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Theory of anomalous collective diffusion in colloidal monolayers on a spherical interface

Alvaro Domínguez*

Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apdo. 1065, 41080 Sevilla, Spain

(Received 9 November 2017; published 12 February 2018)

A planar colloidal monolayer exhibits anomalous collective diffusion due to the hydrodynamic interactions.
We investigate how this behavior is affected by the curvature of the monolayer when it resides on the interface
of a spherical droplet. It is found that the characteristic times of the dynamics still exhibit the same anomalous
scaling as in the planar case. The spatial distribution, however, shows a difference due to the relevance of the
radius of the droplet. Since for the droplet this is both a global magnitude, i.e., pertaining to the spatial extent of
the spherical surface, and a local one, i.e., the radius of curvature, the question remains open as to which of these
two features actually dominates in the case of a generically curved interface.
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I. INTRODUCTION

The hydrodynamic interactions between the particles of
a colloid, which are mediated by flows in the embedding
ambient fluid, are very relevant for the dynamics of the colloid
(see, e.g., Ref. [1]). The presence of near boundaries, like an
interface, affect these interactions, and additionally introduce a
new player with which the particles interact hydrodynamically.
The theoretical study of these effects has a long history (see,
e.g., Refs. [2–4] for the case of a planar interface between two
coexisting fluids). More recently, one has considered the case
when the interface has a richer rheological behavior, namely,
surface viscosity [5–8], elasticity [9], ultralow surface tension
[10], bending rigidity [11,12], or when it is curved [13–15]. All
these works study the case of a single particle and are primarily
concerned with self-diffusion, i.e., the random motion of a
tagged particle. Our goal is, however, the collective diffusion,
that describes the decay of density perturbations. This is an
intrinsically many-body problem, for which the hydrodynamic
interaction between the particles (but modified by the presence
of the interface) is most relevant. These are two distinct, albeit
related concepts.1

Most works addressing the influence of the hydrodynamic
interactions on the collective diffusion have dealt with the case
of colloids in bulk, i.e., three-dimensional (3D) distributions
of particles [16–18]. Recent investigations have considered
confined configurations [19], e.g., two-dimensional (2D) dis-
tributions inside a fluid also confined to 2D, either between
plates [20–22] or as a film [23]. A particularly interesting
case is a colloidal monolayer, produced when the particles
are constrained to reside on a fluid-fluid interface (see, e.g.,
Ref. [24]). It is a partially confined system in that the particle
distribution is confined to a 2D manifold, but the ambient
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1For instance, a collection of independent, noninteracting particles

(ideal gas) is a physical realization of an ensemble of isolated particles,
so that the coefficient of collective diffusion coincides trivially with
the coefficient of self–diffusion [1].

fluid is unconfined in 3D. Recent theoretical investigations,
confirmed experimentally [25,26], predicted that both the
short-time [27] and the long-time [28] coefficient of collective
diffusion for a planar monolayer diverge, i.e., the diffusive de-
cay of a density perturbation in the monolayer can be described
as anomalous due to the hydrodynamic interactions. This
feature is specific to the configuration of partial confinement
and is a direct consequence of the “dimensional mismatch”
between the 2D colloidal subsystem and the 3D embedding
fluid [see the discussion after Eq. (10)]. Numerical simulations
[29] suggest that this mismatch does not have, however, any
dramatic effect on the coefficient of self-diffusion, which
remains finite.

One may wonder how robust the anomalous collective diffu-
sion is, and so recent works have explored this phenomenology
when the simplifying assumptions of the original theoretical
model are relaxed: one has considered the influence of the
direct particle-particle interaction, e.g., as capillary monopoles
[28], as hard spheres [30], or as Lennard-Jones particles
[29]. One has also addressed the effect of the finite time it
takes for the ambient flow to respond to the evolution of the
colloidal monolayer [31], or the possibility, beyond the perfect
confinement to a plane, that the particles move slightly in and
out of the plane [29,32]. Along the line of these investigations,
the present work addresses how the role of the hydrodynamic
interactions is affected when the monolayer is curved rather
than perfectly flat.

The curvature of the interface can affect the diffusive
dynamics and alter Fick’s law for Brownian diffusion qual-
itatively [33–35]. Even when this change is neglected, the
analytical study of diffusion on a curved manifold poses its
own mathematical problems, which one can try to manage
by means of specific tools from the realm of differential
geometry (see, e.g., Refs. [36,37]). For the problem at hand, the
issue is further complicated because the determination of the
hydrodynamic interactions requires solving the hydrodynamic
equations for the ambient flow together with the boundary
conditions imposed by a curved manifold. Thus, in this work
we consider the simplest configuration of a perfectly spherical
interface supporting the monolayer. This case is of actual
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relevance for the interpretation of experimental results, since
the assembly of a monolayer at the surface of a spherical droplet
is a quite common and relatively easy procedure. Furthermore,
this case is amenable to a mathematical analysis allowing for
the derivation of analytical results. On the minus side, this
configuration is very simple and some questions regarding
the influence of curvature on the hydrodynamic interactions
remain open. In Sec. II, we introduce and solve the simplest
model that exhibits the phenomenology of interest, namely,
the interplay between the intrinsic dynamics of the colloid
and the hydrodynamic interactions mediated by the ambient
fluids. The discussion of the results and the conclusions are
presented in Sec. III.

II. THEORETICAL MODEL

We consider a collection of colloidal particles trapped at
the fluid interface of a spherical droplet at rest. The radius
of the droplet will be denoted by R, while η1 and η2 represent
the dynamic viscosities of the fluids outside and inside of the
droplet, respectively. We take spherical coordinates (r,θ,φ)
with origin at the center of the droplet, so that er denotes
the unit vector normal to the particle monolayer dwelling
on the fluid interface; consequently, the dyadic I − erer

denotes the projector onto the plane tangent to it (with I the
unit tensor), and

∇‖ := (I − erer ) · ∇|r=R = eθ

R

∂

∂θ
+ eφ

R sin θ

∂

∂φ
(1)

is the nabla operator on the spherical surface.
The areal number density of particles in the monolayer

is described by the field �(r = Rer (θ,φ),t) defined on the
spherical interface. It obeys the continuity equation on static
curved surfaces [38],

∂�

∂t
= −∇‖ · (�v‖). (2)

Here v‖ is the velocity field of the monolayer, defined likewise
on the spherical interface and tangential to it. We restrict
ourselves to long time scales such that the overdamped approx-
imation holds [1]. The flow of the monolayer is driven by the
gradient of the chemical potential μ(�) (the “thermodynamic”
force) [16,26], and by the drag by the ambient flow u(r) induced
in the surrounding fluids,

v‖ = −�∇‖μ + u(r ∈ monolayer), (3)

where � is the mobility. With the ideal gas approximation,

μ = −kT ln � (4)

(here, k is Bolztmann’s constant and T is the temperature of the
system), the first term in Eq. (3) yields Fick’s law of Brownian
diffusion on the interface with the surface diffusivity D = �kT

[33]. (Notice that, because the spherical interface is assumed
impenetrable, the component of the ambient flow u normal to
it vanishes [see Eq. (7) below], so that the field v‖ constructed
according to this prescription is indeed tangential).

To provide a complete model, the ambient flow u(r) driven
by the dynamics in the monolayer has to be determined.
Unlike the monolayer fields �(r = Rer ) and v‖(r = Rer ), the
field u(r) is defined everywhere in space. For colloids, it is a

good approximation [1] to use the Stokes equations describing
creeping flow (small Reynolds and Mach numbers),

η∇2u − ∇p = 0, ∇ · u = 0, (5)

where p is the pressure field enforcing the incompressibility
constraint, and the viscosity η takes the value η1 or η2,
depending on where the equations are considered, i.e., outside
or inside of the spherical interface. These equations have to be
complemented by the appropriate boundary conditions. Thus,
the velocity is assumed to vanish at infinity (i.e., no externally
driven flows),

u(r) → 0 as |r| → ∞, (6)

while, at the interface r = Rer , the normal component of the
velocity vanishes (impenetrable interface),

er · u(r = R−er ) = er · u(r = R+er ) = 0, (7)

the tangential component is continuous,

(I − erer ) · u(r = R+er ) = (I − erer ) · u(r = R−er ), (8)

and the viscous stress σ := η[∇u + (∇u)†] has a discontinuity
in the tangential component,

(I − erer ) · {σ (r = R+er ) − σ (r = R−er )} · er = �∇‖μ. (9)

This expresses a force balance condition, like Eq. (5) but
localized at the interface. It describes the shear flow driven by
the Brownian motion in the monolayer. A boundary condition
on the normal component of the stress is not necessary to solve
the problem; it only plays a role in order to determine the
local forces necessary to maintain the surface of the droplet
undeformed in spite of the presence of the particles and the
ambient fluid. In real experiments, this constraint is usually
achieved by the surface tension due to its large value in typical
interfaces.2

The model just presented provides a coarse-grained descrip-
tion of the large-scale evolution of the particle distribution. It
includes implicitly the microscopic details pertaining to the
shape and size of the particles as well as their interactions—
with each other and with the fluids and the interface. But it
considers both the simplest intrinsic dynamics of the colloid
(free Brownian motion) and the simplest form of hydrody-
namic interactions (macroscopic drag), which come in with a
number of simplifications [26]. First, the model leaves complex
rheological properties of the interface out of consideration; it
behaves simply as a passive constraint on the particles forcing
them to remain attached to it. Second, the model also neglects
possible modifications of Fick’s law altogether due to the cur-
vature of the monolayer. Third, the direct interaction between
the particles—electric and dispersion forces, hard-core effects,
etc., are disregarded. The only possible interparticle forces are
transmitted by the ambient fluid, and this hydrodynamic inter-
action is finally modeled in the point-particle approximation:
each particle is passively dragged [see Eq. (3)] by the ambient
flow u created by the force acting on the monolayer [see

2See, e.g., Ref. [39, Supplemental Material] for a detailed discussion
of the case of small capillary number.
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Eq. (9)], an approach valid for a sufficiently dilute monolayer
and which can be actually termed mean-field-like.3

All these approximations could be relaxed at the expense
of mathematical simplicity. Rheological properties of the inter-
face can be incorporated in different ways; for instance, surface
viscosity would appear as an additional term (Boussinesq-
Scriven) in Eq. (9). The interfacial curvature can alter Fick’s
law in several ways: from a simple renormalization of the
diffusion coefficient (e.g., by thermally activated fluctuations
in the interfacial curvature [40]) to a scale-dependent diffusion
coefficient (e.g., by changes in the local curvature on the
microscopic scale of the monolayer [35]). In the extreme case,
even the form of Fick’s law could cease to be valid, with
changes depending on the precise microscopic physics ruling
the system [34]. The direct interactions are negligible in the
dilute limit but they can be easily incorporated into the model
through the density dependence of the chemical potential μ(�)
in Eq. (3). This shows up eventually as a density-dependent dif-
fusion coefficient, which, however, does not affect the anoma-
lous diffusion phenomenology described by the linearized
equation (10) below. Similarly, short-distance corrections to
the hydrodynamic interaction due to near neighbors could be
incorporated as a density-dependent renormalization of the
value of the model rheological parameters, like the mobility
� [41,42].

Linearization

Equations (2)–(9) determine completely the evolution of
the particle number density � in the surface of the droplet. In
order to proceed further, let us assume small deviations from
a homogeneous state, �(r) = �0 + δ�(r) with |δ�| → 0, and
linearize Eq. (2) (all the other equations are already linear):

∂δ�

∂t
≈ D∇2

‖δ� − �0∇‖ · u. (10)

This equation still captures the effect both of diffusion by
Brownian motion and of the hydrodynamic interactions be-
tween different parts of the monolayer. Notice that, although
u(r) as a 3D field represents an incompressible flow [see
Eq. (5)], its restriction to the 2D monolayer will be compress-
ible in general, so that ∇‖ · u(r ∈ monolayer) �= 0. Together
with the long-range decay of the velocity field given by Eq. (5),
this “dimensional mismatch” is the ultimate origin of the
anomalous diffusion.

The departure from previous works dealing with this phys-
ical problem is that the monolayer is now a curved manifold.
In this particular case, the mathematical problem can be
addressed by expanding the fields defined on the spherical
surface in spherical harmonics Ym


 (θ,φ) (see Appendix A; the

3More precisely, the ambient flow is the superposition of the velocity
fields created by the force acting on each particle as if isolated, and
each one of them experiences this flow as if it were created by distant
sources, e.g., like an externally imposed flow. See, e.g., Ref. [26,
Appendix A] and Ref. [28, Supplemental Material] for a more detailed
discussion.

superscript ∗ denotes complex conjugation):

ρm

 :=

∫ π

0
dθ sin θ

∫ 2π

0
dφ Ym∗


 (θ,φ) δ�(θ,φ). (11)

Therefore, Eqs. (5)–(10) lead to (see Appendix A)

∂ρm



∂t
= −D



(
 + 1)

R2
ρm


 , (12)

with an effective, 
-dependent diffusion coefficient

D
 := D

[
1 + R

(
 + 1/2)Lhydro

]
, (13)

expressed in terms of the characteristic length

Lhydro := 4η+D

kT �0
, (14)

which was introduced in Ref. [28], where η+ := (η1 + η2)/2 is
the average viscosity. (See Appendix B for a comparison with
the equation for a planar monolayer). The solution of Eq. (12)
is straightforward,

ρm

 (t) = ρm


 (0)e−t/τ
 , (15)

where we have defined the time scales

τ
 := R2


(
 + 1)D


= τ
(norm)



[
1 + R

(
 + 1/2)Lhydro

]−1

, (16)

τ
(norm)

 := R2


(
 + 1)D
. (17)

In the absence of hydrodynamic interactions, i.e., normal
diffusion, it would be τ
 = τ

(norm)

 (notice that R2/D is the

characteristic time for Brownian motion over the size of the
spherical surface).

The Green’s function G of Eq. (10) is defined by the
relationship

δ�(θ,φ,t)

=
∫ π

0
dθ ′ sin θ ′

∫ 2π

0
dφ′ δ�(θ ′,φ′,0) G(θ,φ; θ ′,φ′; t).

(18)

From the solution (15), one can obtain (see Appendix C)

G(θ,φ; θ ′,φ′; t) =
∞∑


=0

2
 + 1

4π
P
(cos α)e−t/τ
 , (19)

where α is the angle between the directions given by the pairs
(θ,φ) and (θ ′,φ′) (see Fig. 1).

III. DISCUSSION

The effect of the hydrodynamic interactions is already
patent in a comparative plot of the Green’s function, which
formally represents the diffusion of an initially concentrated
distribution, δ�(θ,φ,t = 0) = (sin θ )−1δ(θ )δ(φ) (see Fig. 2).
Qualitatively, one observes that the decay in time toward the
equilibrium, homogeneous distribution is faster and the spread
in space is broader when the hydrodynamic interaction is
accounted for.
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FIG. 1. Definition of the angle α used in Eq. (19).

To be more precise, in the limit R � Lhydro, the time scale
defined by Eq. (16) behaves as τ
 ≈ τ

(norm)

 for any value

of 
, so that the effect of the hydrodynamic interactions is
unnoticeable. In the opposite limit R � Lhydro, however, it is

τ


τ norm



≈
(


 + 1

2

)
Lhydro

R
, (20)

so that the characteristic times are drastically reduced for
the many large-scale modes satisfying 
 � R/Lhydro. This
“acceleration” of the dynamical evolution induced by the
hydrodynamic interactions is a feature shared with the phe-
nomenology in a planar monolayer; the scaling τ
 ∼ 1/
,
rather than τ
 ∼ 1/
2 [see Eqs. (16) and (17)] justifies the
denomination of “anomalous diffusion” (“superdiffusion,” to
be more precise). Also common is the meaning of the scale
Lhydro as a crossover length for the observation of anomalous
diffusion.

Differences arise, however, between both cases (planar and
spherical monolayer) regarding the spatial structure. A useful

0 π /2 π
α

0.10.1

1.1.

5.
G

t=0.02 R2/D
t=0.05 R2/D
t=0.20 R2/D

R/Lhydro=20
R/Lhydro=0

FIG. 2. Plot of the Green’s function, Eq. (19), at different times
when the hydrodynamic interactions are considered (thick lines) or
not (dashed lines). The vertical axis is in logarithmic scale.

diagnostic tool is the average of the Legendre polynomials,

〈P
(cos θ )〉 =
∫ π

0
dθ sin θ

∫ 2π

0
dφ P
(cos θ )G(θ,φ; 0,0,t),

(21)

which provide a measure of how the density distribution
initially concentrated at the pole of the sphere spreads over
its surface. By using the orthonormality properties of the
Legendre polynomials, it follows from Eq. (19) that

〈P
(cos θ )〉 = e−t/τ
 . (22)

Particularly interesting is the quantity [37]

〈R2 sin2 θ〉 = 2
3R2[〈P0(cos θ )〉 − 〈P2(cos θ )〉]

= 2
3R2[1 − e−t/τ2 ], (23)

closely related to the second moment of the density distribu-
tion. It provides a measurement of the lateral extension of the
diffusing cloud (R sin θ is the size projected onto the equatorial
plane θ = π/2). In the case of normal diffusion in the plane, the
second moment grows linearly in time. This is at variance with
the behavior when the hydrodynamic interactions are consid-
ered: for an unbounded planar monolayer, the Green’s function
exhibits a tail ∝r−3 with in-plane distance r regardless of the
value of the characteristic length Lhydro (see Appendix B).
This is ultimately a consequence of the long-ranged nature
of the induced ambient flow and implies that the average 〈r2〉
is formally infinite. To make sense of this magnitude requires
a regularization by means of a large-distance cutoff, e.g., as
a finite size of the system or by relaxing the assumption
of instantaneous buildup of the hydrodynamic interactions
[31,43]. This behavior is altered significantly, however, when
the interface is spherical. In order to obtain a meaningful
comparison, consider the short time expansion of Eq. (23),
when the difference between the projected extension R sin θ of
the particle cloud and the “true” (geodesic) extension r = Rθ

is expected to be statistically irrelevant [37]:

〈R2 sin2 θ〉 ≈ 2R2t

3τ2
= 4D2t (t → 0). (24)

This average is well defined and actually behaves the same
as in normal diffusion in a plane. The hydrodynamic inter-
actions only show up in that the diffusion coefficient D2 is
renormalized [see Eq. (13)]. And so, when R � Lhydro, the
hydrodynamic interactions are irrelevant, D2 ≈ D, and any
mention of the radius R drops from the expression (23).
In the opposite limit R � Lhydro, the diffusion coefficient
does depend on the parameter R: it is much larger, D2 =
(2R/5Lhydro)D � D, but still finite, diverging formally only
in the limit R → ∞. Since R quantifies both the local curvature
of the interface and its global extension, there remains the
ambiguity whether R → ∞ should be better interpreted as
either the flat interface limit or the unbounded interface
limit.

In summary, the dramatic reduction of the diffusion times
on scales above a certain characteristic length Lhydro observed
in a flat monolayer is preserved for a spherical monolayer.
In this sense, the collective diffusion in the spherical con-
figuration can be also qualified as anomalous. The radius
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of the spherical interface enters as a natural cutoff that
renders the second moment (23) (and, actually, any other
higher-order moment of the density distribution) finite. The
spherical configuration, however, is very particular in that the
radius is a quantity pertaining to both the global structure of
the surface, namely, its finite size, and its local curvature,
and it is not clear how to disentangle the influence of the
respective features. Thus, there still remains unanswered the
question about which feature is actually more determinant:
could an unbounded, but locally curved surface disrupt the
effect of the hydrodynamic interactions that leads to anomalous
diffusion?
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APPENDIX A: SPHERICAL HARMONICS

We use the standard definition of the spherical harmonics,

Ym

 (θ,φ) :=

√
2
 + 1

4π

(
 − m)!

(
 + m)!
P

|m|

 (cos θ )eimφ, (A1)

in terms of the associated Legendre functions of the first kind,
P

|m|

 , with 
 a positive integer and m an integer such that

|m| � 
. These functions are a complete, orthonormal basis
for functions defined on the surface of a sphere and verify

∇2
‖Y

m

 = −
(
 + 1)

R2
Ym


 . (A2)

The linear boundary-value problem given by Eqs. (5)–(9)
can be solved easily with the help of the spherical harmonics.
This is precisely the same problem studied recently in Ref. [44]:
our Eqs. (5)–(9) become equations (1)–(4) of Ref. [44] upon
identifying ∇sσ ↔ �∇‖μ. The solution to Eq. (5) can be
written as an expansion in spherical harmonics, with different
expansion coefficients inside and outside of the spherical
interface. The boundary conditions (7)–(9) at the interface pro-
vide relationships between the coefficients inside and outside.
Finally, the boundary condition (6) and the additional condition
that the velocity field must be regular everywhere (in particular,
at the origin r = 0 of the coordinate system) determine the
value of these coefficients uniquely. We only need the velocity
field evaluated at points of the monolayer, which is given by
Eq. (12) in Ref. [44]; in our notation, it is

u(r = Rer (θ,φ)) = − kT R

2η+

∞∑

=1


∑
m=−


ρm



2
 + 1
∇‖Ym


 (θ,φ),

(A3)

in terms of the average viscosity η+ := (η1 + η2)/2. The use
of Eq. (A2) renders expression ∇‖ · u(r = Rer ) in Eq. (10)
into an expansion in spherical harmonics, from which Eq. (12)
follows straightforwardly.

APPENDIX B: THE PLANAR MONOLAYER

For an unbounded, planar monolayer, one introduces the
2D Fourier transform of a density perturbation,

ρ(k) =
∫

d2r e−ik·rδ�(r), (B1)

where r = (x,y) is a point of the monolayer plane z = 0. This
quantity obeys the dynamical equation [28]

∂ρ(k)

∂t
= −D

(flat)
k k2ρ(k), (B2)

with the diffusion coefficient

D
(flat)
k := D

[
1 + 1

Lhydrok

]
. (B3)

The comparison with Eqs. (12) and (13) shows that for
the small-scale modes (
 � 1), they reduce to the planar
case with the identification k ↔ 
/R. The large-scale modes
are sensitive to the curvature of the spherical interface and
differences between both cases arise.

An analytic expression for the Green’s function in the planar
case, defined analogously to Eq. (18), can be obtained in the
limit r � Lhydro [26],

G(r,t) ≈ 1

2π

(
Lhydro

Dt

)2
[

1 +
(

rLhydro

Dt

)2
]−3/2

. (B4)

As a consequence of the slow 1/r3 asymptotic decay, the
second moment of the Green’s function,

〈r2〉 =
∫

d2r r2G(r,t), (B5)

is undefined in an unbounded monolayer.

APPENDIX C: THE GREEN’S FUNCTION

The solution (15) and Eq. (11) allow one to write the time-
evolved density field as

δ�(θ,φ,t) =
∞∑


=0


∑
m=−


ρm

 (0)e−t/τ
Ym


 (θ,φ)

=
∞∑


=0


∑
m=−


e−t/τ
Ym

 (θ,φ)

∫ π

0
dθ ′ sin θ ′

×
∫ 2π

0
dφ′Ym∗


 (θ ′,φ′)δ�(θ ′,φ′,0). (C1)

The comparison with Eq. (18) gives the expression

G(θ,φ; θ ′,φ′; t) =
∞∑


=0

m∑

=−m

e−t/τ
Ym

 (θ,φ)Ym∗


 (θ ′,φ′).

(C2)

This can be simplified further by using the definition of the
spherical harmonics, Eq. (A1), and by applying the addition
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theorem [45],

P
(cos α) = P
(cos θ )P
(cos θ ′) + 2

∑

m=1

(
 − m)!

(
 + m)!
P m


 (cos θ )

×P m

 (cos θ ′) cos m(φ − φ′), (C3)

where the angle α (see Fig. 1) satisfies

cos α = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (C4)

In this manner, Eq. (C2) is simplified to Eq. (19).
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