, which determines the spool position in the
control valve. The time evolution of U is given by the
following first-order differential equation:
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U̇ = Uref −U

τ
, (4)

where Uref is the reference normalized spool displace-
ment and τ is the time constant of the valve.

In the case of a throttle valve, the flow rate Qt is
expressed as:

Qt = Cvt

√|�p| �p

|�p| , with Cvt = Cd At

√
2

ρoil
. (5)

In Eq. (5), At is the area of the throttle valve, Cd is the
coefficient of discharge and ρoil is the oil density. The
expressions of the volume flow rates in Eqs. (3) and (5)
correspond to a turbulent flow, with a Reynolds num-
ber of Re > 2400. The derivatives of these expressions
with respect to the pressure drop may lead to numeri-
cal problems for small pressure differences, since the
square root functions of Eqs. (3) and (5) present a verti-
cal tangent for�p → 0. Therefore, the laminar regime
of the volume flow rates is considered for pressure
drops lower than a predefined�plim, following a linear
relation with the pressure difference. In this study, it is
assumed that �plim = 2 bar. The volume flow rate
through a directional control valve or a throttle valve
can be written as:

Q =
⎧⎨
⎩

γ1�p �p ≤ �plim

γ2
√|�p| �p

|�p| �p > �plim
(6)

where γ1 and γ2 are a function of the valve parame-
ters. To ensure the continuity of the laminar and turbu-
lent regimes at �plim, corresponding to a volume flow

rate Qlim (see Fig. 1), the relation γ1 =
√

�plim
�plim

γ2

is verified. From Eq. (3), γ2 = CvdU and γ1 =
CvdU

�plim

√
�plim in the case of a directional control valve,

while γ2 = Cvt and γ1 = Cvt

�plim

√
�plim for throttle

valves.
The hydraulic actuation is performed by means of

a hydraulic cylinder, which transforms hydraulic pres-
sure into mechanical force. The force in the extension
direction of the cylinder, denoted by Fcyl, is computed
as follows:

Fcyl = A1 p1 − A2 p2 − Fμ, (7)

Fig. 1 Volume flow rate Q as a function of drop pressure �p:
laminar and turbulent regimes

Fig. 2 Free-body diagram of the hydraulic cylinder

where A1 and A2 are the piston and piston-rod side
areas of the cylinder, respectively; p1 is the pressure
of the piston side chamber; p2 is the pressure of the
piston-rod side chamber and Fμ is the friction force,
arising from the contact between the seal material with
the cylinder wall and cylinder rod. Figure2 shows a
free-body diagram of the hydraulic cylinder.

Following Ref. [5], the Brown and McPhee model
[43] is numerically one of themost efficient approaches
to describe the friction force in hydraulically driven
multibody systems. This friction model incorporates
the Coulomb, stiction and viscous friction, and is valid
for both positive and negative relative tangential veloc-
ity. Therefore, the force Fμ can be written as:

Fμ = Fc tanh

(
4
ṡ

vs

)
+

(Fs − Fc)

ṡ

vs(
1

4

(
ṡ

vs

)2

+ 3

4

)2 + σ2ṡ, (8)

where Fc and Fs are the Coulomb and static friction
forces, respectively, vs is the Stribeck velocity and σ2
is the coefficient of viscous friction.
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2.2 Nonlinear equations of motion of hydraulically
actuated constrained multibody systems

In the present work, a multibody system with n gen-
eralized coordinates, m holonomic constraints, l non-
holonomic constraints, a hydraulic system with r dis-
crete volumes and u normalized spool displacement
variables, which determine the spool positions of the
directional control valves, is considered. The equa-
tions of motion of a hydraulically actuated constrained
multibody system constitute an index-3 Differential-
Algebraic system of Equations (DAE), given by the
dynamic equilibrium equations, the holonomic and
nonholonomic constraints, the hydraulic equations and
the valves dynamics equations:

M (x) ẍ + DT (x)� = Q
(
x, ẋ, p

)
, (9)

C (x) = 0, (10)

Cnh
(
x, ẋ

) = B (x) ẋ = 0, (11)

ṗ = H
(
x, ẋ, p,U

)
, (12)

U̇ = W (U,U ref) . (13)

In Eqs. (9)–(13), x is the n × 1 vector of generalized
coordinates, which belongs to a domain of Rn ; p is
the r × 1 vector of pressures of the hydraulic system,
defined in R

r ; U is the u × 1 vector of normalized
spool displacement variables existing in the hydraulic
system; U ref is the u × 1 vector of reference normal-
ized spool displacements; � is the (m + l) × 1 vec-
tor of Lagrange multipliers; M (x) is the n × n mass
matrix; Q

(
x, ẋ, p

)
is the n × 1 vector of generalized

forces; H (x, ẋ, p,U) corresponds to the right-hand
side of the pressure equations, which are built based on
Eq. (1);W (U,U ref) is the right-hand side of the valves
dynamics equations, computed as defined in Eq. (4);
C (x) is the m × 1 vector of holonomic constraints;
andCnh

(
x, ẋ

)
is the l×1 vector of nonholonomic con-

straints, linearly dependent on velocities. The matrices
B (x) and D (x) are l×n and (m+ l)×n, respectively,
given by:

B (x) = ∂Cnh
(
x, ẋ

)
∂ ẋ

, D (x) =
(
Cx (x)

B (x)

)
, (14)

where Cx = ∂C
∂x .

The time derivative of the holonomic constraints
can be assembled with the nonholonomic constraints,

resulting in the following nonlinear index-2 DAE sys-
tem:

M (x) ẍ + DT (x) � = Q
(
x, ẋ, p

)
,

D (x) ẋ = 0,

ṗ = H
(
x, ẋ, p,U

)
,

U̇ = W (U,U ref) . (15)

3 Linearization approach for hydraulically
actuated multibody systems

Consider a reference solution of the system of equa-
tions (9)–(13), given by x0(t), ẋ0(t), ẍ0(t), �0(t),

p0(t), ṗ0(t), U0(t) and U̇
0
(t). Therefore, the follow-

ing relations are verified:

M
(
x0

)
ẍ0 + DT

(
x0

)
�0 = Q

(
x0, ẋ0, p0

)
, (16)

C
(
x0

)
= 0, (17)

Cnh

(
x0, ẋ0

)
= B

(
x0

)
ẋ0 = 0, (18)

ṗ0 = H
(
x0, ẋ0, p0,U0

)
, (19)

U̇
0 = W

(
U0,U ref

)
, (20)

where the time dependence has been omitted for sim-
plicity.

First, the variations x̃, ˙̃x, ¨̃x, �̃, p̃, ˙̃p, Ũ and ˙̃U
with respect to this reference solution are defined as:

x̃ = x − x0, �̃ = � − �0,

˙̃x = ẋ − ẋ0, p̃ = p − p0,

¨̃x = ẍ − ẍ0, ˙̃p = ṗ − ṗ0,

Ũ = U − U0,
˙̃U = U̇ − U̇

0
. (21)

Performing the Taylor expansion of the dynamic equi-
librium equations:

⎛
⎝M

(
x0

)
+

n∑
j=1

∂ (M (x))

∂x j

∣∣∣∣∣
0

x̃ j + · · ·
⎞
⎠( ¨̃x + ẍ0

)

+
⎛
⎝DT

(
x0

)
+

n∑
j=1

∂
(
DT (x)

)
∂x j

∣∣∣∣∣∣
0

x̃ j + · · ·
⎞
⎠(

�̃ + �0
)

= Q
(
x0, ẋ0, p0

)
+ ∂ Q

∂x

∣∣∣∣
0
x̃ + ∂ Q

∂ ẋ

∣∣∣∣
0

˙̃x + ∂ Q
∂ p

∣∣∣∣
0
p̃... (22)
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Equation (22) can be linearized by retaining up to first-
order terms. Using Eq. (16) yields:

M
(
x0

) ¨̃x +
∂

(
M (x) ẍ0

)
∂x

∣∣∣∣∣∣
0

x̃

+ DT
(
x0

)
�̃ + ∂

(
DT (x)�0)

∂x

∣∣∣∣∣
0

x̃

= ∂ Q
∂x

∣∣∣∣
0
x̃ + ∂ Q

∂ ẋ

∣∣∣∣
0

˙̃x + ∂ Q
∂ p

∣∣∣∣
0
p̃,

(23)

where the partial derivatives are evaluated for the refer-
ence solution. Similarly, the linearization of the veloc-
ity constraints in Eq. (15) leads to:

D
(
x0

) ˙̃x +
∂

(
D (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

x̃ = 0, (24)

where it has been used that D
(
x0

)
ẋ0 = 0.

Furthermore, the Taylor expansion of the hydraulic
equations (12) with respect to the reference solution
yields:

˙̃p + ṗ0 = H
(
x0, ẋ0, p0,U0

)
+ ∂H

∂x

∣∣∣∣
0
x̃ + ∂H

∂ ẋ

∣∣∣∣
0

˙̃x + ∂H
∂ p

∣∣∣∣
0
p̃ + ∂H

∂U

∣∣∣∣
0
Ũ ...

(25)

Simplifying by using Eq. (19) and retaining up to first-
order terms in Eq. (25):

˙̃p = ∂H
∂x

∣∣∣∣
0
x̃ + ∂H

∂ ẋ

∣∣∣∣
0

˙̃x + ∂H
∂ p

∣∣∣∣
0
p̃+ ∂H

∂U

∣∣∣∣
0
Ũ . (26)

Lastly, the Taylor expansion of the first-order differ-
ential equations (13) describing the valves dynamics
results in:

˙̃U + U̇
0 = W

(
U0,U ref

)
+ ∂W

∂U

∣∣∣∣
0
Ũ ... (27)

Using Eq. (20) and that the second- and higher-order
derivatives in Eq. (27) are null yields:

˙̃U = ∂W
∂U

∣∣∣∣
0
Ũ . (28)

To reduce the linearized equations of motion, the
generalized coordinate partition of Ref. [30] is used.
Given that the index-3 DAE system of equations (9)–
(13) present m nonlinear holonomic constraints, the n-
coordinates vector is split intom dependent coordinates
xd and n −m admissible position coordinates xa : x =(
xa xd

)T
. Moreover, the l nonholonomic constraints

allow distinguishing between l dependent admissible
velocities ẋad and n − m − l independent admissible
velocities ẋai in the set of admissible velocities ẋa , and
therefore ẋa = (

ẋai ẋad
)T
. The same partition can be

considered at position level:

x = (
xai xad xd

)T
, (29)

and for the vector of variations x̃:

x̃ = (
x̃ai x̃ad x̃d

)T
. (30)

The admissible dependent coordinates x̃ad and the
dependent coordinates x̃d can be grouped in the set

x̃dd = (
x̃ad x̃d

)T
.

The following transformation matrix is defined:

T (x) =
(
I (n−m−l)

Tdd (x)

)
, (31)

where Tdd (x) = − (Ddd (x))−1 Dai (x). In Eq. (31),
I (n−m−l) is the identity matrix of dimension n−m− l,
Ddd (x) is a (m + l)-square matrix, formed by the
columns of matrix D (x) associated with the coordi-
nates x̃dd , and Dai (x) is built from the columns of
D (x) associatedwith the independent coordinates x̃ai .
The steps of the approach to obtain the linearized equa-
tions of motion are listed below, with the main result
of each step shown in a box.
Step 1. Eliminate the Lagrange multipliers vari-
ations and reduce the linearized dynamic equa-
tions. By premultiplying Eq. (23) by TT

(
x0

)
, the

Lagrangemultipliers variations �̃ are eliminated, given
that TT

(
x0

)
DT

(
x0

) = 0. By defining T0 = T
(
x0

)
,

the linearized dynamic equations (23) become:
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TT
0 M

(
x0

) ¨̃x + TT
0

∂
(
M (x) ẍ0

)
∂x

∣∣∣∣∣∣
0

x̃

+ TT
0

∂
(
DT (x) �0)

∂x

∣∣∣∣∣
0

x̃

= TT
0

(
∂ Q
∂x

∣∣∣∣
0
x̃ + ∂ Q

∂ ẋ

∣∣∣∣
0

˙̃x + ∂ Q
∂ p

∣∣∣∣
0
p̃
)

.

(32)

Step 2. Obtain a transformation at velocity level:
express the velocities ˙̃x in terms of the independent
velocities ˙̃xai and positions x̃. Next, the objective is to
express Eq. (32) in terms of x̃ai and its time derivatives.
By using the linearized velocity constraints (24), the
dependent velocities are written as follows:

˙̃xdd = Tdd

(
x0

) ˙̃xai + V̄
(
x0, ẋ0

)
x̃, (33)

where

V̄
(
x0, ẋ0

)
= −

(
Ddd

(
x0

))−1 ∂
(
D (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

.

(34)

FromEq. (33), the following transformation at velocity
level is obtained:

˙̃x = T
(
x0

) ˙̃xai + ¯̄V
(
x0, ẋ0

)
x̃, (35)

where ¯̄V
(
x0, ẋ0

)
=

(
0(n−m−l)×n

V̄
(
x0, ẋ0

))
.

Step 3. Obtain a transformation at acceleration
level: express the accelerations ¨̃x in terms of the
independent accelerations ¨̃xai , velocities ˙̃x and posi-
tions x̃. Secondly, the velocity constraints in Eq. (15)
are differentiated with respect to time:

D (x) ẋ = 0
d(·)/dt−−−−→ D (x) ẍ + d

(
x, ẋ

) = 0, (36)

with d
(
x, ẋ

) = ∂
(
D (x) ẋ

)
∂x

ẋ. The linearization of

Eq. (36) yields:

D
(
x0

) ¨̃x+
∂

(
D (x) ẍ0

)
∂x

∣∣∣∣∣∣
0

x̃+ ∂d
∂x

∣∣∣∣
0
x̃+ ∂d

∂ ẋ

∣∣∣∣
0

˙̃x = 0.

(37)

From Eq. (37), the dependent accelerations ¨̃xdd can be
obtained as a function of ¨̃xai , and the following relation
at acceleration level is derived as:

¨̃x = T
(
x0

) ¨̃xai + U
(
x0, ẋ0

) ˙̃x + V
(
x0, ẋ0, ẍ0

)
x̃,

(38)

with

U
(
x0, ẋ0

)
=

⎛
⎝ 0(n−m−l)×n

− (
Ddd

(
x0

))−1 ∂d
∂ ẋ

∣∣∣∣
0

⎞
⎠ , (39)

V
(
x0, ẋ0, ẍ0

)
=

⎛
⎜⎜⎝

0(n−m−l)×n

− (
Ddd

(
x0

))−1

⎛
⎝ ∂

(
D (x) ẍ0

)
∂x

∣∣∣∣∣∣
0

+ ∂d
∂x

∣∣∣∣
0

⎞
⎠

⎞
⎟⎟⎠ .

(40)

Step 4. Obtain a transformation at position level:
eliminate the dependent coordinates x̃d by using
the linearized holonomic constraints. To achieve
the maximum reduction of the linearized equations of
motion, the approach of Ref. [30] removes the depen-
dent coordinates x̃d by linearizing the holonomic con-
straints:

∂C
∂xai

∣∣∣∣
0
x̃ai + ∂C

∂xad

∣∣∣∣
0
x̃ad + ∂C

∂xd

∣∣∣∣
0
x̃d = 0. (41)

Therefore, Eq. (41) allows expressing the dependent
coordinates x̃d as a function of x̃ai and x̃ad :

x̃d = −
(

∂C
∂xd

∣∣∣∣
0

)−1 (
∂C
∂xai

∣∣∣∣
0
x̃ai + ∂C

∂xad

∣∣∣∣
0
x̃ad

)
.

(42)

The use of Eq. (42) leads to the following transforma-
tion at position level:

x̃ = V h,ai
0 x̃ai + V h,ad

0 x̃ad , (43)
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where

V h,ai
0 =

⎛
⎜⎝

I (n−m−l)

0l×(n−m−l)

−
(

∂C
∂xd

∣∣∣
0

)−1
∂C
∂xai

∣∣∣
0

⎞
⎟⎠ ,

V h,ad
0 =

⎛
⎜⎝

0(n−m−l)×l

I l

−
(

∂C
∂xd

∣∣∣
0

)−1
∂C

∂xad

∣∣∣
0

⎞
⎟⎠ . (44)

Step 5. Express the velocities ˙̃xad in terms of x̃ai ,˙̃xai and x̃ad : use of the time derivative of the holo-
nomic constraints. Furthermore, an expression of the
velocities ˙̃xad as a function of x̃ai , ˙̃xai and x̃ad can be
derived from the time derivative of the holonomic con-
straints and the nonholonomic constraints. Computing
the time derivative of the holonomic constraints:

Cx (x) ẋ = 0, (45)

the linearization of Eq. (45) with respect to the refer-
ence solution yields:

Cx

(
x0

) ˙̃x +
∂

(
Cx (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

x̃ = 0. (46)

Resorting to Eq. (46), the following transformation is
obtained:

˙̃x = T h
0
˙̃xa + V h

0 x̃, (47)

where

T h
0 =

(
I (n−m)

− (
Cxd

(
x0

))−1
Cxa

(
x0

)
)

,

V h
0 =

⎛
⎜⎜⎝

0(n−m)×n

− (
Cxd

(
x0

))−1
∂

(
Cx (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

⎞
⎟⎟⎠ .

(48)

Step 6. Express the velocities ˙̃xad in terms of x̃ai ,˙̃xai and x̃ad : use of the nonholonomic constraints.
Finally, the nonholonomic constraints (11) are lin-
earized:

B
(
x0

) ˙̃x +
∂

(
B (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

x̃ = 0. (49)

Substituting Eq. (47) in Eq. (49):

B
(
x0

)
T h
0
˙̃xa+

⎛
⎝B

(
x0

)
V h

0+
∂

(
B (x)ẋ0

)
∂x

∣∣∣∣∣∣
0

⎞
⎠x̃=0,

(50)

and defining B̄
(
x0

) = B
(
x0

)
T h
0, the following

expression for the velocities ˙̃xad is obtained:

˙̃xad = Unh,ai
0

˙̃xai + V nh,ai
0 x̃ai + V nh,ad

0 x̃ad , (51)

where

Unh,ai
0 = −

(
B̄ad

(
x0

))−1
B̄ai

(
x0

)
,

V nh,ai
0 =−

(
B̄ad

(
x0

))−1

⎛
⎝B

(
x0

)
V h

0+
∂

(
B (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

⎞
⎠ V h,ai

0 ,

V nh,ad
0 =−

(
B̄ad

(
x0

))−1

⎛
⎝B

(
x0

)
V h

0+
∂

(
B (x) ẋ0

)
∂x

∣∣∣∣∣∣
0

⎞
⎠ V h,ad

0 .

(52)

Step 7. Obtain the linearized equations of motion
and the Jacobian matrix. The transformations at
velocity level (result of Step 2), acceleration level
(result of Step 3) and position level (result of Step 4),
given by Eqs. (35), (38) and (43), respectively, are used
in the linearized dynamic equations (32) (result of Step
1) and the linearized hydraulic equations (26). Further-
more, including Eq. (51) (result of Step 5 and Step 6)
and Eq. (28), yield the following linear ODE system of
equations:

¨̃xai = m−1
0

(
R0

¯̄V 0 + S0
)
V h,ai

0 x̃ai + m−1
0 R0T0

˙̃xai

+ m−1
0

(
R0

¯̄V 0+S0
)
V h,ad

0 x̃ad+m−1
0 TT

0
∂ Q
∂ p

∣∣∣∣
0
p̃,

(53)

˙̃xad = V nh,ai
0 x̃ai + Unh,ai

0
˙̃xai + V nh,ad

0 x̃ad , (54)
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˙̃p = H0V
h,ai
0 x̃ai + ∂H

∂ ẋ

∣∣∣∣
0
T0

˙̃xai + H0V
h,ad
0 x̃ad

+ ∂H
∂ p

∣∣∣∣
0
p̃ + ∂H

∂U

∣∣∣∣
0
Ũ, (55)

˙̃U = ∂W
∂U

∣∣∣∣
0
Ũ, (56)

where ¯̄V 0 = ¯̄V
(
x0, ẋ0

)
and the matrices m0, R0, S0,

H0 are given by:

m0 = TT
0M

(
x0

)
T0, (57)

R0 = TT
0

(
∂ Q
∂ ẋ

∣∣∣∣
0
− M

(
x0

)
U

(
x0, ẋ0

))
, (58)

S0 = TT
0

(
∂ Q
∂x

∣∣∣∣
0
− M

(
x0

)
V

(
x0, ẋ0, ẍ0

)

−
∂

(
M (x) ẍ0

)
∂x

∣∣∣∣∣∣
0

− ∂
(
DT (x) �0)

∂x

∣∣∣∣∣
0

⎞
⎠ , (59)

H0 = ∂H
∂x

∣∣∣∣
0
+ ∂H

∂ ẋ

∣∣∣∣
0

¯̄V 0. (60)

Note that the linear ODE system (53)–(56) is com-
prised of n − m − l linearized dynamic equations, l
equations associated with the linearized nonholonomic
constraints, r linearized hydraulic equations and u lin-
ear equations associated with the valves dynamics. It
must be pointed out that, in contrast to the holonomic
constraints, which are nonlinear algebraic equations
that can be eliminated after the linearization, the non-
holonomic constraints cannot be eliminated due to their
non-integrable nature.

By defining X̃ =
(
x̃ai ˙̃xai x̃ad p̃ Ũ

)T
, the lin-

earized equations of motion (53)–(56) can be written

as a first-order system of the form ˙̃X = J X̃ , where J
is the Jacobian matrix:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(n−m−l) I (n−m−l) 0(n−m−l)×l 0(n−m−l)×r 0(n−m−l)×u

m−1
0

(
R0

¯̄V 0 + S0
)
V h,ai

0 m−1
0 R0T0 m−1

0

(
R0

¯̄V 0 + S0
)
V h,ad

0 m−1
0 TT

0
∂ Q
∂ p

∣∣∣∣
0
0(n−m−l)×u

V nh,ai
0 Unh,ai

0 V nh,ad
0 0l×r 0l×u

H0V
h,ai
0

∂H
∂ ẋ

∣∣∣∣
0
T0 H0V

h,ad
0

∂H
∂ p

∣∣∣∣
0

∂H
∂U

∣∣∣∣
0

0u×(n−m−l) 0u×(n−m−l) 0u×l 0u×r
∂W
∂U

∣∣∣∣
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (61)

In Eq. (61), the following blocks of the Jacobian
matrix verify:

J21 ∈ R
(n−m−l)×(n−m−l), J22 ∈ R

(n−m−l)×(n−m−l),

J23 ∈ R
(n−m−l)×l , J24 ∈ R

(n−m−l)×r ,

J31 ∈ R
l×(n−m−l), J32 ∈ R

l×(n−m−l),

J33 ∈ R
l×l , J41 ∈ R

r×(n−m−l),

J42 ∈ R
r×(n−m−l), J43 ∈ R

r×l ,

J44 ∈ R
r×r , J45 ∈ R

r×u,

J55 ∈ R
u×u .

(62)

The size of the Jacobianmatrix (61) is (2n−2m−l+r+
u)×(2n−2m− l+r+u). This Jacobian matrix repre-
sents the maximum possible reduction of the linearized
equations of motion of a general hydraulically actuated
multibody system with holonomic and nonholonomic
constraints. In the particular case of a multibody sys-
tem only with holonomic constraints (l = 0), the Steps
5 and 6 previously presented are not necessary and the
linearized equations of motion (53)–(56) become:

¨̃xai = m−1
0

(
R0

¯̄V0 + S0
)
Vh,ai
0 x̃ai

+ m−1
0 R0T0 ˙̃xai + m−1

0 TT
0

∂ Q
∂ p

∣∣∣∣
0
p̃,

˙̃p = H0V
h,ai
0 x̃ai + ∂H

∂ ẋ

∣∣∣∣
0
T0 ˙̃xai + ∂H

∂ p

∣∣∣∣
0
p̃ + ∂H

∂U

∣∣∣∣
0
Ũ,

˙̃U = ∂W
∂U

∣∣∣∣
0
Ũ, (63)
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and defining X̃ =
(
x̃ai ˙̃xai p̃ Ũ

)T
, the first-order

system ˙̃X = J X̃ is obtained, with the Jacobian matrix:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(n−m) I (n−m) 0(n−m)×r 0(n−m)×u

m−1
0

(
R0

¯̄V 0 + S0
)
V h,ai

0 m−1
0 R0T0 m−1

0 TT
0

∂ Q
∂ p

∣∣∣∣
0
0(n−m)×u

H0V
h,ai
0

∂H
∂ ẋ

∣∣∣∣
0
T0

∂H
∂ p

∣∣∣∣
0

∂H
∂U

∣∣∣∣
0

0u×(n−m) 0u×(n−m) 0u×r
∂W
∂U

∣∣∣∣
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (64)

4 Validation of the approach with a
three-dimensional hydraulically actuated
four-bar mechanism model

In this section, the procedure developed in Sect. 3 is val-
idatedwith the forward dynamics simulation of a three-
dimensional hydraulically driven four-bar mechanism
model. Moreover, a comparative analysis between the
proposed approach and a conventional linearization
counterpart procedure is performed. The comparison
is made in terms of the preliminary steps required to
compute the linearized equations of motion; the size of
the resulting Jacobian matrix; the capability to analyti-
cally obtain the coefficients of the Jacobian matrix; the
computational efficiency and the accuracy.

4.1 Description of the four-bar mechanism model
with hydraulic actuator

Thehydraulically actuated four-barmechanismpresents
four rigid bodies: the ground link (inertial frame) is des-
ignated as body 1; the input link is denoted as body 2;
the coupler is body 3, and the output link corresponds
to body 4. The centres of mass G j , with j = {2 . . . 4},
correspond to the origins of the body frames. The origin
of the inertial frame is located at O1, which also cor-
responds to the revolute joint connecting body 1 with
body 2. The hydraulic actuation is performed bymeans
of a hydraulic cylinder, consisting of the cylinder cham-
ber and the piston-rod, whosemasses are assumed to be
negligible compared to those of the mechanism links.
The endpoints of the hydraulic cylinder are placed at

Oc, which corresponds to a revolute joint between the
cylinder and the ground link, and G2. The input link is
connected to the coupler by means of the revolute joint

C , and the revolute joint D allows the rotation of the
output link with respect to the coupler. The output link
is connected with the ground link by means of the rev-
olute joint O2. A set of n = 10 generalized coordinates
is used to describe the system, with the n × 1 vector of
coordinates x given by:

x = (
xG2 yG2 zG2 ψ2 θ2 φ2 φ32 φ43 s α

)T
. (65)

The position of G2 is located by means of the coordi-
nates xG2 , yG2 and zG2 , and the orientation of the input
link is determined with the angles ψ2, θ2 and φ2, the
latter being the rotation of the input link in the Y1Z1-
plane; the angle φ32 represents the relative rotation of
the coupler with respect to the input link; and φ43 cor-
responds to the relative rotation of the output link with
respect to the coupler. Note that the constraints of the
multibody system must ensure that the motion of the
mechanism takes place in the Y1Z1-plane. Moreover,
the length of the hydraulic cylinder (distance between
the points Oc and point G2) is given by the coordi-
nate s. Lastly, α corresponds to the angle between the
hydraulic cylinder and the horizontal axis Y1. Figure3
shows a three-dimensional view of the four-bar mech-
anism model, with the numbering of the bodies, all the
coordinates and the body frames. The orientationmatri-
ces of the body frames, expressed as a function of the
elemental rotation matrices, are given by:

R2 (x) = Rψ2 Rθ2 Rφ2 , R3 (x) = R2Rφ32 ,

R4 (x) = R3Rφ43 , Rc (x) = Rψ2 Rθ2 Rα,

(66)
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Fig. 3 Three-dimensional
four-bar mechanism model
with hydraulic actuation:
numbering of the bodies,
coordinates and body
frames

Table 1 List of themechanical parameters of the four-barmech-
anism model, with the corresponding numerical values

Parameter Symbol Numerical value

Length of link 1 L1 10 m

Length of link 2 L2 2 m

Length of link 3 L3 8 m

Length of link 4 L4 5 m

Distance Oc O1 d1 1 m

Mass of link 2 m2 2 kg

Mass of link 3 m3 8 kg

Mass of link 4 m4 5 kg

where Rc (x)determines theorientationof thehydraulic
cylinder.

The lengths and masses of the links are denoted by
L j and m j , respectively, with j = {1 . . . 4}, and d1 is
the distance between the revolute joints Oc and O1. The
moments of inertia of the bodies, which are assumed to
be slender rods, are expressed with respect to their cen-

tres of mass and are given by Ī jxx = Ī jzz = 1

12
m j L2

j

and Ī jyy = 0. The products of inertia are also zero

because of the symmetries of the bodies. Table 1
summarizes all the mechanical parameters (geometric
and inertial) of the multibody system, including their
numerical values, being shown in Fig. 4. The mechan-
ical parameters shown in Table 1 are grouped in the set
Pm .

Given that n = 10 coordinates are used, a total of
m = 9 holonomic constraints are required, since the
number of degrees of freedom of the multibody system
is ng = n − m = 1. The set of holonomic constraints
C (x) is given by:

C (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rO1

u1 · v

u2 · v

rYO2
− L1

r ZO2

d1 + rYOcG2
− rYO1G2

r ZOcG2
− r ZO1G2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 09×1. (67)

In Eq. (67), the first five constraints arise from the
revolute joint connecting bodies 1 and 2 in O1, since
this joint allows only the rotation of body 2 in the
Y1Z1-plane. The absolute position vector of the rev-
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Fig. 4 View of the four-bar mechanism in the Y1Z1-plane: parameters L j and d1

olute joint O1 is rO1 ; v is the unit vector along the
X2-axis, expressed in the body frame 1, which is con-
strained to be parallel to the X1-axis by means of the
fourth and fifth holonomic constraints; and u1, u2 are
unit vectors, perpendicular to the X1-axis. These vec-
tors are computed as follows:

rO1 = rG2 + R2 r̄2G2O1
, rG2 = (

xG2 yG2 zG2

)T
,

r̄2G2O1
=

(
0 − L2

2
0

)T

, u1 = (
0 1 0

)T
,

u2 = (
0 0 1

)T
, v =

⎛
⎝ cos (ψ2) cos (θ2)

sin (ψ2) cos (θ2)

− sin (θ2)

⎞
⎠ .

(68)

In the next two holonomic constraints of Eq. (67), rYO2

and r ZO2
are the Y and Z -components of the vector rO2 ,

which is computed as follows:

rO2 = r2 + r3 + r4, (69)

where

r2 = rG2 + R2 r̄2G2C , r̄2G2C =
(
0
L2

2
0

)T

,

r3 = R3 r̄3CD, r̄3CD = (
0 L3 0

)T
,

r4 = R4 r̄4DO4
, r̄4DO4

= (
0 L4 0

)T
. (70)

Finally, the last two holonomic constraints arise from
the Y and Z -components of the loop formed by the

hydraulic cylinder, the ground link and the input link,
which involves the vectors rOcG2 , rO1Oc and rO1G2 :

rOcG2 = Rc r̄OcG2 , r̄OcG2 = (
0 s 0

)T
,

rO1G2 = R2 r̄2O1G2
, r̄2O1G2

=
(
0
L2

2
0

)T

,

rO1Oc = (
0 −d1 0

)T
. (71)

4.2 Description of the hydraulic circuit

The hydraulic circuit considered in this work consists
of a double-acting hydraulic cylinder, a throttle valve,
a directional control valve, a pump, a tank and the con-
necting hoses. For sake of simplicity, leakage in the
hydraulic components is neglected. The hydraulic cir-
cuit is divided into three control volumes, denoted by
V1, V2 and V3. These control volumes are highlighted
in Fig. (5) and are given by:

V1 = Vh1 ,

V2 = Vh2 + A2l2,

V3 = Vh3 + A3l3. (72)

In Eq. (72), Vh1 , Vh2 and Vh3 are the volumes of the
hoses of the corresponding control volumes; A2 and
A3 are the surfaces of the piston and piston-rod sides
sections, respectively; and l2, l3 are the lengths of the
piston and piston-rod sides. These lengths are a func-
tion of the coordinate s and can be computed as:
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l2 (s) = s − c1 − c2,

l3 (s) = l − l2 (s) , (73)

where c1 is the length between the revolute joint Oc

and the base of the cylinder chamber, c2 is the length
of the piston and l is the length of the cylinder chamber.
The dimensions c1, c2 and l, and the lengths l2, l3 are
shown in detail in Fig. 5.

The pressures of the control volumes p1, p2 and p3
can be computed, following Eq. (1), as follows:

ṗ1 = Be1

V1

(
QA1 − QA2

)
,

ṗ2 = Be2

V2

(
QA2 − A2ṡ

)
,

ṗ3 = Be3

V3

(
A3ṡ − QB1

)
, (74)

where Be1 , Be2 and Be3 are the effective bulk moduli of
the corresponding control volumes. These moduli are
computed following Eq. (2):

1

Be1
= 1

Boil
+ Vh1

V1Bh
,

1

Be2
= 1

Boil
+ Vh2

V2Bh
+ A2l2

V2Bc
,

1

Be3
= 1

Boil
+ Vh3

V3Bh
+ A3l3

V3Bc
, (75)

with Bh and Bc being the bulk moduli of the hoses
and the hydraulic cylinder, respectively. The volume
flow rates QA1 , QA2 and QB1 of Eq. (74) are defined
as shown in Fig. 5. The parameters of the hydraulic
circuit are listed in Table 2, with their corresponding
numerical values being those of Ref. [5]. The hydraulic
parameters shown in Table 2 are grouped in the set Ph .

Equations (74) of the hydraulic circuit can be writ-
ten in vector form as in Eq. (12): ṗ = H

(
x, ẋ, p,U

)
.

Note that, in the hydraulic circuit of the present exam-
ple, there is only one directional control valve, and thus
only one normalized spool displacementU is required.
Therefore, the equations of motion of the hydrauli-
cally actuated four-bar mechanism model are given by
the dynamic equilibrium equations, which are com-
puted following Ref. [44], the set of holonomic con-
straints (67), the hydraulic equations (74) and Eq. (13),
which describes the dynamics of the directional control
valve. The following index-3 DAE system is obtained:

M (x) ẍ + Cx
T (x) � = Q

(
x, ẋ, p

)
,

C (x) = 0,

ṗ = H
(
x, ẋ, p,U

)
,

U̇ = Uref −U

τ
. (76)

Note that, due to the absence of nonholonomic con-
straints, the matrix D (x) defined in Eq. (14) becomes
Cx (x).

4.3 Computation of the Jacobian matrix

Prior to the linearization, the equilibriumof the four-bar
mechanism multibody model is defined. In the equilib-
rium configuration, which corresponds to the neutral
position of the directional control valve (U = 0), the
coordinates are given by:

x0 = (
x0G2

y0G2
z0G2

ψ0
2 θ02 φ0

2 φ0
32 φ0

43 s0 α0 )T
,

(77)

where

x0G2
= 0, y0G2

= L2

2
cos

(
φ0
2

)
,

z0G2
= L2

2
sin

(
φ0
2

)
, ψ0

2 = 0,

θ02 = 0, s0 =
√
d21 +

(
L2

2

)2

+ d1L2 cos
(
φ0
2

)
,

tan
(
α0

) = sin
(
φ0
2

)
cos

(
φ0
2

) + 2d1
L2

.

(78)
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Fig. 5 Scheme of the hydraulic circuit

Given an equilibrium angle of the input link φ0
2 , the

values of the coordinates in the equilibrium configu-
ration can be obtained from the holonomic constraints
particularized for the equilibrium position: C

(
x0

) =
0. The angles φ0

32 and φ0
43 are numerically obtained

from nonlinear equations, while the remaining coor-
dinates can be determined analytically with Eq. (78).
Furthermore, by using the dynamic equilibrium equa-
tions and the hydraulic equations particularized for the
equilibrium position:
M

(
x0

)
ẍ0 + DT

(
x0

)
�0 = Q

(
x0, ẋ0, p0

)
, (79)

ṗ0 = H
(
x0, ẋ0, p0,U 0

)
, (80)

where U 0 = 0 and ẋ0 = ẍ0 = ṗ0 = 0 in the
equilibrium, the pressures p0 are obtained:

p0 = (
p01 p02 p03

)T
, (81)

with

p01 = p02, p
0
2 = g(p03, x

0, Pm, Ph). (82)

Note that, in Eq. (82), g(p03, x
0, Pm, Ph) allows

obtaining the equilibrium pressure p02 as a function of
p03, and is given by:

g(p03, x
0, Pm, Ph) = A3

A2
p03 − g

(
(m2 + m3) sin

(
φ0
2 − φ0

43

) + (m3 + m4) sin
(
φ0
2 + 2φ0

32 + φ0
43

))
2A2 sin

(
α0 − φ0

2

)
sin

(
φ0
43

)
− g (m2 + 2m3 + m4) sin

(
φ0
2 + φ0

43

)
2A2 sin

(
α0 − φ0

2

)
sin

(
φ0
43

) . (83)
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Table 2 List of the hydraulic parameters and numerical values

Hydraulic parameter Symbol Numerical value

Pressure of the pump pP 7.6 MPa

Pressure of the tank (atmospheric pressure) pT 0.1 MPa

Density of the oil ρoil 850
kg

m3

Bulk modulus of the oil Boil 1500 MPa

Bulk modulus of the hoses Bh 550 MPa

Bulk modulus of the hydraulic cylinder Bc 31,500 MPa

Volume of the hose (control volume 1) Vh1 4.71 × 10−5 m

Volume of the hose (control volume 2) Vh2 3.14 × 10−5 m

Volume of the hose (control volume 3) Vh3 7.85 × 10−5 m

Semi-empirical flow rate constant of the directional control valve Cvd 2.138 × 10−8 m3/
(
s

√
Pa

)
Flow discharge coefficient of the throttle valve Cd 0.8

Diameter of the piston D2 80 mm

Diameter of the piston-rod D3 35 mm

Length of the cylinder chamber l 0.9 m

Constant 1 c1 0.43 m

Constant 2 (length of the piston) c2 1 m

Coulomb friction Fc 210 N

Static friction Fs 830 N

Stribeck velocity vs 1.25 · 10−2 m/s

Coefficient of viscous friction σ2 330 Ns/m

Time constant of directional control valve τ 0.0045 s

Lastly, the Lagrange multipliers in the equilibrium
�0 are also derived from Eqs. (79), leading to:

�0 = (
0 �0

2 �0
3 0 0 �0

6 �0
7 0 0

)T
, (84)

with the nonzero Lagrange multipliers being:

�0
2 = g

8 sin
(
α0 − φ0

2

)
sin

(
φ0
43

)μ1
(
x0, Pm

)
,

�0
3 = g

8 sin
(
α0 − φ0

2

)
sin

(
φ0
43

)μ2
(
x0, Pm

)
,

�0
6 = − g (m3 + m4)

4 sin
(
φ0
43

) (
cos

(
2φ0

2 + 2φ0
32 + φ0

43

) + cos
(
φ0
43

))
,

�0
7 = − g

4 sin
(
φ0
43

) (
(m3 + m4) sin

(
2φ0

2 + 2φ0
32 + φ0

43

)
+ (m3 + 3m4) sin

(
φ0
43

))
. (85)

In Eq. (85), μ1
(
x0, Pm

)
and μ2

(
x0, Pm

)
are func-

tions of the coordinates in the equilibrium position x0

and the mechanical parameters Pm :

μ1
(
x0, Pm

) = − (m3 + m4)
(
sin

(
α0 + φ0

2 + 2φ0
32 + φ0

43

)
+ sin

(
3φ0

2 − α0 + 2φ0
32 + φ0

43

))
+ (2m2 + 4m3 + 2m4) sin

(
α0 + φ0

2 + φ0
43

)
+ (2m2 + 3m3 + m4) sin

(
φ0
2 − α0 + φ0

43

)
+ (2m2 + 3m3 + m4) sin

(
α0 − φ0

2 + φ0
43

)
− 2 (m2 + m3) sin

(
φ0
2 + α0 − φ0

43

)
− 2 (m3 + m4) sin

(
φ0
2 − α0 + 2φ0

32 + φ0
43

)
,

μ2
(
x0, Pm

) = (m3 + m4)
(
cos

(
α0 + φ0

2 + 2φ0
32 + φ0

43

)
+ cos

(
3φ0

2 − α0 + 2φ0
32 + φ0

43

))
− (2m2 + 4m3 + 2m4) cos

(
α0 + φ0

2 + φ0
43

)
+ (m3 + m4 − 2m2) cos

(
φ0
2 − α0 + φ0

43

)
+ (2m2 + m3 + m4) cos

(
α0 − φ0

2 + φ0
43

)
+ 2 (m2 + m3) cos

(
φ0
2 + α0 − φ0

43

)
− 2 (m3 + m4) cos

(
φ0
2 − α0 + 2φ0

32 + φ0
43

)
. (86)

Given that the system presents one degree of free-
dom, the input link angle φ2 is chosen as indepen-
dent coordinate. The sets of independent and depen-
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dent coordinates x̃ai and x̃d , defined in Eq. (30), are
therefore given by:

x̃ai = φ̃2, x̃d = (
x̃G2 ỹG2 z̃G2 ψ̃2 θ̃2 φ̃32 φ̃43 s̃ α̃

)T
.

(87)

The use of Eq. (64), particularized for the equilibrium
of the four-bar mechanism model, leads to the follow-
ing Jacobian matrix:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
ν1 ν2 0 ν3 ν4 0
0 0 ν5 −ν5 0 0
0 ν6 ν7 −ν7 0 0
0 ν8 0 0 0 0

0 0 0 0 0 −1

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (88)

where the coefficients νk in Eq. (88), with k = {1 . . . 8},
are functions of the coordinates and pressures in the
equilibrium, x0 and p0, respectively, and the geo-
metric and hydraulic parameters Pm and Ph : νk =
νk

(
x0, p0, Pm, Ph

)
. In the computation of the lin-

earized hydraulic equations, the laminar regime of the
volume flow rates through the directional control valve
and the throttle valve described in Eq. (6) has been con-
sidered. Note that, in this case, n = 10, m = 9, l = 0,
r = 3 andu = 1, and therefore the Jacobianmatrix (88)
is (2n−2m−l+r+u)×(2n−2m−l+r+u) = 6×6.

4.4 Numerical results: validation of the approach

To validate the results obtained from the linearization,
the forwarddynamics simulations of the nonlinear four-
bar mechanism multibody model and the linear sys-
tem are performed. To carry out the numerical integra-
tion of the nonlinear system (performedwithMATLAB
ODE15s solver), the holonomic constraints in Eq. (76)
are differentiated twice with respect to time, leading to
the following index-1 DAE system:

M (x) ẍ + Cx
T (x)� = Q

(
x, ẋ, p

) + QM (x) ,

Cx (x) ẍ = −Ċ x (x) ẋ − 2βĊ (x) − γ 2C (x) ,

ṗ = H
(
x, ẋ, p,U

)
,

U̇ = Uref −U

τ
. (89)

Note that the differentiation of the holonomic con-
straints may result in the violation of the constraints.
Therefore, Baumgarte stabilizationmethod [45] is used
in Eq. (89) to avoid numerical drift, β and γ being
the Baumgarte stabilization constants. Tominimize the
numerical drift of the constraints, while keeping the
numerical cost of integration reasonably low, a numer-
ical value of β = γ = 50 has been used. It has been
verified that the results of the forward dynamics sim-
ulation are not dependent on the numerical values of
these stabilization constants. Since the linearization has
been performed around the equilibrium, corresponding
to the neutral position of the directional control valve
(U = 0), a reference normalized spool displacement
Uref = 0 is considered in the simulation. The equi-
librium position x0 in Eq. (77) is considered as initial
condition at position level: x (0) = x0, with the fol-
lowing numerical values:

xG2 (0) = 0 m, yG2 (0) = 0.5 m,

zG2 (0) � 0.866 m, ψ2 (0) = 0,
θ2 (0) = 0, φ2 (0) = 60◦,
φ32 (0) � 322.1◦, φ43 (0) � 266.4◦,
s (0) = √

3 m, α (0) = 30◦.

(90)

The exact numerical values in Eq. (90), corresponding
to φ2 (0) = 60◦, can be computed by solving the holo-
nomic constraints for this equilibrium angle, as detailed
after Eq. (78). Moreover, ẋ (0) = 010×1 at velocity
level and the equilibriumpressures p0 given byEq. (82)
are considered as initial pressures: p (0) = p0, with
p03 = 3.5 MPa:

p1 (0) = p2 (0) � 2.82 MPa,

p3 (0) = 3.5 MPa. (91)

Note that the exact numerical value of p2 (0) is com-
puted by using Eq. (82). The term QM (x) in Eq. (89) is
the generalized force vector associated with the exter-
nal torque M2, which is applied in the input link of the
mechanism:
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M2 =

⎧⎪⎪⎨
⎪⎪⎩

M0

t1
t t < t1

M0 t1 ≤ t ≤ t2
0 t > t2

(92)

The external torque M2, whose time evolution is
described in Eq. (92) and shown in Fig. 6, linearly
increases with time until t = t1, maintaining its max-
imum value M0 until t = t2, when it is suddenly
removed. Note that this torque deviates the multibody
system from its equilibrium position. In the present
case, t1 = 1 s, t2 = 1.5 s and M0 = 250 N · m.

Furthermore, the forward dynamics simulation of
the linear system is performed. From Eq. (88), the lin-
earized equations of motion are given by:

˙̃
φ2 = ω̃2,

˙̃ω2 = ν1φ̃2 + ν2ω̃2 + ν3 p̃2 + ν4 p̃3,

˙̃p1 = ν5 p̃1 − ν5 p̃2,

˙̃p2 = ν6ω̃2 + ν7 p̃1 − ν7 p̃2,

˙̃p3 = ν8ω̃2,

˙̃U = −Ũ

τ
. (93)

The numerical integration of the linear system of equa-
tions (93) is performed from t = t2 onwards,which cor-
responds to the instant of timewhen the external torque
disappears. Therefore, φ̃2 (t2), ω̃2 (t2), p̃ (t2) and Ũ (t2)
are considered as initial conditions for the numerical
integration, with:

φ̃2 (t2) = φ2 (t2) − φ0
2 , ω̃2 (t2) = φ̇2 (t2) ,

Fig. 6 Time evolution of the external torque M2 acting on the
input link

p̃ (t2) = p (t2) − p0, Ũ (t2) = 0, (94)

where the numerical values ofφ2 (t2), φ̇2 (t2) and p (t2)
are obtained from the forward dynamics simulation of
the nonlinear system.

The time evolution of the linear system can be pre-
dicted from the linear stability analysis. The eigenval-
ues are computed for three different scenarios, corre-
sponding to different values of the friction force param-
eters Fc, Fs and σ2. Denoting as F∗

c , F
∗
s and σ ∗

2 the
numerical values of Fc, Fs and σ2 used in Ref. [5],
with F∗

c = 210 N, F∗
s = 830 N and σ ∗

2 = 330 Ns/m,
Table 3 shows the numerical values of the eigenval-
ues λk , with k = {1 . . . 6}, obtained from the Jacobian
matrix (88). The results are shown with fourteen deci-
mal digits for those readers who may wish to compare
their results.

In the linear system of equations (93), it can be seen
that the linear hydraulic equation of ˙̃p2 can be obtained
from a linear combination of the linearized equations
of ˙̃p1 and ˙̃p3, which leads to one of the null eigen-
values shown in all the scenarios of Table 3. The sec-
ond null eigenvalue arises from the linear dependence

between the linear equation of ˙̃p3 and ˙̃
φ2. Furthermore,

the eigenvalue λ6 = −1

τ
, which is associated with the

linearized equation of the valve dynamics in Eq. (93),
is obtained in all the cases, since this equation is decou-
pled. Lastly, the eigenvalues λ3, λ4 and λ5 correspond
to the remaining three linearized equations. The numer-
ical values of λ3, λ4 and λ5 are highly sensitive to the
variation of the Coulomb friction Fc, the static friction
Fs and the coefficient of viscous friction σ2.

Overdamped scenario. In the first case, with Fc =
F∗
c , Fs = F∗

s and σ2 = σ ∗
2 , the system is overdamped

and λ3, λ4 and λ5 are negative real eigenvalues.
Figure 7a shows the time evolution of the variation

of the coordinate φ2 (t) with respect to the equilib-
rium position φ0

2 = 60◦, in the nonlinear and linear
dynamic simulations. According to the time evolution
of the external torque M2 in Eq. (92), the angle φ2 (t)
increases and deviates fromφ0

2 for t < t1,with t1 = 1 s.
Next, for t1 ≤ t ≤ t2, with t2 = 1.5 s, M2 is constant
and the angle maintains its value over time. Lastly, for
t > t2, the external torque vanishes and the input link
approximately returns to its equilibrium position. Fig-
ure7b shows in detail the time evolutions, in the non-
linear and linear cases, of the variations of φ2 (t) with
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Table 3 Numerical values
of the eigenvalues λk , with
k = {1 . . . 6}, for different
values of Fc, Fs and σ2

Parameters Fc, Fs , σ2 Eigenvalues (s−1)

Overdamped scenario

Fc = F∗
c , Fs = F∗

s , σ2 = σ ∗
2 λ1 = λ2 = 0

λ3 = �1, λ4 = �2, λ5 = �3

λ6 = − 1

τ

�1 = −214.391 064 647 542 79

�2 = −1391.806 074 561 452 48

�3 = −23151.790 385 426 780 86

Underdamped scenario (high friction)

Fc = 1

10
F∗
c , Fs = 1

10
F∗
s , σ2 = 1

10
σ ∗
2 λ1 = λ2 = 0

λ3 = �1 + �2i, λ4 = �1 − �2i, λ5 = �3

λ6 = − 1

τ

�1 = −80.729 034 121 409 15

�2 = 540.252 532 251 993 72

�3 = −23151.853 275 473 938 63

Underdamped scenario (low friction)

Fc = 1

100
F∗
c , Fs = 1

100
F∗
s , σ2 = 1

100
σ ∗
2 λ1 = λ2 = 0

λ3 = �1 + �2i, λ4 = �1 − �2i, λ5 = �3

λ6 = − 1

τ

�1 = −8.492 296 459 350 75

�2 = 546.184 749 847 040 98

�3 = −23151.859 132 706 153 51

Fig. 7 Overdamped
scenario: φ2 (t) in the
nonlinear (NL) and linear
(L) dynamic simulations
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respect toφ0
2 = 60◦ for t > t2.Moreover, Fig. 8a repre-

sents the evolution of p1 and p2 over time, and Fig. 8b
shows the time evolution of p3. In all the figures, the
nonlinear responses are denoted by NL and the linear
results are labelled with L. It can be seen that the linear
responses accurately reproduce the nonlinear results.

Underdamped scenario (high friction).Secondly, the
numerical values of the friction parameters are reduced

to Fc = 1

10
F∗
c , Fs = 1

10
F∗
s and σ2 = 1

10
σ ∗
2 . In

this scenario, the system is underdamped: as shown in

Table 3, the eigenvalue λ5 remains real and negative,
while λ3 and λ4 are, in this case, a complex conjugate
pair of eigenvalues with negative real parts.

Figure 9a shows the time evolution of the variation
of the coordinate φ2 (t) with respect to the equilibrium
position φ0

2 = 60◦, in the nonlinear and linear dynamic
simulations. Note that, until t = t2 = 1.5 s, the time
evolution of φ2 (t) is similar to that shown in the over-
damped scenario in Fig. 7. Nevertheless, for t > t2,
the system exhibits its underdamped behavior by oscil-
lating around the equilibrium position φ0

2 . These oscil-

Fig. 8 Overdamped
scenario: time evolution of
the pressures in the
nonlinear (NL) and linear
(L) dynamic simulations.
The difference between the
pressures p1 and p2, both in
the linear and nonlinear
cases, is negligible because
the dynamic simulation is
performed in the laminar
regime

Fig. 9 Underdamped
scenario (high friction):
φ2 (t) in the nonlinear (NL)
and linear (L) dynamic
simulations

Fig. 10 Underdamped
scenario (high friction):
time evolution of the
pressures in the nonlinear
(NL) and linear (L) dynamic
simulations. The difference
between the pressures p1
and p2, both in the linear
and nonlinear cases, is
negligible because the
dynamic simulation is
performed in the laminar
regime
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Fig. 11 Underdamped
scenario (low friction):
φ2 (t) in the nonlinear (NL)
and linear (L) dynamic
simulations

Fig. 12 Underdamped
scenario (low friction): time
evolution of the pressures in
the nonlinear (NL) and
linear (L) dynamic
simulations. The difference
between the pressures p1
and p2, both in the linear
and nonlinear cases, is
negligible because the
dynamic simulation is
performed in the laminar
regime

lations did not exist in Fig. 7, due to its overdamped
behavior. The same applies to the pressures p1 (t) and
p2 (t), shown in Fig. 10a, and p3 (t), plotted in Fig. 10b.

Underdamped scenario (low friction). Lastly, in
the third scenario, the numerical values of the fric-
tion parameters are significantly reduced, with Fc =
1

100
F∗
c , Fs = 1

100
F∗
s and σ2 = 1

100
σ ∗
2 .

As in the previous case, the system is underdamped,
with the corresponding eigenvalues shown in Table 3.
Note that, despite there is very small variation in λ5,
the real parts of λ3 and λ4 substantially decrease. The
underdamped behavior is shown in Fig. 11a, b, with the
time evolution of the variation of the coordinate φ2 (t)
with respect to the equilibrium position φ0

2 = 60◦. Fur-
thermore, the pressures p1 (t) and p2 (t) are shown in
Fig. 12a, and p3 (t) is plotted in Fig. 12b. Due to the
reduction of the friction, the amplitude and frequency
of the oscillations in Figs. 11a, b and 12a, b significantly
increase with respect to those of the second scenario.
In the particular case of no friction force (Fc = Fs =
σ2 = 0), the time evolutions of φ2 (t) and the pres-
sures are qualitatively similar to those of this scenario

Fig. 13 First-order Taylor approximation of the friction force
Fμ

(Fc = 1

100
F∗
c , Fs = 1

100
F∗
s and σ2 = 1

100
σ ∗
2 ),

given that there exists a second source of dissipation
due to the throttle valve, and the eigenvalues λ3 and
λ4 present negative real parts. The numerical values

of Fc = 1

100
F∗
c , Fs = 1

100
F∗
s and σ2 = 1

100
σ ∗
2

have been chosen to improve the visualization of the
oscillations of the system.

As in the overdamped case, the linear responses
of the underdamped scenarios accurately reproduce
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the nonlinear results for small amplitude oscillations.
Moreover, a decrease in the numerical value of themax-
imum external torque M0 in Eq. (92) further improves
the results of the linear model, since the multibody sys-
tem is closer to its equilibrium position. In contrast,
when the external torque is too high, themultibody sys-
tem deviates significantly from the equilibrium posi-
tion, and therefore the linear model ceases to be valid.

Despite the linearized systemaccurately reproduces the
nonlinear system in all the cases, the results in the over-
damped scenario are better than in the underdamped
cases. This can be explained with the linearization of
the friction force. Figure13 shows the friction force Fμ

presented in Eq. (8), with Fc = 210 N, Fs = 830 N
and σ2 = 330 Ns/m, together with its first-order Tay-
lor approximation, denoted as T 1

μ . It can be seen that
the linear approximation is excellent for low values of
the velocity ṡ, as is the case of the overdamped sce-
nario. Nevertheless, the approximation becomes worse
for larger values of ṡ, which is the case of the under-
damped scenarios.

4.5 Comparison of the proposed linearization
procedure with a conventional counterpart
approach

The proposed linearization approach is compared with
a conventional counterpart. This counterpart procedure
is based on the linearization of an ODE system and the
numerical computation of the required partial deriva-
tives by using finite differences. The main steps of this
counterpart procedure are shown below.

Consider the index-2DAE system (15). The velocity
constraints D (x) ẋ = 0 can be differentiated oncewith
respect to time, leading to the following index-1 DAE
system:

M (x) ẍ + DT (x) � = Q
(
x, ẋ, p

)
,

D (x) ẍ = Qd

(
x, ẋ

)
,

ṗ = H
(
x, ẋ, p,U

)
,

U̇ = W (U,U ref) , (95)

where Qd

(
x, ẋ

) = −∂
(
D (x) ẋ

)
∂x

ẋ. Defining ẋ = v,

Eqs. (95) canbe rewritten as the followingDAEsystem:

⎛
⎜⎜⎜⎜⎜⎝

In 0n 0n×r 0n×u 0n×(m+l)

0n M (x) 0n×r 0n×u DT (x)

0(m+l)×n D (x) 0(m+l)×r 0(m+l)×u 0(m+l)

0r×n 0r×n Ir 0r×u 0r×(m+l)

0u×n 0u×n 0u×r Iu 0u×(m+l)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A(x)

⎛
⎜⎜⎜⎜⎝

ẋ
v̇

ṗ
U̇
�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

v

Q (x, v, p)
Qd (x, v)

H (x, v, p,U)

W (U,U ref)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
f (x,v, p,U,U ref )

. (96)

Alternatively, by defining X = (
x v p U

)T
,

Eq. (95) can be expressed as follows:

(
Ẋ
�

)
= A−1 (x) f (X,U ref) = F (X,U ref) , (97)

where the matrix A and the vector f are defined in
Eq. (96). Denoting the first 2n + r + u components of
F (X,U ref) as F (X,U ref), the followingODEsystem
is obtained:

Ẋ = F (X,U ref) . (98)

Note that the last m + l equations of Eq. (97) provide
the expressions of the Lagrange multipliers �.

The linearization of the ODE system (98) with
respect to an arbitrary reference solution X0 =(
x0 ẋ0 p0 U0

)T
leads to the following Jacobianmatrix:

J = ∂F
∂X

∣∣∣∣
0

= (
J1 · · · J j · · · JN

)
. (99)

In Eq. (99), N = 2n + r + u and J j represents the
j th column of the Jacobian matrix, with j = {1 · · · N }.
The term J j is computed as follows:

J j = ∂F
∂X j

∣∣∣∣
0

� F
(
X0 + he j

) − F
(
X0 − he j

)
2h

,

(100)
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where the partial derivative in Eq. (100) can be numer-
ically computed by using central finite differences. In
Eq. (100), h is the step used in the computation of the
finite differences, and e j corresponds to the j th col-
umn of the identity matrix IN . Note that the Jacobian
matrix (99) is (2n + r + u) × (2n + r + u).

A detailed comparison between the linearization
approach proposed in Sect. 3 and this counterpart pro-
cedure is performed by means of the hydraulically
actuated four-bar mechanism model described in Sub-
sects. 4.1 and 4.2. First, a qualitative comparative anal-
ysis is carried out. The preliminary steps required to
compute the Jacobian matrices (61) and (99) differ sig-
nificantly. The counterpart approach first computes the
index-1 form of the nonlinear DAE system (96); then
obtains the first-order ODE system (98) by remov-
ing the equations associated with the Lagrange mul-
tipliers and finally performs the linearization, obtain-
ing the Jacobian matrix (99). In contrast, the proposed
linearization approach follows the steps described in
Sect. 3. The DAE system (15) is first linearized along
the reference solution; then, a coordinate partition in
termsof independent anddependent coordinates is used
to reduce the linearized dynamic equations and elim-
inate the variations of the Lagrange multipliers (see
Eq. (32)); next, the linearized constraints at velocity
and acceleration levels are used to express the com-
plete set of velocity and acceleration variations ˙̃x and
¨̃x in terms of the independent ones, ˙̃xai , ¨̃xai ; and finally,
the linearized holonomic constraints are used to express
the variations of the dependent coordinates x̃d in terms
of the independent ones x̃ai . All these steps lead to a
reduced system of linear equations, which in the case of
a multibody systemwith only holonomic constraints as
the four-bar mechanism, is only expressed in terms of
the variations of the independent coordinates x̃ai and
their time derivatives.

An important advantage of the proposed approach
is that it leads to the maximum possible reduction of
the linearized equations of motion. For the general
case of a hydraulically driven multibody system with
holonomic and nonholonomic constraints, the Jaco-
bian matrix (61) is (2n − 2m − l + r + u) × (2n −
2m − l + r + u), while the conventional counter-
part is a bulky linearization procedure that provides
an augmented Jacobian matrix (see Eq. (99)), which is
(2n + r + u)× (2n + r + u). Therefore, the proposed
approach provides 2n − 2m − l + r + u eigenvalues,
among which 2 (n − m − l) + r + u correspond to the

real spectrum of the problem, and l spurious null eigen-
values are obtained, associated with the linearized non-
holonomic constraints (54). In the particular case of a
holonomic multibody system, the proposed approach
leads to 2 (n − m) + r + u eigenvalues, which corre-
spond to the real spectrum, and no spurious eigenvalues
are obtained. In contrast, the use of the counterpart lin-
earization approach results in 2n + r + u eigenvalues,
with 2 (n − m − l) + r + u eigenvalues correspond-
ing to the real spectrum, and 2 (m + l) spurious null
eigenvalues associatedwith them+l dependent coordi-
nates. In the particular case of the four-bar mechanism
model, the proposed approach leads to the Jacobian
matrix (88), which is 6 × 6, obtaining the eigenval-
ues λk , with k = {1 . . . 6}, of Table 3. Conversely, the
Jacobianmatrix (99) is 24×24, obtaining the six eigen-
values λk of Table 3 and eighteen additional spurious
null eigenvalues. Therefore, the use of the proposed
approach allows for the reduction of the linearized
equations of motion and the elimination of the spurious
null eigenvalues associated with the dependent coordi-
nates, while retaining all the stability information.

Another important advantage to highlight is the
power of the proposed approach. This procedure allows
generating the exact linearized equations of motion as
a function of the geometric, dynamic and hydraulic
parameters of the multibody system under study. In
the particular case of the four-bar mechanism model,
the coefficients νk of the Jacobian matrix (88), with
k = {1 . . . 8}, are computed analytically as a function
of the coordinates and pressures in the equilibrium, x0

and p0, respectively, and the geometric and hydraulic
parameters Pm and Ph : νk = νk

(
x0, p0, Pm, Ph

)
.

This significantly eases the performance of detailed
eigenvalues sensitivity analyses, since the eigenval-
ues of the system are parameterized in terms of the
design parameters. In contrast, the analytical computa-
tion of the Jacobianmatrix (99) is not possible for com-
plex multibody systems with large number of coordi-
nates, constraints and long kinematic chains, since the
symbolic computation of the inverse matrix A−1 (x)

in Eq. (97) is required. For this reason, the Jacobian
matrix (99) is numerically computed by using finite
differences.

A quantitative comparative analysis is also included.
The computational efficiency and accuracy of the pro-
posed and counterpart approaches are compared. The
computational efficiency is assessed by means of the
required time of computation of the Jacobian matri-
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ces (88) and (99). For the particular case of the four-bar
mechanism model, the average time of computation of
the Jacobian matrix (88) is 0.005 s. In contrast, the
required time for computing the Jacobian matrix (99)
is 0.016 s. The assessment was carried out by using
a computer HP with Intel(R) Core(TM) i7-6700HQ
2.6 GHz and 12 GB of RAM. Therefore, the proposed
approach is more efficient, with a time of computation
approximately three times lower for the four-bar mech-
anism.

Regarding the accuracy, the conventional counter-
part provides an approximation of the Jacobian matrix,
whose accuracy is highly sensitive to the step h used
in the computation of the finite differences in Eq. (99).
In contrast, the proposed approach leads to the exact
linearized equations of motion. To compare the accu-
racy of both approaches, the relative errors ε3 and ε4
in the computation of the eigenvalues λ3 and λ4 of the
overdamped scenario (see Table 3) are computed. Fig-
ure14a, b show the variations of the relative errors ε3
and ε4, respectively, with the step h. To ease the visu-
alization, a logarithmic scale is used for the X-axis. In
Fig. 14a, b, it can be seen that the relative errors ε3 and
ε4 significantly increase for very low and high values
of the step h. The counterpart approach provides the
most accurate results of the eigenvalues λ3 and λ4 for
an intermediate value of h � 10−5, with ε3 � 0 and
ε4 � 0. Therefore, the choice of an appropriate step
is crucial for the accuracy of the alternative procedure.
On the other hand, this problem does not arise in the
proposed approach, since the linearization procedure
presents a high capability to compute the exact Jaco-
bian matrix. The use of a first-order finite difference
formula (as for example the forward finite difference)
to numerically calculate the Jacobian matrix could cer-
tainly decrease the computational burden of the coun-
terpart approach due to a smaller number of function
evaluations required, at the cost of decreasing the accu-
racy of the approximation.

5 Conclusions and future work

In this work, a linearization approach for systemati-
cally linearizing the equations of motion of hydrauli-
cally actuated multibody systems with holonomic and
nonholonomic constraints has been presented. The pro-
posed procedure provides the exact linearized equa-
tions of motion of the multibody system, and enables

the computation of the Jacobian matrix analytically
or numerically. The procedure has been validated by
means of the forward dynamics simulation of a three-
dimensional four-bar mechanism model. By compar-
ing the time evolution of the input link angle and
the pressures of the hydraulic circuit in the nonlin-
ear and linear systems, it has been shown that the lin-
earized model accurately reproduces the results of the
nonlinear multibody system. The procedure presents a
great power, which is demonstrated by generating the
Jacobian matrix as a function of the mechanical and
hydraulic parameters of the three-dimensional four-bar
mechanismmodel. This allows performing a linear sta-
bility analysis of the system, computing the eigenval-
ues for different scenarios. In this particular case, the
eigenvalues have been computed for three-different set
of values of the Brown and McPhee friction model
parameters. The results show that these eigenvalues
are highly sensitive to the Coulomb and static friction
forces and the coefficient of viscous friction. Despite
the linearized model reproduces well the results of the
nonlinear system in the vicinity of the equilibrium con-
figuration for all the scenarios, the results of the over-
damped case improve compared to those of the under-
damped cases, given that the linear approximation of
the friction force becomes better in the overdamped
scenario. The proposed approach is also comparedwith
a counterpart procedure, presenting several advantages.
First, the maximum reduction of the linearized equa-
tions of motion is obtained, which simplifies work-
ing with the resulting Jacobian matrix. In the perfor-
mance of linear stability analyses, this leads to the
elimination of the spurious null eigenvalues associated
with the dependent coordinates of the multibody sys-
tem model. Secondly, the proposed approach is more
efficient than its counterpart. The computational effi-
ciency is assessed by means of the required time of
computation of both Jacobianmatrices for the hydrauli-
cally driven four-bar mechanism. A time of computa-
tion of approximately three times lower was obtained
with the proposed approach. Lastly, the accuracy of
the procedure was also demonstrated. While the pro-
cedure developed in this work provides the exact Jaco-
bian matrix of the system, the counterpart approach
is highly sensitive to the step used in the numerical
computation of the partial derivatives required in the
Jacobian matrix. To illustrate this, the variation of the
relative errors with the step, in the computation of the
eigenvalues of the system, was shown.
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Fig. 14 Relative errors ε3
and ε4 in the computation of
the eigenvalues λ3 and λ4:
influence of the step h used
in the central finite
differences scheme (100)

It is important to note that, in this study, the lin-
earization has been carried out around the equilibrium
position of the four-bar mechanism multibody model.
Therefore, the resulting Jacobian matrix presents con-
stant (time-independent) coefficients, which are a func-
tion of the multibody system parameters. In contrast,
in other applications, as state observers based on the
linearized equations of motions like Kalman filters, a
linear approximation of the dynamics of the multibody
system is required at each instant of time. In this case,
the Jacobian matrix must be updated and its coeffi-
cients vary throughout the reference solution. In future
work, the proposed procedure will be used for develop-
ing state observers and linear feedback controllers of
hydraulically actuated multibody systems.
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