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Abstract: Consulting companies that specialise in Enterprise Application
Integration commonly require adapting existing frameworks to specific domains.
Currently, there are many such frameworks available, most of which provide a
materialisation of the well-known catalogue of patterns that was devised by Hohpe
and Woolf. The decision regarding which framework must be used is critical since
adaptation costs are not negligible. In this article, we report on a methodology
that helps practitioners make a decision regarding which framework should be
selected. To the best of our knowledge, there is not a previous methodology
in the literature. Its salient features are that we have assembled a catalogue of
measures regarding which there is a consensus in the literature that they are clearly
aligned with the effort required to maintain a piece of software and we propose a
statistically-sound method to produce a rank. We illustrate our proposal with an
industrial case study that we have performed using five open-source frameworks.
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1 Introduction

Typical companies run software ecosystems (Messerschmitt and Szyperski, 2003) that
consist of many applications that support their business activities. Frequently, new business
processes have to be supported by two or more applications, and the current business
processes may need to be optimised, which requires interaction with other applications.
However, it is common that these applications were not designed with integration concerns
in mind, i.e., they do not provide a programming interface. As a result, the interaction is not
always a trivial task, and has to be carried out in most cases by means of the resources that
belong to the applications, such as their databases, data files, messaging queues, and user
interfaces. Recurrent challenges are to make the applications inter-operate with each other to
keep their data synchronised, offer new data views, or to create new functionalities (Hohpe
and Woolf, 2003).

Enterprise Application Integration (EAI) is a broad research field in software
engineering that focuses on providing methodologies and tools to integrate the many
heterogeneous applications of typical companies’ software ecosystems. It aims to keep a
number of applications’ data in synchrony or to develop new functionality on top of them, in
a way that applications do not have to be changed and are possibly minimally or not affected
by the integration solution (Hohpe and Woolf, 2003). From the application viewpoint, they
are not aware that they take part of an integration solution.

The ultimate goal in the field of EAI is to provide companies with technologies, tools,
and methods that help cut integration costs off (Chalmeta and Pazos, 2015; Hitt et al., 2002;
He and Xu, 2014). In this article, we focus on integration frameworks. Such frameworks
are general-purpose tools that are intended to facilitate developing integration solutions in a
general context. There are cases in which a company decides to adapt one of them to a specific
domain (Chen and Huang, 2009), e.g., e-commerce (RosettaNet, 2011), health (HL7, 2011)
finances (Swift, 2011), or insurance (HIPAA, 2011). In such cases, the company first needs
to select amongst the existing frameworks the ones that provide the functionalities or the
connectors that they need and then make a decision regarding which one should be adapted
to meet the specific requirements of a specific domain.

It is not surprising that how a framework was designed and implemented has an impact
on its maintenance costs (Epping and Lott, 1994; Jorgensen, 1995; Bergin and Keating,
2003; Schneidewind, 1987). In both design and implementation, software engineers need
to pay attention to readability, understandability, and complexity, since they are related to



maintainability. The models and source code must be easy to read and understand, because
it is very common that the people who work on them are not involved in their maintenance.
The complexity of the algorithms should be kept low, not only for performance reasons,
but because it makes it easier for a software engineer to follow their execution flows and
debug them. Thus, to reduce the costs involved in the adaptation of a framework to a specific
context, it is very important that the framework was designed taking into account issues
that have a negative impact on maintenance.

Amongst the most recent and important open-source integration frameworks available
for companies to design and implement integration solutions, there are Camel (Ibsen and
Anstey, 2010), Spring Integration (Fisher et al., 2010), Mule (Dossot and D’Emic, 2009),
and Guaraná (Frantz and Corchuelo, 2012). They are based on the catalogue of integration
patterns documented by Hohpe and Woolf (2003), which have turned into a cookbook for
software engineers to design and implement integration solutions. Furthermore, the core
implementation of these frameworks is equivalent in functionality and they support the core
concepts of pipes, filters, and resource adapters. Thus, in this article we selected them to
demonstrate our proposal.

Given two different frameworks, the only totally accurate means to determine which one
is more maintainable and adaptable is to use them in a number of projects in which software
engineers with very similar skills are asked to maintain and adapt them for a particular
purpose. Unfortunately, that does not make sense in an industrial environment because of
the costs involved. This has motivated many researchers to devise individual measures that
are correlated to the effort required to maintain and adapt a piece of software (McCabe,
1976; Li and Henry, 1993; Chidamber and Kemerer, 1994; Henderson-Sellers, 1996; Briand
et al., 1998; Sheldon et al., 2002; Martin, 2002; Bocco et al., 2005; Mouchawrab et al., 2005;
Lanza and Marinescu, 2006; Lajios, 2009; Herraiz et al., 2009; Risi et al., 2013). Many
of them have been validated in real-world projects (Lanza and Marinescu, 2006; Tempero
et al., 2008; Balmas et al., 2009; Burger and Hummel, 2012; Mordal-Manet et al., 2013).
Thus, these measures can be effectively used in practice to analyse the maintainability and
adaptability of integration frameworks.

However, throughout the years, several measures were developed and proposed
separately, each one aiming at analysing only a single and very concrete aspect of the
software system, such as the complexity of algorithms, the number of attributes in classes,
the number of methods that share common attributes in a class, the depth of inheritance
trees, etc. Thus it is not easy to use these measures in order to analyse the maintainability
of integration frameworks. It is not easy to decide on which measures must be used and the
current lack of a methodology may lead to a wrong interpretation of the collected data and
then to an incorrect measurement of the maintainability.

In this article, we have managed to assemble a catalogue of twenty-five different
measures in the literature that can help forecast how maintainable an integration framework
is, and we also propose a statistically sound method to analyse the results. We have classified
these measures into four categories based on the model proposed by Lanza and Marinescu
(2006), namely: size, coupling, complexity, and inheritance. We also report on an analysis
regarding Camel, Spring Integration, Mule, and Guaraná that was carried out in an industrial
context. To the best of our knowledge, no such a methodology or study has been presented
previously in the context of enterprise application integration frameworks.

An empirical study to analyse maintainability in web-based systems was conducted
by Chae et al. (2007), which have found that the same measures used to predict the
maintainability of conventional systems cannot be used to predict the maintenance effort on



web-based systems. This is an interesting work since it suggests measures may have a strong
influence of the kind of software being analysed. Thwin and Quah (2003) have studied the
application of neural networks to estimate the maintainability of a software system. In this
piece of work, they use nine object-oriented measures to predict the maintainability effort
by estimating the number of lines changed per class. Our proposal does not focus on the
number of lines changed, instead we have selected twenty-five measures from the literature
and classified them into four categories that allow us to analyse how maintainable an
integration framework is, namely: inheritance, complexity, coupling, and size. Furthermore,
we propose a statistically sound method to analyse the results obtained directly from the
application of these measures. Briand et al. (1999) have also studied the maintainability of
software systems, but focusing on a single category of measure: coupling. They surveyed
the literature on coupling measures and then proposed a unified framework that can be used
to measure coupling in software systems. Their work is complementary to ours in that we
share common coupling measures.

The prediction of maintainability effort at the design stage was studied by Nair et al.
(2010). In their work the authors select a set of measures that can be used to analyse the
impact of the design on the maintainability of a software system and then the authors
claim that their approach can be used to produce cost effective software. The structural
complexity of UML class diagram as means to predict the maintainability of object-oriented
information systems was studied by Genero et al. (2001). In that work the authors present
a set of measures and demonstrate through experimentation that these measures contribute
to predict UML class maintainability. Heitlager et al. (2007) have analysed the use of the
Maintainability Index (Oman and Hagemeister, 1994; Coleman et al., 1994) in real-world
projects to estimate software maintainability and have found that it lacks information on
which properties may have negatively influenced the maintainability of a software system, so
that this is difficult to improve maintenance. Then, Heitlager et al. (2007) propose a practical
model to estimate the maintainability by using a set of well-chosen source-code measures
that are mapped onto the sub-characteristics of maintainability of ISO 9126 following
pragmatic mapping and ranking guidelines. Antonellis et al. (2007) proposed a methodology
that uses data mining to evaluate the maintainability of a software system according to
the ISO 9126 quality model. They collect data for nine maintainability measures and store
them in a relational database for further analysis and evaluation. This methodology focuses
on the collection and presentation of values for the measures, leaving the analysis and
conclusions to software engineers. Kumar et al. (2015) proposed a methodology to analyse
the maintainability of software systems by using a non-linear model. Their methodology
uses eleven object-oriented measures to collect maintainability data. From the analysis of
the related work, it is possible to notice that all of them have their foundations on object-
oriented measures, some of them only collect the vales for each measure leaving the analysis
for software engineers, and none of them have analysed enterprise application integration
frameworks. Our proposal takes into account three times more maintenance measures; we
have surveyed the current literature on this topic, and we have carefully selected a subset of
measures regarding which there is a clear consensus that they are clearly aligned with the
effort required to maintain a piece of software; furthermore, having such a large collection
of measures allows to provide as a complete view of a proposal as possible. Furthermore,
we propose to use a statistically-sound method to compare them all; this method allows
to compare several proposals at a time and keep the error rate under control; the resulting
rankings then reflect differences that are statistically significant at a given significance level.



The rest of the article is organised as follows: Section 2 introduces our methodology;
Section 3 reports on our application to four well-known frameworks; finally, Section 4
concludes the article.

2 Methodology

In this section we introduce our methodology. We first report on the maintainability
measures that we have selected and constitute the foundation of our proposal and then on
the statistical methodology to analyse them.

2.1 Size Measures

The size of a framework is influenced by the number of packages, classes, interfaces,
attributes, methods, and their parameters. The measures in this group allow to understand
how big a framework is.

NOP: Number of packages that contain at least one class or interface. This measure can be
used as an indicator of how much effort it is required to understand how packages are
organised; note that this provides the overall picture of the design of a framework (Dong
and Godfrey, 2009). The greater this value, the more effort shall be required.

NOC: Number of classes. This measure and the following one can be used as indicators of
how much effort shall be required to understand the source code of a framework (Lanza
and Marinescu, 2006). The grater this value, the more difficult it is to understand a
framework.

NOI: Number of interfaces. It is commonly agreed that the larger the number of interfaces,
the easier to a adapt a framework (Lanza and Marinescu, 2006).

LOC: Number of lines of code, excluding blank lines and comments (Lanza and Marinescu,
2006). In general, the greater this value, the more effort shall be required to maintain
a framework.

NOM: Number of methods in classes and interfaces. This measure can be used as an
indicator for the potential reuse of a class. According to Lorenz and Kidd (1994),
and Chidamber and Kemerer (1994), a large number of methods may indicate that a
class is likely to be very application specific, which hinders its reusability.

NPM: Number of parameters per method. This measure can be used as an indicator of how
complex it is to understand and use a method. According to Henderson-Sellers (1996),
the number of parameters should not exceed five. If it does, the author suggests that a
new type must be designed to wrap the parameters into a unique object. The greater
this value, the more difficult it is to understand a method.

MLC: Number of lines in methods, excluding blank lines and comments. According
to Henderson-Sellers (1996), this value should not exceed fifty. If it does, the
author suggests to split this method into other methods to improve readability and
maintainability. The greater this value, the more difficult it is to understand and maintain
a method.



NSM: Number of static methods. This measure can be used as an indicator of how well
implemented a piece of code is (Lanza and Marinescu, 2006). The greater this value,
the more likely that the code tends to be based on the classical procedural paradigm
and not on the object-oriented paradigm.

NSA: Number of static attributes. This measure can be used as an indicator of how difficult
it is to reason about the state of a framework when testing (Lanza and Marinescu,
2006). The greater this value, the more difficult testing.

NAT: Number of attributes. This measure can be used as an indicator of how complex it is
to understand a class (Lanza and Marinescu, 2006). The greater this value, the more
difficult it is to understand the state of its objects.

2.2 Coupling Measures

In the object-oriented paradigm, an important characteristic is the encapsulation of data
and the collaboration of objects to perform system functionalities. The measures in this
group give an indication of how coupled the classes of a framework are.

LCM: Lack of cohesion of methods. In this context, cohesion refers to the number of
methods that share common attributes in a class. It is computed with the Henderson-
Sellers LCOM* method (Henderson-Sellers, 1996). A low value indicates a cohesive
class; contrarily, a value that is close to one indicates lack of cohesion and suggests that
the class might better be split into two or more classes because there can be methods
that are likely not to belong to that class.

AFC: Afferent coupling. This measure is defined as the number of classes outside a package
that depend on one or more classes inside that package. The greater this value, the
more complex maintenance becomes because there are more dependencies between
classes (Martin, 2002; Offutt et al., 2008; Yu, 2008). Furthermore, larger values of
afferent coupling can be used as an indicator that the package is critical for the
framework and then maintenance in this package must be performed carefully not to
introduce problems in the dependent classes.

EFC: Efferent coupling. This measure is defined as the number of classes inside a package
that depend on one or more classes outside the package. The greater this value, the
more likely that maintenance shall have an impact on a package (Martin, 2002; Offutt
et al., 2008; Yu, 2008).

FAN: Number of called classes. This measure can be used as an indicator of how dispersed
method calls are in the classes of a framework (Lorenz and Kidd, 1994). The greater
this value, the more complex a method call is because every call is supposed to involve
other classes to be completed.

LAA: Locality of attribute accesses. This measure can be used as an indicator of how
dependent the methods of a class can be regarding the attributes of other classes (Lanza
and Marinescu, 2006). The greater this value, the more a method of a class uses
attributes from other classes. The highest value is 1 and represent 100% dependent.

CDP: Coupling dispersion. This measure can be used as an indicator of bad method design,
since a method may be executing more than one thing and then can be split reducing



its coupling (Lanza and Marinescu, 2006). The greater this value, the more likely that
there is an improper distribution of functionality amongst the methods of a framework.
The highest value is 1 and represent 100% dispersion.

CIT: Coupling intensity. This measure can be used as an indicator of how dependent a
method is, since it measures the number of distinct methods that it calls (Lanza and
Marinescu, 2006). The greater this value, the more likely there is an excessive coupling
amongst the methods of a framework.

2.3 Complexity Measures

The notion of complexity is important in frameworks, chiefly if they have to be
maintained. The measures in this group allow to understand how complex a framework is.

ABS: Degree of abstractness of a framework. This measure can be used as an indicator of
how customisable a framework is (Martin, 2002). The greater this value, the easier to
customise the framework. The highest value is 1 and represent 100% abstract.

WMC: Weighted sum of the McCabe cyclomatic complexity (McCabe, 1976) for all
methods in a class. This measure can be used as an indicator of how difficult
understanding and then modifying the methods of a class shall be (Chidamber and
Kemerer, 1994). The greater this value, the more effort is expected to maintain a class.

MCC: The McCabe cyclomatic complexity. This measure can be used as an indicator of
how complex a method is. According to McCabe (1976), this value should not exceed
ten. The greater this value, the more difficult it is to maintain a piece of code.

WOC: Weight of class. This measure indicates the ratio of accessor methods regarding
other methods that provide services (Marinescu, 2002). The greater this value, the more
class interfaces consists of accessor methods, which indicates that classes are not too
complex. The highest value is 1 and represent 100% of accessor methods in a class.

DBM: Depth of nested blocks in a method. This measure can be used as an indicator of how
expensive debugging a piece of code can be. According to Henderson-Sellers (1996),
this value should not exceed five. If it does, the author suggests that the method should
be split into several methods. The greater this value, the more complex e method is.

2.4 Inheritance Measures

Inheriting functionalities amongst classes is a well-known characteristic of the object-
oriented paradigm. The measures in this group report on how much and how well inheritance
is used.

DIT: Depth of Inheritance Tree. Inheritance is a mechanism that increases core
reuse (Alkadi and Alkadi, 2003). This measure can be used as an indicator of how
complicated maintaining a class can be. The greater this value, the more difficult to
maintain a framework.

NOH: Number of immediate children classes of a class. This measure can be used as
an indicator of the potential impact that a class may have in a framework if it is
modified (Chidamber and Kemerer, 1994). The greater this value, the greater the
chances that the abstraction defined by the parent class is poorly designed.



NRM: Number of overriden methods. This measure can be used to indicate how adaptable
a class is with respect to its ancestors (Lorenz and Kidd, 1994). The greater this value,
the more likely that the inheritance mechanism is being used to adapt a class instead
of just providing additional services to the parent class.

2.5 Statistical Analysis

Computing the values of a number of measures regarding a number of proposals a
comparing them using their average value may easily lead to wrong conclusions. The
problem is that the average value of a measure may be highly influenced by its distribution
of values. For instance, a uniformly distributed measure and a highly skewed measure may
have the same average, but they behave quite differently in practice. Analysing the standard
deviation in addition to the average may help, but then the problem is how to compare
two different indicators at the same time. Even if we could compare them both, a problem
would remain: we need to make sure that the empirical data supports the hypothesis that
the differences are statistically significant, that is, that they are due to intrinsic features of
the proposals that are being compared and due to the implicit random effect that exist in
any real-world experimentation. Traditionally, the previous question has been addressed by
using parametric tests (Sheskin, 2012). Unfortunately, they assume that the values of the
measures are distributed normally; many of them also require them to be homoscedastic,
i.e., their variances to be equal; furthermore, many of them can only deal with two proposals
at a time and using them with more proposals results in uncontrollable error rates. Although
these limitations have not usually hindered the applicability of parametric tests in areas such
as medicine, biology, demographics, and the like, it hinders their applicability to compare
algorithmic proposals. In such areas, measures are not likely at all to be distributed normally
and they are even less likely to have equal variances because they do not represent natural
data, they are completely artificial; furthermore, it is very common that several proposals
to solve the same problem exists and that they all have to be compared to each other. Very
recently, this has motivated many authors in the field of statistics to work on so-called
non-parametric tests (Demšar, 2006), which work on the empirical ranks of the measures
instead of their values; this makes this kind of tests independent from the distribution of
values of the measures analysed, more resilient to outliers, and, thus, less prone to draw
wrong conclusions regarding artificial measures.

Figure 1 illustrates the steps of the methodology that we have devised, and we describe
them below:

1. Compute Measures. Calculate the measures for every proposal and collect them. There
are several software tools that can be used to calculate the maintainability measures
in an automated fashion for an integration framework. Frequently, these tools take as
input packages of source code so that they can be analysed and the values calculated
for every measure. In our research, we have used two different and complementary free
software tools in order to compute the twenty-five measures we have selected from
the literature, namely: Metrics 1.3.61 (Metrics, 2015) and iPlasma 6.12 (Lanza and
Marinescu, 2006).

2. Compute Rank. Compute the empirical rank of each proposal regarding the measure
being analysed. When the values of the measures range in intervals that are not
homogeneous, it is generally a good idea to normalise them to interval [0, 1] since this
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Figure 1 Overview of the proposed methodology.

will make comparisons more intuitive; otherwise, the difference in scale may easily
lead to misinterpretations.

3. Check the Rank. Check if the differences in the empirical ranks can be considered
statistically significant or not at a given significance level α. (Typically α is set to 0.05,
that is 95% confidence.) This check can be easily implemented using Iman-Davenport’s
test. If there are not any significant differences, then the conclusion is that the data
that we have collected does not provide any evidences that the proposals that we are
comparing behave differently regarding the measure being studied; contrarily, if the
differences are significant, it then makes sense to compare the proposals side by side
to induce a statistical ranking.

4. Rank pairs. The statistical ranking can be easily implemented using Bergmann-
Hommel’s test. This test compares every pair of proposals regarding a measure, but
keeps the error rate of the comparisons under strict control. Unfortunately, this test does
not necessarily result in a total pre-order. Generally speaking, such situations occur
when there is a minimal sequence of proposals p1, p2, . . . , pn such that the test does not
find enough evidence to conclude that pi behaves differently from pi+1 for every i =
1n− 1, but it finds enough evidence to conclude that p1 behaves differently from pn.
Our proposal to transform such chains into total pre-orders is to break them assuming
that pj does not behave like pj+1, where pj and pj+1 (1 ≤ j < n) denote the pair of
proposals for which the test returns the smallest p-value above the significance level α;
in other words, we suggest selecting the couple of proposals for which the experimental
data provides more evidence that they behave differently. There is obviously a chance
to make a mistake, but it is the only way to transform the results of Wilcoxon’s Rank-
Sum test into a total pre-order. Note that the decision might be taken arbitrarily at any
other point in the chain and the results would be the same: there is only a chance to
make a mistake at the point where the chain is arbitrarily broken.
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In the literature on statistics, there are many recent non-parametric tests available. The
decisions that we have made regarding selecting specific tests for our methodology build on
the experimental studies that were carried out by Demšar (2006) and García et al. (2010).

3 Sample Application

In this section, we apply our methodology to evaluate the maintainability regarding the
core implementation of Camel, Spring Integration, Mule, and Guaraná.

3.1 Preliminaries

In this sample application study we focus only the core implementation of the selected
integration frameworks, i.e., we do not take into account the code required to implement
the adapters that are required to interact with the applications being integrated. We do not
consider this code because it is peripheral and, more often than not, comes from other
open-source projects that are maintained separately.

Camel is a Java-based software tool that aims to provide an integration framework
with a fluent API (Fowler, 2010) to support the design and implementation of Enterprise
Application Integration solutions based on integration patterns. It was designed to be used
by means of a Java- or a Scala-based domain-specific language, or by means of declarative
XML Spring-based configuration files. The Java-based domain-specific language approach
is the most popular in the Camel community. Camel is an open source tool that is hosted by
the Apache Software Foundation. FuseSource is the company that provides products based
on Camel, which includes a commercial version of Camel, a web-based graphical editor,
and an Eclipse-based IDE with a graphical editor.

Spring Integration is also a Java-based software tool built on top of the Spring Framework
container. It aims to extend this framework to support the design and implementation
of Enterprise Application Integration solutions. Following the philosophy of Spring
Framework, Spring Integration promotes the use of XML Spring-based files to configure
integration solutions, although it is also possible to use Spring Integration as a command-
query API (Fowler, 2010). Spring Integration is an open source tool that includes an Eclipse-
based IDE with a graphical editor. The tool is supported by SpringSource, a division of
company VMware Inc. VMware does not commercialise an enterprise version of Spring
Integration, instead they use individual Spring Integration components in their commercial
tools, such as vFabric RabbitMQ and vCenter Orchestrator.

Mule is a Java-based software tool whose architecture is inspired by the concept of
enterprise service bus. It aims to support the design and implementation of Enterprise
Application Integration solutions based on integration patterns. It was designed to be used
by means of a command-query API (Fowler, 2010) or declarative XML Spring-based
configuration files. The latter seems to be the most popular and recommended approach by
the Mule community. Mule is open source and provides a community version that includes
an Eclipse-based IDE with a graphical editor. A commercial enterprise version is also
supported MuleSoft Inc.

Guaraná is an Enterprise Service Bus conceived to support software engineers in the
design, implementation, and execution of application integration solutions. For design,
Guaraná provides a Domain-Specific Language (DSL), which allows software engineers
to keep their focus on the problem by using a graphical and very intuitive modelling



Total Mean Dev. Max Total Mean Dev. Max Total Mean Dev. Max Total Mean Dev. Max

NOP 54 - - - 32 - - - 124 - - - 18 - - -

NOC 730 13.52 19.55 96 269 8.41 10.52 58 733 5.91 7.40 51 79 4.39 3.09 11

NOI 140 2.59 9.07 58 40 1.25 1.84 9 209 1.69 3.28 18 9 0.50 0.76 2

LOC 62,439 - - - 14,929 - - - 67,090 - - - 2,878 - - -

NOM 7,015 9.61 15.36 192 1,431 5.32 5.60 39 5,158 7.04 10.23 129 369 4.67 4.61 24

NPM - 0.93 1.05 11 - 1.13 0.94 9 - 0.92 1.07 19 - 1.20 1.04 4

MLC 34,839 4.52 8.15 141 8,264 5.65 9.59 110 35,989 6.16 10.99 180 1,748 4.72 6.43 54

NSM 709 0.97 4.95 74 31 0.12 0.73 8 686 0.94 9.41 244 1 0.01 0.11 1

NSA 291 0.40 1.07 16 109 0.41 1.52 13 669 0.91 3.66 81 30 0.38 1.33 10

NAT 1803 2.47 4.17 62 474 1.76 2.51 16 1417 1.93 3.21 31 87 1.10 2.14 12

LCM - 0.29 0.35 1 - 0.22 0.33 0.94 - 0.23 0.34 1.33 - 0.14 0.27 0.91

AFC - 30.63 89.34 542 - 12.69 26.65 146 - 22.90 56.25 493 - 6.94 14.33 47

EFC - 12.54 17.83 87 - 8.44 9.84 55 - 6.22 6.76 38 - 4.17 2.81 11

FAN 3,637 3.74 - 74 642 1.73 - 40 3,765 3.60 - 65 175 1.54 - 11

LAA 7,280.08 0.97 - 1 1,421.11 0.98 - 1 6,254.97 0.98 - 1 430.44 0.95 - 1

CDP 874.74 0.12 - 1 124.60 0.09 - 1 940.01 0.15 - 1 35.40 0.08 - 1

CIT 2,320 0.31 - 35 255 0.18 - 19 2,273 0.35 - 30 74 0.16 - 6

ABS - 0.15 0.21 1 - 0.27 0.25 1 - 0.33 0.33 1 - 0.54 0.35 1

WMC 12,903 17.68 27.37 346 2,628 9.77 11.27 68 10,537 14.38 21.92 262 498 6.30 6.30 37

MCC - 1.67 2.06 46 - 1.80 2.04 30 - 1.80 2.01 33 - 1.35 0.91 8

WOC 581.22 0.60 - 1 178.43 0.48 - 1 658.82 0.63 - 1 74.10 0.65 - 1

DBM - 1.37 0.79 8 - 1.44 0.86 6 - 1.43 0.87 8 - 1.24 0.74 4

DIT - 2.22 1.33 6 - 2.45 1.40 6 - 2.02 1.30 7 - 3.03 1.34 5

NOH 493 0.68 3.77 69 147 0.55 1.54 11 337 0.46 1.82 28 59 0.75 2.05 10

NRM 357 0.49 1.06 8 69 0.26 0.66 5 351 0.49 1.02 9 70 0.89 1.01 3
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Table 1 Maintainability measures of Camel, Spring Integration, Mule, and Guaraná.

language (Frantz et al., 2011) . We refer to this language as Guaraná DSL. The
implementation of the resulting models designed with Guaraná DSL into executable code
is supported by a Software Development Kit (SDK), which includes a runtime system
to support the execution of integration solutions as well. We refer to this kit as Guaraná
SDK. In the following sections we introduce the domain-specific language and the software
development kit. A commercial enterprise version of Guaraná is supported by i2Factory.

3.2 Measures

Table 1 summarises the results that we have collected. In this section, we provide an
intuitive insight into them.

The architecture of the frameworks that we have analysed is organised into several
packages: 54 in Camel, 32 in Spring Integration, and 124 in Mule. Although Mule has
more than double as many packages as Camel, they have approximately the same total
number of classes. Nevertheless, there are cases in which the maximum number of classes
in a package reaches 96 in Camel, 58 in Spring Integration, and 51 in Mule. These values
show that Camel has almost double as many classes in a package as Spring Integration
or Mule. The same happens regarding the number of interfaces. Consequently, Camel has
the highest standard deviation and mean values per package regarding both, classes and
interfaces, which has an impact on the understandability of its packages. Spring Integration
is the only framework that has a low value for the standard deviation regarding the number
of interfaces. The architecture of Guaraná is organised into 18 packages, and the maximum
number of classes in a package is no more than 11. Furthermore, Guaraná provides no more
than 9 interfaces in these packages. The standard deviation computed for the number of



classes and interfaces per package is very low, 3.09 and 0.76, respectively. These values
indicate that maintenance in Guaraná is not expected to be difficult.

Other values that are impressive for these frameworks are regarding the total number of
lines of code, which is very high, chiefly in the cases of Camel and Mule. These frameworks
have 62, 439 and 67, 090 lines of code respectively, contrarily to 14, 929 in Spring
Integration. The implementation of Guaraná has a total number of 2, 878 lines of code,
which represents a big difference compared with the other frameworks. When analysing the
methods in classes and interfaces, we found that Camel has 7, 015 methods compared to the
1, 431 and the 5, 158 found for Spring Integration and Mule, respectively. Most probably,
the difference amongst Spring Integration and the other frameworks is because it has less
than a half the number of classes and interfaces of Camel and Mule. The values that stand
out are the maximum number of methods per class/interface computed in Camel and Mule,
which are 192 and 129 respectively, contrarily to 39 in Spring Integration. Guaraná has 369
methods in total, with a maximum number of 24 methods per class/interface. If we look
at the maximum number of parameters per method, it is also impressive how large it is,
chiefly in Camel and Mule: 11 and 19 respectively. Spring Integration has a maximum of 9
parameters. These values indicate that some classes in Camel, Spring Integration, and Mule,
are likely too application specific, with a limited possibility to be reused; furthermore, this
makes some of their methods difficult to understand, chiefly in the case of Camel and Mule.
Guaraná has no more than 4 parameters per method, which indicates that classes in Guaraná
are expected to be more reusable and its methods not so difficult to understand.

Counting the number of lines of code inside methods, we found Camel has a total
of 34, 839, Spring Integration has 8, 264, and Mule has 35, 989, which if compared to
the total number of lines of code, represents 0.55%, 0.55%, and 0.53% of these values,
respectively. It means there are many attributes declared in classes. The maximum value
computed demonstrates that there are some methods with up to 141 lines of code in Camel,
110 in Spring Integration, and 180 in Mule. These values indicate that more effort might
be necessary to maintain and understand the methods in these frameworks. Guaraná has a
total number of 1, 748 lines of code inside methods, which, if compared to its total number
of lines of code, represents 0.61% of this value. Furthermore, there is no method with more
than 54 lines of code, being the average 4.72 lines of code per method. These values indicate
that classes in Guaraná are expected to be easier to understand and maintain.

If we look at the number of static methods, Camel and Mule have a similar mean value
per class, respectively 0.97 and 0.94. Contrarily, Spring Integration has a mean of 0.12
static methods per class. The difference between these frameworks is more evident when
looking at the maximum number of static methods in a class. Whereas Camel and Mule have
respectively 74 and 244, Spring Integration has 8. In Guaraná these values are incredible
low; the maximum number of static methods is no more than 1, and the mean value is 0.01,
which indicates that the code follows correctly the object-oriented paradigm. Considering
the number of static attributes, there is also a big different amongst the analysed frameworks.
Mule has an impressive number of 669 static attributes in total, whereas Camel and Spring
Integration have 291 and 109, respectively. Such values indicate it must be difficult to reason
about the state of these frameworks when testing has to be performed. Contrarily, Guaraná
has only 30 static attributes in total, which indicates reasoning about its state is expected to
be easier.

Regarding the number of attributes, the total values for Camel and Mule are still very
high, 1, 803 and 1, 417, respectively. These values correspond to a mean of 2.47 and 1.93
attributes per class, reaching Camel the impressive number of 62 attributes in a single class.



Spring Integration has a total of 474 attributes, a mean of 1.76, and no more than 16 attributes
in a class. In Guaraná the total number of attributes is 87, which corresponds to a mean of
1.10 attributes per class, this suggests that understanding the state of its classes is simpler
that in Camel, Spring Integration, and Mule.

The mean and the maximum values for the lack of cohesion of methods is similar in
every framework. Camel has 0.29 and 0.35, Spring Integration has 0.22 and 0.33, and Mule
has 0.23 and 0.34. In Guaraná, the lack of cohesion of methods is very low, it presents a
mean of only 0.14 in average. Regarding the coupling of classes, the values for the afferent
and efferent coupling in every framework are very high. Camel has the highest value for
the afferent coupling, followed by Mule and then Spring Integration, with a mean of 30.63,
12.69, and 22.90, respectively. The standard deviation is also very impressive, chiefly for
Camel and Mule, which are 89.34 and 56.25, respectively. The maximum values are also
very high, being 542 for Camel, 146 for Spring Integration, and 493 for Mule. These values
suggest that much attention must be paid when performing maintenance in the classes of a
package.

The mean for the efferent coupling varies from 12.54 in Camel and 8.44 in Spring
Integration, to 6.22 in Mule. The maximum values are not so impressive as the afferent
coupling, but they are still very high. In Camel, the maximum efferent coupling is 87; in
Spring Integration, it is 55; in Mule, it is 38. These figures suggest that the classes inside a
package have a large number of dependencies on external classes and maintenance has to
be done carefully; as a conclusion, the impact on maintenance should not be neglected at
all. Regarding the coupling of classes, the values for the afferent and efferent coupling in
Guaraná are not very high. The afferent coupling has values 6.94, 14.33, and 47 as mean,
standard deviation, and maximum, respectively. The efferent coupling has values 4.17,
2.81, and 11 as mean, standard deviation, and maximum, respectively. The average afferent
and efferent couplings in Guaraná are 15.13 and 4.90 less than in the other frameworks,
respectively. These values suggest that the classes in Guaraná do not have a high number
of dependencies and maintenance is expected to be easy.

Considering the number of called classes, once more Camel and Mule have very high
values, compared to Spring Integration, respectively 3, 637, 3, 765, and 642. If we look at the
maximum number of calls a class receives, Camel has 74, Spring Integration 40, and Mule
65. In Guaraná the total number of called classes is 175 and the maximum number is no more
than 11. These values indicate that method calls in Guaraná are not complex. The locality
of attribute accesses is similar in every framework. If we consider the mean value, Camel,
Spring Integration, and Mule have 0.97, 0.98, and 0.98, respectively. The mean in Guaraná
is lower, 0.95. Regarding the coupling dispersion, the mean value indicates that Mule has
the highest dispersion with 0.15, followed by Camel and Spring Integration, respectively
with 0.12 and 0.09. Mule has also a very high value in total, 940.01, compared to Camel and
Spring Integration with 874.74 and 124.60, respectively. These values indicate that Mule has
an improper distribution of functionality amongst its methods. The mean value in Guaraná
is 0.08, which ranks it close to Spring Integration. If we look at the maximum values for
the coupling intensity of these frameworks, these values demonstrate an excessive coupling
amongst the methods in these frameworks, since the values in Camel, Spring Integration,
and Mule are 35, 19, and 30, respectively. Contrarily, in Guaraná the maximum value is 6,
which indicates a low coupling amongst its methods.

The values for the degree of abstractness indicates that Camel is the less abstract
framework. The mean value for Camel is 0.15, followed by 0.27 for Spring Integration,
and 0.33 for Mule. The results indicate that these frameworks are not as easy to customise,



chiefly Camel because its mean value is very low. The degree of abstractness in Guaraná is
very high. Its mean value is 0.54, which ranks it 0.29 in average more abstract than the other
frameworks. These values suggest that Guaraná is more abstract and then it is expected to
be easier to adapt to specific domains.

The weighted method complexity computed also demonstrates a high cyclomatic
complexity within classes, chiefly for Camel and Mule. In these frameworks, the total
weighted method complexity was 12, 903 and 10, 537, respectively. For Spring Integration,
the cyclomatic complexity is 2, 628, which is not so high when compared to Camel and
Mule. Nevertheless, not only the total cyclomatic complexity is high, but also the mean, the
standard deviation, and the maximum. Camel, Spring Integration, and Mule have maximum
values of 346, 68, and 262, respectively. In Guaraná, the total value is 498, the mean and the
standard deviation is 6.30, and the maximum is 37. These values indicate a low cyclomatic
complexity within the classes of Guaraná.

The values computed for the McCabe cyclomatic complexity indicate that there are
cases in which it is extremely high. This is indicated by the maximum values, which reach
46, 30, and 33 in Camel, Spring Integration, and Mule, respectively. Consequently, they are
also very complex frameworks, which may have a serious impact on their maintenance. The
values computed for the McCabe cyclomatic complexity indicate that the maximum value
in Guaraná is 8, which amounts to 28.33 less complexity than other frameworks. These
values indicate the architecture in Guaraná is well designed and maintenance is expected
to be easier.

The mean value for the weight of classes indicates that classes in Spring Integration are
complex. The mean value for Spring Integration is 0.48, followed by 0.60 for Camel, and
0.63 for Mule. In Guaraná, the mean value is 0.65, which indicates that classes in Guaraná
are not too complex. The depth of nested blocks in a method is similar in every framework.
If we consider the mean and maximum values, Camel has 1.37 and 8, Spring Integration
has 1.44 and 6, and Mule has 1.43 and 8, respectively. In Guaraná, the mean and maximum
values for the depth of nested blocks is 4 and 1.24, respectively. These values indicate
that debugging a piece of code in Guaraná is not expected to be as difficult as in the other
frameworks.

The depth of inheritance tree in Mule has a maximum value of 7, which makes it more
complicated to maintain a class in this framework. Camel and Spring Integration have equal
values, 6. In Guaraná, the maximum value is not greater than 5. The maximum number
of immediate children classes of a class also varies very much: 69 in Camel, 11 in Spring
Integration, and 28 in Mule. When the mean and the standard deviation values per class,
Camel has the highest values, which indicates that the abstraction defined by parent classes
tend to be poorly designed.

The maximum number of immediate children classes of a class in Guaraná is not greater
than 10, with a mean of 0.75 per package. These values indicate that the abstraction defined
by the parent class is well designed in Guaraná. Regarding the number of overriden methods,
Spring Integration has the lowest mean value amongst the analysed frameworks, and Camel
and Mule have the same value, respectively with 0.26, 0.49, and 0.49. In Guaraná, the mean
value is 0.89, which indicates that the classes in this framework are more adaptable than in
Camel, Spring Integration, and Mule.



Tool Total Mean

Guaraná 1.56 1.24

Spring Integration 2.56 2.08

Camel 2.64 3.16

Mule 3.24 3.52

Table 2 Empirical Rankings.

Test Total Mean

Statistic 9.84 44.18

P-value 1.61E-5 3.33E-16

Table 3 Results of Iman-Davenport’s test.

Comparison Statistic ap-value Tool Rank

Mule vs. Guaraná 4.60 2.52E-5 Guaraná 1

Camel vs. Guaraná 2.95 9.29E-3 Spring Integration, Camel, Mule 2

Spring Integration vs. Guaraná 2.73 0.01 - -

Spring Integration vs. Mule 1.86 0.18 - -

Camel vs. Mule 1.64 0.18 - -

Camel vs. Spring Integration 0.21 0.82 - -

Comparison Statistic ap-value Tool Rank

Mule vs. Guaraná 6.24 2.56E-9 Guaraná 1

Camel vs. Guaraná 5.26 4.36E-7 Spring Integration 2

Spring Integration vs. Mule 3.94 2.40E-4 Camel, Mule 3

Camel vs. Spring Integration 2.96 3.10E-3 - -

Spring Integration vs. Guaraná 2.30 4.28E-2 - -

Camel vs. Mule 0.98 3.24E-1 - -

a) Total values

b) Mean values

Table 4 Results of Bergmann-Hommel’s test.
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3.3 Analysis

Table 2 shows the empirical rankings that we got; note that Guaraná ranks the first
regarding both the total and the mean values. Then, we used Iman-Davenport’s test to check
if there are statistically significant differences in these ranks at the standard significance
level (α = 0.05). Table 3 shows the results; note that the p-value is largely smaller than the
standard significance level, which is a strong indication that the empirical ranks are different
from a statistical point of view.

As a conclusion, it makes sense to perform Bergmann-Hommel’s test to rank every
pair of proposals. Table 4 shows the results. Regarding the total measures, note that the
comparisons of Guaraná with the other techniques results in adjusted p-values (ap-values)
that are always significantly smaller than the significance level, which is a strong indication
that Guaraná’s measures are better than the others; note, too, that the adjusted p-values that
correspond to the remaining comparisons are not smaller than the significance level, which
indicates that there are not any significant differences amongst the measures of the other
frameworks. Regarding the mean measures, the results are similar; the only difference is
that Guaraná is significantly better than Spring Integration, which, in turn, is significantly
better than both Camel and Mule at the standard significance level.

As a conclusion, and based on these four statistical tests, there is enough statistical
evidence in the measures that we have collected to indicate that Guaraná outperforms the
other integration frameworks regarding maintainability of the core implementation.

4 Conclusions

Companies that provide Enterprise Application Integration solutions are interested in
Enterprise Application Integration frameworks that can be easily adapted to focus on specific
contexts. We have assembled a collection of 25 measures in the literature that provide an
overall overview of how easy it is to adapt a system (Lanza and Marinescu, 2006; Lajios,
2009; Herraiz et al., 2009; Risi et al., 2013; Li and Henry, 1993; Sheldon et al., 2002;
Bocco et al., 2005; Mouchawrab et al., 2005; Briand et al., 1998; Chidamber and Kemerer,
1994; Henderson-Sellers, 1996; Martin, 2002; McCabe, 1976) and we have also proposed
a statistically sound methodology to analyse the results.

We have also illustrated our methodology in industry by comparing Camel, Spring
Integration, Mule, and Guaraná, which range amongst the most recent and important open-
source integration frameworks based on integration patterns (Hohpe and Woolf, 2003). The
sample application of our methodology has considered only the core implementation of
the analysed integration frameworks, which is a general-purpose core. The core of Camel,
Spring Integration, Mule, and Guaraná provide support for the same functionalities and all
of them address multiple domains. Note that, in our research, we do not take into account
the code required to implement the adapters in these four integration frameworks, because
it is peripheral and, more often than not, comes from other open-source projects that are
maintained separately, otherwise the comparison would be totally unfair. Thus the main
limitation of our proposal is that software engineers can use it to compare only those parts
of integration frameworks that are equivalent in terms of functionality and that have a
similar architectural style. Integration frameworks differ one from another, mainly regarding
the number of adapters and other features that help software engineers in the design, the
implementation and in monitoring the solutions. This is the reason why most often it is not



possible to take into account all the features and thus the whole integration framework in
a comparison. Another limitation may be the tool support to compute the maintainability
measures in an automated fashion, since the software tools we found in the literature take
as input only source code written with the Java language, which would limit the the scope
of integration frameworks that could be analysed. As future work, we plan to extend the
number of measures to improve the accuracy of our methodology, chiefly measures that
deal with size and complexity. More research should be conducted in the direction to endow
our methodology with the possibility to compare integration frameworks considering their
difference in terms of feature, size, and architecture.
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