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•

•

•

•

Heterostyly is a sex polymorphism which has challenged evolutionary biologists 

ever since Darwin. One of the lineages where heterostyly, and related stylar 

conditions, appears more frequently is the family Linaceae and its most diverse 

and widespread genus, Linum. Thus, this group is particularly suitable for testing 

competing hypotheses about ancestral and transitional stages on the 

evolutionary building up of heterostyly.

We generated a well-resolved phylogeny of Linum based on extensive sampling 

and plastid and nuclear DNA sequences, and used it to trace the evolution of 

character states of style polymorphism and its association with traits related to 

pollination and breeding systems, obtained from our samples and the literature.

Our results supported former phylogenetic hypotheses: the paraphyly of Linum 

and the non-monophyly of current taxonomic sections. Heterostyly was common 

in the genus, but appeared concentrated in the Mediterranean basin and, to a 

lesser extent, in the South African Cape. Ancestral character state reconstruction 

failed to determine a unique state as the most probable condition for style 

polymorphism in the genus. In contrast, approach herkogamy was resolved as 

ancestral state in some clades, in agreement with recent hypotheses on the 

evolution of heterostyly. Some traits putatively related with heterostyly, such as 

life-history and polyploidy, did show marginal or non significant phylogenetic 

correlation respectively. Although pollinator data are limited, the available 

evidence suggests that beeflies are associated with specific cases of heterostyly.

The consistent association between style polymorphism and heteromorphic 

incompatibility points out to ecological factors as drivers of the multiple 

evolution of style-polymorphism in Linum. Albeit based on limited evidence, we 

hypothesized that specialized pollinators and lack of mating opportunities drive 

evolution of style polymorphism and loss of the polymorphism, respectively.
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The great variation of flowers across lineages has inspired modern plant classification 

since Linneaus (1735), as well as the formulation of hypotheses about the causes of 

extreme angiosperm diversification, otherwise known as the Darwin’s abominable 

mystery (Grant & Grant 1965; Stebbins 1970, 1974; see Friedman 2009 and references 

therein for an historical account of Darwin’s views). This floral variation also occurs 

within species and populations, can be continuous or discontinuous, and often appears 

associated with geographical variation, which has been important to bring insights on 

the biotic and abiotic causes of such variation (Herrera et al., 2006; Strauss & Whittall 

2006, Gómez et al. 2009). Discontinuous variation at the population level, that is, 

presence of discrete and modal phenotypes, has been interpreted in the context of 

population divergence through disruptive selection (Ortiz et al. 2015). However, 

discontinuous variation sometimes results from negative frequency dependent 

selection, as the fitness of one phenotype strongly depends on the abundance of 

alternative phenotypes. At equilibrium, it is expected to find all phenotypes at the same 

proportion in the population. Discontinuous variation is better understood when 

accompanied by gender differentiation. With negative frequency selection, the success 

of the uncommon gender is larger than the common gender, as mate availability for the 

latter is lower (McCauley & Taylor 1997; Dufay et al. 2009). A similar situation can be 

achieved without gender differentiation (Pannell et al. 2005). Such is the case of 

reciprocal style polymorphisms, present in some hermaphroditic plants, where floral 

morphs display styles and stamens in a reciprocal position (Fig. 1), in a way that 

pollination and mating occurs more often between morphs rather than within morphs, 

maintaining the frequency of morphs at balance (Barrett 2002). 

The most common style polymorphism is heterostyly (Barrett & Shore 2008), for 

which flowers in populations present two (distyly) or three (tristyly) morphs. This 

polymorphism called the attention of evolutionists ever since Darwin (1877), and early 

geneticists, who soon discovered its apparently simple genetic basis (Bateson & Gregory 

1905). Yet, in those early times, it was recognized that most heterostylous species 

showed the so-called heteromorphic incompatibility system (only crosses between 

different morphs are compatible, whereas self-fertilization and within-morph cross-
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fertilization is impeded, Darwin 1877, Dulberger 1992). During most of 20th century, 

heterostyly was used as model system to study the evolution of inbreeding avoidance. 

Specifically, most of the studies interpreted the evolutionary pathways of heterostyly 

following the proposals of Mather & de Winton (1941), with important modifications by 

Baker (1966), ultimately leading to the quantitative model of Charlesworth & 

Charlesworth (1979). In short, these models predict that reciprocal style polymorphism 

evolved after the appearance of the incompatibility system, with an ancestral state of 

non-herkogamous (homostylous) flowers showing high selfing rates and inbreeding 

depression. These models were challenged by that of Lloyd & Webb (1992 a, b), who 

suggested that the main driving force for the establishment of the polymorphism was 

the promotion of compatible cross pollination and the decrease pollen discount 

(enhanced male fitness, as Darwin himself proposed in 1877). The latter model 

presumed (i) an independent evolution of sex organ reciprocity and an heteromorphic 

incompatibility system, and (ii) an ancestral condition of an outcrosser with approach 

herkogamous flowers (i.e., with the stigma protruding the anthers). This model strongly 

emphasized the ecological context of pollination: specialized pollinators select for and 

maintain the style morphs if they are able to place pollen grains on different parts of the 

body, and legitimately deliver pollen to the opposite stigmas, with minimal pollen loss.  

The model of Lloyd & Webb (1992 a, b) has progressively gained more support 

from both micro- and macroevolutionary studies. Microevolutionary analyses have 

mostly examined the relative rates of pollination and mating between and within 

morphs in populations (Lau & Bosque 2003, reviewed in Costa 2017). In contrast, 

macroevolutionary models to study how the heterostylous floral syndrome evolved 

have been relatively scarce compared to population level studies. To this respect, 

macroevolutionary studies in some plant groups, such as Narcissus, Lithodora and 

related genera, Pontederiaceae, Exochaenium, Amsinckia, or Primula (Kohn et al. 1996; 

Schoen et al. 1997; Guggisberg et al. 2006; Pérez-Barrales et al. 2006; Ferrero et al. 

2009; Kissling & Barrett 2013; Santos-Gally et al. 2013) have provided strong support to 

Lloyd & Webb’s (1992 a, b) ideas. Given that heterostyly is well represented both among 

lineages of Angiosperms (28 families across many orders in both monocots and dicots; 

Barrett & Shore 2008) and biomes, these studies offer good opportunities to explore the 
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ecological and biogeographical correlates of heterostyly in order to infer the conditions 

that favour this polymorphism to arise and be maintained. For example, heterostyly 

should be common in plants with specialised pollination, or should be disadvantageous 

where outcrossing is at risk, as expected when pollinators are scarce, or in highly 

disturbed environments (Piper et al. 1986). Likewise, it would be unlikely to find 

heterostyly associated with hybridization and polyploidy (both associated with self-

fertilization as by-product, Ramsey & Schemske 1998), or with short-lived plants, 

particularly in annuals, as these typically present higher selfing rates and occur more 

frequently in disturbed places compared to perennial plants (Barrett 2002). 

Heterostyly in Linaceae was first reported in the seminal works of Darwin (1864, 

1877) and Hildebrand (1864). In particular, Darwin’s experimental and observational 

work on Linum grandiflorum and L. perenne was influential in determining the function 

of the polymorphism. Later, it was suggested that other genera in the family could 

include distylous and tristylous species (Lloyd et al. 1990; Thompson et al. 1996). After 

Darwin´s work, geneticists used species of Linum to study the inheritance of heterostyly, 

and showed that style polymorphism and heteromorphic incompatibility appear linked 

(Lewis 1943; Dulberger 1992; Lewis & Jones 1992; Ushijima et al. 2012). Furthermore, 

the stability of heterostyly as a trait has been valuable for taxonomists, who used it as a 

binary character ("heterostylous" vs "homostylous") in identification keys and 

diagnoses (e.g., Ockendon & Walters 1968; Ockendon 1971; Martínez-Labarga & Muñoz-

Garmendia 2015; Ruiz-Martín et al. 2015). Thus, taxonomic descriptions have been 

valuable to characterize species and conduct evolutionary reconstructions of the trait 

(McDill et al. 2009). However, Linum is a highly diverse genus with a wide geographic 

distribution, in which the diversity of stylar conditions is much greater than previously 

reported (Ruiz-Martín, unpublished data; Darwin 1877; Heitz 1980; Armbruster et al. 

2006). Most of the taxonomic diversity appears in the Mediterranean and, surprisingly, 

the morphological variation on the types of polymorphism and other associated traits 

remains to be explored. Thus, Linum represents an excellent study system for testing 

macroevolutionary hypotheses and correlates with heterostyly. 

The specific aims of our study were: (1) to generate an updated phylogeny of 

Linum, including lineages and infrageneric taxa recognized in taxonomic studies, (2) to 
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estimate divergence times in order to date events of evolutionary significance for the 

polymorphism, (3) to reconstruct ancestral states for stylar condition and other related 

traits, (4) to estimate the significance of correlated evolution between style 

polymorphism and those other traits across the phylogeny, and (5) to integrate all these 

results in a geographical and ecological context , in order to infer the conditions under 

which heterostyly most likely evolved. Ultimately, we wished to validate current 

evolutionary models of heterostyly. 

Material and methods 

Floral measurements and categorization 

Previous work reported that style polymorphism in Linum concentrates mostly in the 

Mediterranean basin and South Africa (McDill et al. 2009). Thus, we concentrated our 

field sampling efforts in these regions (although other regions were also explored), and 

also extracted information from published sources. We collected up to 100 flowers from 

50 populations from 50 taxa of Linum (Table S1), and preserved flowers in 70% ethanol 

for morphological measurement in the laboratory. Linum flowers have five styles and 

five stamens, reaching each of five similar heights (we conducted a pilot study to assess 

within flower variation in the position of anthers and stigmas, and found that variation 

within flower was nearly negligible, results not shown). Anther and stigma heights were 

measured as the distance from base of the ovary to the top of the organ. All 

measurements were taken from digital images of the lateral view of flowers with petals 

removed, using ImageJ (Rasband 2008). Images were previously taken using a 

stereomicroscope (Zeiss Stemi-2000) with attached digital camera (Zeiss Axiocam). 

Data for the remaining Linum species and outgroups were collected from the literature 

(see Table S1 in Suppl. Material). 

We classified flowers of style polymorphic species as L-morph when the stigmas 

were positioned above the anther whorl, and S-morph when the stigmas were below the 

anther whorl. Style polymorphism includes two morphs (distyly and stigma height 

dimorphism) or three morphs (tristyly and stigma height trimorphism); and here we 



7 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

Page 7 of 54

refer to stigma height polymorphism as the discrete variation in stigma height but not in 

anther height, a condition related with heterostyly (Barrett et al. 2000). Species with 

populations with only one floral morph were named monomorphic and classified as 

follows: homostylous (no apparent separation between sexual organs), approach or 

reverse herkogamous (stigmas placed above or below the anther whorl respectively), 

and horizontal herkogamous (anther-stigma separation along the horizontal plane of the 

flower). This classification was based on extensive flower measurements and the 

frequency distribution of sex organ heights among population (Ruiz-Martín, 

unpublished data). It is important to highlight that most of taxonomic references classify 

style polymorphism as heterostylous (sometimes discriminating distyly from tristyly) or 

homostylous; the latter referring to any style monomorphic condition, regardless the 

relative position of anthers and stigmas (see description above). This distinction is 

critical for testing models of evolution of heterostyly in relation to the ancestral stylar 

condition (true non-herkogamous homostyly in Charlesworth & Charlesworth 1979 vs. 

approach herkogamy in Lloyd & Webb 1992a). Hence, the species that could not be 

sampled in the field were we characterised using the quantitative information provided 

in taxonomic descriptions (e.g. approach or reverse herkogamous when no overlap was 

reported between stamen and style length, otherwise homostylous).  

We included other biological traits of species putatively related with style 

polymorphism, and gathered information from the literature on life-history, 

chromosome number, breeding system, pollinators, ancillary traits (polymorphism in 

size and form of pollen grains and/or stigma papillae) and genetic control of 

polymorphism (see Table S1 Suppl. Material, for references). 

Given the lack of a comprehensive monograph for species identification on 

Linum, we followed the most recent and comprehensive taxonomic treatment for 

regions with high species diversity in the genus: Yusepchuk (1949), Davis (1967), 

Ockendon & Walters (1968), Rogers (1981), Greuter et al. (1984), Yilmaz & Kaynak 

(2008) and McDill et al. (2009). 

Phylogeny and divergence times 
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Sampling. 103 samples from 93 species or subspecies of Linum were included as 

ingroup, representing the five taxonomic sections. Two or three samples from different 

localities were included for nine Linum species with taxonomical doubts to test for 

monophyly. In addition, samples from eight species representing closely related genera 

(Anisadenia, Cliococca, Hesperolinon, Hugonia, Radiola, Reinwardtia, Sclerolinon and 

Tirpitzia, McDill et al. 2009) were included to evaluate if Linum is a monophyletic genus. 

Three species from closely related families (Hypericum perforatum from Hypericaceae, 

Viola pubescens from Violaceae, and Humiria balsamifera from Humiriaceae) were also 

included as outgroup (Table S1). 

Fifty-five leave samples from 48 species or subespecies of Linum were collected 

in field trips (vouchers stored at SEV herbarium; Table S1), whereas leaves from 

additional 18 taxa were obtained from herbaria collections (SEV, MA and E, Table S1). 

The DNA sequences from the remaining 29 species of Linum, eight of Linaceae and three 

from other families were directly downloaded from GenBank data base and previously 

published (see Table S1 for species and references). Two taxa were sampled in the field 

and obtained from herbaria. 

DNA extraction, PCR and sequencing. Total genomic DNA was extracted using DNEasy 

Plant Minikit (QIAGEN Inc., BIO Laboratories Inc., Carlsbad, CA, USA). One nuclear DNA 

region, ITS (internal transcribed spacer), and three plastid DNA regions, NADH 

dehydrogenase subunit F (ndhF) gene, maturase K (matK) gene and trnL-F spacer were 

amplified, purified and sequenced. PCR amplification was performed following McDill et 

al. (2009), with minor modifications. Products were purified using ExoSAP-IT (USB, 

Cleveland, Ohio, USA). Sequencing reactions were performed using the ABI BigDye® 

Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific Inc., Massachusetts, 

U.S.A.) in Macrogene Europe Laboratory (Amsterdam, The Netherlands). 

Phylogenetic analyses. Sequences from the four DNA regions were aligned separately 

using MaffT 6.0 FFT-NS-I (Katoh & Toh 2008) as implemented in Geneious Pro™ 5.3 

(Kearse et al. 2012). The resulting alignments were manually revised. Putative 

homoplasic regions were detected and removed from the alignments using GBlock 

v0.91b (Castresana 2000). Incongruence between DNA regions was discarded and the 

four DNA regions were combined in a single matrix (2,900 bp). 
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Bayesian inference analysis was performed using Markov chain Monte Carlo 241 

(MCMC) as implemented in MrBayes3.0b4 (Huelsenbeck & Ronquist 2001). The best-242 

fitted model of DNA evolution for each DNA region was selected from the analysis in 243 

ModelTest 3.06 (Posada & Crandall 1998). GTR +G +I was selected for ndhF and matK 244 

regions and GTR +G for trnL-F and ITS regions. To avoid overparameterization, we 245 

combined the three plastid regions in a matrix and analyzed it together using GTR +G +I 246 

model. Two independent analyses of four Metropolis-coupled Markov chains were run 247 

for 10 million generations. After a burn-in of 25%, the remaining trees (15,000) were 248 

used to construct a majority-rule consensus tree using posterior probability values as a 249 

measure of clade support. Phylogenetic analyses were performed using CIPRES Science 250 

Gateway V. 3.3 portal (Miller et al. 2010). 251 

Analyses of divergence times. The four DNA regions were combined in a single 252 

partition (using GTR+G+I as DNA model of evolution). Analyses were conducted using 253 

three independent MCMC runs of 120 million generations each, using Yule process as 254 

tree model and relaxed clock log normal as clock model, as implemented in BEAST 255 

v1.4.8 (Drummond & Rambaut 2007). Run convergence and burn-in were assessed in 256 

Tracer 1.6 (Rambaut & Drummond 2007). Trees from the three independent runs were 257 

combined using LogCombiner 1.4.8 (10% of burn-in). Maximum clade credibility trees 258 

were calculated with TreeAnnotator 2.3.2 using a posterior probability limit of 0.95, 259 

maximum clade credibility tree and the mean heights options.  260 

Two calibration points were used: 1) a secondary calibration base on the age of 261 

the stem node of Linaceae which is the Malpighiales crown node (Bell et al. 2010). 262 

Specifically, a normal distribution with a mean of 93.5 Ma (95% CI 88-97 Ma) was used 263 

as recommended for secondary calibrations. And, 2) a log-normal distribution with 264 

mean = 0, standard deviation = 1.0 and zero offset = 33.9 for the crown node of genus 265 

Linum (which includes genera Cliococca, Hesperolinon, Radiola and Sclerolinon). This last 266 

calibration point accounts for the oldest Linum fossil. This is a pollen grain from Ebro 267 

River Basin (33.9-37.2 Ma, Late Eocene, Cavagnetto & Anadón 1996). Analyses of times 268 

of divergence were performed using CIPRES Science Gateway V. 3.3 portal (Miller et al. 269 

2010) and the cluster located in Andalusian Scientific Information Technology Center 270 

(CICA, Seville, Spain). 271 
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Ancestral state reconstruction. We used maximum likelihood approaches to 

reconstruct the ancestral states of the stylar polymorphism in Linum, implemented in R 

(R Core Team 2015). We performed the analyses on the BEAST Bayesian phylogenetic 

tree obtained from ITS and chloroplast DNA regions. This tree was pruned to remove 

tips when the information of character state was unavailable. Because we included more 

than one sample for eight species, we also pruned the additional samples for the same 

species in the case of monophyly. Outgroup species and Hugonia busseana (Linaceae) 

were also pruned. Character ancestral state was estimated for each internal node of the 

tree using the re-rooting method of Yang et al. (1995) provided as a function in the 

package “phytools” (Revell 2012), where conditional probabilities are calculated for the 

root node (which is the same as the marginal state reconstruction for that node) and 

consecutively moves the root to each node in the tree. First, just to compare results with 

former studies based on a simple binary codification (McDill et al. 2009), we 

reconstructed ancestral states to understand the evolution of monomorphic vs. 

polymorphic states. The former included any of the states without within-population 

differentiation in morphs, with or without herkogamy; the latter include any of the style 

polymorphisms found. Second, we considered for the analysis of ancestral state 

reconstruction only relevant states to the two competing hypotheses of the evolution of 

heterostyly (Charlesworth & Charlesworth 1979; Lloyd & Webb 1992a). Thus, we 

formed five state groups: 1) monomorphic homostyly (ancestral state proposed by 

Charlesworth & Charlesworth 1979); 2) monomorphic approach herkogamy (ancestral 

state proposed by Lloyd & Webb 1992a); 3) monomorphic reverse herkogamy, which is 

the alternative state to monomorphic approach herkogamy; 4) style polymorphism -

including conventional distyly, three-dimensional distyly, stigma-height dimorphism 

and trimorphism; and 5) monomorphic horizontal herkogamy. The latter is not 

considered in any of the models, but it was found in some species and we were 

interested in determining its evolutionary pathway. Finally, because the most common 

ancestor of Linum (genus Tirpitzia) presents two monomorphic and one heterostylous 

species (Suksathan & Larsen 2006), we reconstructed ancestral states for Linum 

codifying the genus Tirpitzia first as monomorphic and second as heterostylous.   
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Phylogenetic correlations. To test the evolutionary correlations between stylar 

polymorphism and life history, and stylar polymorphism and polyploidy in Linum, we 

performed Pagel’s (1994) binary character correlation test implemented in the package 

“phytools” (Revell 2012) in R (R Core Team 2015). We performed the analyses on the 

same tree used for ancestral reconstruction analysis. The tree was pruned to include 

species for which information on stylar morph (monomorphic vs. polymorphic), life 

history (perennial vs. annual), and polyploidy (diploid vs. polyploid) was available. The 

method applies a continuous-time Markov model of trait evolution that calculates the 

likelihood of discrete trait data under two models of evolution, one in which the traits 

are allowed to evolve independently of one another on the phylogenetic tree and one in 

which they evolve in a correlated fashion (dependent model). The independent and 

dependent models can be compared by means of a likelihood ratio test, calculated as 

2(log[likelihood (dependent model)] – log[likelihood (independent model)]). 

Significance of the difference in log likelihoods is based on a χ2 distribution with 4 

degrees of freedom (4 parameters are estimated in the independent model and 8 are 

estimated in the dependent model). The parameters of the model of trait evolution are 

the values of the transition rates between the four possible character state combinations 

in a model of correlated evolution. 

Results 

Style polymorphism and other traits. Table S1 includes detailed information on traits 

from species. From field sampling or from bibliographic sources, we obtained 

information for 85 Linum species or subspecies, and 11 outgroup species. Our data 

includes 60% of species number (141) of Linum, as recorded at The Plant List (2013). 

Detailed quantitative data of flower measurements are still unpublished, and here we 

summarize the main results (see Table S1). Within Linum, 44 (47.3%) species presented 

some kind of style polymorphism, 41 (44.1%) were monomorphic, and eight (8.6%) 

lacked sufficient information to ascertain the stylar condition. Style polymorphic species 
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were mostly distylous (two morphs), but we identified deviations from typical distyly in 

some species, which we describe here. Armbruster et al (2006) reported a new type of 

distyly in the western Mediterranean endemic L. suffruticosum, showing high 

reciprocity, in three dimensions: on the vertical axis of the flower (flowers are from 

either L- or S-morph), on the radial axes (flowers have either outer stamens and inner 

styles or vice-versa) and on the longitudinal axis of each sex organ (anthers and stigmas 

are twisted to inner or outer side of the flower, Fig. 1). Information provided by Darwin 

(1877) in L. grandiflorum indicates that the species displays stigma-height dimorphism, 

that is, styles are either long or short, but stamens are not perfectly in a reciprocal 

position to stigmas. In the literature, we also found that Heitz (1980) mentioned some 

populations of L. perenne as having similar stigma-height dimorphism as in L. 

grandiflorum. Finally, L. hirsutum represents an interesting case resembling 

trimorphism. In our survey, we observed two anther levels and three style lengths in 

three populations sampled, but our sample size was limited as to completely ascertain it 

(Ruiz-Martín, unpublished data). Given the paucity of these unconventional cases of 

polymorphism, all of them were pooled as style polymorphism for the analysis of 

ancestral state reconstruction and correlated evolution, and their particular position 

along the tree is discussed below. 

Monomorphic species or subspecies of Linum were also variable: non-

herkogamous homostyly was observed in 16 species, approach herkogamy in 19 

species, reverse herkogamy in three species and horizontal herkogamy also in three 

species  

We found information on breeding system in only 19 species. Twelve species 

were reported as self-incompatible and seven species as self-compatible; the former 

were all style polymorphic whereas the later were all monomorphic. All self-

incompatible species presented a typical heteromorphic incompatibility system. We 

found data on ancillary traits (any heteromorphism on pollen size or colour, exine 

sculpturing, stigma width, stigmatic papillae) for eight taxa, all of them being distylous. 

With regards life-form, 27% Linum species in our sample were annual and 73% 

perennial (Table S1). We found reports on chromosome numbers in 50 taxa, with 23 

being style polymorphic and 27 monomorphic. Ten out the former and three out the 
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latter showed variation in the level of polyploidy (different counts of the whole 

chromosome set, Table S1). A particularly noteworthy case is that of L. suffruticosum, 

with a polyploid series from diploid to decaploid (Nicholls 1986; Ana Afonso, personal 

communication). 

The current information on the pollination biology of Linum species is scarce. 

Beeflies from the genus Usia (Bombyliidae) seem important pollinators in some 

distylous species from the Mediterranean basin. Distylous L. pubescens was almost 

exclusively pollinated by U. bicolor in eastern Mediterranean (Johnson & Dafni 1998; 

Gibbs 2014). Armbruster et al. (2006) observed that L suffruticosum was also almost 

exclusively pollinated by several Usia beeflies, whereas other flies and bees visited 

flowers but did not function as effective pollinators. Our own observations in additional 

populations of L. suffruticosum confirmed that Usia beeflies are the main pollinators, as 

well as in the distylous western Mediterranean L. tenue, and to a lesser extent L. 

viscosum, and L. narbonense (unpublished data). In contrast, monomorphic European-

Mediterranean L. tenuifolium was visited by a wide array of pollinators, including mostly 

bees and to a lesser extent flies (but not beeflies) of different size (see Fig 1). 

Monomorphic L. bienne was reported to be visited by large Bombylius spp. beeflies 

(Boesi et al. 2009), which often hover over flowers to collect nectar, rather than crawl 

down to the bottom of the flower, as observed in smaller Usia (Johnson & Dafni 1998; 

Armbruster et al. 2006). Its close relative, the monomorphic L. usitatissimum (cultivated 

flax), appeared visited mostly by bees (Ssymank et al. 2009). Finally, Kearns & Inouye 

(1994) reported that North American monomorphic L. lewisii received visits by 25 

species of nine families of flies and 19 species of four families of different orders, with 

very different body size, pollination efficiency, visit rate, and frequency across 

populations.  

Phylogenetic reconstruction based on Bayesian inference. The analyses of the three 

plastid (rbcL, matK and trnL-F) and nuclear (ITS) regions recovered congruent 

topologies under Bayesian criteria (data not shown), thus a consensus tree is shown 

(Fig. S1). Inferred trees were partially congruent with taxonomical subgeneric 

classification of Linum (sections) as already shown by McDill et al. (2009). Whereas the 
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genus Linum was paraphyletic, as core Linum included the genera Cliococca, 

Hesperolinon, Screrolinom and Radiola, the family Linaceae was monophyletic. The 

topology recovered by MrBayes (Fig S1) showed two main clades, similar to what was 

found by McDill et al. (2009). The first clade, Clade A, was mainly formed by sects. Linum 

and Dasylinum, mainly from Eurasia. Specifically, a species from sect. Linum, L. 

stelleroides from China, is sister to two main clades, Clade A1, the one formed by most of 

the species from sect. Dasylinum and the second clade, Clade A2, formed by most of the 

species from sect. Linum (including also some species from sect. Dasylinum). The second 

main clade, clade B, was formed by the other genera included in core Linum and the 

remaining sections (Linopsis, Syllinum and Cathartolinum). Specifically, Radiola is sister 

to two main clades, Clade B1, the one formed by genera Cliococca, Hesperolinon and 

Scleronlinon and sect. Linopsis from North and South America and South Africa, and the 

second clade, Clade B2, formed by sects. Linopsis (excluding the species from America 

and South Africa), Syllinum and Cathartolinum, and with a distribution mainly in Europe, 

Mediterranean basin, and western Asia. 

Times of diversification. The topology of the maximum credibility tree inferred from 

BEAST  (Fig. 2) analyses was highly congruent with the majority rule consensus tree 

inferred from MrBayes. The divergence time for crown node of Linaceae was 61.35 

(MYA) (95% CI: 44.48 - 84.62) (Fig 2). The crown node of core Linum was dated back to 

35.37 MYA (95% CI: 33.95 - 43.31). The crown node of Clade A was dated back to 30.38 

(95% CI: 23.65 - 38.59). The crown node of clade A1 was about 10.62 MYA (95% CI: 5.62 

– 17.42) and the crown node of clade A2 was about 21.89 MYA (95% CI: 15.26 – 28.67). 

The crown node for clade B was dated back to 19.7 MYA (95% CI: 11.48 - 29.49). Finally, 

the crown node of clade B1 was about 9.02 MYA (95% CI: 5.58 - 29.49) and the crown 

node of clade B2 was about 14.67 MYA (95% CI: 8.95 - 22.06). 

Evolutionary pathways of style polymorphism and phylogenetic correlations. 

Binary reconstruction (monomorphism vs. polymorphism). There were no 

significant differences when Tirpitzia was coded as polymorphic or monomorphic. 
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Equivocal ancestral state reconstruction of the most common ancestor of Linum and 

core Linum (Clade A, Clade A1, Clade A2, Clade B and Clade B2, Fig. 3) precludes 

inference whether the evolution of heterostyly derived from monomorphic or 

polymorphic condition. However, within particular clades in the genus it is possible to 

infer some trends. In Clade A1, there is a transition from polymorphism to 

monomorphism, although this is not significant (see L. seljukorum). Within Clade A2, 

three clear and significant transitions from polymorphism to monomorphism were 

inferred (see L. leonii, L. pallescens and L. lewisii).  The transitions from monomorphic to 

polymorphic state are also inferred in this clade (see L. grandiflorum and L. narbonense) 

but they were not significant. The most recent common ancestor of Clade B1 is clearly 

inferred as monomorphic with two significant transitions to polymorphism (see South 

African L. comptonii and L. heterostylum). Within Clade B2, transitions from 

polymorphism to monomorphism and from monomorphic to polymorphic states were 

not clear.  

Five-state reconstruction. There were no significant differences when Tirpitzia was 

coded as polymorphic or monomorphic. Again, equivocal ancestral state reconstruction 

of the most common ancestor of Linum precludes sound inference (Fig. 4). The most 

recent common ancestor of core Linum, Clade A, Clade A1, Clade A2, Clade B and Clade 

B2 is equally likely to have presented homostyly or polymorphic state. Within Clade A, 

clear and significant transitions from polymorphism to homostyly (see L. leonii and L. 

pallescens; also see L. seljukorum although it was not significant) and from 

polymorphism to approach herkogamy (see L. lewisii) were inferred. Also within Clade 

A, transitions from homostyly to polymorphic state (see L. grandiflorum and L. 

narbonense) and, to approach herkogamy (see L. hologynum) were inferred, although 

they were not significant. The most recent common ancestor of Clade B1 is approach 

herkogamy with four possible transitions inferred: to horizontal herkogamy (see He. 

micrantum and L. tenuifolium), to polymorphism (see L. comptonii and L. heterostylum), 

to reverse herkogamy (see L. littorale and L. prostratum) and to homostyly (see S. 

digynum). Reconstruction of shallower nodes of Clade B2 inferred clear and significant 

transitions from polymorphic state to reverse herkogamy (see L. nodiflorum), to 

horizontal herkogamy (see L. tenuifolium) and to homostyly (see L. corymbulosum- L. 
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trigynum clade; only marginally significant). Also within Clade B2 a transition from 456 

homostyly or from polymorphic state to approach herkogamy was inferred (see L. 457 

volkensii). 458 

459 

Trait correlations. There was marginal support for the correlation between presence 460 

of stylar polymorphism and perennial life-history of species. Our results indicated that a 461 

dependent model of evolution between life history and stylar polymorphism provided a 462 

marginally significant better fit to the data than an independent model (difference 463 

between likelihood–ratio = 9.136, p=0.057). For the set of 50 species where we were 464 

able to obtain data on chromosome number, there was no significant correlation 465 

between presence of stylar polymorphism and polyploidy (difference between 466 

likelihood-ratio= 3.646, p= 0.456). 467 

468 

Discussion 469 

470 

Linaceae is a family that includes some of the largest morphological diversity of style 471 

polymorphisms, with homostyly and different types of herkogamy, stigma-height 472 

dimorphism and trimorphism, distyly, and tristyly, and Linum seems to display most of 473 

this diversity. This allows testing evolutionary models for those traits where specific 474 

transitions are predicted, as proposed by Charlesworth & Charlesworth (1979) and 475 

Lloyd & Webb (1992a). Particularly, Lloyd & Webb’s (1992a) model challenged the 476 

formerly prevalent ideas represented by Charlesworth & Charlesworth (1979), and 477 

proposed an alternative ancestral condition (approach herkogamy, instead of 478 

homostyly) to heterostyly. Interestingly, Hugonia within Linaceae was one of the study 479 

cases that inspired the new model (Lloyd et al. 1990), which was later confirmed as 480 

tristylous (Thompson et al. 1996; Meeus et al. 2011). Although the variation in Linum 481 

inspired Darwin to interpret the adaptive significance of heterostyly (Darwin 1877), it is 482 

surprising that the variation of stylar conditions in the genus has rarely been explored 483 

(but see Armbruster et al. 2006 and McDill et al. 2009). In our study, we wished to 484 

validate current evolutionary models, for which we generated an updated phylogeny, 485 
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incorporated the wide variety of stylar conditions, and explored trait correlates to throw 486 

light on the plausibility of the alternative models. As discussed below, our results failed 487 

to ascertain clearly the ancestral condition in the genus, which precluded supporting 488 

any of the competing models, with the exception perhaps of the South African clade, 489 

which supported the Darwinian model of Lloyd & Webb (1992a). The information that 490 

we gathered in addition to the stylar condition was limited, and precluded statistical 491 

analyses to incorporate the evolutionary significance of breeding systems, pollination 492 

biology and biogeography of species for this purpose. However, life-history and 493 

polyploidy provided plausible explanations for the presence of style polymorphism. Our 494 

main result is that, with the data available, both models could explain parts of the 495 

evolution of heterostyly in Linum. 496 

497 

Phylogeny, divergence times and geographic ranges. We confirmed taxonomic 498 

aspects that deserve further work (e.g., the inclusion of four Linaceae genera resulted in 499 

the paraphyly of Linum, and the non-monophyly of some sections, see McDill et al. 2009 500 

and McDill & Simpson 2011). Despite our sampling efforts almost duplicated sampling in 501 

previous systematic work (McDill et al. 2009) and included a larger proportion of Linum 502 

species, and that some of the DNA regions used were different, we obtained similar 503 

results to those previously reported by McDill et al. (2009) and McDill & Simpson 504 

(2011), making the phylogeny reported here more plausible and valuable for testing 505 

evolutionary hypotheses. 506 

In our study we found that, unlike species from other geographic regions, the 507 

South African species, which all belong to the sect. Linopsis, formed a well-supported 508 

monophyletic clade. In addition, the South African clade turned to be closely related to 509 

the American clades, rather than the Euroasiatic clades from the same section. This 510 

result has important implications for evolutionary interpretations because none of the 511 

surveyed American Linum species present stylar polymorphisms, while species in sect. 512 

Linopsis in Eurasia do. In our analyses, we were interested to estimate the sequence of 513 

divergence dates leading to clades present in the Mediterranean Basin and South Africa, 514 

the latter being the only region with style polymorphic Linum species outside the 515 

Mediterranean basin. Thus, it is remarkable that the South African clade separated from 516 
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its monomorphic sister American clade in the late Miocene, about 9 MYA. In contrast, its 

closest Mediterranean clade, which includes members of sect. Linopsis and sect. Syllinum 

(with mostly western and eastern Mediterranean species respectively), diverged much 

earlier (in middle Miocene, more than 14 MYA). Unlike the American clade, 

Mediterranean clades include many style polymorphic species. By the time the clades 

split, continents were already separated, particularly Africa and the Americas. Thus, 

episodes of long distance dispersal should be invoked or, alternatively, massive 

extinctions of connecting clades in Africa, which would not have left a living or fossil 

trace. These episodes are coincident with last Antarctic glaciation and sharp decrease in 

temperature in southern Africa (Linder 2005). Regardless the specific events, it is 

remarkable that the American clades did not include any style polymorphic lineage. A 

proper biogeographical analysis incorporating explicit palaeogeographic settings would 

be necessary to ascertain the most likely scenario. 

Evolution of style polymorphism in Linum (models test). Previous work in Linum 

(McDill et al. 2009) provided a plausible reconstruction of pathways of heterostyly and 

“homostyly” (including all types of monomorphic conditions). Despite differences in 

sampling and molecular markers, our findings were similar to those previously reported 

(Fig. 3).  Specifically, we were unable to determine the most likely ancestral stylar 

condition in the genus, which could be either style polymorphic and monomorphic (our 

terms). The variability of stylar conditions in Linaceae and in Linum (Ganders 1979; 

Lloyd et al. 1990; Thompson et al. 1996; Suksathan & Larsen  2006; McDill & Simpson 

2011) combined with the inferred high transition rates among character states, and 

long-branches arising from the root of the phylogeny may explain this lack of resolution. 

An analysis at the family level would probably throw more light and allow better 

resolution of the ancestral condition. Despite lack of resolution at the basal stage, we 

detected several events of independent evolution of the polymorphism along the 

evolutionary history of Linum. Although some clades are integrated by mostly 

monomorphic or polymorphic species, any of these conditions appears secondarily lost, 

even in pairs of sister species. For example, loss of polymorphism was detected in L. 

seljukorum-L. pubescens, L. leoni-L. punctatum, L. lewisii-L pallescens, L. tenuifolum-L. 
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suffruticossm, L. corymbulosum-L. trigynum. In addition, polymorphic species evolved in 

most of monomorphic clades, as shown by the species pairs L. grandiflorum-L. 

decumbens, L. comptoni-L. pungens; L. heterostylum-L. esterhuysenae. Particularly 

dynamic in evolutionary grounds was clade B2 (Fig. 3), especially most of the Western 

Mediterranean subclade, including species from L. virgatum to L. setaceum. This clade 

includes L. suffruticosum s.l., (López-González 1979; Martínez-Labarga & Muñoz-

Garmendia 2015) with a special case of three-dimensional reciprocity (Armbruster et al. 

2006), L. tenue, a polyphyletic species with substantial morphological variation in NW 

Africa (J. Arroyo and J. Ruiz-Martín, pers. observ.), as well as a recently named new 

distylous species, L. flos-carmini (Ruiz-Martín et al. 2015), different from its sister 

species, the homostylous L. setaceum. All this variation clearly reflects that further work 

is required in these taxa and geographic range.  

Perhaps one of the most remarkable outcomes is the independent evolution of 

heterostyly in two South African species within a clade integrated by 14 species. In his 

taxonomic review, Rogers (1981) suggested that heterostyly appeared in South Africa 

independently from its occurrence in the Mediterranean basin and nearby regions, 

which was later supported by McDill et al. (2009), and here we confirmed. Although 

limited, our population sampling allowed us to confirm the presence of distyly in L. 

comptonii and L. heterostylum. Because the South African Linum clade is monophyletic 

and closely related to the monomorphic clade of American Linum species, the 

independent evolution of the polymorphism is thus fully supported. Unlike American 

species, all South African Linum species, except L. thurnbergi, are restricted to 

Mediterranean type climate of the Cape Floristic Region (Rogers 1981). Thus, the 

presence of style polymorphism restricted to Mediterranean climates (the Cape and the 

Mediterranean basin) points out to an apparent case of parallel evolution linked directly 

or indirectly to climate. In other Mediterranean climate regions of the world the number 

of Linum species is much lower. 

The characterisation of monomorphism as homostyly and different types of 

herkogamy (Fig. 4) depicted a complex picture with regards the evolutionary 

reconstruction of pathways, but allowed us to explicitly test competing hypotheses of 

ancestral stylar state. Whereas the ancestral state at the genus level was unresolved, the 
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only clade within Linum with certainty in the ancestral condition was the South African 

clade. Here, the Lloyd & Webb (1992a) model was fully supported, with approach 

herkogamy as ancestral condition. Interestingly, approach herkogamy is widespread in 

this clade. In contrast, approach herkogamy is uncommon in other clades (e.g. L. 

hologynum, L. lewisii, L. and volkensii) whereas homostyly appears frequently. This 

homostyly is secondary, derived from a polymorphic condition, and probably associated 

with shifts towards selfing to increase reproductive assurance (see for instance L. 

corymbulosum and L. trigynum, or L. leonii). Such shifts have been reported in other style 

polymorphic groups (Schoen et al. 1997; Guggisberg et al. 2006; Mast et al. 2006; Pérez-

Barrales et al. 2006; Kissling & Barrett 2013; Santos-Gally et al. 2013). More detailed 

information on the breeding system of the species would confirm this hypothesis. 

Other stylar conditions are scarcer. Reverse herkogamy, a necessary phenotype 

in an intermediate step for the establishment of style polymorphism in any model, was 

detected in the Mediterranean L. nodiflorum and the two South American sister species 

L. littorale and L. prostratum. Surprisingly, reverse herkogamy appeared in these species 

as derived monomorphic condition. This transition has been reported in Exochaenium in 

the Gentianaceae (Kissling & Barrett 2013), although it remains unclear the mechanisms 

that favours the selection of monomorphic reverse herkogamy. Horizontal 

monomorphic herkogamy was detected in two Linum species, L. kingii and L. 

tenuifolium, and in two closely related genera, Hesperolinum and Radiola, which are 

placed within Linum.   This condition might result from selection to avoid self-

pollination, as in the self-compatible L. tenuifolium (Nicholls 1986) (see Fig. 1). Finally, it 

was not possible to include an evolutionary reconstruction of stigma height dimorphism, 

as it is an unusual condition in Linum, only present in L. grandiflorum and perhaps L. 

perenne (Heitz 1980). This condition has been reported as an intermediate and unstable 

state towards heterostyly (Lloyd & Webb 1992b, but see Barrett & Harder 2005), which 

is consistent with its unclear ancestral/derived condition. This evolutionary lability has 

been reported for stigma-height dimorphism in some Boraginaceae (Ferrero et al. 

2009). 
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Correlated evolution and trait associations. Few studies have attempted to 

investigate correlations between style polymorphisms and other traits in an explicit 

phylogenetic context, and these have focused on associations with other floral traits (e.g. 

corolla size and form: Santos-Gally et al. 2013; Kissling & Barrett 2013). In our study, we 

were interested to investigate the association between style polymorphism and life 

history (annual vs perennial). This association is expected (Dulberger 1992) because 

pollination of style polymorphic plants is often specialized (Darwin 1877; Lloyd & Webb 

1992a; Lau & Bosque 2003), and short-lived plants, especially annuals, are more 

sensitive to loss of these pollinators or pollinator uncertainty, and shifts to selfing are 

more likely to occur. Our results showed that style polymorphism occurs more 

frequently among perennial than annual species, although the association was only 

marginally significant. However, we only gathered data for a subset of species, and data 

on breeding systems from more species would be particularly valuable here. Despite the 

limitations, this result suggests that reproductive assurance is probably important in 

annual species, and most likely plays a role against maintaining style polymorphism.  

An important trait associated with breeding system and thus with style 

polymorphism is polyploidy.  The available evidence shows variation in the correlation 

between heterostyly and polyploidy, ranging from lack of association to heterostyly 

being frequent among diploids (Naiki 2012). Across families, a phylogenetic account of 

these studies suggests that this may stand only for Rubiaceae and Primulaceae (Naiki 

2012). At least for Primula, it has been demonstrated that heterostyly is not present 

among allopolyploid taxa (Guggisberg et al. 2006), which has been also suggested for 

Turnera (Shore et al. 2006). This is in agreement with the mechanism of breakdown of 

heterostylous supergenes by recombination linked to hybridization (Lewis & Jones 

1992). Although hybridization between some Linum species has been reported, the 

species involved displayed similar chromosome numbers (Seetharam 1972; Muravenko 

et al. 2003; Yurkevich et al. 2013), which does not promote breakdown of heterostyly. 

We were unable to detect a significant correlation between polyploidy and heterostyly 

in our data set of 50 species of Linum. It could be possible that our data includes mostly 

polyploidy series of autopolyploids. This is well illustrated by the closely related L. 

tenuifolium and L. suffruticosum. Linum tenuifolium is monomorphic, self-compatible and 
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diploid across its wide range in Europe and western Asia (Nicholls 1986). In contrast, L. 

suffruticosum, with three-dimensional reciprocity (Fig. 1, Armbruster et al. 2006), 

displays a polyploid series from diploidy to decaploidy (Nicholls 1986; Ana Afonso, 

unpublished data) across its western Mediterranean range whilst maintaining the style 

polymorphism and heteromorphic incompatibility (Ruiz-Martín, unpublished). Despite 

the information on incompatibility systems in Linum is limited to only few species, all 

self-incompatible species display heteromorphic incompatibility, whereas self-

compatible species are monomorphic, with no intermediate cases being reported. Thus, 

the independent evolution of presence and type of self-incompatibility and style 

polymorphism proposed by Lloyd & Webb (1992a) is not supported. Interestingly, in 

eight style-polymorphic ancillary traits (dimorphism on pollen grains and stigmas) 

seemed to be linked to specific floral morphs, reinforcing the cohesiveness of the 

heterostylous syndrome in Linum. 

A possible role of pollinators in the evolution of style plymorphisms in Linum? One 

of the most insightful predictions made by Lloyd & Webb (1992a) stated that pollinators 

are critical for the selection of style polymorphisms. Pollinators need to fit tightly with 

flowers and contact anthers and stigmas in specific body parts to legitimately transfer 

pollen between morphs. This involves precise shape of flowers and behaviour of 

pollinators. At present, the scarcity of pollinator data on Linum precludes explicitly 

testing this hypothesis across the genus. However, studies on the pollination ecology of 

some species offer interesting insights. Specifically, flower morphology in Linum is 

relatively consistent in shape across species (funnel-like corolla of limited variation in 

tube width and length, Fig. 1), thus pollinator behaviour becomes crucial. This has been 

studied in L. pubescens (eastern Mediterranean range, sect. Dasylinum, clade A1 in Fig. 4; 

Johnson & Dafni 1998) and L. suffruticosum (western Mediterranean, sect. Linopsis, B2 in 

Fig. 4; Armbruster et al. 2006), both almost exclusively pollinated by Usia beeflies 

(Bombyliidae), with U. bicolor in L. pubescens and two species of different size in L. 

suffruticosum. In these two Linum species, the behaviour of Usia was similar and typical 

of these beeflies (Orueta 2002): they land on flowers and crawl to the bottom of the 

flower tube searching for nectar. Armbruster et al. (2006) described that the three 
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dimensional reciprocity in L. suffruticosum allows separation of the placement of pollen 

from L and S flowers on the ventral and dorsal parts of the Usia body respectively. Those 

authors interpreted that the combination of the Usia behaviour with the three 

dimensional reciprocity probably increased legitimate pollinations between style-

morphs (Fig. 1). Usia species seem to commonly visit other Mediterranean distylous 

Linum species (Du Merle & Mazet 1978; and personal observations). Interestingly, Usia 

is a truly Mediterranean genus, with its highest species diversity in southern Iberian 

Peninsula, northwestern Africa, and Anatolia (Gibbs 2011; 2014), also with the highest 

diversity in Linum species. Whether heterostyly in Linum is restricted in the Northern 

Hemisphere to the Mediterranean basin due to its tight association with Usia flies, is a 

challenging hypothesis that deserves further insight. 

The examples of specialized pollination by Usia provide some support to the 

Darwinian model of Lloyd & Webb (1992a), particularly in L. suffruticosum. This species 

possess a heteromorphic incompatibility system, which prevents all illegitimate crosses 

bewteen- and within morphs (Nicholls 1986; Ruiz-Martín, unpublished data). Why then 

has the sophisticated three-dimensional reciprocal distyly, including reciprocal torsion 

of stamens and styles, evolved apart from increasing efficiency of between-morph 

pollination and thus avoiding pollen discounting? Torsion of sex organs was first 

observed by Darwin in L. grandiflorum (Darwin 1877), and latter reported in the 

monomorphic L. usitatissimum (Schewe et al. 2011). Unfortunately, we lack information 

on the pollination ecology of heterostylous Linum species in the Cape Floristic Region 

(CFR) of South Africa , which prevents us to make strong inferences about the causes of 

the independent evolution of heterostyly there. Although Usia is not present in the CFR, 

fly pollination in South Africa is common (Johnson 2010), and it would not be surprising 

that other Bombyliidae or other fly families behave similarly to Usia. Interestingly, the 

recent description of three-dimensional reciprocity in a group of tristylous CFR Oxalis 

species (Oxalidaceae) (Turketti et al. 2012), with similar arrangement of stamens and 

styles to that described in L. suffruticosum and similar flower morphology (i.e. funnel-

like corollas) confirms the suggestion of Armbruster et al. (2006) that perhaps this kind 

of polymorphism is not so unusual, and closer examinations of sexual whorl 
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arrangement and pollinator fit can help identifying new examples, providing additional 701 

support to the Darwinian view on the function and evolution of heterostyly. 702 

703 

Conclusions 704 

Linum is a good model system for studying the evolution of heterostyly, both at macro 705 

and microevolutionary levels. Our data revealed that Linum includes a wide range of 706 

morphological variation related to the heterostylous floral syndrome. In contrast, 707 

genetic systems linked to heterostyly seems to be rather invariant, for which it could be 708 

assumed, as working hypothesis, that pollinators have moulded current floral 709 

morphological variation on sex organs. Phylogenetic relationships have been reasonably 710 

well resolved, allowing testing specific hypotheses about the evolutionary pathway that 711 

allow the acquisition of the style polymorphism. While our analyses precluded inferring 712 

the ancestral condition to style polymorphisms in the genus, some of its clades showed 713 

that approach herkogamy appears to be the most likely ancestral condition, as Lloyd & 714 

Webb (1992a) proposed. Interestingly, species with similar floral trait assemblages in 715 

independent clades and in different areas of the Mediterranean basin and South Africa 716 

are found. This suggests that ecological adaptations, perhaps mediated by pollinators, 717 

rather than phylogenetic conservatism is probably the main driver for the evolution of 718 

the stylar polymorphism. Future research to underpin the function of pollinators in the 719 

promotion of disassortative pollen transfer in different conditions and regions is 720 

necessary to provide further support to the Darwinian pollinator hypothesis for the 721 

evolution of heterostyly. 722 
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Figure legends 979 

980 

Fig. 1. Floral variation and pollinators in Mediterranean Linum species: a) L. viscosum 981 

visited by an Halictidae bee, b) L. narbonense with Usia pubera beefly collecting nectar, 982 

c) and d) L. tenuifolium visited by Ceratina cucurbitina and Lasioglossum malachurum983 

bees, respectively, e) three dimensional reciprocity in L. suffruticosum, f) Usia sp. 984 

collecting nectar in L. suffruticosum, g) conventional distyly in L. tenue. h) L. tenue with 985 

nectar collecting U. pusilla, i) L. comptonii visited by pollen collecting Amegilla in South 986 

Africa, and j) L. pubescens with Usia bicolor in Israel. Photographs by Blanca Arroyo (c, 987 

d), Ross Turner (i) and Yuval Sapir (j). 988 

989 

Fig. 2. Phylogenetic tree of Linaceae based on BEAST analysis of combined nuclear (ITS) 990 

and plastid (trnL-F, matK and ndhF) DNA regions. Numbers above each branch indicate 991 

posterior probability support. Bars in each node indicate 95% CI of the age of each node. 992 

Time scale on the horizontal axis is in millions of years. 993 

994 

Fig. 3. Maximum likelihood ancestral state reconstruction of stylar polymorphism in 995 

Linum. Two ancestral states (blue = monomorphic, red = polymorphic) are considered 996 

as the simplest way to understand the evolution of heterostyly (see Material and 997 

methods for details). Letters above branches are referenced in main text. 998 

999 

Fig. 4. Maximum likelihood ancestral state reconstruction of stylar polymorphism in 1000 

Linum. Five relevant states to the two competing hypotheses of the evolution of 1001 

heterostyly are considered (Charlesworth & Charlesworth 1979, Lloyd & Webb, 1992a; 1002 

see Materials and Methods for details). Colours represent the different stylar conditions: 1003 

blue = homostyly, red = style polymorphism, green = approach herkogamy, yellow = 1004 

horizontal herkogamy, and orange = reverse herkogamy. Letters above branches are 1005 

referenced in main text. 1006 

1007 
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Fig. S1. Phylogenetic tree of Linaceae based on BEAST analysis of combined nuclear 

(ITS) and plastid (trnL-F, matK and ndhF) DNA regions. Numbers above each branch 

indicate posterior probability support. Bars in each node indicate 95% CI of the age of 

each node. Time scale on horizontal axis is in millions of years. Tip labels include species 

name, section and distribution. 

Table S1. Sources of plant material and traits considered in the study. Taxa are 

arranged alphabetically by section and family. Sampled populations refer to GenBank 

accession numbers when obtained from published references, to samples supplied by 

herbaria (E: Royal Botanic Garden Edinburgh, MA: Royal Botanic Garden Madrid, SEV: 

University of Seville; codes for specimens are given). NA, not available. 
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Table S1. Source of plant material and traits considered in the study. Taxa are arranged alphabetically by section and family. Sampled 

populations refer to GenBank accession numbers when obtained from published references, to samples supplied by herbaria (E: Royal 

Botanic Garden Edinburgh, MA: Royal Botanic Garden at Madrid, SEV: University of Seville; codes for specimens are given). NA, not 

available. 
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Linum 

catharticum Cathartolinum N Medit. Ref. 1  NA FJ169533  
FJ160796 FJ160880 HM544103 

Monomorphic Homostylous Annual 2  n=8/2n=16 26 -- -- 

L. densiflorum A Dasylinum Azerbaijan 
This study 
E00450740 NA Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3  --  -- -- -- 

L. densiflorum B Dasylinum Turkey This study 
40º06'57.8''N 
32º36'17.8''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3  --  -- -- -- 

L. hirsutum Dasylinum Turkey Ref. 1  NA FJ169520 
FJ160788 FJ160872 HM544106 

Polymorphic Polymorphic Perennial 3  

n=8; 
2n=16/n=16; 
2n=32 27, 28, 29 SI 52 

L. hypericifolium Dasylinum Turkey Ref. 1  NA FJ169519 
FJ160789 FJ160873 HM544107 

Polymorphic Polymorphic perennial 4  --  -- -- -- 

L. olympicum Dasylinum 

Turkey, 
Greece 

This study 
E00450745 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 5 --  -- -- -- 

L. pubescens Dasylinum Syria Ref. 1  NA FJ169518 
FJ160790 FJ160874 

NA Polymorphic Polymorphic Annual 6  2n=18 ; 2n=16  30, 31  SI 53 

L. seljukorum Dasylinum Turkey 
This study 
E00450754 NA Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Annual 3 n=8; 2n=16  -- -- -- 

L. spathulatum Dasylinum Greece This study 
40º04.9'N 
22º22.7'E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 5 2n=16/2n=36 32;,28 -- -- 

L. unguiculatum Dasylinum Turkey 
This study 
E00450741 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 3 --  -- -- -- 

L. viscosum Dasylinum Spain This study NA FJ169517  
FJ160791 FJ160875 

NA Polymorphic Polymorphic Perennial 2 n=8; 2n=16 27 -- -- 

L. acuticarpum Linopsis South Africa This study 
33º59'55.6"S 
20º26'33.7"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7  n=15 33 -- -- 

L. adustum Linopsis South Africa This study 
34º33'02.1"S 
19º25'37.8"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. aethiopicum Linopsis South Africa This study 
34º25'48.8"S 
20º39'50.5"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. africanum Linopsis South Africa This study 
34º09'39.4"S 
18º52'16.0"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 

n=16/2n=30; 
2n=29 30, 33  SC 54 
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L. brevistylum Linopsis South Africa This study 
34°44'26.1"S 
19°40'44.9"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. comptonii Linopsis South Africa This study 
32º37'51.2"S 
19º09'05.8"E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 7 n=15 33 -- -- 

L. corymbiferum Linopsis Algeria This study 
 36°52'4.8"N 
 4°50'16.4"E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic 

Perennial, 
biennial 8  

n=15; 
2n=18/2n=30 27, 28 -- -- 

L. corymbulosum Linopsis Greece This study 
38º00'28.9''N 
22º16'30.4''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Annual 4 n=9; 2n=18  30 -- -- 

L. esterhuysenae Linopsis South Africa This study 
33º55'05.1"S 
22º01'32.2"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7  --  -- -- -- 

L. flos-carmini Linopsis Morocco This study 
34º54'33''N  5
º 32' 12''W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphism Polymorphic Annual 11 --  -- -- -- 

L. gallicum Linopsis Greece This study 
37º59'32.3''N 
22º27'47.0''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Annual 5 n=10; 2n=20 27 -- -- 

L. gracile Linopsis South Africa This study 
33º57'24.5"S 
23º31'02.0"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 n=15 33 -- -- 

L. heterostylum Linopsis South Africa This study 
33º58'09.4"S 
21º13'06.0"E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 7 n=15 33 -- -- 

L. kingii Linopsis C, S USA Ref. 1  NA FJ169555 
FJ160780 FJ160864 

NA Monomorphic 
Horizontal 
herkogamous 

Perennial, 
biennial 9 n=13; 2n=26 28 -- -- 

L. liburnicum Linopsis Greece This study 
38º04'06.6''N 
22º23'00.3''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Annual 5 --  -- -- -- 

L. littorale Linopsis S America Ref. 1  NA FJ169543 
FJ160781 FJ160865 

NA Monomorphic 
Reverse 
herkogamous Perennial 10 

n=18; 
2n=36/n=36; 
2n=72 28 -- -- 

L. macraei Linopsis S America Ref. 1  NA FJ169544 
FJ160782 FJ160866 

NA Monomorphic 
Approach 
herkogamous Perennial 10 n=36; 2n=72 28 -- -- 

L. maritimum Linopsis Spain, Italy  Ref. 1  NA FJ169535 
FJ160811 FJ160895 

NA Polymorphic Polymorphic Perennial 2 n=10; 2n=20 28 SI 54 

L. mumbyanum Linopsis 

Morocco, 
Algeria This study 

34°50'59.1"N 
1°21'24.4"W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic 

Biennial, 
perennial 8 n=10; 2n=20 28 -- -- 

L. numidicum Linopsis 

Morocco, 
Algeria This study 

35º11'52.8''N 
03º58'50.2'W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 8 --  -- -- -- 

L. oligophyllum Linopsis S America Ref. 1  NA FJ169546 
FJ160783 FJ160867 HM544111 

NA NA Perennial 10 n=18; 2n=36  28 -- -- 

L. prostratum Linopsis S America Ref. 1  NA FJ169545  
FJ160784 FJ160868 

NA Monomorphic 
Reverse 
herkogamous 

Perennial, 
annual  10 n=18; 2n=36  28 -- -- 

L. pungens Linopsis South Africa This study  
32º22'26.1"S 
19º03'48.3"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. quadrifolium Linopsis South Africa This study 
33º57'06.7"S 
18º27'05.7"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. rupestre Linopsis C, S USA Ref. 1  NA FJ169553 
FJ160785 FJ160869 HM544113 

Monomorphic 
Approach 
herkogamous Perennial 79 n=18 26 -- -- 

L. setaceum Linopsis 

Spain, 
Portugal, 
Morocco This study 

36º47'39.0''N 
4º59'24.4''W Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Annual 2 n=9; 2n=18  27, 80 -- -- 

L. striatum Linopsis USA, Canada Ref. 1  NA FJ169554 
FJ160786 FJ160870 

NA Monomorphic 
Approach 
herkogamous Perennial 12 n=18 26 -- -- 

L. strictum Linopsis Cosmopolitan Ref. 1  NA FJ169530 
FJ160806 FJ160890 

NA Monomorphic Homostylous Annual 2 
n=9; 2n=18/ 
2n=32  27, 30  -- -- 

L. 

subasperifolium Linopsis Morocco This study 
34°46'28''N  
3°47'43''W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Annual 8 --  -- -- -- 

L. suffruticosum 

A Linopsis Spain This study 
36º47'39''N 
4º59'24.4''W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 2 

n=18; 
n=36/2n=72  28, 34 SI 

55, 56, 57, 
58  
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L. suffruticosum B Linopsis Italy This study 
44°12'30''N  
8°23'33''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 2 n=18; n=36 28 SI 

55, 56, 57, 
58 

L. tenue A Linopsis Morocco This study 
32º00'58.2''N 
06º43'12.3'W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Annual 2 

n=10; 
2n=20/2n=30  28, 35 SI 52 

L. tenue B Linopsis Morocco This study 
30º40'43''N 
09º29'15''W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Annual 2 

n=10; 
2n=20/2n=31 28, 35 SI 52 

L. tenue C Linopsis Algeria This study 
34°52'39.2"N 
1°14'38.7"W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Annual 2 

n=10; 
2n=20/2n=32 28, 35 SI 52 

L. tenuifolium A Linopsis Spain This study 
42º20'27.8''N 
1º43'08.5''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Horizontal 
herkogamous Perennial 2 

n=9; 2n=18/ 
2n=16  27, 36 SC 56, 57, 58 

L. tenuifolium B Linopsis Turkey This study 
40º38'01.0''N 
33º36'32.1''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Horizontal 
herkogamous Perennial 2 

n=9; 2n=18/ 
2n=17 27, 36 SC 56, 57, 58 

L. thesioides Linopsis South Africa This study 
33°57'06.7"S 
18°27'05.7"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. thunbergii Linopsis South Africa This study 
28°41'09.9"S 
28°53'57.1"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. trigynum Linopsis Cosmopolitan Ref. 1  NA FJ169536  
FJ160810 FJ160894 

NA Monomorphic Homostylous Annual 3 n=10; 2n=20 28 -- -- 

L. vernale Linopsis USA Ref. 1  NA FJ169552 
FJ160812 FJ160896 

NA Monomorphic 
Approach 
herkogamous Annual 10 n=15 26 -- -- 

L. villosum Linopsis South Africa This study 
33º51'57.2"S 
22º48'04.4"E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 7 --  -- -- -- 

L. virgatum Linopsis Algeria This study 
34°47'16.4"N 
0°15'27.7"W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic 

Annual, 
biennial  

Ruiz-
Martín J., 
unpubl. --  -- -- -- 

L. volkensii Linopsis Tanzania Ref. 1  NA FJ169531 
FJ160813 FJ160897 HM544116 

Monomorphic 
Approach 
herkogamous 

Perennial, 
annual  13 n=27 81 -- -- 

L. alpinum Linum 

W Medit., C 
Europe This study 

42º29'17.4''N 
13º00'28.9''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 15 

n=9; 2n=18/ 
2n=36  27, 38 -- -- 

L. aroanium A Linum 

Turkey, 
Greece This study 

38º00'37.9''N 
22º16'06.5''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 2n=36 5 -- -- 

L. aroanium B Linum 

Turkey, 
Greece This study 

40º06'57.8''N 
32º36'17.8''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 2n=36 5 -- -- 

L. austriacum Linum Medit. Basin Ref. 1  NA FJ169522  
FJ160799 FJ160883 

NA Polymorphic Polymorphic Perennial 8 
n=9; 
2n=18/2n=36 27, 35 SI 2 

L. austriacum 

subsp. 
gomaricum Linum Morocco 

This study 
SEV156580 
SEV156577 

35º08'N 
05º08'W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 8 --  -- -- -- 

L. austriacum 

subsp. 
mauritanicum Linum Morocco This study 

33° 3'33.2"N 
5° 2'14.3"W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 8 n=9 83 -- -- 

L. bienne Linum Cosmopolitan Ref. 1  NA FJ169527  
FJ160797 FJ160881 HM544102 

Monomorphic Homostylous 
Annual, 
biennial 8 

n=15, 
18/2n=30, 32 

39, 2, 40, 
41,  

SC 54 

L. bungei Linum Iran 
This study 
E00450816 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 

 Ruiz-
Martín J., 
unpubl. --  -- -- -- 

L. decumbens A Linum Italy 
This study 
MA628332 NA Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous 

Annual, 
biennial 2 

n=15,18; 
2n=32  39, 42, 31 -- -- 

L. decumbens B Linum Italy This study 
37º50'42.0''N 
13º25'58.9''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous 

Annual, 
biennial 2 

n=15, 18; 
2n=32 39, 42, 31 -- -- 

L. empetrifolium 

A Linum Turkey This study 
38º24'09.5''N 
34º01'41.4''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 --  -- -- -- 

L. empetrifolium 

B Linum Turkey This study 
40º02'19.1''N 
40º29'08.2''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 --  -- -- -- 
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L. grandiflorum Linum Algeria Ref. 1  NA FJ169525  
FJ160798 FJ160882 

NA Polymorphic Polymorphic Annual 16 n=8; 2n=16 27, 43  SI 59, 60  

L. hologynum Linum Greece This study 
39º50'46.7''N 
21º12'31.0''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic 

Approach 
herkogamous Perennial 2 

n=9; 
2n=18/2n=42 27, 32  -- -- 

L. lanuginosum Linum Tajikistan This study 
38º38'06''N 
70º42'36''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 4 --  -- -- -- 

L. leonii Linum 

Germany, 
France This study 

51º29'32''N 
09º18'13''E Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Perennial 2 

n=9; 2n=18; 
2n=20 2, 44  -- -- 

L. lewisii Linum 

 W of N 
America Ref. 1  NA FJ169523 

FJ160800 FJ160884 
NA Monomorphic 

Approach 
herkogamous Perennial 2 n=9; 2n=18 26, 27  SC 61 

L. marginale Linum Australia Ref. 1  NA FJ169528  
FJ160804 FJ160888 

NA Monomorphic Homostylous 
Perennial, 
anual 14 2n=80 37 -- -- 

L. meletonis Linum Turkey 
This study 
E00212261 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 

 Ruiz-
Martín J., 
unpublishe
d --  -- -- -- 

L. narbonense Linum 

Spain, Italy, 
France This study 

39°06'16.8"N 
1°01'56.3"W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 2 

n= 7, n=9, 
n=14/ 2n=28, 
2n=20, 2n=18  

27, 45, 30, 
35  SI 52 

L. nervosum Linum Turkey This study 
38º52'20.1''N 
42º31'24.9''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 2n=30, 2n=18 82, 46  -- -- 

L. obtusatum Linum Turkey 
This study 
E00450930 NA Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 --  -- -- -- 

L. pallescens Linum Russia, China Ref. 1  NA FJ169521  
FJ160801 FJ160885 

NA Monomorphic Homostylous 
Biennial, 
perennial 4 2n=18 2 -- -- 

L. perenne Linum Medit. Basin Ref. 1  NA FJ169524  
FJ160802 FJ160886 

NA Polymorphic Polymorphic Perennial 2 
n=9/ 2n=18; 
2n=36  27, 30  SI 2, 60  

L. punctatum A Linum Italy 
This study 
MA646775 

37º51'N 
14º01'E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 17 n=18 27 -- -- 

L. punctatum B Linum Italy This study 
37º51'40.6''N 
14º00'45.5''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 17 n=18 27 -- -- 

L. pycnophyllum Linum Turkey 
This study 
E00450918 NA Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 5 2n=18 5 -- -- 

L. stelleroides Linum China, Japan Ref. 1  NA FJ169516 
FJ160805 FJ160889 

NA Monomorphic Homostylous 
Annual, 
biennial 4 

n=10/ 2n=20 
,2n=18  39, 47 -- -- 

L. tmoleum Linum Turkey This study 
40º30'45.2''N 
38º21'05.0''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic 

Annual, 
biennial 3 --  -- -- -- 

L. tommasinii Linum Italy This study 
42º22'23.2''N 
13º23'25.9''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 15 n=9; 2n=18 27 -- -- 

L. usitatissimum Linum Cosmopolitan Ref. 1  NA FJ169526 
FJ160803 FJ160887 HM544115 

Monomorphic Homostylous Annual  2 n=15; 2n=30 27 SC 54 

L. villarianum Linum Morocco This study 
35º52'30.6''N 
05º24'14.4'W Forthcoming Forthcoming Forthcoming Forthcoming Monomorphic Homostylous Perennial 18 --  -- -- -- 

L. virgultorum Linum Turkey 
This study 
E00289593 NA Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Annual 2 --  -- -- -- 

L. album Syllinum India, Iran Ref. 1  NA FJ169547  
FJ160792 FJ160876 

NA Polymorphic Polymorphic Perennial 19 2n=30; 2n=28  82, 48 -- -- 

L. arboreum Syllinum 

Turkey, 
Greece Ref. 1  NA FJ169537  

FJ160793 FJ160877 HM544100 
Polymorphic Polymorphic Perennial 3 2n=28 27 -- -- 

L. aretioides Syllinum Turkey 
This study 
E00175938 NA Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 20 --  -- -- -- 

L. campanulatum Syllinum 

Spain, France, 
Italy This study 

40°16'52''N  
2°50'56''W Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 15 n=14; 2n=28 27 -- -- 

L. capitatum Syllinum Italy 
This study 
MA698754 

42º09'N 
14º06'E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 2 

n=12, n= 28/ 
2n=28, 2n= 34  27, 30  -- -- 
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L. cariense Syllinum Turkey 
This study 
MA590884 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 3 --  -- -- -- 

L. elegans Syllinum Greece This study 
37º51'03.7''N 
22º14'47.5''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 2n=28, 2n=30  49, 73 -- -- 

L. flavum Syllinum 

NE Medit. 
Basin Ref. 1  NA FJ169538 

FJ160794 FJ160878 HM544105 
Polymorphic Polymorphic Perennial 4 

n=15; 
2n=30/n=14/2
n=28 27, 30, 39  SI 52 

L. gyaricum Syllinum Greece 
This study 
E00175803 NA Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 21 n=30+1B 50 -- -- 

L. mucronatum A Syllinum Turkey This study 
38º04'34.6''N 
36º44'05.1''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 n=14 48 SI 62 

L. mucronatum B Syllinum Turkey This study 
38º11'20.8''N 
36º49'43.9''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 n=14 48 -- -- 

L. nodiflorum Syllinum Turkey, Italy Ref. 1  NA FJ169539 
FJ160795 FJ160879 

NA Monomorphic 
Reverse 
herkogamous Annual 3 

n=13/ 2n=26, 
2n=24  30, 39, 40 SI  54 

L. syriacum Syllinum Syria 
This study 
E00450664 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 74 --  -- -- -- 

L. tauricum Syllinum Turkey This study 
40°52'3''N 
26°46'13''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 2n=28  40 -- -- 

L. triflorum Syllinum Turkey This study 
38º34'59.8''N 
42º16'10.7''E Forthcoming Forthcoming Forthcoming Forthcoming Polymorphic Polymorphic Perennial 3 --  -- -- -- 

L. velutinum Syllinum Iraq 
This study 
E00175935 NA Forthcoming Forthcoming Forthcoming Forthcoming NA NA Perennial 75 --  -- -- -- 

Anisadenia 

pubescens 

Outgroup 
(Linaceae) China Ref. 1  NA FJ169513  

FJ160772 FJ160856 
NA Monomorphic Homostylous Perennial 76 --  -- -- -- 

Cliococca 

selaginoides 

Outgroup 
(Linaceae) S America Ref. 1  NA FJ169540  

FJ160774 FJ160858 
NA Monomorphic Homostylous Perennial 22 n=18; 2n=36 51 -- -- 

Hesperolinon 

micranthum 

Outgroup 
(Linaceae) W USA Ref. 1  NA FJ169542 

FJ160775 FJ160859 
NA Monomorphic 

Horizontal 
herkogamous Annual 23 n=18; 2n=36 28 -- -- 

Hugonia 

busseana 

Outgroup 
(Linaceae) Malawi Ref. 1  NA FJ169512  

FJ160773 FJ160857 
NA Monomorphic Homostylous Perennial 13 --  -- -- -- 

Radiola linoides 

Outgroup 
(Linaceae) Cosmopolitan Ref. 1  NA FJ169534  

FJ160815 FJ160899 
NA Monomorphic 

Horizontal 
herkogamous Annual 2 2n=18 51 -- -- 

Reinwardtia 

indica 

Outgroup 
(Linaceae) 

Afganistan, 
Pakistan Ref. 1  NA FJ169514 

FJ160814 FJ160898 
NA Polymorphic Polymorphic Perennial 12 2n=20,22 51 -- -- 

Sclerolinon 

digynum 

Outgroup 
(Linaceae) USA Ref. 1  NA FJ169541 

FJ160787 FJ160871 
NA Monomorphic Homostylous Annual 9 n=6; 2n=12 28 -- -- 

Tirpitzia sinensis 

Outgroup 
(Linaceae) China Ref. 1  NA FJ169515 

FJ160816 FJ160900 
NA Polymorphic Polymorphic Perennial 77 --  -- -- -- 

Humiria 

balsamifera 

Outgroup 
(Humiriaceae) Brasil 

 Ref. 70, 71, 
72  NA NA EU002231 AF350941 AY935932 Monomorphic Homostylous Perennial 78 --  -- -- -- 

Hypericum 

perforatum 

Outgroup 
(Hypericaceae) Medit. Basin 

 Ref. 67, 68, 
69  NA EU796888 NA KC709009 AB698447 Monomorphic Homostylous Perennial 24 --  -- -- -- 

Viola pubescens 

Outgroup 
(Violaceae) USA, Canada 

 Ref. 63, 64, 
65, 66  NA DQ006044 FJ670135 JF767162 JX661966 Monomorphic Homostylous Perennial 25 --  -- -- -- 
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