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a b s t r a c t

The World Wide Web is an immense information resource. Web information extraction is the task that
transforms human friendly Web information into structured information that can be consumed by auto-
mated business processes. In this article, we propose an unsupervised information extractor that works
on two or more web documents generated by the same server side template. It finds and removes shared
token sequences amongst these web documents until finding the relevant information that should be
extracted from them. The technique is completely unsupervised and does not require maintenance, it
allows working on malformed web documents, and does not require the relevant information to be for-
matted using repetitive patterns. Our complexity analysis reveals that our proposal is computationally
tractable and our empirical study on real-world web documents demonstrates that it performs very fast
and has a very high precision and recall.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Web is the hugest information repository. Usually, scripts
are used to fill in templates with information that is retrieved from
server-side databases; the results are formatted using HTML tags
and CSS classes. The documents in the Web can be classified into
two groups: unstructured documents, whose relevant information
are pieces of free text, e.g., blog entries or news articles, and semi-
structured documents, whose relevant information are records of
attributes that are usually formatted as tables or lists, e.g., an on-
line book store. (Note that the criteria to classify which informa-
tion is relevant depends completely on the context.) Our work fo-
cuses on semi-structured documents.

Extracting the relevant information from a semi-structured doc-
ument to feed an automated business process is not usually an
easy task due to the irrelevant information that the template intro-
duces in order to present it in a friendly format [3]. Information
extractors are intended to help software engineers in this task [10].

Many information extractors rely on extraction rules. Although
they can be handcrafted [15,24,4,42,51,50,20], the costs involved
motivated many researchers to work on proposals to learn them
automatically. These proposals are either supervised, i.e., they re-
quire the user to provide a number of information samples to be
extracted [11,44,58,26,32,8,22,9,14,18,30,5,40,21,59], or unsuper-
vised, i.e., they extract as much prospective information as they
can and the user then gathers the relevant information from the
results [62,12,16,2,28,25,60,39,46,64,67,38,59,57]. Since typical
ll rights reserved.
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web documents are growing in complexity, a number of authors
are also working on techniques whose goal is to identify the region
within a web document where relevant information is most likely
to be contained [37,7,61,63,27,34,65,66,52,45,35,6]. Sleiman and
Corchuelo [55] have recently surveyed and compared the previous
techniques.

Information extractors that rely on extraction rules do not usu-
ally adapt well to changes to the Web. Note that once a set of extrac-
tion rules is handcrafted or learnt, the Web keeps evolving and it is
not uncommon that changes may invalidate the existing extraction
rules. This motivated some authors to work on proposals to main-
tain extraction rules (semi-)automatically [31,48,49,41,33,13].
Contrarily, others worked on unsupervised proposals that do not
rely on extraction rules, but are based on a number of hypothesis
and heuristics that have proven to work well in many cases
[1,53,17,23]; changes to a web site do not usually have an impact
on these extractors since they analyse every new web document
independently from the previous ones.

Our focus is on unsupervised proposals that do not rely on
extraction rules. The existing proposals work on one or more input
web document and search for repetitive structures that hopefully
identify the regions where the relevant information resides.
Álvarez et al. [1] use clustering to find a rough region where the rel-
evant information is most likely to be located, i.e., the information
region, and then use clustering, tree matching and multi-string
alignment to extract prospective information; Simon and Lausen
[53] first use a modified version of MDR [36] and then a multi-string
alignment algorithm to extract prospective information; Buttler
et al. [6] rely on six heuristics to identify the information region
and to extract prospective information from it; the proposals by
Refs. [17,23] focus on extracting prospective information from lists:
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the former uses a corpus and a scoring function that helps delimit
the information in a list and tabulate it, whereas the latter learns
a statistical model according to which the information is also delim-
ited and tabulated. Implicitly, the previous proposals assume that
the input web documents contain similar information records since
they all rely on finding repetitive structures.

A four-page abstract of our proposal was presented elsewhere
[56]. In this article, we introduce TEX, which is an unsupervised
information extractor that does not rely on extraction rules. Con-
trarily to the previous proposals, it does not require the input
web documents to be translated into DOM trees, i.e., it can work
on malformed web documents without correcting them, and does
not require the relevant information to be formatted using repeti-
tive structures inside a web document. It works on two or more
web documents and compares them in an attempt to discover
shared patterns that are not likely to provide any relevant informa-
tion, but parts of the template used to generate the web docu-
ments. (We define a shared pattern of size s between two token
sequences t1 and t2 as a subsequence of s consecutive tokens that
occurs at least once in both t1 and t2.) The idea of identifying
shared patterns lies at the heart of proposals like RoadRunner
[16], which uses a multi-string alignment algorithm to learn a reg-
ular expression that models the template and its variable parts,
FiVaTech [28], which relies on tree matching, tree alignment, and
mining techniques, or EXALG [2], which uses two statistical tech-
niques to differentiate the role of individual tokens and determine
which are equivalent to one another. Contrarily to these proposals,
TEX relies on quite a simple multi-string alignment algorithm that
has proven to be very effective and efficient in practice. We have
computed an upper limit to the worst-case space and time com-
plexity of our algorithm and we have proven that it is computa-
tionally tractable (note that there are very few complexity results
in this field); furthermore, we have conducted a series of experi-
ments with 2084 web documents from 55 real-world web sites
and our results confirm that our proposal can achieve a mean pre-
cision as high as 96%, a mean recall as high as 95%, with a mean
execution time of 0.81 s. We conducted the same experiments
using other well-known techniques in the literature, and our con-
clusion is that our proposal outperforms them.

The rest of the article is organised as follows: Section 2 presents
TEX and describes the sub-algorithms on which it relies; Section 3
analyses its time complexity; Section 4 reports on our experimen-
tal results and compares TEX to other techniques in the literature;
finally, Section 5 concludes our work.
2. Description of our proposal

We present the algorithm that lies at the heart of TEX in Fig. 1. It
works on a collection of web documents, which we denote as
TextSet, and a range of integers, which can introduce a bias to
our search procedure. Intuitively, a TextSet is a set of Texts, which
are sequences of Tokens. TEX is not bound with a particular tokeni-
sation schema; our implementation and our experiments were car-
ried out using a simple tokenisation schema according to which
tokens represent either script blocks, style blocks, HTML tags, or
#PCDATA, but this is not an intrinsic feature of our proposal. Note
that we use Text as a data type that allows to represent both web
Fig. 1. Algorithm TEX.
documents and fragments of web documents, as well as the infor-
mation that is extracted from them.

The algorithm works in two steps: at line 2, we invoke Algo-
rithm extract, which makes an attempt to extract the information
that varies from document to document; in other words, it at-
tempts to discard information that is likely to belong to the tem-
plate used to generate the input web documents. Algorithm
extract works on the collection of input web documents and
searches for shared patterns of size max;max� 1; . . . ;min. If
min > 1 or max is less than the size of the shortest input document,
then the search has a bias that may lead to situations in which
Algorithm extract returns information that actually belongs to the
template, which is the reason why we invoke a filtering algorithm
at line 3.

Fig. 2 presents a running example. We assume that the algo-
rithm is executed on TextSet TS1, which is composed of documents
T1; T2, and T3; the result is the list of TextSets L1, which contains
the extracted TextSets TS4; TS7; TS11; TS12; TS9, and TS10.

In the following subsections, we provide additional details on
the ancillary algorithms on which TEX relies.

2.1. Algorithm extract

Algorithm extract searches for shared patterns of size max down
to min in a TextSet. For instance, assume that it is invoked on the
TextSet denoted as TS1 in Fig. 3 and that it has to search for shared
patterns whose size is in the range 10 down to 1. Note that there
are neither shared patterns of size 10;9, nor 8; the longest shared
pattern is <html><head><title>Results</title></Head><body>, whose
size is 7 tokens. The algorithm then attempts to expand TextSet

TS1 into three additional TextSets that contain the prefixes, the
separators, and the suffixes into which the shared pattern parti-
tions the Texts in TS1. In this example, there are neither prefixes
nor separators, since the shared pattern is found at the beginning
of the Texts in TS1; there are, however, three suffixes that are
stored in TextSet TS2. The algorithm then discards TextSet TS1
and proceeds with the new TextSet TS2. The longest shared pattern
that is discovered in TS2 is <br/></body></html>, which results in a
new TextSet that is denoted as TS3. The same procedure is applied
as many times as necessary until no more shared patterns are
discovered.

We present Algorithm extract in Fig. 4. It works on a TextSet ts, a
minimum pattern size min and a maximum pattern size max; it re-
turns a list of TextSets that should contain as much prospective
information as possible. The main loop at lines 3–15 iterates over
all possible sizes from max down to min; for each size, the inner
loop at lines 5–13 searches for a shared pattern of that size. Note
that variable result acts as a queue in which we initially put the
TextSet on which the algorithm has to work, and then the new
TextSets into which it is expanded. In each iteration of the inner
loop, a TextSet is removed from result and expanded at line 7. Algo-
rithm expand, which is presented in the following section, searches
for shared patterns of a given size in a TextSet; if one such pattern
is found, then it is used to expand the current TextSet into new
TextSets with prefixes, separators, and suffixes, which are added
to result so that they can be analysed later in the inner loop; if
no shared pattern is found, then the original TextSet is added to a
buffer. Once the inner loop finishes, the buffer contains all of the
new TextSets that have been produced, and it is transferred to
the result variable so that the algorithm can search for new shared
patterns of a smaller size, if possible.

Algorithm expand. This algorithm searches for a shared pattern of
a given size inside a given TextSet; if such a pattern is found, it then
expands the TextSet into a collection of new TextSets with prefixes,
separators, and suffixes. We have already illustrated how Algo-
rithm expand works on two simple cases in which the expansion



Fig. 2. A running example.

Fig. 3. Expansion of a TextSet during extraction.
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Fig. 4. Algorithm extract.
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led to prefixes or suffixes only, cf. Fig. 3. Assume now that it is in-
voked on TextSet TS3 in Fig. 5 to search for a shared pattern of size
two tokens. The algorithm can easily detect that the first two-to-
ken shared pattern is <br/><b> and expands TextSet TS3 into the
following new TextSets: (i) TS4, which contains the prefixes of
the Texts in TS3 up to the first occurrence of the shared pattern;
(ii) TS5, which contains the separators, i.e., the Texts in TS3 in be-
tween successive occurrences of the shared pattern; (iii) and TS6,
which contains the suffixes of the Texts in TS3 regarding the last
occurrence of the shared pattern. When expand is invoked on
TextSet TS5 to find a shared pattern of size two tokens, it finds
</b><br/>, and creates TS7 and TS8, which contain the prefixes
and suffixes of the shared pattern respectively. The same happens
when expand is invoked on the TextSet TS6 to search for a shared
Fig. 5. Expansion of a
pattern of size two tokens, and creates TS9 and TS10. If we invoke
expand on TextSet TS8 to search for a shared pattern of size one to-
ken, then, it finds pattern <br/> and creates TextSets TS11 and TS12.

We present Algorithm expand in Fig. 6. Line 3 searches for the
shortest Text in ts, which is used at line 5 as a basis to search for
shared patterns by means of Algorithm findPattern, which is de-
scribed in the following section. If this algorithm can find a shared
pattern, then line 7 expands ts using that shared pattern and up-
dates variable result; if not, result remains an empty list, which
indicates that TextSet ts cannot be expanded.

Algorithm findPattern. This algorithm works on a TextSet ts, a
Text base, which is assumed to be the shortest non-empty Text in
ts, and a size s. Its goal is to find a pattern inside base that occurs
in every Text in ts. For instance, assume that the algorithm is in-
voked on TextSet TS3 in Fig. 7 to search for a pattern of size 2;
we implicitly assume that base is the shortest Text in TS3, i.e.,
base ¼ Catch Me <b> Lisa Gardner </b> $14.94 in this example. The
algorithm first searches for Catch Me<br/> in every Text in TS3,
but does not find it; then it searches for <br/><b>, which is found
in every Text in TS3. As a conclusion <br/><b> is a shared pattern
that can be used to expand TextSet TS3. Note that Algorithm find-

Pattern returns a map from Text onto lists of integers; the map rep-
resents the positions where the search pattern is found. In our
example, this map is fT7 # h1i; T8 # h1;9i; T9 # h1;9ig.

We present Algorithm findPattern in Fig. 8. The main loop at
lines 3–11 allows to implement a sliding window over base: index
i iterates from 0 until sizeðbaseÞ � s as long as no shared pattern is
found, i.e., it searches for all patterns of size s in base. The actual
search is performed in the inner loop at line 6–10: in this loop,
the algorithm iterates over every Text in the input TextSet and finds
all of the matches of the subsequence of base that starts at position
i and has size s. We do not provide any additional details on Algo-
rithm findMatches since it is implemented using the well-known
Knuth–Pratt–Morris pattern search algorithm [29]. This algorithm
sample TextSet.



Fig. 6. Algorithm expand.
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returns a list of integers that indicate the non-overlapping posi-
tions at which the previous subsequence of base matches text; if
there is at least one match, we record it in variable result and go
ahead to examine the next Text in ts; otherwise, the inner loop fin-
ishes and the outer loop slides the window on base and resets re-
sult, if possible. If the algorithm returns an empty map, this
means that no shared pattern has been found.

Algorithm createExpansion. When a shared pattern is found in a
TextSet, the TextSet is expanded to three new TextSets, namely:
prefixes, separators, and suffixes. We present Algorithm createEx-

pansion in Fig. 9. This algorithm works on a TextSet called ts and a
map r that contains the indexes of the shared pattern inside each
Text of ts. The loop at lines 6–15 iterates over all of the Texts in
ts and adds the prefixes, separators, and suffixes to variables
ts1; ts2, and ts3, respectively. Later, we add these intermediate Tex-

tSets to the result variable as long as they are not empty.
Fig. 7. Searching for a pattern using Catch M

Fig. 8. Algorithm
2.2. Algorithm filter

Algorithm extract returns a list of TextSets that are expected to
have the variable information in the initial TextSet. Note, however,
that min and max introduce a bias to the search algorithm if min is
greater than one or max is less than the size of the shortest Text in
the initial TextSet. Our experimental results prove that this bias
helps effectively reduce the amount of effort required to extract
information from typical web documents, without sacrificing effec-
tiveness. There are, however, cases in which setting min to a value
greater than one and setting max to a small value, may prevent Algo-
rithm extract from finding small shared patterns. For instance, as-
sume that we set min ¼ 2 and max ¼ 2 and that Algorithm extract

returns the list of TextSets L01 in Fig. 10: if the algorithm was allowed
to search for patterns of size one, then it would discover that <html>
is a shared pattern and would discard TextSet TS08; however, min
was set to 2, which prevents the algorithm from finding this pattern.

We present Algorithm filter in Fig. 11. The main loop at lines 3–7
iterates over the list of input TextSets and simply removes those
without variability from the result, i.e., those TextSets in which
all of the Texts are the same.
3. Complexity analysis

In this section, we provide an upper limit to the worst-case time
complexity of Algorithm TEX. Note that it is not common to find a
complexity analysis in the literature regarding information extrac-
tion, but we think that it is important to make sure that the
proposal is computationally tractable. Note, too, that the actual
time complexity depends on a variety of variables that are not easy
e <b> Lisa Gardner </b> $14.94 as a base.

findPattern.



Fig. 9. Algorithm createExpansion.

Fig. 10. A case in which filtering the results of Algorithm extract is necessary.
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to characterise; since our only goal was to prove that TEX is compu-
tationally tractable, we have just characterised an upper bound to
the worst-case time complexity building on two sensible assump-
tions: (i) simple instructions like adding an item to a set, comparing



Fig. 11. Algorithm filter.
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two tokens, or constructing a tuple can be implemented in Oð1Þ
time with regard to the other algorithms in our proposal; (ii) the
number of input documents is generally very small as compared
with the number of tokens of the longest document to be analysed.

In the following subsections, we first present a preliminary re-
sult regarding space requirements, then analyse the time complex-
ity of the ancillary algorithms on which TEX relies, and conclude
with a theorem that proves that TEX is computationally tractable.
In the sequel, we use variable n to denote the number of docu-
ments that TEX has to analyse and m to denote the size in tokens
of the longest such document.

3.1. Space requirements

Proposition 1 (Maximum size of a TextSet). Assume that we are
extracting information from a TextSet denoted as ts using Algorithm
TEX. nbm2c is an upper bound to maximum size of a TextSet generated
by TEX.
Proof. Algorithm expand is the unique algorithm that generates
new TextSets, which happens when a shared pattern p is found
in a given TextSet. The new TextSets correspond to the prefixes,
separators, and suffixes to which p leads. Regarding the prefix
and suffix TextSets, note that there cannot be more than n such
prefixes or suffixes; that is, n is an upper bound to the maximum
size of a TextSet that contains prefixes or suffixes. Regarding sepa-
rator TextSets the worst case happens when p is a one-token pat-
tern that occurs every two tokens; that is, bm2c is an upper bound
to the number of separators in this case, or, otherwise, nbm2c is an
upper bound to the maximum size of a TextSet that contains sepa-
rators. As a conclusion, nbm2c is an upper bound to the maximum
size of a TextSet generated by TEX. h
3.2. Time requirements

Lemma 1 (Algorithm createExpansion). Let ts be a Textset, r be a map
from the Texts in ts to lists of indices that denote where a shared
pattern occurs, and s be the size of the shared pattern. Oðnm2Þ is an
upper bound to the worst-case time required to execute
createExpansionðts; r; sÞ.
Proof. The algorithm iterates through every Text in ts. According to
Proposition 1, nbm2c is an upper bound to the maximum size of a Tex-

tSet, which means that the nm is an upper bound to the number of
iterations of this loop. Inside this loop, accessing the map and calcu-
lating the prefix and suffix of the shared pattern can be performed
in Oð1Þ time, whereas computing the separators requires variable
time. According to Proposition 1, the maximum number of separa-
tors in a given Text is bm2c, which is less than m. Then, OðmÞ is an
upper bound to the time required to compute the separators. As a
conclusion, OðnmmÞ ¼ Oðnm2Þ is an upper bound to the worst-case
time required to execute createExpansionðts; r; sÞ. h
Lemma 2 (Algorithm findPattern). Let ts be a TextSet, base be the
shortest Text in ts, and s be the size of the pattern for which the algo-
rithm searches. Then, Oðnm3Þ is an upper bound to the worst-case
time required to execute findPatternðts; base; sÞ.
Proof. The main loop iterates through base until finding a pattern of
s tokens that occurs in every other Text in ts. In the worst case, base
has the maximum size m and the shared pattern is found at the end
of base, which means that the main loop iterates m� s times, i.e.,
OðmÞ times. In each iteration of the main loop, the inner loop iterates
through the Texts in ts. According to Proposition 1, nbm2c is an upper
bound to the maximum size of a TextSet, which implies that the
inner loop does not iterate more than nbm2c times. In each iteration,
it invokes Algorithm findMatches, whose worst-time complexity is
OðkÞ, where k denotes the size of the text in which a pattern is
searched [29]. This implies that OðmÞ is an upper bound to the
worst-case time complexity of the instructions inside the inner
loop. As a conclusion, Oðmnbm2cmÞ# Oðnm3Þ is an upper bound to
the worst-case time required to execute findPatternðts; base; sÞ. h
Lemma 3 (Algorithm expand). Let ts be a TextSet, and s be a pattern
size. Oðnm3Þ is an upper bound to the worst-case time required to exe-
cute expandðts; sÞ.
Proof. The algorithm first searches for the shortest Text in ts.
According to Proposition 1, nbm2c is an upper bound to the maxi-
mum size of a TextSet, which implies that nbm2c is also an upper
bound to the maximum time required to find the shortest Text in
a TextSet. In the worst case, the invocation to Algorithm expand

requires to invoke Algorithms findPattern and createExpansion in
sequence, which according to Lemmas 2 and 1 require no more
than Oðnm3Þ and Oðnm2Þ time in the worst case. As a conclusion,
Oðnbm2c þ nm3 þ nm2Þ# Oðnm3Þ is an upper bound to the worst-
case time required to execute expandðts; sÞ. h
Lemma 4 (Algorithm extract). Let ts be a TextSet, min and max be
the minimum and maximum sizes of the shared patterns for which
the algorithm searches, respectively. Oðnm5Þ is an upper bound to
the worst-case time required to execute extractðts;min;maxÞ.
Proof. The algorithm first iterates through all possible sizes
between min and max, which amounts to m times in the worst case.
In each iteration, the algorithm executes an inner loop that iterates
through successive expansions of ts. Note that m puts an upper
bound to the number of times that a TextSet can be expanded, which
implies that m is also an upper bound to the number of iterations of
the inner loop. Within this loop, the only significant instruction
regarding our complexity analysis is the invocation of Algorithm
expand, which according to Lemma 3 requires no more
than Oðnm3Þ time. As a conclusion, Oðmmnm3Þ ¼ Oðnm5Þ is an
upper bound to the worst-case time required to execute
extractðts;min;maxÞ. h
Lemma 5 (Algorithm filter). Let L be a list of TextSets of size k.
OðknmÞ is an upper bound to the worst-case time required to execute
filterðLÞ.
Proof. The algorithm iterates through every Text in L. If we denote
the size of L as k, then this loop iterates k times. In each iteration,
the algorithm checks the variability of the current TextSet, which
requires to compare the first Text to every other in order to deter-
mine whether the TextSet has variability or not. According to
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Proposition 1, nbm2c is an upper bound to the number of Texts in a
TextSet, which implies that Oðknbm2cÞ# OðknmÞ is an upper bound
to the worst-case time required to execute filterðLÞ. h
3.3. Complexity of TEX

Theorem 1 (Algorithm TEX). Let ts be a TextSet and min and max be
the minimum and maximum sizes of the shared patterns for which TEX
searches. Then, Oðnm5Þ is an upper bound to the worst-case time
required to execute TEXðts;min;maxÞ.
Proof. The proof follows straightforwardly from the previous lem-
mas. Note that Algorithm TEX invokes Algorithms extract and filter

in sequence, which, according to Lemmas 4 and 5 require no more
than Oðnm5Þ and OðknmÞ time to complete, where k denotes the
size of the list of TextSets returned by Algorithm extract. Note that
m puts an upper bound to the size of this list, which implies that
Oðnm5 þ nm2Þ# Oðnm5Þ is an upper bound to the worst-case time
required to execute TEXðts;min;maxÞ. h
Corollary 1. If we assume that n� m, then Oðm5Þ is an upper bound
to the worst-case time complexity of Algorithm TEX, which makes it
computationally tractable.
4. Experimental results

In this section, we present the results of the experiments we
have carried out to compare TEX to other techniques in the litera-
ture from an empirical point of view. We have developed a proto-
type of TEX using the CEDAR framework [54]. We performed our
experiments on a machine that was equipped with an Intel Core
i7 processor that ran at 3.4 GHz, had 8 GB of RAM, Windows 7
Pro 64-bit, Oracle’s Java Development Kit 1:7:0 03 b02, and GNU
Regex 1:1:4.

First, we describe the datasets used in our experimental study,
then we describe the techniques in the literature with which we
compared TEX, next we study the effectiveness and the efficiency
of the techniques, and finally we rank them statistically.

4.1. Datasets

We performed our experiments on a collection of 55 datasets
that contain a total of 2084 web documents that can be classified
into two groups: the first group is composed of 41 datasets gath-
ered from 41 real-world web sites, whereas the second group is
composed of 14 datasets downloaded from two public reposito-
ries. The first group contains datasets on books, cars, conferences,
doctors, jobs, movies, real estates, and sports. These categories
were randomly sampled from The Open Directory sub-categories,
and the web sites inside each category were randomly selected
from the 100 best ranked web sites between December 2010
and March 2011 according to Google’s search engine. We down-
loaded 30 web documents from each web site and handcrafted
a set of annotations, i.e., we created a number of TextSets with
the information that we would like to extract from each site.
The second group contains all of the datasets available online at
the EXALG repository [2] and the datasets composed of semi-
structured web documents available at the RISE repository [43].
Table 1 show the information in which we were interested from
the datasets.

JTidy is a Java implementation of HTML tidy [47], which is a
proposal that is intended to preprocess web documents by fixing
their HTML code and converting it into XHTML. For instance, it
fixes web document doctype declarations, adds missing end tags,
and reports on unknown attributes, if necessary. Since our datasets
were gathered from real-world web sites, they usually contained
errors in their HTML code. Table 2 presents the results we have
gathered regarding a subset of common HTML errors that are re-
ported by JTidy; the full report is too large to be reproduced here.
Our only purpose was to make it clear that we have dealt with ac-
tual documents, and that they usually contain errors that must be
fixed heuristically. JTidy is a constituent part of many information
extraction proposals that build on DOM trees. Note that TEX does
not require to use JTidy since it can work on malformed input
documents.

Table 3 reports on some properties of the datasets. The first col-
umn illustrates the categories of the datasets; the second and the
third columns list the web sites and an identifier that we use in
the following tables; the fourth column reports on the number of
documents inside each dataset; the fifth column shows the mean
size of documents in kibibytes; the sixth column shows the mean
number of errors reported by JTidy inside each dataset; the seventh
column reports on the mean time in seconds required to clean and
fix a web document; finally, the last column reports on the mean
time to tokenise each document.

4.2. Other techniques

We searched the Web or requested the authors of the related
information extraction techniques to send us the implementations
of their proposals. Unfortunately, we only managed to get the fol-
lowing implementations:

� RoadRunner [16]: It takes two or more web documents as input
and tries to learn a union-free regular expression that describes
them. It considers the first web document as a base template
and then iterates through the other web documents; in each
iteration, it compares the current web document with the base
template using a string alignment algorithm, then collapses
mismatches, and applies a backtracking algorithm to detect
optional and repetitive patterns.
� FiVaTech [28]: It takes one or more web documents as input

and tries to learn the template that was used to generate them.
FiVaTech applies a clustering algorithm that applies a tree-edit
distance to the DOM nodes of the input web documents; it then
uses a matrix alignment algorithm to align the previous nodes
on a per-cluster basis; then, it applies an algorithm to mine
repetitive patterns in the aligned matrix, and, finally, applies
some heuristics to detect optionality.
� SoftMealy [26]: It takes a collection of web documents and their

corresponding annotations as input and learns an extraction
rule that is a non-deterministic finite-state transducer. The
states of the transducer indicate the attributes to extract, the
transitions account for the possible orderings of the attributes
in the input web documents, and the conditions indicate when
the extraction of an attribute should start or end. Transition
conditions are learnt using a token alignment and generalisa-
tion algorithm.
� WIEN [32]: It takes a collection of annotated web documents as

input and learns simple regular expressions that contain the
delimiters of the information that should be extracted. These
delimiters are the longest common prefix of characters, and
the longest common suffix of characters for each type of attri-
butes. WIEN cannot handle optional attributes.

4.3. Effectiveness analysis

We first ran RoadRunner, FiVaTech, SoftMealy, and WIEN on the
datasets in order to learn extraction rules. Since there is not an



Table 1
Information of interest from the datasets.

Repository Category Information of interest

Ours Books Title, author, price, year, isbn
Cars Model, year, description, price, type, colour, milage, transmission, engine, doors
Conferences Title, date, place, url
Doctors Name, address, phone, fax, specialty
Jobs Location, company
Movies Title, director, actor, year, runtime
Real estate Address, bedrooms, bathrooms, price, size
Sports Name, birth, hight, weight, age, college, country, club, position

EXALG cars.amazon.com Model, make, price
players.uefa.com Name, country
popartist.amazon.com Name
teams.uefa.com Fifa-affiliation, founded, general-secretary, president, press-officer, uefa-affiliation
ausopen.com Birthdate, birthplace, country, height, money, name, weight
ebay.com Price, bids, location
majorleaguebaseball.com Name, position, team
netflix.com Title, director, length, year
rpmfind.net Name, description, operative-system

RISE bigbook.com Name, city, phone, street
iaf.net Name, email, organisation, service-provider
laweekly.com/restaurants Name, address, speciality
okra.ucr.edu Name, email
zagat.com Name, address, type

Table 2
Subset of common errors.

Error Mean

Error: <> is not recognised! 0.16 ± 0.57
Error: <> missing ‘>’ for end of tag 0.41 ± 1.07
Error: discarding unexpected <> 1.50 ± 6.46
Error: missing quotemark for attribute value 0.01 ± 0.10
Warning: <> element not empty or not closed 24.31 ± 42.45
Warning: <> is not approved by W3C 2.70 ± 6.14
Warning: <> is not allowed after elements 0.03 ± 0.17
Warning: <> is not allowed in <> elements 13.71 ± 11.14
Warning: <> should not be nested 0.07 ± 0.46
Warning: <> unexpected or duplicate quote mark 3.65 ± 30.00
Warning: adjacent hyphens within comment 1.32 ± 2.29
Warning: discarding unexpected <> 3.33 ± 6.12
Warning: inserting implicit <> 1.23 ± 4.95
Warning: link is not allowed in <> elements 0.00 ± 0.02
Warning: meta is not allowed in <> elements 0.06 ± 0.45
Warning: missing <> before <> 3.21 ± 7.36
Warning: missing <> declaration 1.00 ± 0.00
Warning: missing <> 4.68 ± 8.02
Warning: plain text is not allowed in <> elements 0.74 ± 0.45
Warning: replacing element <> by <> 0.09 ± 0.29
Warning: replacing unexpected <> by <> 0.21 ± 1.01
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upper bound to the learning time, we set a time out of 15 CPU min-
utes. We then computed precision (P), recall (R), and F1-measure
(F1).

In the case of SoftMealy and WIEN, it was easy to compute the
precision and recall for each attribute since both techniques are
supervised, i.e., they require the user to provide annotations with
the information to be extracted so that an extraction rule can be
learnt and validated. Contrarily, TEX, RoadRunner, and FiVaTech
are unsupervised, i.e., they extract as much prospective informa-
tion as possible, and it is the responsibility of the user to label that
information appropriately. TEX extracts the information in the
form of TextSets, RoadRunner as sets that correspond to the instan-
tiation of variables in the regular expressions it learns, and FiVa-
Tech from so-called basic types in the template it learns. In spite
of the differences, note that the result of the extraction process is
always a collection of TextSets, which are labelled with user-
defined labels in the case of SoftMealy and WIEN, but computer-
generated labels in the case of TEX, RoadRunner, and FiVaTech.
Since we handcrafted annotations for every web document in
our datasets, we could find which extracted TextSet was the closest
to each annotation. To validate our technique, we compared each
TextSet extracted to every annotation, and computed the number
of true positives (tp), false negatives (fn), and false positives (fp),
which allowed us to compute precision as P ¼ tp

tpþfp, recall as
R ¼ tp

tpþfn, and the F1-measure as F1 ¼ 2� P�R
PþR. Given an annotation,

we considered that the precision and recall to extract it correspond
to the extracted TextSet with the highest F1 measure.

Recall that TEX can introduce a bias to the algorithm that
searches for shared patterns. In our experiments, we used the fol-
lowing heuristic to find the most appropriate bias: we first set min
to 1 and max to the size of the longest input document, let it be m,
and we measured precision and recall; note that this does not
introduce any bias, since these values allow TEX to explore every
possible shared pattern. We then set max ¼ bm2c and measured pre-
cision and recall again; if there were no changes, we then set
max ¼ bm4c and repeated the procedure until precision or recall
was affected. Similarly, we explored changes to min. We experi-
mentally found that setting min ¼ 2 and max ¼ b0:05mc was the
maximum allowable bias. This resulted in a significant reduction
of CPU time, without having an impact on neither precision nor
recall.

Table 4 shows our results regarding effectiveness. The first few
rows provide a summary in terms of mean and standard deviation
of precision, recall, and F1-measure regarding TEX and the other
techniques. In average, TEX seems to outperform the other tech-
niques in both precision and recall. The remaining rows provide
the results we obtained for each web site. Note that some cells con-
tain a dash, which indicates that the corresponding technique was
not able to learn an extraction rule in 15 CPU minutes.

The drawbacks and the weak points of each technique were re-
flected in the previous results. RoadRunner and WIEN do not take
disjunctions into account, which means that they have trouble
with web documents in which different formats are used to display
the same information; this is the reason why their precision and
recall are relatively low and the standard deviation is relatively
high. FiVaTech and RoadRunner could not learn the extraction
rules for many datasets due to the complexity of their learning
algorithms. SoftMealy has the problem known as early matching,
which was reported by [44]: it does not consider the cases in which



Table 3
Dataset properties.

Category ID Url Nr. Docs Size Errors JTidy Tokenisation

Books S01 www.abebooks.com 30 37.65 ± 3.05 2.94 ± 0.28 0.03 ± 0.04 0.01 ± 0.01
S02 www.awesomebooks.com 30 20.15 ± 2.42 2.16 ± 0.58 0.01 ± 0.01 0.00 ± 0.01
S03 www.betterworldbooks.com 30 125.23 ± 11.57 2.30 ± 0.00 0.02 ± 0.01 0.00 ± 0.01
S04 www.manybooks.net 30 26.84 ± 9.61 6.50 ± 2.31 0.01 ± 0.01 0.00 ± 0.01
S05 www.waterstones.com 30 79.68 ± 26.22 6.46 ± 0.96 0.01 ± 0.01 0.01 ± 0.01

Cars S06 www.autotrader.com 30 183.51 ± 17.78 13.66 ± 2.43 0.05 ± 0.01 0.01 ± 0.01
S07 www.carmax.com 30 67.26 ± 2.74 9.57 ± 0.74 0.02 ± 0.01 0.01 ± 0.01
S08 www.carzone.i.e. 30 71.05 ± 1.65 5.94 ± 0.33 0.01 ± 0.01 0.00 ± 0.01
S09 www.classiccarsforsale.co.uk 30 76.02 ± 16.76 1.25 ± 0.06 0.01 ± 0.01 0.01 ± 0.01
S10 www.internetautoguide.com 30 154.22 ± 16.35 8.20 ± 0.53 0.02 ± 0.01 0.01 ± 0.01

Events S11 events.linkedin.com 30 9.89 ± 3.81 1.18 ± 0.24 0.00 ± 0.01 0.00 ± 0.00
S12 www.allconferences.com 30 17.83 ± 2.27 1.52 ± 0.03 0.01 ± 0.01 0.00 ± 0.00
S13 www.mbendi.com 30 6.95 ± 0.09 1.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
S14 www.netlib.org 30 2.13 ± 0.86 0.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
S15 www.rdlearning.org.uk 30 4.23 ± 0.64 0.70 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Doctors S16 doctor.webmd.com 30 59.23 ± 0.94 1.20 ± 0.03 0.01 ± 0.01 0.01 ± 0.01
S17 extapps.ama-assn.org 30 24.87 ± 0.18 1.80 ± 0.00 0.01 ± 0.01 0.00 ± 0.01
S18 www.dentists.com 30 11.92 ± 1.43 5.16 ± 2.11 0.01 ± 0.01 0.00 ± 0.00
S19 www.drscore.com 30 23.78 ± 0.67 1.65 ± 0.82 0.00 ± 0.01 0.00 ± 0.00
S20 www.steadyhealth.com 30 81.39 ± 0.25 1.20 ± 0.00 0.01 ± 0.01 0.00 ± 0.01

Jobs S21 careers.insightintodiversity.com 30 30.36 ± 1.45 3.35 ± 0.45 0.01 ± 0.01 0.01 ± 0.01
S22 www.4jobs.com 30 79.76 ± 3.57 5.52 ± 2.23 0.02 ± 0.01 0.01 ± 0.01
S23 www.6figurejobs.com 30 72.79 ± 1.82 8.47 ± 0.06 0.02 ± 0.01 0.00 ± 0.01
S24 www.careerbuilder.com 30 54.17 ± 3.10 4.70 ± 0.30 0.01 ± 0.01 0.01 ± 0.01
S25 www.jobofmine.com 30 23.90 ± 2.86 2.05 ± 0.01 0.00 ± 0.01 0.00 ± 0.00

Movies S26 www.albaniam.com 30 5.70 ± 0.10 0.60 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
S27 www.allmovie.com 30 33.79 ± 5.24 2.97 ± 0.10 0.01 ± 0.01 0.00 ± 0.01
S28 www.citwf.com 30 19.50 ± 0.54 1.05 ± 0.02 0.00 ± 0.01 0.00 ± 0.01
S29 www.disneymovieslist.com 30 47.26 ± 8.84 1.62 ± 0.20 0.01 ± 0.01 0.00 ± 0.00
S30 www.imdb.com 30 97.35 ± 3.63 6.94 ± 0.16 0.02 ± 0.01 0.01 ± 0.01
S31 www.soulfilms.com 30 28.48 ± 7.89 3.31 ± 0.14 0.00 ± 0.01 0.00 ± 0.01

Real estate S32 realestate.yahoo.com 30 93.94 ± 12.22 14.61 ± 0.30 0.02 ± 0.01 0.01 ± 0.01
S33 www.haart.co.uk 30 89.64 ± 8.85 2.00 ± 0.21 0.02 ± 0.01 0.00 ± 0.01
S34 www.homes.com 30 59.32 ± 10.07 5.00 ± 0.82 0.01 ± 0.01 0.00 ± 0.01
S35 www.remax.com 30 69.98 ± 3.19 3.79 ± 0.14 0.01 ± 0.01 0.00 ± 0.01
S36 www.trulia.com 30 175.39 ± 6.43 15.64 ± 0.49 0.05 ± 0.01 0.01 ± 0.01

Sports S37 baseball.playerprofiles.com 30 20.89 ± 6.86 1.75 ± 0.18 0.00 ± 0.01 0.00 ± 0.00
S38 en.uefa.com 30 63.42 ± 12.22 1.59 ± 0.00 0.02 ± 0.01 0.00 ± 0.01
S39 www.atpworldtour.com 30 135.55 ± 12.29 4.60 ± 1.49 0.05 ± 0.01 0.01 ± 0.01
S40 www.nfl.com 30 94.92 ± 1.82 4.21 ± 0.07 0.02 ± 0.01 0.01 ± 0.01
S41 www.soccerbase.com 30 85.02 ± 21.04 7.82 ± 0.52 0.02 ± 0.01 0.01 ± 0.01

EXALG S42 cars.amazon.com 21 25.16 ± 1.88 1.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01
S43 players.uefa.com 20 12.09 ± 1.06 0.52 ± 0.03 0.00 ± 0.01 0.00 ± 0.00
S44 popartist.amazon.com 19 34.17 ± 10.26 1.75 ± 0.00 0.00 ± 0.01 0.01 ± 0.01
S45 teams.uefa.com 20 6.87 ± 0.05 1.64 ± 0.44 0.00 ± 0.01 0.00 ± 0.00
S46 www.ausopen.com 29 41.22 ± 4.73 3.34 ± 0.03 0.01 ± 0.01 0.00 ± 0.01
S47 www.ebay.com 50 26.43 ± 2.34 0.91 ± 0.94 0.01 ± 0.01 0.00 ± 0.01
S48 www.majorleaguebaseball.com 9 40.10 ± 7.74 1.30 ± 0.00 0.00 ± 0.01 0.00 ± 0.01
S49 www.netflix.com 50 43.90 ± 2.76 6.29 ± 0.49 0.01 ± 0.01 0.00 ± 0.01
S50 www.rpmfind.net 20 34.68 ± 81.49 0.50 ± 0.02 0.00 ± 0.01 0.00 ± 0.01

RISE S51 www.bigbook.com 235 24.73 ± 5.91 1.03 ± 0.30 0.00 ± 0.01 0.00 ± 0.01
S52 www.iaf.net 252 14.24 ± 3.60 0.66 ± 0.21 0.00 ± 0.00 0.00 ± 0.00
S53 okra.ucr.edu 10 7.76 ± 8.13 0.77 ± 0.82 0.00 ± 0.01 0.00 ± 0.00
S54 www.laweekly.com/restaurants 28 5.16 ± 3.76 0.25 ± 0.14 0.00 ± 0.00 0.00 ± 0.00
S55 www.zagat.com 91 18.23 ± 1.04 1.60 ± 0.49 0.00 ± 0.01 0.00 ± 0.00
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the learnt rules match before the start or the end of the informa-
tion to be extracted, which reduces its effectiveness.

4.4. Efficiency analysis

Table 5 shows our results regarding efficiency of TEX and the
other techniques. The table shows the learning time (LT), extrac-
tion time per web document (ET), and the total execution time
(TT) for each technique. (Note that TEX does not learn extraction
rules, so we use NA in the corresponding column to mean not
applicable. All timings are expressed in CPU seconds.) The first
few rows provide a summary in terms of mean and standard devi-
ation for each of the variables. The learning time and the extraction
time do not include the time consumed by JTidy in the case of
RoadRunner and FiVaTech, neither they include the tokenisation
time in the case of TEX, SoftMealy, and WIEN. The reason is that
the time to clean or tokenise a document is not actually an intrinsic
feature of the proposals being analysed; these times are included
in the total execution time.

In average, the extraction times per web document in the cases
of RoadRunner and FiVaTech are very close to the times required
by TEX, which outperforms the other techniques regarding the



Table 4
Comparison of effectiveness.

TEX RoadRunner FivaTech SoftMealy WIEN

P R F1 P R F1 P R F1 P R F1 P R F1

Summary
Mean 0.96 0.95 0.95 0.36 0.36 0.35 0.80 0.87 0.81 0.84 0.61 0.66 0.72 0.61 0.64
StDev 0.07 0.11 0.09 0.45 0.45 0.44 0.20 0.17 0.17 0.15 0.32 0.30 0.24 0.31 0.29

Site P R F1 P R F1 P R F1 P R F1 P R F1
Books S01 1.00 1.00 1.00 – – – 0.92 0.99 0.95 0.87 0.58 0.70 0.52 0.16 0.24

S02 1.00 0.87 0.93 1.00 1.00 1.00 0.85 1.00 0.92 1.00 0.39 0.56 0.77 0.26 0.39
S03 0.99 1.00 0.99 0.00 0.00 0.00 0.99 0.96 0.97 0.98 0.99 0.98 0.43 0.35 0.39
S04 0.99 0.99 0.99 – – – 0.77 0.97 0.86 0.99 0.99 0.99 0.25 0.23 0.24
S05 0.96 1.00 0.98 1.00 0.89 0.94 1.00 0.94 0.97 1.00 1.00 1.00 0.71 0.67 0.69

Cars S06 0.99 1.00 1.00 0.00 0.00 0.00 – – – 0.89 0.87 0.88 0.89 0.00 0.00
S07 1.00 1.00 1.00 0.00 0.00 0.00 0.45 0.89 0.60 0.89 0.89 0.89 0.88 0.88 0.88
S08 0.98 1.00 0.99 0.00 0.00 0.00 0.92 1.00 0.96 0.92 0.02 0.05 0.82 0.83 0.83
S09 0.86 0.90 0.88 0.00 0.00 0.00 – – – 0.90 0.90 0.90 0.17 0.13 0.15
S10 1.00 1.00 1.00 0.00 0.00 0.00 0.97 0.94 0.96 – – – 0.11 0.11 0.11

Events S11 0.96 0.96 0.96 0.74 0.74 0.74 – – – 0.87 0.55 0.68 0.57 0.20 0.30
S12 0.98 0.99 0.99 – – – 0.84 0.90 0.87 0.99 0.25 0.40 0.80 0.40 0.53
S13 1.00 1.00 1.00 0.90 1.00 0.95 0.90 1.00 0.95 0.60 0.60 0.60 0.80 0.40 0.53
S14 0.96 0.98 0.97 0.00 0.00 0.00 0.39 0.50 0.44 0.87 0.44 0.59 0.40 0.40 0.40
S15 0.99 0.99 0.99 0.00 0.00 0.00 0.99 0.79 0.88 0.52 0.39 0.45 0.62 0.23 0.34

Doctors S16 1.00 1.00 1.00 0.00 0.00 0.00 0.77 1.00 0.87 0.86 0.45 0.59 0.60 0.60 0.60
S17 0.98 1.00 0.99 – – – – – – 0.79 0.39 0.53 0.60 0.60 0.60
S18 0.92 1.00 0.96 1.00 1.00 1.00 0.56 0.99 0.72 0.61 0.61 0.61 1.00 1.00 1.00
S19 1.00 1.00 1.00 1.00 1.00 1.00 0.78 1.00 0.88 0.91 0.87 0.89 0.78 0.80 0.79
S20 1.00 1.00 1.00 0.00 0.00 0.00 0.83 0.83 0.83 0.75 0.25 0.38 0.75 0.75 0.75

Jobs S21 0.83 0.83 0.83 0.70 0.70 0.70 1.00 0.74 0.85 0.57 0.47 0.52 1.00 1.00 1.00
S22 0.92 0.98 0.95 0.00 0.00 0.00 – – – 0.45 0.25 0.32 0.94 0.94 0.94
S23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.75 0.00 0.00 0.25 0.25 0.25
S24 1.00 1.00 1.00 0.00 0.00 0.00 0.80 0.83 0.82 0.75 0.00 0.00 0.75 0.75 0.75
S25 0.86 1.00 0.93 0.86 1.00 0.93 – – – 0.75 0.03 0.06 0.50 0.50 0.50

Movies S26 0.95 0.98 0.96 0.81 1.00 0.89 0.82 0.81 0.81 0.85 0.40 0.54 0.87 0.24 0.38
S27 0.97 0.96 0.96 0.27 0.30 0.28 0.79 0.74 0.77 0.93 0.29 0.44 0.13 0.07 0.09
S28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.72 0.81 0.39 0.30 0.34
S29 1.00 1.00 1.00 0.00 0.00 0.00 0.71 0.67 0.69 0.97 0.97 0.97 0.72 0.72 0.72
S30 0.93 0.86 0.89 0.00 0.00 0.00 – – – 0.88 0.85 0.86 0.38 0.38 0.38
S31 0.99 0.92 0.95 0.00 0.00 0.00 0.59 1.00 0.74 0.99 0.95 0.97 0.91 0.81 0.86

Real estate S32 1.00 1.00 1.00 0.00 0.00 0.00 0.77 0.97 0.86 1.00 1.00 1.00 0.83 0.83 0.83
S33 1.00 1.00 1.00 0.00 0.00 0.00 0.94 1.00 0.97 1.00 1.00 1.00 0.78 0.75 0.76
S34 0.99 0.99 0.99 0.00 0.00 0.00 – – – 0.80 0.79 0.79 0.92 0.92 0.92
S35 0.70 0.98 0.82 – – – 0.77 0.99 0.87 0.84 0.84 0.84 1.00 1.00 1.00
S36 0.63 1.00 0.77 0.00 0.00 0.00 – – – 0.88 0.92 0.90 1.00 0.89 0.94

Sports S37 1.00 1.00 1.00 0.00 0.00 0.00 0.36 0.99 0.52 0.83 0.13 0.23 1.00 1.00 1.00
S38 1.00 1.00 1.00 0.00 0.00 0.00 – – – 1.00 1.00 1.00 1.00 1.00 1.00
S39 0.97 0.99 0.98 0.00 0.00 0.00 0.99 0.88 0.93 0.94 0.94 0.94 0.71 0.71 0.71
S40 1.00 1.00 1.00 0.93 1.00 0.97 0.53 0.81 0.64 0.71 0.71 0.71 0.86 0.86 0.86
S41 0.97 1.00 0.98 0.00 0.00 0.00 – – – 0.89 0.89 0.89 0.89 0.89 0.89

EXALG S42 0.93 0.73 0.82 0.27 0.33 0.30 0.60 0.67 0.63 0.98 1.00 0.99 0.97 1.00 0.98
S43 1.00 0.90 0.95 0.92 0.92 0.92 0.91 0.94 0.92 0.92 0.90 0.91 0.92 0.51 0.66
S44 1.00 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.94 0.72 0.82 0.92 0.58 0.71
S45 0.99 0.99 0.99 0.90 0.92 0.91 0.97 0.99 0.98 0.81 0.89 0.85 0.64 0.75 0.69
S46 1.00 1.00 1.00 0.37 0.39 0.38 0.24 0.82 0.37 0.65 0.28 0.39 0.67 0.32 0.43
S47 0.97 1.00 0.98 0.00 0.00 0.00 0.83 1.00 0.91 0.70 0.12 0.20 0.70 0.12 0.20
S48 0.98 0.55 0.70 0.00 0.00 0.00 0.99 1.00 0.99 0.99 0.46 0.63 0.65 0.33 0.44
S49 0.99 0.99 0.99 – – – 0.82 0.80 0.81 0.94 0.82 0.88 0.99 0.99 0.99
S50 0.95 0.97 0.96 0.98 0.99 0.98 0.99 0.41 0.58 0.72 0.03 0.06 0.99 0.99 0.99

RISE S51 0.95 0.94 0.94 1.00 1.00 1.00 – – – 0.81 0.77 0.79 0.68 0.98 0.80
S52 0.84 0.38 0.52 0.00 0.00 0.00 0.53 0.69 0.60 0.37 0.43 0.40 1.00 1.00 1.00
S53 1.00 0.82 0.90 0.96 0.56 0.71 0.49 0.34 0.40 0.83 0.82 0.82 0.60 0.67 0.63
S54 0.97 0.92 0.94 0.00 0.00 0.00 0.83 0.57 0.68 0.87 0.49 0.63 0.90 0.80 0.85
S55 1.00 0.86 0.92 0.00 0.00 0.00 1.00 0.98 0.99 0.81 0.63 0.71 0.81 0.72 0.76
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total execution time. (In the table, 0:00� 0:00 means that the time
was less than one millisecond, but the resolution of our timer was
not enough to measure such small amounts of time.)

The drawbacks of the other techniques were also reflected in
their efficiency results. RoadRunner relies on a backtracking algo-
rithm that may need too much time to learn an extraction rule
and its matching algorithm has exponential time complexity with
respect to the input document size in the worst case; FiVaTech re-
lies on a clustering algorithm that builds on a tree-edit distance
that is time consuming. These are the reasons why RoadRunner
and FiVaTech failed to learn an extraction rule in 6 and 14 cases,
respectively, after consuming 15 CPU minutes. SoftMealy needs
to match a couple of regular expressions before it can extract an
attribute, and there can be multiple couples of regular expressions



Table 5
Comparison of efficiency.

TEX RoadRunner FiVaTech SoftMealy WIEN

LT ET TT LT ET TT LT ET TT LT ET TT LT ET TT

Summary
Mean NA 0.01 0.81 20.03 0.00 20.41 122.94 0.01 123.48 7.10 0.79 53.63 7.80 0.66 18.99
StDev NA 0.02 0.86 123.71 0.00 123.68 196.42 0.01 196.60 5.13 0.21 57.61 5.15 0.27 14.82

Site LT ET TT LT ET TT LT ET TT LT ET TT LT ET TT
Books S01 NA 0.00 ± 0.00 0.44 – – – 15.46 0.00 ± 0.01 16.50 9.09 0.87 ± 0.23 36.33 9.66 0.52 ± 0.48 20.20

S02 NA 0.00 ± 0.00 0.28 0.92 0.00 ± 0.00 1.17 8.14 0.00 ± 0.01 8.53 5.68 1.00 ± 0.00 22.39 5.01 0.77 ± 0.38 11.47
S03 NA 0.03 ± 0.00 1.48 0.98 0.00 ± 0.00 1.62 85.32 0.01 ± 0.01 86.35 16.15 0.98 ± 0.03 58.00 15.57 0.43 ± 0.48 33.07
S04 NA 0.02 ± 0.00 0.62 – – – 65.49 0.00 ± 0.01 65.80 7.38 0.99 ± 0.01 37.80 6.74 0.25 ± 0.53 14.98
S05 NA 0.01 ± 0.00 0.59 1.14 0.00 ± 0.00 1.61 51.53 0.07 ± 0.05 53.96 8.67 1.00 ± 0.00 86.35 8.02 0.71 ± 0.38 17.05

Cars S06 NA 0.04 ± 0.00 1.98 0.83 0.00 ± 0.00 2.15 – – – 14.87 0.89 ± 0.26 119.34 14.18 0.89 ± 0.27 28.86
S07 NA 0.03 ± 0.00 1.11 1.72 0.00 ± 0.00 2.29 34.21 0.01 ± 0.01 34.98 7.66 0.89 ± 0.23 30.84 7.43 0.88 ± 0.27 15.33
S08 NA 0.01 ± 0.00 0.30 0.69 0.00 ± 0.00 1.08 446.90 0.02 ± 0.01 447.88 5.30 0.92 ± 0.27 34.27 4.80 0.82 ± 0.36 9.66
S09 NA 0.02 ± 0.00 0.86 1.47 0.00 ± 0.00 1.78 – – – 10.92 0.90 ± 0.27 89.81 10.03 0.17 ± 0.51 20.65
S10 NA 0.02 ± 0.00 0.87 4.74 0.00 ± 0.00 5.49 117.16 0.01 ± 0.01 118.09 8.74 – – 7.78 0.11 ± 0.51 17.14

Events S11 NA 0.01 ± 0.00 0.16 2.57 0.00 ± 0.00 2.65 – – – 5.04 0.87 ± 0.30 47.08 4.15 0.57 ± 0.52 7.49
S12 NA 0.01 ± 0.00 0.42 – – – 42.96 0.00 ± 0.01 43.18 10.06 0.99 ± 0.01 72.40 7.27 0.80 ± 0.45 12.11
S13 NA 0.00 ± 0.00 0.08 0.45 0.00 ± 0.00 0.51 1.56 0.00 ± 0.00 1.64 2.61 0.60 ± 0.55 8.38 1.86 0.80 ± 0.45 3.17
S14 NA 0.00 ± 0.00 0.05 0.17 0.00 ± 0.00 0.17 0.27 0.00 ± 0.00 0.30 6.65 0.87 ± 0.23 14.54 4.43 0.40 ± 0.55 6.77
S15 NA 0.00 ± 0.00 0.06 0.45 0.00 ± 0.00 0.48 6.21 0.00 ± 0.00 6.26 4.62 0.52 ± 0.42 11.75 3.24 0.62 ± 0.49 5.23

Doctors S16 NA 0.00 ± 0.00 0.34 0.73 0.00 ± 0.00 1.03 11.81 0.00 ± 0.00 12.14 8.28 0.86 ± 0.15 38.50 9.45 0.60 ± 0.52 24.27
S17 NA 0.00 ± 0.00 0.30 – – – – – – 6.07 0.79 ± 0.41 16.82 6.99 0.60 ± 0.52 14.59
S18 NA 0.00 ± 0.00 0.11 867.63 0.00 ± 0.00 867.77 9.94 0.00 ± 0.01 10.16 2.28 0.61 ± 0.50 10.50 1.97 1.00 ± 0.00 3.87
S19 NA 0.00 ± 0.00 0.20 3.28 0.00 ± 0.00 3.35 25.35 0.00 ± 0.01 25.47 4.49 0.91 ± 0.19 22.06 3.88 0.78 ± 0.40 7.57
S20 NA 0.10 ± 0.00 3.21 0.67 0.00 ± 0.00 1.01 9.59 0.00 ± 0.01 10.03 9.70 0.75 ± 0.41 49.89 9.56 0.75 ± 0.41 19.52

Jobs S21 NA 0.00 ± 0.00 0.33 0.78 0.00 ± 0.00 1.03 13.76 0.00 ± 0.01 14.10 7.77 0.57 ± 0.50 24.68 7.49 1.00 ± 0.00 14.82
S22 NA 0.01 ± 0.00 0.89 0.69 0.00 ± 0.00 1.33 – – – 9.09 0.45 ± 0.53 46.19 9.02 0.94 ± 0.10 19.02
S23 NA 0.01 ± 0.00 0.72 1.83 0.00 ± 0.00 2.40 90.78 0.01 ± 0.01 91.67 11.76 0.75 ± 0.50 39.08 11.56 0.25 ± 0.50 24.02
S24 NA 0.01 ± 0.00 0.39 0.53 0.00 ± 0.00 0.89 266.00 0.01 ± 0.01 266.67 8.13 0.75 ± 0.50 59.06 8.11 0.75 ± 0.50 16.05
S25 NA 0.01 ± 0.00 0.45 1.86 0.00 ± 0.00 1.98 – – – 5.19 0.75 ± 0.50 27.85 5.09 0.50 ± 0.58 9.95

Movies S26 NA 0.00 ± 0.00 0.17 0.64 0.00 ± 0.00 0.69 1.59 0.00 ± 0.00 1.62 3.65 0.85 ± 0.40 7.16 2.70 0.87 ± 0.41 4.43
S27 NA 0.03 ± 0.00 1.00 1.64 0.00 ± 0.00 1.95 14.84 0.00 ± 0.01 15.23 11.29 0.93 ± 0.41 50.34 7.78 0.13 ± 0.52 13.88
S28 NA 0.00 ± 0.00 0.12 0.69 0.00 ± 0.00 0.80 29.70 0.00 ± 0.00 29.84 3.70 0.92 ± 0.41 14.12 2.79 0.39 ± 0.41 6.61
S29 NA 0.01 ± 0.00 0.53 0.59 0.00 ± 0.00 0.76 259.23 0.00 ± 0.01 259.48 4.34 0.97 ± 0.03 49.28 3.95 0.72 ± 0.40 8.02
S30 NA 0.06 ± 0.00 2.54 0.97 0.00 ± 0.00 1.45 – – – 16.38 0.88 ± 0.38 80.22 15.87 0.38 ± 0.54 32.92
S31 NA 0.00 ± 0.00 0.34 0.47 0.00 ± 0.00 0.67 17.24 0.00 ± 0.00 17.46 10.64 0.99 ± 0.03 48.41 9.73 0.91 ± 0.41 19.28

Real estate S32 NA 0.02 ± 0.00 1.26 3.10 0.00 ± 0.00 3.62 246.95 0.03 ± 0.02 248.35 16.32 1.00 ± 0.00 103.49 15.62 0.83 ± 0.41 32.99
S33 NA 0.01 ± 0.00 0.48 2.75 0.00 ± 0.00 3.31 20.76 0.00 ± 0.01 21.40 7.43 1.00 ± 0.00 108.50 7.04 0.78 ± 0.37 14.21
S34 NA 0.02 ± 0.00 0.56 1.39 0.00 ± 0.00 1.78 – – – 8.25 0.80 ± 0.39 74.23 8.22 0.92 ± 0.19 16.49
S35 NA 0.04 ± 0.00 1.45 – – – – – – 7.60 0.84 ± 0.38 33.59 7.52 1.00 ± 0.00 15.35
S36 NA 0.12 ± 0.00 4.40 2.18 0.00 ± 0.00 3.56 – – – 25.55 0.88 ± 0.26 311.36 25.18 1.00 ± 0.00 51.42

Sports S37 NA 0.02 ± 0.00 0.66 1.37 0.00 ± 0.00 1.48 14.68 0.00 ± 0.01 14.84 5.51 0.83 ± 0.32 23.12 5.34 1.00 ± 0.00 10.48
S38 NA 0.01 ± 0.00 0.53 0.64 0.00 ± 0.00 1.05 – – – 5.99 1.00 ± 0.00 39.50 5.83 1.00 ± 0.00 11.82
S39 NA 0.06 ± 0.00 2.29 1.11 0.00 ± 0.00 2.68 111.03 0.03 ± 0.03 113.41 19.14 0.94 ± 0.13 202.05 18.75 0.71 ± 0.42 37.61
S40 NA 0.02 ± 0.00 1.09 1.65 0.00 ± 0.00 2.28 159.39 0.01 ± 0.01 160.40 10.14 0.71 ± 0.42 50.51 9.64 0.86 ± 0.32 19.67
S41 NA 0.04 ± 0.00 1.72 2.01 0.00 ± 0.00 2.48 – – – 11.54 0.89 ± 0.32 59.84 11.04 0.89 ± 0.32 22.42

EXALG S42 NA 0.00 ± 0.00 0.08 0.55 0.00 ± 0.00 0.62 2.29 0.00 ± 0.01 2.40 1.06 0.50 ± 0.36 11.19 19.47 1.00 ± 0.00 27.60
S43 NA 0.01 ± 0.00 0.16 0.51 0.00 ± 0.00 0.61 10.81 0.00 ± 0.01 10.94 1.34 0.46 ± 0.39 13.01 3.53 0.72 ± 0.51 7.25
S44 NA 0.00 ± 0.00 0.23 0.98 0.00 ± 0.00 1.06 246.97 0.01 ± 0.01 247.12 3.42 0.27 ± 0.55 26.96 15.66 0.32 ± 0.51 26.07
S45 NA 0.01 ± 0.00 0.16 0.28 0.00 ± 0.00 0.33 0.89 0.00 ± 0.00 0.94 1.00 0.99 ± 0.03 4.32 1.79 0.21 ± 0.29 4.07
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Table 6
Statistical ranking.

Ranking variable Friedman’s p-value Bergmann’s ranking

Technique Rank

P 5.96475E�09 TEX 1.61
FiVaTech 3.04
SoftMealy 3.04
WIEN 3.35
RoadRunner 3.96

R 1.40668E�08 TEX 1.80
FiVaTech 2.43
SoftMealy 3.45
WIEN 3.57
RoadRunner 3.76

F1 2.09518E�09 TEX 1.55
FiVaTech 2.85
SoftMealy 3.27
WIEN 3.47
RoadRunner 3.85

TT 9.9681E�11 TEX 0.20
RoadRunner 0.26
WIEN 0.38
FiVaTech 0.55
SoftMealy 0.61
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since it builds on non-deterministic transducers; WIEN requires
to match a prefix and a suffix regular expressions for every attri-
bute to be extracted. They both have to search for the delimiters
that match the rules learnt, which may require to perform several
passes through the input documents, thus increasing their extrac-
tion time per web document significantly compared to other
techniques. Note that SoftMealy learnt a rule for site S10 in 8:74
seconds, but its extraction algorithm did not finish and returned
an out of memory error.

4.5. Statistical ranking

In order to confirm our conclusions, we used statistical infer-
ence at the standard confidence level a ¼ 0:05, cf. Table 6. We
first used Friedman’s test [19] to check if P; R; F1, and TT could
be considered statistically equal or not for each technique; note
that Friedman’s p-value is largely less than a in every case, which
is a strong indication that the precisions, recalls, and the total
execution times cannot be considered statistically equal. We then
used Bergmann’s test [19] to rank the techniques and found out
that there is a strong statistical evidence that TEX outperforms
RoadRunner, FiVaTech, SoftMealy, and WIEN in terms of preci-
sion, recall, and, consequently, F1-measure. TEX also outperforms
the other techniques in terms of total execution time.
5. Conclusions

In this article, we have presented an information extraction
approach called TEX. It is based on the idea that web documents
that are generated by the same server side template share tokens,
and that these tokens contain irrelevant information since they
are parts of the server-side template that was used to generate
them.

TEX is a completely unsupervised information extractor that
saves end users from the burden of annotating training examples
to learn extraction rules, and from maintaining extraction rules.
TEX allows working on malformed web documents since it does
not require converting HTML code into XHTML or to build DOM
trees, which reduces its extraction time. Furthermore, it does
not need the information in the input web documents to be for-
matted using repetitive patterns.
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We have studied the complexity of TEX and demonstrated that
it is computationally tractable. Our empirical analysis of TEX on a
collection of real-world datasets has proved that our technique
achieves a very high precision and recall, which are very close to
100%. Our comparison and statistical analysis has shown that
our technique performs better than other techniques in the
literature.
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