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Abstract. The Web is the largest repository of human-friendly infor-
mation. Unfortunately, web information is embedded in formatting tags
and is surrounded by irrelevant information. Researchers are working
on information extractors that allow transforming this information into
structured data for its later integration into automated processes. Devis-
ing a new information extraction technique requires an array of tasks that
are specific to this technique and many tasks that are actually common
between all techniques. The lack of a reference architectural proposal in
the literature to guide software engineers in the design and implementa-
tion of information extractors, amounts to little reuse and the focus is
usually blurred because of irrelevant details. In this paper, we present a
reference architecture to design and implement rule learners for informa-
tion extractors. We have implemented a software framework to support
our architecture, and we have validated it by means of four case studies
and a number of experiments that prove that our proposal helps reduce
development costs significantly.

Keywords: Information Extraction, Rule Learning Reference Architec-
ture.

1 Introduction

TheWeb contains a huge amount of information and it is a still growing data con-
tainer. This unlimited repository aroused enterprises’ interests in exploiting this
information from the Web by devising new applications that consume and anal-
yse this information. Unfortunately, integrating this information into business
processes is a costly task since web information is usually embedded in HTML
tags and buried in other superfluous contents. This has motivated many authors
to work on web information extractors that allow extracting relevant informa-
tion from web pages and structuring it in relational tables, which can be easily
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consumed by business processes. Information extractors allow extracting infor-
mation from free-text web pages such as news and blogs, or from semi-structured
web pages such as search results and web pages with detailed information about
some items. We focus on information extractors from semi-structured web pages.

An information extractor is a general algorithm that can be configured by
means of rules to extract the information of interest from a web page and to
return it according to a structured model. These rules can be handcrafted [9, 4],
predefined as heuristics [3, 5], learnt using supervised techniques that require
the user to annotate information of interest in a set of training pages [14, 19], or
learnt using non-supervised techniques which learn rules to extract the informa-
tion the technique considers as data of interest [10, 15]. Common information
extraction rules range from regular expressions to context free grammars, first-
order rules, XPath templates, and transducers. Our work focuses on techniques
that learn transducers to extract information for semi-structured web pages.

The literature reports on few proposals to help researchers and software en-
gineers build their rule learners [2, 8, 13, 20, 17]. These proposals claim to offer
an environment in which rule learning techniques can be developed and tested.
However, these proposals were presented as tools and the description of their
architecture is not clear. Furthermore, they are neither available nor maintained
any more. UIMA [12] and Gate [11] are frameworks that can be used to manage
large volumes of information, but they both focus on free text pages.

Several proposals referenced the lack of a reference architecture to help
software engineers develop extraction rule learners from semi-structured web
pages [7, 21, 22]. This is problematic insofar researchers need to implement their
proposals from scratch in order to validate them, i.e., they need to pay attention
to a variety of details that are ancillary and common to many other proposals,
but do not constitute the core of their research [1]. The lack of a reference archi-
tecture has also led to a variety of terminologies, which makes communication
amongst software engineers difficult, and to experimental results that are not
comparable empirically due to differences in the designs and the implementa-
tions.

In this paper, we present a reference architecture to devise learners of infor-
mation extraction rules. To support our reference architecture, we have imple-
mented a software framework and we have validated it by means of four case
studies and a series of experiments that prove that it helps reduce development
costs significantly and compare the techniques we have implemented empiri-
cally. We use the 4 + 1 architectural view model proposed by Kruchten [18] to
describe our reference architecture. In Sections 2–4, we describe the logical, the
development, and the scenarios views, respectively. Since our proposal is not
intended to be a functioning system, the process and the physical views, which
focus on non-functional requirements like concurrency, distribution, topology or
communication, do not actually make sense in this case. Section 5 reports on
the accompanying framework and on the implementation of several rule learning
techniques from the literature, which are compared empirically. Finally, Section 6
concludes our work.
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Fig. 1. Relationships amongst subsystems

2 Logical View

The logical view of an architecture represents the functional requirements the
system should provide to its end user. In our case, the end user is a software
engineer who aims at devising a new extraction rules learning proposal, so in
this view we will describe the subsystems, the services they provide, and the
interactions amongst them.

The architecture is divided into the following subsystems, whose relationships
are shown in Figure 1:

Annotation tool: The reference architecture relies on an annotation tool with
which users can download and annotate web pages according to an OWL on-
tology in which he or she describes classes, properties and their relationships.
Ontology classes are used to represent records of information, object properties
represent nested records, and data properties represent attributes.

Dataset: This subsystem provides services that allow end users to work with
annotations and persist them. During the annotation process, this subsystem
allows users to instantiate ontology classes and properties in addition to their
position in the corresponding web page. During the learning process, end users
can use a dataset to work with a text view or a tree view of the pages they have
annotated, get the annotations sorted according to their position or to their
type, obtain separating texts between annotations or work with DOM trees and
annotation nodes. During the extraction process, this subsystem allows end users
to persist the information that is extracted to OWL files.

Learner: This subsystem provides end users with services to develop rule learn-
ers. For example, there is a service to create the skeleton of a transducer for a
given dataset, i.e., its states and transitions, but not the transition conditions. It
saves end users from the burden of inferring the structure of a transducer from
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the annotations in a dataset, since this is common to every learning algorithm.
Note that this subsystem is a point of variability where software engineers only
have to focus on devising their own learning algorithms to learn extraction rules.

Rules: This subsystem provides a service to construct extraction rules step by
step and to execute them on web pages in order to extract information.

Cross Validator: This subsystem provides a tool with which end users can k-cross
validate their rule learners. It helps collect precision, recall, specificity, accuracy,
and the F1-measure. Thanks to this tool, the results about a given proposal are
empirically comparable to other proposals.

Utilities: This subsystem offers some utilities to the rest of subsystems, namely:
a configurable tokeniser, a web page downloader, preprocessors such as an HTML
cleaner or data region identifier, and a few string and tree alignment algorithms.

3 Development View

This view shows the system from a developer’s perspective by illustrating the
module organisation of the system and the class diagrams of each module which
are the basis for assigning work packages to the members of a development
team. Our reference architecture is composed of layers each of which has a well
defined responsibility and provides services to the layers above it. These layers
are illustrated in Figure 2 and are studied below.

The annotation tool layer: This is the upper layer in our reference architecture. It
contains a tool for users to create Datasets. It uses the lower layers to download,
clean HTML, add annotations, and to save Datasets. Ontologies are used to
create the annotations of each web page.
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The cross validator layer: Cross validation is used to estimate the system per-
formance in the practice for a given web site and to obtain comparable results
on a Dataset. Given a Dataset obtained from a web site, the k-fold cross vali-
dation technique partitions the Dataset into k subsets of web pages with their
corresponding Resultsets and then starts iterating over them. At each iteration,
it considers one of these subsets for testing, whereas the remaining subsets are
considered as a unique set which is used to learn rules. The rules learnt at each
iteration are tested on the selected subset, and some statistics are collected. At
the end, the weighted arithmetic mean of each calculated value is returned.

The fifth layer contains the the classes of the CrossValidator and the classes
to collect results during a k-cross validation Figure 3. These classes are:

– CrossValidator: This class provides methods to perform a k-cross validation on
a given a Dataset for a specific Learner. It uses a LearnerFactory to create the
Learner to be tested, and during the cross validation process, it compares the
Resultsets obtained with the annotated ones to collect the previous Statistics.

– Statistics: This class provides methods to collect the following statistics: true
positives, false positives, true negatives, false negatives, the total number of
annotations at each iteration and the weight of each class and property in
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the Dataset. The provided methods in this class to calculate effectiveness
and efficiency values use these attributes.

– Stat: A statistics class in which values can be collected. It provides meth-
ods to calculate statistical measures such as arithmetic mean and standard
deviation.

The learners layer: The key of this layer is that it is open, i.e., is intended to
provide an extension point software engineers should use to create their own rule
learners, cf. the gray band in Figure 2. In our accompanying framework we have
implemented several extensions to implement learners that learn transducers and
that are based on SoftMealy [14], LR [19], FivaTech [15], and IEPAD [6]. The
classes in this layer are the following:

– LearnerFactory: This class is intended to provide a method to create a Learner
of a given type.
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– Learner: An interface that should be implemented by the rule learners devised
by users.

– SkeletonCreator, LearnerInformation, and TransducerRulesLearner : These
classes are created to model the rule learners that learn transducers. The
SkeletonCreator allows creating the skeleton of a transducer, LearnerInforma-
tion models information related to each state and to each transition in the
transducer, and the TransducerRulesLearner is intended to learn the transition
condition using a specific learning technique.

– FTLearner, LRLearner, PTLearner, and SMLearner: These classes model spe-
cific learners that learn transition conditions using techniques inspired in
FivaTech [15], LR [19], IEPAD [6], and SoftMealy [14] respectively.

The rules layer: The third layer contains the rules created by learners and
used for information extraction. In our accompanying framework we have im-
plemented the rules of type transducers, c.f. 5. The classes in this layer are the
following:

– Rules: This is an interface that should be implemented by the different types
of extraction rules learnt by the Learners in the upper layer.

– Transducer: This class models a type of rules some information extraction
techniques learn. It contains a collection of States and Transitions. Inside
each Transition reside its conditions which are regular expressions.

The dataset layer: The second layer contains the dataset classes that help main-
tain the user annotations and the extracted data. The classes contained in this
layer are shown in Figure 6, namely:

– Dataset: It models a collection of Resultsets and web pages. Each contains a
map from a set of web pages onto their corresponding Resultsets.
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– Resultset: This class models the annotations on a web page and allows to
save them as an instance of an ontology.

– WebPage: This class is used to represent a web page. It keeps a reference to
where it was downloaded to local cache (cachedURI) and its original location
(uri).

– TextLocator and TreeLocator: These classes are used to provide locations to
the annotations. Each instance of a class and property in the Resultset has
both locators. The TextLocator saves information about the offset and length
of an annotation whereas the TreeLocator contains the XPath of the annota-
tion in the DOM Tree. Both locators allow obtaining the text contained in
each annotation.

– TextView and TreeView: There classes model views used in the learning pro-
cess. The TextView provides a view over the text content of a WebPage. The
TreeView provides a view over the DOM tree.

– DatasetPersistence: This is a class used to save and load Datasets.

The utility layer: At the bottom of the layers of our architecture resides the
utility classes that are used by the upper layers. These utilities include the
following classes:

– Tokeniser: A class to implement a configurable tokeniser, cf. Figure 7. The
tokeniser is configured by means of an XML file in which hierarchy between
different token classes are defined besides the regular expression that defines
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each type of TokenClass. When a text is tokenised, the Tokeniser returns a
TokenListwhich is aMap of Tokens sorted by their offset in the tokenised text.
The methods generalise in TokeniserConfig and getAsLiteral in class Token
allow generalisation and specialisation of tokens, respectively.

– StringAligner: This class provides an implementation of a multiple string
alignment algorithm that is similar to the one presented in [15].

– PatriciaTree: This class constructs a PatriciaTree starting from a set of to-
ken sequences. It provides methods to be updated by adding a new token
sequences and to build the regular expression that corresponds to this tree.

– Downloader: This class downloads web pages locally. To ensure the repro-
ducibility of tests, annotated web pages are downloaded and saved locally to
avoid that changes in web sites affect user annotations and tests.

– Pre-processors: They are usually used before rule learning or information
extraction. HTMLCleaner can be used to fix the HTML code of downloaded
web pages while region extractors can be used in some learning techniques
to identify the region in which the data of interest resides.

4 Scenarios View

According to Kruchten [18], this view shows how an architecture is instantiated in
typical use cases. It serves two purposes: as an illustration of how the architecture
can be used and as a validation of the reference architecture since the described
scenarios are supposed to be an abstraction of the most important requirements.

SCEN1: Developing a new learning technique: This scenario intends to show
how a software engineer can devise his own technique to learn extraction rules
of type transducers and integrate it into our reference architecture. The steps he
or she should perform are as follows:



– User imports the rule learning framework.
– The user creates a class that extends class TransducerRuleLearner which im-

plements interface Learner.
– A Tokeniser should be created by defining an XML file with the tokenisation

hierarchy that will be used by the new technique.
– The user defines the template method learnTransitionConditions in the new

class created. This method includes the code necessary to learn the transition
conditions for the learnt transducer.

SCEN2: Testing a new learning technique: This scenario intends to show how a
software engineer can test his own technique and obtain comparable results by
using a 10-folds cross validation, for example. The steps to validate a learning
technique is defined below:

– The user downloads our testing Datasets.
– The method perform from the class CrossValidator is called. This method

receives k = 10, the Tokeniser and the name of the learning technique that
will be tested.

– The CrossValidator performs a 10 fold cross validation and save results in
Statistics. These Statistics are returned by the CrossValidator and allow to
obtain measurements such as Precision and Recall for each class and property
in the used ontology.

SCEN3: Learning extraction rules: This scenario describes how user can learn
extraction rules for a given web site and save them for future use. The steps to
learn these rules, represented as transducers in this case, are the following:

– The user annotates a Dataset using web pages from the web site for which he
or she wishes to learn extraction rules. Annotations can be performed using
an annotation tool provided with our framework.

– The user should create a SkeletonLearner and call the method create with the
Dataset as a parameter. It returns a LearnerInformation object.

– The user creates an object of the new learning technique.
– The user now can learn the transition conditions by calling the method

LearnConditions with the Dataset as input.

SCEN4: Applying rules on an input web page: This scenario describes how users
can apply extraction rules on web pages to extract information. User should
perform the following steps:

– The user loads a Transducer using the TransducerPersistence class.
– The user should create a Resultset for the web page of interest. The extracted

information will be saved there.
– The user creates a TextView over the input web page and calls method apply

of the transducer with the TextView, a zero to indicate the starting offset,
and the Resultset as parameters.



Table 1. Comparing implementation times for NLR, SM, FT and PT

Technique Using Java 1.6 only Using our framework Reduction percentage

NLR 145hrs 32hrs 77.94%
SM 123hrs 87hrs 29.27%
FT 176hrs 61hrs 65.34%
PT 110hrs 30hrs 72.72%

– The transducer runs on this TextView and saves the information extracted
into the Resultset. A Dataset with the input WebPage and the final Resultset
is created.

– DatasetPersistence should be used now to save the resulting Dataset.

5 Experimental Results

The aim of our reference architecture is to reduce the costs of devising rule
learners and to allow comparing learners with each other. To validate it, we
have conducted two experiments following the guidelines reported in [16].

First, we have developed a framework to check the viability of our refer-
ence architecture. The framework is available for the research community at
http://www.tdg-seville.info/Hassan. This framework was used to develop
a number of the most cited proposals in the literature that are based on trans-
ducers or that can be adapted to be used with transducers. We have implemented
NLR [19], SM [14], FT [15] and PT [6].

In [16], the authors presented a detailed proposal to guide experimental eval-
uations. They identified a number of common threats in which we have not
incurred:

– Using students in experimental validations: We implemented our techniques
with the help of Master Degree students, all of which were junior software
engineers who had been working in the industry for a year at least.

– The techniques with which the comparison was performed are not represen-
tative: We selected four of the most cited techniques in the literature.

– The experiments are not repeatable: Our proposal and our experiments are
available to the research community; anyone can download it, go through
the implementation and the documentation and repeat the experiments as
long as he or she has a Java 1.6 virtual machine available.

– The results are not comparable: We used 10-fold cross validation, which is
the de facto standard to compare experimental results in the field of machine
learning.

– Timings are not accurate: We have used the java.lang.management package
to measure timings, and every experiment was repeated several times to
make sure that the results were accurate. Note that this package allows to
measure the time consumed by a single thread, without interferences from
other threads or processes.

http://www.tdg-seville.info/Hassan


Table 2. Comparing precision and recall of NLR, SM, FT and PT techniques

Dataset NLR SM FT PT
P R P R P R P R

soulfilms.com 0.912 0.765 0.993 0.800 1.000 0.000 1.000 0.000
albanianfilmdatabase.com 0.874 0.245 0.874 0.304 0.962 0.371 1.000 0.283
disneymovieslist.com 0.731 0.731 0.989 0.460 1.000 0.000 1.000 0.000
imdb.org 0.753 0.855 0.985 0.845 1.000 0.124 1.000 0.124
citwf.com 0.915 0.915 0.981 0.878 0.992 0.892 0.991 0.343
awesomebooks.com 1.000 0.946 0.830 0.315 1.000 0.676 1.000 0.485
betterworldbooks.com 0.993 0.915 0.877 0.844 0.920 0.514 0.979 0.985
manybooks.net 0.974 0.824 0.746 0.067 0.770 0.536 0.992 0.214

Our first experiment was conducted to check if relying on our reference ar-
chitecture and an accompanying framework, development costs were reduced
remarkably. For this purpose, we requested four postgraduate students with a
degree in Software Engineering, to study the previous proposals. Then, they were
requested to implement them using Java 1.6. The time to study the requirements,
design, develop and test these proposals was measured in hours. Since their de-
velopment processes were totally independent, each of the participants had to
create their datasets for testing.

New postgraduate students were requested to develop the same techniques,
but this time using our framework. First, they went through to a training period
that was added to the total time that was necessary to study the requirements,
design, develop and test the developed techniques. In this case, datasets were
reused between the different participants to compare the techniques side by side
too. The results of our first experiment are reported in Table 1.

Table 1 shows the time in hours that was necessary to develop and test the
techniques on which we report in the first column. The second and the third
columns show the time that was necessary to develop these techniques using
only Java libraries and using our framework, respectively. The fourth column
shows the time reduction for each technique. The costs reduction is clear since
the framework allowed reusing components during the development phase and
reusing datasets in the testing phase. The last column shows the reduced time
percentage; the arithmetic mean of the reduction percentage is 61.31%.

The second experiment was conducted to show the results of the different
techniques developed using the framework can be compared now under homo-
geneous conditions. The implementations obtained in the previous steps were
used to perform this empirical study. To the best of our knowledge, this is the
first time an empirical comparison between different information extraction tech-
niques, using the same technology and on the same datasets have been reported
in literature. Only eight datasets, which were chosen arbitrary, were used in this
experiment since our aim is to show how the results are comparable side by side.

Table 2 reports on the results of applying these techniques in practice on
several datasets. The first column is the site from which each dataset was ob-



tained. The other columns provide precision (P) and recall (R), which are de
facto standard measurements in the information extraction domain. Precision
is the percentage of correct information extracted by an information extractor,
whereas recall is the percentage of correct information that is successfully ex-
tracted. When P = 1.0, this means that all the extracted information by the
technique is correct, and when R = 1.0, this means that all the information that
the technique should extract, was extracted correctly. When we apply FT tech-
nique over soulfilms.com and disneymovieslist.com datasets, the technique
does not extract any information, which means that all the extracted informa-
tion is correct and then P = 1.0, but none of the correct information is extracted
and then R = 0.0.

Each dataset contains 30 web pages from the studied site, and the results
regarding precision and recall were calculated using 10-fold cross validation.
Note that the studied techniques may obtain better results regarding precision
and recall by studying sites more thoroughly and adding to the dataset web
pages that better represent the web site and that may obtain better extraction
rules for this web site, but this is not the focus in this paper.

6 Conclusions

In this paper, we have presented a reference architecture to help software engi-
neers devise new learning techniques in the domain of information extraction.
This is the first reference architecture in the literature which provides an ab-
stract, reusable, easy-to-maintain, and easy-to-adapt design that should allow
software engineers and researchers face the development of a new rule learning
technique without incurring the high costs of developing it from scratch. The
reference architecture was validated by an accompanying framework, which was
used to show the possibility of developing techniques from literature using our
reference architecture, with an overall time reduction that goes beyond 60%.
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