Systems Tesling and Validation Workshop 2004

References

[1] M.J. Gallagher and V.L. Narasimhan, ADTEST : A Test Data Generation Suite for Ada
Soﬂwagg? re Syslems, |EEE Transactions on Software Engineering, Vaol. 23, No. 8, August
1

[2] A. Gotlieb, B. Botella and M. Reuher, A CLP Framework for Computing Structural Test
Dalta, CL2000, LNAI 1891, Springer Verag, July 2000, pp 399-413

(3] S5-D Gouraud, A Denise, M-C. Gaudel and B. Marre, A New Way of Aulomating
Stalistical Testing Methods, ASE 2001, Coronado Island, California, November 2001

[4] B.Jeng and E.J. Weyuker, A Simplified Domain-Testing Sirategy, ACM Transactions on
Software Engineering and Methodology, Vol. 3, No. 3, July 1994, pp 254-270

[5] B. Korel, Automated Software Test Data Generation, IEEE Transactions on Software
Engineering, Vol. 16, No. B, August 1990

[6] G.T. Leavens et al, How the Design of JML Accomodates both Runtime Assertion
Checking and Formal Venifications, In Formal Methods for Components and Objects,
LNCS Vol. 2852, Springer Verlag, 2003, pp 262-284

[7] B. Marre and A. Amould, Test sequences generation from Lustre descriptions: GATeL,
ASE 2000, Grenoble, pp 229--237, Sep. 2000

[8] B. Mare, P. Mouy and N. Wiliams, On-the-fly Generation of K-Path Tests for C
Functions, ASE 2004, Seplember 2004, Linz, Austria

[9] C. Michael and G. McGraw, Automated Software Test Dala Generation for Complex
Programs, ASE, Oct 1998, Honolulu

[10] C. Michel, M. Rueher and Y. Lebbah, Solving Constrainis over Floating-Paint Numbers,
CP2001, LNCS vol. 2239, pp 524-538, Springer Verlag, Berlin, 2001

[11] P. Mouy, Vers une méthode de génération de lests boile grise “a Ia volée”, Approches
Formelles dans |'Assistance au Développement de Logiciels (AFADL 2004), June 2004,
Besangon, France

[12) G.C. Necula, 5. McPeak, S.P. Rahul and W. Weimer, CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs, Proc. Conference on Compiler
Construction, 2002.

[13] M. Obayashi, H. Kubota, S P. McCarron and L. Mallet, The Assertion Based Testing
Tool for OOP: ADL2, In Proc. ICSE'98, Kyoto, Japan, 1998

[14] R.E. Prather and J.P. Myers, The Path Prefix Testing Sirategy, IEEE Transactions on
Software Engineering, Vol. 13, No. 7, July 1987

[15] N.T. Sy and Y. Deville, Consistency Techniques for Inferprocedural Test Dala
Generation, ESEC/FSE'03, Seplember 1-5, 2003, Helsinki, Finiand

[16] M. Wallace, S. Novello and J. Schimpf, ECLiPSe: A Platform for Constraint Logic
Programming, IC-Parc, Impenial College, London, August 1947

Systems Testing and Validation Workshop 2004

COMPARATIVE ANALYSIS OF METHODOLOGICAL
PROPOSES TO SYSTEMATIC GENERATION OF SYSTEM
TEST CASES FROM SYSTEM REQUISITES.

1.). Gutigrrez, M. J. Escalona, M. Mejias, J. Torres
Department de Lenguajes y Sistemas Informaticos
University of Sevilla
(+34) 954552777, 954553867, 954552769, fax: 054557139
{javier), escalona, risotto, jtorres)@|si us.es

Abstract. System tests verify functionality and system integrity of
software system globally. System tests are made at the end of system
construction. However, it is possible to begin to plan these tests in the
first stages of development. This work describes the gaining to plan
system tests soon in development process. This work presents a
comparative analysis of four proposals to systematize the process of
obtaining of system tests. Later, this work shows strong and weak
points of every proposal. These points are useful to decide which
proposal adopting and they are the bases to new investigations.

KEY WORDS. Test case, system test, use cases, functional
requirements,

1. INTRODUCTION.

Systemn testing phase begins when building of the software system
is finished. The objectives of this phase are to test the system in depth
and verify its global functionality and integrity, running the system in
an environment as similar as the final production environment. This
verification is based on observation of a controlled set of executions
called testing cases.

System testing planning can begin as soon as first functional
specifications of system begin to be available. This allows finding
errors, omissions, inconsistencies and overspecifications in the
functional specifications when it is easy and economic to correct
them, because of the cost to correct errors increases at same time that
time among the appearing of defect and his detection increases [7].

This work offers the results of a comparative analysis based on four
proposals for generating system test cases from system specifications.

Systems Tesling and Validation Workshop 2004

This analysis exposes their common elements and the strong and
weak points of every proposal.

1.1. State of the art.

The first proposals to systematize and automatize generation of
system test cases from system requirements were based on finite state
rn_achines to represent system behaviour. Later, with the apogee of
diagrams proposed in UML annotation, a new set of proposals and
tools appeared to develop system-testing process from use scenarios
described by UML diagrams.

Mowadays, a new group of proposals attempting to integrate those
two approximations are rising, whereas approximation based in finite
status machine, as approximation based at use scenarios. This group
adopts the best ones of both [9]. Within this group of proposal,
SCENT [2] and AGEDIS [5] are two of their more representatives ones.

2. DESCRIPTION OF PROPOSALS.

The criterions for proposals selection have been, in first place, to
select the more moderns. In this way, none of examined proposals is
previous to year 2002, and even one of them, AGEDIS, has been
finalized at the beginning of the year 2,004, so it is the most modern
proposal existent at the time to write this work.

In second place, we have looked for proposals based on the actual
work to join the finite states machine and use scenarios
approximations. We have selected the two most important proposals:
SCENT and AGEDIS,

In third place, we have selected a little and fast to apply proposal
called Test Cases From Use Cases [1], as an alternative to the two
previous proposals.

These three proposals obtain a group of functional tests case.
However, there are more kinds of tests like security tests, stress tests,
performance tests, etc. For this reason we have selected, as last one, a

Systems Testing and Validation Workshop 2004

proposal that allows deriving test cases to accomplish reliability tests,
called UML Based Statistical Test Case Generation [4].

21. Method Employing Scenarios to
Systematically Derive Test Cases for System
Test (SCENT).

SCENT [2], [3] is a methodological proposal divided in two blocks. In
first block, SCENT describes a process to define use scenarios, to refine
them and to organize them, starting from system functional
requirements. In second block, starting from scenarios obtained in
block one, SCENT describes how to systematically generate system-
testing cases.

In first block, SCENT defines use scenario as an ordered group of
interactions normally among a system and a set of actors. A scenario
can include a concrete sequence of interactions or a group of possible
interactions or execution paths.

The first step to obtain use scenarios is the identification and the
wording in natural language of system scenarios. All actors that
interact with the system, its roles and the relevant events for the
systemn are identified. With these elements, generic use scenarios are
building and priorities are assigned in terms of importance of each
use case. From now on, the use scenarios are described in detail and
use scenario diagram, including dependences among use scenarios is
built. Use scenario diagrams reflect which use scenario must be
executed before, or which ones can be executed independently.

Mext, alternative execution flows are modelled; indicating how the
system must reacts executing these flows. Later, execution flows are
added to scenarios. Next, non-functional requisites, as descriptions of
user interfaces or performance notes, are added to use scenarios.
Finally, use scenarios obtained are validated to verify that scenarios
and all generated products reflect suitable and completely the needs
of the users of the systern. Once validated, use scenarios are
translated to state diagrams. These state diagrams are completed
with information necessary to be able to generate test cases from
them, like preconditions postconditions, data inputs, data outputs
and more non-functional requisites.

Systems Testing and Validation Workshop 2004

A set of use scenarios and state diagrams contains information
necessary for generation of test cases are obtained at the end of this
block,

In second block, generation of test cases accomplishes intervening a
three steps process. In first step, each test case is defined, indicating
what it goes to test. After that, test cases are generated from the
distinct paths that can be gone over in the state diagram. Finally, test
cases obtained are refined and completed with more test cases
developed by classical methods, like stress tests, user interface tests,
elc.

2,2. Test cases from use cases.

This proposal [1] develops a method to obtain a set of system test
cases from use cases in three steps,

First, all possible path of execution are generated from every use
case. After that, test cases are identified from those use cases. Every
possible execution path generates a test case.

Finally, test values for every test case are identified. Test values
include valid and invalid values and outputs expected

Starting from use cases and their not formal description, a list of
test cases, with their test values and the expected output is obtained.

2.3. UML-Based Statistical Test Case
Generation.

This proposal [4], unlike the other ones, is centred on statistical use
tests or reliability tests. These tests verify that system fulfils a
determined reliability level. The main idea is that different parts of a
program do not have to be tested with the same meticulousness
because the program spends 90% of its time executing only a 10% of
its code. Statistical use tests identify this 10% and checks the reliability
of that code,

The process of obtaining reliability tests consists of five steps. In
first step, use cases are refined with preconditions and

Systems Testing and Validation Workshop 2004

postcondiciones, alternatives to the main execution path and
dependencies to another use cases. After that, use cases are
translated into state diagrams. Next, usage model is built from state
diagrams. Usage model indicates the probability that a transition
occur (illustration 1),

™ T2 T4 0.3 T3
n .
1.0 1.0 0.85
T5/0.15

lMustration 1. Example of status diagram with the probability that each transition
OCCLIS.

Usage model allows identifying most frequent execution paths.
Finally, test models are extracted from usage models and random
executions are defined from usage models. Each random execution
will be a test case. On execution, these test cases select what path will
be taken in every transition in terms of the probability; hence, the
majarity of test cases will execute the transitions with bigger
probability.

2.4. AGEDIS.

AGEDIS [5]. [6]. [B] is an investigation project financed by the
European Union concluded at the beginning of 2,004. AGEDIS main
objective has been the development of a methodology with the same
name and a set of tools for the automatic generation and execution
of tests to verify systems based in distributed components. Although
AGEDI5 methodology and tools can be applied to any kind of system,
better results are obtained applying AGEDIS to control systems, as
communication protocols, than to information transformation
systems, like compilers.

AGEDIS focuses in two products: A system model written in a
modelling language called IF, and a set of UML class and state
diagrams. These products allow automatic generation of sets of tests
and groups of test case objects to link system model and its
implementation. This one allows executing tests with system maodel
and system implementation and comparing outputs from model with
outputs from implemeantation.

This methodology exposes an iterative process of six steps
(illustration 2). In first step, a behavioural system model is building

Systems Testing and Validation Workshop 2004

from system specifications. UML class diagrams compose a behaviour
model where each class has allotted an UML state diagram that
describes the behaviour of the objects of that class. From now on,
tests objectives are elaborated (use cases tests with concrete data,
system charging test, etc). Test objectives are translated to a
generation and execution set of test directives. In next step, a tool
generates automatically tests that satisfied these objectives,

- System Generation Systam benavior
specs 2! maodel
Test cases
alon Generalion drecives g
Ganet :)
g
b=l Test objeclives GE“'ﬂh‘an]
Exgculion dreclives ——E—Iﬂh Test results
Analysis]

lllustration 2. Description of process to generation and execution of test cases.

Al last, test outputs are examined and these six steps are repeated
until they attain desired objectives.

3. ANALYSIS OF PROPOSAL.

3,1. Common points and proposals comparison.

A set of common points has been found in analyzed proposal.

1. All proposals start from functional systemn specifications and
allow developing system test cases as soon as first functional
specifications are available.

2. All proposals use analysis of all possible patches, from textual
description of use case or scenario steps or from state diagrams.

3. Functional specifications do not have to fulfil any formal
requirement. It is possible to start working with a brief natural
language description,

Systems Testing and Validation Workshop 2004

4, Derivation of system test cases from functional specifications can
be made automatically and systematically. All proposals can be
automatizated by software tools.

5. The application of these proposals helps validation of functional
specifications, checking if they are right and complete at first phases
of development process.

Eleven factors were evaluated for each proposal. Table 1 shows the
most relevant factors and table 2 describe those factors.

| SCENT Test cases UML-Based AGEDIS

i generation Statistical

| from use cases. Test Case

| Generation

| New notation Yes (1) No No Yes (2)

| Practical cases Yes N Na Yos

| Kind of tests Faults Faults Reliability Faults |
| Use of standards Yes Yes Yes Yes |
 Supporting tools No No Yes Yes i
| Difficulty of Middle Loww Middle High |

| implantation

| Examples Yes Yes Yies Yes
Steps 16+3 (3) 3 5 B

Table 1. Comparison of analyzed proposals.

(1) - Scenario dependences diagrams.
(2) - IF Language to model the system.
(3) - 16 steps to obtain the scenarios and 3 steps to derive test cases.

New Indicates if a proposal proposes its own notation or

notation diagrams.

Practical Indicates if there are real project reports in which

CRERS methodology has been applied.

Kind of tests |ndicates if test cases generated are orientated to search
system failures or they are oriented to charging tests.

Use of Indicates if a proposal is based in diagrams largely used

standards jike UML diagrams.

Supporting Indicates if, nowadays, there are tools to support

tools methodology or automatize their steps.

Difficulty of |t is based in quantity and difficulty of transformations

implantation 14, realize in each step. A low difficulty indicates a simple

proposal to realize, for the one that almost requires
previous preparation. A medium difficulty indicates
there are new notation or some process that needs a
previous preparation. A high difficulty indicates that a

Systems Testing and Validation Werkshop 2004

Examples

Steps

proposal cannot be applied without a depth study of its

elements.

Indicates if a proposal includes application examples,

aside from practical cases.

Indicates the number of steps to obtain a set of system
tests from functional specifications.

Table 2. Description of characteristics evaluated in table 1

3.2. Strong and weak points of each proposal.

Table 3 shows strong and weak points of each proposal.

Strong points

Weak points

SCENT

This proposal offers a
detailed method to
manipulate and organize
use scenarios. It includes
two references to real
praojects where it has been
successfully applied.

It is necessary to made a
very drawn-out job, 16
steps, with scenarios
before generating test

cases.

Test cases

Its strong point is also its weak point, Working with use

generation |cases written in natural language, instead of formal use
from use| cases, does it suitable to rapidly obtain test cases, but it
cases difficult the automatization of process by tools,
UML-Based |It is the only proposal that|lt does not include
Statistical |allows deriving reliability|references to practical
Test Case|test cases from functional |cases. It does not provide a
Generation |regquirements. way to determine
probability. Each
probability has to be
calculated studying state
diagrams and
specifications supplied by
the customer.
AGEDIS This proposal is the most

compléte, including
generation, execution and
automatization of test

It can not be applied to all
kind of projects, just only
projects that flow controls

is more important that

Systems Testing and Validation Workshop 2004

cases. This proposal | information transforming.
provides references to five | Tool kit is free only fro
real successful projects. It|educational purposes.

has a complete tool kit to
support all steps of the
process.

4. CONCLUSIONS.

Generation of system test cases at first phases of development
process offers an additional validation of system requirements,
Generation must begin as soon as requirements begin to be available.
Generation of system test cases can be systematized and int!agrat.ed
into development process, in tandem with requirements elicitation
phase and can be automatized by software tools. _)

There are many differences in four proposals examined. This
differences offers variety at the time to select one according Lo the
investment in time and resources available. Thus, for example, we
can start with a simple method for little projects, like [1] or (8], and
evolving gradually to more complete and complex proposal.

AGEDIS is the most modern and complete proposal but it is not the
definitive solution. None of proposals are definitive; all proposals
have some advantage over the rest and some weak points. 50, we
think that there is a gasp for a new proposal that joins all strong
points of proposal examined and avoid all their weak points. Some
initials key ideas about this proposal are: starting fl'Gl.'I"I use cases,
detecting redundant test cases and calculating the minimum set of
test to cover a use case.

5. FUTURE WORKS.

A line of investigation based in this work is the development of a
new methodology for systematic generation of system test cases,

Systems Testing and Validation Workshop 2004

which includes strong points of analyzed methodologies, and
correcting weak points.

Another line of investigation is to make a study of the implantation
process of these proposals in production environments. Applying a
system test methodology into an industrial environment imposes
additional requirements not exiting in an academic study, like return
of inversion.

6. REFERENCES.

(1] Heumann , Jim, 2002. Generating Test Cases from Use Cases.
Journal of Software Testing Professionals.

[2] Johannes Ryser, Martin Glinz 2003. Scent: A Method Employing
Scenarios to Systematically Derive Test Cases for System Test
Technical Report 2000003, Institut fur Informatik, Universitat Zarich.

[3] Johannes Ryser, Martin Glinz 2003. A Practical Approach to
Validating and Testing Software Systems Using Scenarios Quality
Week Europe QWE'99 in Brussels. Institut fur Informatik, Universitat
Lirich.

[4] Matthias Riebisch, llka Philippow, Marco Gotze llmenau. UML-
Based Statistical Test Case Generation, Technical University, llmenau,
Germany

[5] Hartman, Alan 2004 AGEDIS Firal Project Report AGEDIS
Consortium Internal Report. http:/iwww agedis.def

[B] Cavarra, Alessandra, Davies, Jim 2004 Modelling Language
Specification. AGEDIS Consortium Internal Report.
http:{fwww agedis.de/

[71 1). Gutierrez, M.). Escalona, M. Mejias, J. Torres, 2004. Un
studio comparative de propuestas metodologicas para generaciond e
pruebas del sisterma. Inner report waiting publication.

Isi

[8] lan Craggs, Manolis Sardis, Thierry Heuillard. 2003. AGEDI5 Case
Studies: Model -Based Testing in Industry. AGEDI5 Consortium Internal
Report . http:{fwww.agedis.de/

[8] A. Bertolino, E. MarchettiH. Muccini. 2004. Introducing a
Reasonably Complete and Coberent Approach for Model-based.
Electronic Notes in Theoretical Computer Science.

