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A B S T R A C T

The emotional or affective state has a direct impact not only on personal life, but also in the field of work,
sports, rehabilitation processes, among other fields. In the evolving understanding of emotional theory, it
has been theorized that an emotion can be classified according to a two-dimensional model composed of an
Arousal value and a Valence value, as well as empirically demonstrating the impact of emotions on physiological
variables. This work presents the development of a wearable device for capturing physiological signals, the
collection of a dataset (after approval by the ethics committee) in which participants’ emotional states are
induced, and the development of an automatic classifier of the emotional state based on neural networks.
According to this last point, a 4-phase optimization process is presented in which the physiological sensors are
evaluated independently and with multiple variations of the hyperparameters of the neural networks, keeping
those that provide the most information, combinations are made between them and the robustness of the final
system obtained is evaluated. The results exceed 92% accuracy in all cases, which, compared with previous
work, significantly improves the classifiers developed in recent years. The key contributions of this study are
detailed as follows: (a) a wearable device designed to collect physiological signals from the user in a non-
invasive way is presented, proving that it works properly in a controlled environment; (b) a data-collection
protocol is designed to induce emotional states in test subjects using small video clips, demonstrating that the
user evokes the feelings that are induced; and (c) a machine learning-based system is developed and optimized
to classify the emotional state based on the two-dimensional model of emotion, demonstrating its efficiency
and accuracy.
1. Introduction

Affective and emotional states have a direct impact on various as-
pects of daily life. One of the most affected aspects is work productivity:
recent studies have revealed that workers’ psychological states, such as
positive attitudes and peace of mind, are associated with productivity at
work. DiMaria, Peroni, and Sarracino (2020), Frey and Stutzer (2016)
and Tenney, Poole, and Diener (2016) revealed that positive thinkers,
i.e., happy and satisfied workers, are more likely to perform well.
Studies have also highlighted how an employee’s health and well-being
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impact productivity. Neumann and Dul (2010), as well as Ødegaard and
Roos (2014), found that healthier employees are more productive.

Similarly, there are other areas in which a positive emotional state
plays a key role, such as rehabilitation therapies (Hu, Xie, & Li, 2013;
Te Wierike, van der Sluis, van den Akker-Scheek, Elferink-Gemser, &
Visscher, 2013; Wiese-Bjornstal, Smith, Shaffer, & Morrey, 1998), or
sports medicine (Ardern, Kvist, & Webster, 2016; Diener & Chan, 2011;
Howell, Kern, & Lyubomirsky, 2007).

To combat the adverse effects that a negative emotional state can
have, various control systems are implemented that make it possible
to know the state of each worker and/or patient. In fact, some
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organizations have been increasing investment in health and wellness-
related programs for years (Ton, 2014). In any case, these controls
usually involve interviews with psychologists who, using classic metrics
and surveys such as the Discrete Emotions Questionnaire (Harmon-Jones,
Bastian, & Harmon-Jones, 2016), determine the patient’s emotional
state. However, these checks are not performed with a high cadence
and, in most cases, are carried out when an adverse effect is detected
(such as a significant reduction in productivity, or an unusually long
recovery period for a particular injury).

In order to be able to detect any emotional signs that could cause
problems in the future, it would be necessary to increase controls
(without waiting to detect problems) or to develop a mechanism for
automatic detection of the emotional state. For this purpose, multi-
ple studies demonstrate the relationship between emotional state and
various physiological parameters, mainly related to the unconscious
reactions of the user’s body that can be recorded and studied: fa-
cial muscle activity, cardiac activity, skin conductance, brain activity,
among others.

Regarding mechanisms and/or tools that may help for automatic
classification, the Artificial Intelligence (AI) field named ‘‘Machine
Learning’’ (ML) has taken advantage in the last years. Some ML-tools
like Support Vector Machines (SVM), Random Forest (RF), Logistic
Regression (LR) or Neural Networks (NN) are commonly used ac-
tually for designing classifiers focused on the detection of diseases
and/or anomalous medical states (Ayata, Yaslan, & Kamasak, 2020;
Biagetti, Crippa, Falaschetti, Tanoni, & Turchetti, 2018; Kwon, Shin, &
Kim, 2018; Santamaria-Granados, Munoz-Organero, Ramirez-Gonzalez,
Abdulhay, & Arunkumar, 2018).

In multiple works, classifiers based on Machine Learning (ML) have
been developed by this research group for anomaly detection using
activity sensors (Domínguez-Morales, Luna-Perejón, Miró-Amarante,
Hernández-Velázquez, & Sevillano-Ramos, 2019;
Escobar-Linero, Domínguez-Morales, & Sevillano, 2022; Luna-Perejón,
Domínguez-Morales, & Civit-Balcells, 2019; Luna-Perejón, Domínguez-
Morales, Gutiérrez-Galán, & Civit-Balcells, 2020; Luna-Perejón, Muñoz-
Saavedra, Civit-Masot, Civit, & Domínguez-Morales, 2021, or to detect
diseases in medical images (Civit-Masot, Domínguez-Morales, Vicente-
Díaz & Civit, 2020; Civit-Masot et al., 2021; Civit-Masot, Luna-Perejón,
Domínguez Morales & Civit, 2020). Also, in a previous work, this
team has even achieved acceptable emotional state classification results
using a public dataset (Muñoz-Saavedra et al., 2020).

The main objectives of this work are the following: (a) designing
and implementing a wearable device in order to capture the physio-
logical data of the user, based on a previous work developed by this
research group (Muñoz-Saavedra et al., 2020); (b) designing and testing
a data collecting protocol from voluntary participants while induc-
ing emotional states using audiovisual information; and (c) designing,
implementing, optimizing and evaluating a Machine Learning-based
classifier with a previous frequency features extraction using the data
obtained from the empirical study.

This work is structured as follows: In the next section, a search
of previous works related to emotional state classification using ML
classifiers is carried out; in the third section, the tools and methodology
used in this work (wearable device designing, data collecting protocol,
and ML classifier designing) are presented; then, in the fourth section,
the results of the process detailed in the previous section are shown,
the system developed is compared with previous works, and the results
obtained are discussed in detail. Finally, the conclusions obtained from
this work are presented.

2. Related works

In this section, a search for similar works is performed in order to
compare this work at the end of the manuscript. For this purpose, a
global search is performed in the most commonly used search engines
(IEEExplorer, ScienceDirect, and Google Scholar) using the following
2

search sentence: (‘‘emotional state’’ OR ‘‘affective state’’) AND (‘‘deep
learning’’ OR ‘‘machine learning’’) AND ‘‘physiological’’. The resulting
set of works is filtered by year, restricting this parameter to those
published from 2016 to 2022 (last seven years); and taking into account
only those works published in international journals or congresses and
only the most-cited works for each year. Preprints or arXiv/bioRxiv
works waiting for acceptance are not selected.

The results after the search process are filtered by eliminating those
that were not focused on a classifier design. The total number of works
obtained is 17. The final selected works after the search process are
briefly presented and summarized below, but their detailed results are
included in the comparison table placed in the results section of this
work:

• García, Álvarez, and Orozco (2016): in this work, a probabilistic
dynamical model is performed on multimodal physiological sig-
nals related to affective state to classify between three classes.
They use the DEAP dataset (32 participants induced with music
videos) with EEG, EMG, EOG and GSR signals. The classifier used
is a Supported Vector Machine (SVM).

• Liu, Meng, Nandi, and Li (2016): using only the EEG recordings
from the same dataset as the previous work (DEAP), the authors
use a k-Nearest neighbors and a Random Forest classifiers to
distinguish between two classes.

• Li et al. (2016): using the DEAP dataset again and only the EEG
signals, in this work a 2-class classifier using a combination of
Convolutional Neural Network (CNN) and a Recurrent Neural
Network (RNN) is used.

• Zhang, Chen, Hu, Cao, and Kozma (2016): the DEAP dataset is
used again with EEG signals too. Using a Probabilistic Neural
Network (PNN), this work classifies between two classes.

• Mirmohamadsadeghi, Yazdani, and Vesin (2016): information re-
garding ECG and breathing patterns obtained from DEAP dataset,
this work classifies two different classes using an SVM.

• Zheng, Zhu, and Lu (2017): for this work, three different classi-
fiers are analyzed (k-NN, SVM and Logistic Regression) in order
to distinguish between three different classes from DEAP dataset

• Girardi, Lanubile, and Novielli (2017): with the information given
by DEAP dataset, a 2-class classifier based on a VSM is performed
using EEG, GSR and EMG signals.

• Lee and Yoo (2018): in this case, a custom dataset is recorded
using movie clips and bio-sensors (ECG, temperature and GSR).
This dataset is used to develop a 2-class classifier using a neural
network.

• Lee et al. (2019): in this work, authors use a convolutional neural
network (CNN) for developing a 2-class classifier using DEAP
dataset and the information provided by the photoplethysmo-
graph.

• Sonkusare et al. (2019): a custom dataset is collected for this
work, developing a CNN classifier for distinguishing two classes
using ECG, GSR and temperature sensors.

• Lee and Yoo (2020): a classifier based on an RNN is developed for
distinguishing between two classes using the information given
by ECG, GSR and temperature. The dataset used are DEAP and
EMDB.

• Domínguez-Jiménez, Campo-Landines, Martínez-Santos, Delahoz,
and Contreras-Ortiz (2020): for recognizing between three dif-
ferent emotions (sad, joy and neutral), in this work an SVM
classifier is developed using the information given by GRS and
photoplethysmograph sensors from DEAP dataset.

• Ayata et al. (2020): DEAP dataset is used to train different clas-
sifiers based on RF, SVM and Logistic Regression to classify
between two classes using the information given by the tempera-
ture, the breathing pattern and the photoplethysmograph.

• Sepúlveda, Castillo, Palma, and Rodriguez-Fernandez (2021):
with the information given by the ECG signal from the AMIGOS
dataset, the authors develop an ensemble bagged tree classifier to

distinguish between two classes.
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Fig. 1. Two-dimensional model based on Valence and Arousal.
Source: Adaptation from Mehrabian and Russel work.

• Tabbaa et al. (2021): In this work, authors develop a 2-class SVM
classifier with the information collected in this same work (and
shared as VREED dataset).

• Hammad and Monkaresi (2022): This author proposes a work
where spatial and temporal features are extracted from the signals
by a CNN, and later these features are used in a Deep Neural
Network (DNN) in order to classify two classes. This work is tested
with their own dataset and also with DREAMER dataset.

• Jalal and Peer (2022): Finally, in this work the authors propose
a framework similar to our work, when they use the Continuous
Wavelet Transform to extract information from the signals, and
after that they obtained the features using a scalogram processing.
The resulting features are used to train a CNN to distinguish
between high and low values. They test their method with DEAP
dataset.

In summary, the vast majority of the works make a classification of
two classes (something that this work attempts to improve, increasing
it to three classes to facilitate the recognition of emotions). Moreover,
despite being a widely used mechanism, there are many papers that
use classifiers not based on neural networks. And, finally, it can be
observed that there is a little variety of emotion datasets, with DEAP
and AMIGOS (by the same authors as DEAP) being the most widely
used.

The following section will detail the emotional theory, the hardware
device and collecting protocol used for this work and, finally, the
optimizing process performed to obtain the classifier presented in this
work. The comparison with the previous works’ quantitative results is
detailed in depth in the final part of the Results section.

3. Materials and methods

This section describes the tools used in this work, as well as the
methodology used, starting with a quick explanation about the emo-
tional theory.

3.1. Emotional theory

Throughout history, different emotions have been identified and
different ways of classifying them have been proposed. The classifica-
tion of emotions is based on a dimensional model of emotions, which
allows a classification according to a series of values. These values have
changed over the years.

But it is finally in 1974, when Mehrabian and Russel simplified the
classification of emotions on two axes: Valence and Arousal (Mehrabian
3

Fig. 2. Threshold division according to previous works (Muñoz-Saavedra et al., 2020).

& Russell, 1974). Previous work has shown that this two-dimensional
model of emotions is reliable for classifying emotions (see Fig. 1), and
this model is the one used in this work too.

The dataset used in this work is labeled using the emotions induced
by each case; and the emotions are labeled using three levels for Valence
and Arousal (low, middle and high) according to Fig. 1. Additionally,
we work with the thresholds used in a previous work (Muñoz-Saavedra
et al., 2020) for this division, and include the labeling of the specific
emotional states within these ranges according to Fig. 2. In summary,
the numerical values labeled in public datasets were divided in that
previous work into a range of the lowest 30% to define the ‘‘LOW’’
status, the highest 30% for the ‘‘HIGH’’ status and the middle 40% for
the ‘‘MEDIUM’’ status.

3.2. Device and application

The hardware device designed for this work is composed of a
STMicroelectronics microcontroller and two sensors for capturing phys-
iological signals. The sensors that form it are:

• Galvanic Skin Response (GSR) sensor: it measures the electro-
galvanic response of the skin, i.e. sweating. In order to measure
this response, an electric current must be circulated through the
body. This sensor uses two electrodes that are in contact with
two fingers. Between these two electrodes there is an integrated
circuit that measures the electrical conductivity; and the greater
the sweating of the hand, the higher the value obtained.

• Photoplethysmograph sensor MAX30100: it consists of two light-
emitting diodes, one emitting in the infrared spectrum (950 nm)
and the other emitting red light (650 nm), and a photoreceptor.
This sensor uses the absorption of blood at red and infrared wave-
lengths to measure both heart rate and blood oxygen saturation.
To measure SPO2 it is necessary to know the amount of red
light absorbed by the blood, as well as the light absorbed in the
infrared spectrum, the ratio between these two values will give
us the percentage of oxygen carried by the blood. To measure
the heart rate, the small changes that occur when measuring the
maximum value of oxygen absorption in the blood will have to be
measured, so the SPO2 and heart rate values are calculated, and
the values given by this module are the amount of light absorbed
by the oxygenated hemoglobin (HbO2), associated to the infrared
spectrum and the amount of light absorbed by the deoxygenated
hemoglobin (Hb), associated to the infrared spectrum. This sensor
also includes an infrared thermometer.
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Fig. 3. Hardware device.

So, the physiological signals that are obtained with this device are:

• Sweating: obtained directly from the GSR sensor.
• Temperature: obtained directly from the MAX30100 sensor.
• Heart Rate: obtained indirectly from the HbO2 signal of the

MAX30100 sensor.
• Blood oxygen: obtained indirectly from the relation between Hb

and HbO2 signals of the MAX30100 sensor.

The prototype developed device can be observed in Fig. 3.
Regarding the data collecting software, it is integrated with the

user application developed for the protocol performed. This application
allows the user different tasks:

• User ID assignment: needed to distinguish the different partici-
pants after the collecting process.

• Connection with device: used for selecting the virtual COM port
where the device is connected.

• Select path to store: selecting the folder where the data collected
will be stored.

• Recording: there is a bidirectional communication between the
user app and the device. The master of this communication is
the app, which starts and stops the transmission using specific
command. The information recorded is received at 50 hertz.

• Videoclip visualization: when the system starts collecting, due to
the protocol (described next), the app stars showing some movie
clips.

The main frame of the developed software is shown in Fig. 4.
After presenting the device and the user application developed for

this work, the collection protocol followed and the resulting dataset
will be detailed next.

3.3. Dataset

For the collection of the dataset used in this work, we have consid-
ered a population between 18 and 65 years of age, with basic handling
of a digital device, who do not have vision difficulties and who do
not suffer from any medical disorder that affects the recording of
physiological samples (such as heart problems, lung problems, thyroid
problems, nervous system disorders, etc.).

Following a protocol approved by the university’s ethics commit-
tee, the device detailed above is used to collect physiological activity
samples while inducing emotional states in the participants through
a battery of videos (Megías, Mateos, Ribaudi, & Fernández-Abascal,
2011). The videos used in this process are the ones described in the
previous work.
4

Table 1
Dataset samples collected for each class of Arousal and Valence.

Temporal window (s)

Class Subset 2 3 4 5

LOW
Train 806 531 398 317
Test 202 133 100 79
Total 1008 664 498 396

MID
Train 299 187 147 114
Test 75 49 37 28
Total 374 246 184 142

HIGH
Train 605 403 299 235
Test 151 101 75 59
Total 756 504 374 294

GLOBAL
Train 1710 1131 845 666
Test 428 283 211 166
Total 2138 1414 1056 832

In addition, after each viewing, the user fills in the Discrete Emo-
tions Questionnaire (DEQ), where he/she will determine what he/she
feels after watching the video and what emotional state it has evoked
in him/her. The whole process lasts between 45 and 60 minutes per
participant.

The collection process is detailed in Fig. 5. In this figure it can be
seen how, after viewing each video clip, the participant has an inter-
view with an expert psychologist in which he/she is asked about the
emotion evoked by the video he/she has watched, by filling in the DEQ.
The result of this questionnaire is used as a label for the physiological
signals collected during the video clip, taking into account that only
those sections in which the corresponding event occurs in the video
are labeled.

So, the physiological signals captured by the wearable device are
subsequently tagged to an affective state (duple Arousal and Valence),
taking into account the time stamps of the events in the videos.

Finally, after more than one month of collection, we managed to
record information from 22 participants, 14 of whom were men and
8 women, with an average age of 31.67 years. Although the collected
dataset does not contain numerous participants, it is large enough to
be able to test the theory. It is also important to note that the dataset
continues to expand week by week.

Since the duration of the videos varies from less than a minute to
several minutes, numerous samples are obtained with the 22 partici-
pants since, as previously mentioned, the time windows to be analyzed
vary between 2 and 5 seconds. The number of samples contained is the
same for Arousal and Valence, and it is shown in Table 1.

It is important to note that the samples presented in Table 1 only
include the number of temporal windows labeled for all the recordings
(only a few seconds for each video). With the total amount of videos
shown to each participant, the recording time collected for this test
was more than 12 hours (and it was necessary more than 50 hours
for this collection spread over six weeks, due to the pauses included
between the videos and the notations and surveys performed for each
participant).

3.4. Classifier

The classifier used for this work consists of a classical neural net-
work (MLP, or multilayer perceptron) with an input layer, an output
layer and two hidden layers.

The inputs to the classifier are the features extracted from the
physiological signals of the participants, using a specific window width.
Due to the nature of the sensors, these features may vary: specifically,
the body temperature sensor provides an absolute value and, therefore,
it is not useful to extract frequency features, but statistical variables;
on the other hand, the sweating sensor and the photoplethysmograph
(from which the oxygenated and deoxygenated hemoglobin signals
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Fig. 4. User application.
Fig. 5. Collection process.
are extracted), both provide oscillating and repetitive signals whose
frequency information is of special interest.

In the case of this work, 5 temporal characteristics are extracted
from the temperature sensor (arithmetic mean, quadratic mean, stan-
dard deviation, maximum and minimum), and 8 frequency charac-
teristics from both the sweating signal and the oxygenated and de-
oxygenated hemoglobin signals (mean, deviation, amplitude and zero
crossing of both the tonic and phasic signals). These features are
summarized in Table 2.

Networks with different number of neurons and different values of
hyperparameters (to be described later) are evaluated. In the same way,
independent systems are trained for each sensor in order to, later on,
realize combinations of sensors. This process can be summarized in
Fig. 6.
5

The optimization process followed in this work to obtain the best
classifier is divided into four phases that will be described below:

• Phase 1 — Hyperparameters adjustment: multiple trainings for
each individual sensor are performed by varying the batch size
and the time window values, as well as various alternatives of
the architecture based on the number of layers and the number of
neurons. In more detail, batch size is the parameter that indicates
the number of samples used in each iteration of the training
process before updating any parameter. As more samples are
used in each iteration, the parameters will suffer less updates.
However, very low samples used can lead to overfitting the
model. Another parameter adjusted is the time window, which
indicates the width (in seconds) of the window used to extract
the frequency features. Other hyperparameters, like learning rate
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Table 2
Features summary for each signal.
Signal # Features

Temperature 5 Min, Max, Arithmetic mean, Geometric mean, Standard deviation
HbO2 8 Tonic: Zero crossings, Arithmetic mean, Standard deviation, Amplitude

Phasic: Zero crossings, Arithmetic mean, Standard deviation, Amplitude
Hb 8 Tonic: Zero crossings, Arithmetic mean, Standard deviation, Amplitude

Phasic: Zero crossings, Arithmetic mean, Standard deviation, Amplitude
GSR 8 Tonic: Zero crossings, Arithmetic mean, Standard deviation, Amplitude

Phasic: Zero crossings, Arithmetic mean, Standard deviation, Amplitude
Fig. 6. Graphical abstract.
or dropout, are set following the results obtained in the pre-
vious work (Muñoz-Saavedra et al., 2020). Table 3 shows the
summary of the hyperparameter values used in this grid search
process. 36 combinations will be evaluated to obtain an optimal
hyperparameter adjustment.

• Phase 2 — Best candidates selection: the previously obtained
results are discussed and the best cases are selected, which will
be used in the following phases.

• Phase 3 — Ensembles: the sensors that include the best candidates
are joint forming an ensemble classifier with the information
obtained from those sensors. Results are shown.

• Phase 4 — Exhaustive candidate assessment: more exhaustive
tests are performed over the previously ensemble using different
techniques to assess the robustness by using cross-validation,
and the final results are detailed and discussed using different
evaluation metrics.

3.5. Evaluation metrics

To evaluate the effectiveness in the classification results of a classi-
fier, the most common metrics are used: accuracy (most-used metric),
sensitivity (known as recall in other works), specificity, precision, and
F1 (Sokolova et al., 2009). To this end, the classification results
6

𝑠𝑐𝑜𝑟𝑒
Table 3
Hyperparameter’s values.
Hyperparameter Values

Learning rate 1e−4
Temporal window (s) 2, 3, 4, 5
Batch size 8, 16, 32
Hidden-layers size 32:16, 64:32, 128:64

obtained for each class are tagged as ‘‘True Positive’’ (TP), ‘‘True Neg-
ative’’ (TN), ‘‘False Positive’’ (FP) or ‘‘False Negative’’ (FN). According
to them, the high-level metrics are presented in the next equations:

Accuracy =
∑

𝑐

TP𝑐 + TN𝑐
TP𝑐 + FP𝑐 + TN𝑐 + FN𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (1)

Sensitivity =
∑

𝑐

TP𝑐
TP𝑐 + FN𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (2)

Specif icity =
∑

𝑐

TN𝑐
TN𝑐 + FP𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (3)

Precision =
∑

𝑐

TP𝑐
TP𝑐 + FP𝑐

, 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (4)

F1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
precision ∗ sensitivity

. (5)

precision + sensitivity
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Table 4
Results obtained for HbO2 signal for the three architectures when classifying Arousal.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 96.82 0.0964 99.66 0.0609 96.76 0.0899 93.42 0.7574 94.63 0.1355 95.01 0.2113
3 98.38 0.0524 100.00 0.0150 98.45 0.0433 65.10 94.3020 42.73 1.0775 62.23 0.9836
4 99.42 0.0174 100.00 0.0089 98.18 0.0569 100.00 0.0377 98.56 0.0564 100.00 0.0335
5 99.20 0.0368 75.44 4.1654 97.87 0.0634 100.00 0.0496 99.02 0.0393 91.30 3.0769

64:32

2 86.06 0.3660 83.77 0.4447 85.37 0.3532 77.23 0.7721 87.74 0.3270 70.31 1.1107
3 92.52 0.2106 97.93 0.1256 90.83 0.2544 93.75 0.2224 89.66 0.2773 87.32 0.3727
4 93.82 0.1615 98.00 0.0780 91.67 0.2276 89.38 0.3155 93.05 0.1894 93.20 0.3107
5 91.67 0.2533 92.22 0.3457 92.24 0.2187 97.75 0.1034 90.87 0.2394 78.23 1.1948

32:16

2 40.02 1.3512 80.66 0.7006 75.16 0.5479 57.12 1.1362 41.00 1.1200 57.19 1.0101
3 77.61 0.5854 74.31 0.8201 23.78 1.6896 51.97 1.0819 74.45 0.5789 69.61 0.7072
4 85.22 0.4142 65.00 1.5811 80.67 0.4484 72.43 0.9505 73.93 0.5892 74.11 0.7346
5 86.37 0.3616 77.02 0.7553 83.58 0.4027 58.85 52.6437 80.74 0.4558 79.82 0.4815
Table 5
Results obtained for HbO2 signal for the three architectures when classifying Valence.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 97.76 0.0669 76.89 3.1621 96.64 0.1056 99.54 0.0603 94.85 0.1435 95.76 0.1545
3 99.50 0.0263 93.20 0.7699 97.42 0.0923 98.68 0.0714 98.15 0.0536 95.20 0.5982
4 64.16 0.7936 77.97 0.9352 99.23 0.0243 97.30 0.4014 96.55 0.1161 99.68 0.0659
5 99.27 0.0343 97.48 0.1278 98.87 0.0341 88.71 2.1190 98.04 0.0799 54.72 5.4271

64:32

2 88.09 0.3178 75.85 0.8349 88.88 0.2874 65.03 2.9453 85.31 0.3849 81.16 0.4762
3 91.74 0.2296 89.96 0.7649 88.80 0.2921 89.56 0.4209 87.26 0.3445 87.17 0.3021
4 95.54 0.1333 100.00 0.0459 94.00 0.1857 95.37 0.2365 92.48 0.1903 89.78 0.5080
5 95.05 0.1467 98.47 0.1198 95.76 0.1419 94.95 0.2163 88.08 0.2962 98.39 0.1497

32:16

2 70.95 0.6808 73.08 0.6246 74.35 0.5782 46.32 1.1140 76.67 0.5274 72.30 0.6236
3 82.09 0.4363 74.31 0.6553 75.28 0.5367 77.60 0.5379 75.89 0.5597 68.20 0.6840
4 82.22 0.4517 79.64 0.4986 81.84 0.4340 73.52 0.9603 74.83 0.6006 70.86 0.7179
5 87.94 0.3089 66.53 1.4393 83.17 0.4508 73.09 0.6896 78.68 0.4862 84.00 0.4635
i

t
(
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w
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About those metrics:

• Accuracy: all samples classified correctly compared to all samples
(see Eq. (1)).

• Sensitivity (or recall): proportion of values classified as ‘‘true
positive’’ that are correctly classified (see Eq. (2)).

• Specificity: proportion of values classified as ‘‘true negative’’ that
are correctly classified (see Eq. (3)).

• Precision: proportion of values classified as ‘‘true positive’’ in all
cases that have been classified as it (see Eq. (4)).

• F1𝑠𝑐𝑜𝑟𝑒: It considers two of the main metrics (precision and sen-
sitivity), calculating the harmonic mean of both parameters (see
Eq. (5)).

The above metrics are common to all ML systems; but there are
ther commonly used metrics in healthcare systems; this is the case
f the ROC curve (Receiver Operating Characteristic) (Hoo, Candlish,

Teare, 2017), because it is the visual representation of the True
ositives Rate (TPR) versus the False Positives Rate (FPR) as the dis-
rimination threshold is varied. Usually, when using the ROC curve, the
rea under the curve (AUC) is used as a value of the system’s goodness-
f-fit. Therefore, the classifier system developed in this work will be
valuated according to all the metrics detailed in this subsection.

. Results and discussions

The results obtained in the four phases used to optimize the classi-
ier will be presented in order. Similarly, as results are presented, the
andidates chosen in each phase will be determined according to the
valuation metrics obtained.
7

V

Once the best classifier is obtained, a thorough comparison will be
made with the works detailed in Section 2.

4.1. Classifier implementation and evaluation

Starting with the design and evaluation of the classifier, indepen-
dent classifiers will be trained for each sensor, the best candidates will
be extracted and, based on them, combinations will be made to obtain
the final results.

4.1.1. Phase 1: Grid search
The results in this section will be presented as follows: for each sig-

nal, two tables will be shown: one for Arousal and the other for Valence.
Each of these tables will contain the classification results (accuracy
and loss) for the training and testing subsets for each combination of
hyperparameter (batch size: 8, 16 and 32; and temporal window: 2, 3,
4 and 5) and for each network architecture (128:64, 64:32 and 32:16).

First, results for HbO2 signal are shown in Table 4 for Arousal, and
n Table 5 for Valence.

As can be observed in Table 4, the best results seem to be located in
he temporal width of four seconds for the most complex architecture
128:64). Acceptable results are colored in yellow, good results in
reen and bad results in red. Even so, it can be seen how this signal
ith this architecture achieves good classification results. Moreover,
s presented in Table 5, there are some good results with particular
arameters, but it seems that this signal has more difficulty to classify
alence.
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Table 6
Results obtained for temperature signal for the three architectures when classifying Arousal.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 76.95 0.5172 67.97 0.6919 77.30 0.5124 66.49 0.7339 73.45 0.5998 84.55 0.4458
3 78.72 0.4849 74.28 0.6006 74.71 0.5726 79.69 0.6837 77.35 0.5291 69.01 0.7845
4 72.80 0.6069 87.76 0.4371 75.11 0.5356 81.95 0.8057 79.13 0.4963 76.43 0.6124
5 76.41 0.5247 74.17 0.8297 80.18 0.4552 62.30 0.8469 78.00 0.4943 89.09 0.4082

64:32

2 67.92 0.7016 70.52 0.7744 74.17 0.5891 57.00 3.1390 69.82 0.6394 84.95 0.4721
3 60.87 0.8337 69.29 0.8742 75.36 0.5977 60.41 0.8467 73.28 0.5812 67.42 7.1094
4 75.64 0.5494 68.77 0.8640 74.05 0.5907 80.14 0.5523 74.16 0.5965 80.33 0.5245
5 48.56 1.0043 67.41 0.9441 70.73 0.6474 59.89 1.1397 73.52 0.6286 72.16 0.7214

32:16

2 59.72 0.8848 49.36 1.0804 54.92 0.9303 52.09 1.1098 68.22 0.6724 72.37 0.7119
3 62.80 0.8037 53.72 1.0854 67.18 0.7144 84.55 0.4601 61.26 0.8315 65.17 0.8217
4 72.90 0.6409 61.54 0.8814 68.73 0.7108 69.43 1.1181 35.55 3.4068 72.79 0.8866
5 66.86 0.7537 74.19 0.7535 73.58 0.6144 75.60 0.6375 67.63 0.7383 68.90 0.8337
Table 7
Results obtained for temperature signal for the three architectures when classifying Valence.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 73.59 0.5765 59.95 0.9190 70.31 0.6622 62.74 0.9986 72.18 0.6165 87.28 0.3796
3 71.53 0.6191 81.01 0.5996 74.69 0.5670 74.79 0.6597 74.40 0.6111 72.88 0.6619
4 76.59 0.5474 77.70 0.5398 72.88 0.6434 53.81 2.9568 73.33 0.6337 70.51 0.7008
5 78.81 0.4882 72.13 0.8003 78.76 0.4555 77.10 0.5534 79.45 0.4718 82.01 0.5040

64:32

2 71.77 0.6190 60.99 0.9361 69.99 0.7037 56.11 0.9875 74.14 0.5815 70.92 0.6701
3 72.53 0.6455 72.92 0.6522 71.58 0.6407 55.84 1.0169 75.24 0.5731 69.48 0.8485
4 76.94 0.5242 64.57 0.9307 71.11 0.6475 70.28 0.8665 65.66 0.7527 68.34 0.8473
5 69.73 0.6372 82.69 0.5349 67.70 0.7176 67.29 0.7782 74.75 0.5728 56.30 1.3354

32:16

2 43.80 1.0522 67.24 1.0676 70.13 0.6706 71.65 0.7320 65.17 0.7606 66.01 0.8367
3 71.46 0.6284 70.37 0.7747 67.77 0.7357 59.72 1.0666 67.16 0.6960 61.95 0.9288
4 63.07 0.8316 71.57 0.7452 71.34 0.6408 73.73 0.8750 64.45 0.7808 74.57 0.7612
5 59.34 0.8587 64.95 0.8245 72.87 0.6514 62.03 1.0203 61.74 0.8240 52.75 1.1462
v
a
c
f

I
T

s

For the 64:32 architecture, classifiers’ accuracy decreased due to the
rchitecture complexity reduction, however some cases obtain accept-
ble results (over 90%). Finally, as expected, results are clearly worse
ith the 32:16 architecture than the ones obtained in the previous ones.
owever, accuracy stands around 85% in some cases for Arousal and
alence.

Secondly, results for temperature signal are shown in Table 6 for
rousal, and in Table 7 for Valence.

As can be observed in Table 6, the temperature sensor rating re-
ults for Arousal are mostly poor for the most complex architecture.
herefore, it is clear that this sensor would not be suitable in this
ase. Moreover, the temperature sensor does not perform well when
lassifying Valence. The best cases obtain around 80%–89% accuracy
or Arousal and even less for Valence.

For the 64:32 architecture, the results are even worse: The best
ases obtain around 80%–84% accuracy. And, finally, for the lighter
rchitecture, accuracy results obtained are around 60%–70%.

In third place, results for GSR signal are shown in Table 8 for
rousal, and in Table 9 for Valence.

As can be observed in Table 8, the classification results for the
SR signal with Arousal are not very good. There are cases where
cceptable results are obtained with the 128:64 architecture, but the
ast majority are low results. For Valence, the GSR signal seems to
btain acceptable classification results with the heavier architecture,
xceeding 94% in most cases. Summarizing, GSR sensor may be used
or Valence classification, but next results will show if there is no other
ensor that obtains better results.

After some promising results with the 128:64 architecture, the
iddle architecture’s results continues the same tendency by obtaining
8

ery good results (over 90% in most cases). And, finally, for the lighter
rchitecture, although some results are not acceptable, in the most
ases results over 85% are obtained. These results give this sensor the
irst position in terms of accuracy so far.

The fourth signal evaluated if the deoxygenated hemoglobin (Hb).
ts results for Hb signal are shown in Table 10 for Arousal, and in
able 11 for Valence.

Results in Table 10 shown that there are acceptable results for clas-
ifying Arousal with Hb signal using the heavier architecture, although
Loss values are too high. Results for Valence show that acceptable results
are obtained for Hb signal, but there are several values with high Loss
values.

Although, with the 128:64 architecture, results were very promis-
ing, with the 64:32 architecture the accuracy plummet this time. There
are some cases where accuracy surrounds 90%, but most of them are
around 80%–85%, and worse results are obtained for Arousal. Finally,
for the lighter architecture, as happened before, results obtained are
lower. In comparison with the other signals, it obtains worse results
than HbO2 and GSR sensors, but not as low as temperature sensor.

The results presented are summarized as follows:

• Regarding the results obtained exclusively for the 128:64 archi-
tecture, two signals stand out: HbO2 and sweating (GSR sensor).
Temperature sensor is the one with the worst results, and Hb
signal presents too high Loss values.

• Regarding the results with the other architectures, some conclu-
sions could be made: temperature sensor is not suitable to be
used, and Hb signal experiments a high decreasing from the first
architecture to this one. So, HbO2 and GSR seems to be the signals
that provide the most information.
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Table 8
Results obtained for GSR signal for the three architectures when classifying Arousal.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 98.90 0.0368 80.58 4.2113 97.53 0.0711 74.23 4.6345 96.97 0.0795 72.62 11.3095
3 97.11 0.0787 99.33 0.0538 94.62 0.1527 65.98 6.7071 96.45 0.1113 99.02 0.0912
4 97.75 0.0706 100.00 0.0401 95.98 0.1020 100.00 0.0347 92.07 0.2168 90.91 0.3499
5 96.20 0.0779 99.12 0.0556 97.45 0.0721 81.61 3.0394 93.84 0.1424 92.80 0.4396

64:32

2 93.29 0.1840 94.86 0.1909 91.37 0.2325 89.35 0.3223 93.76 0.1744 70.72 1.9500
3 89.39 0.2680 92.05 0.2439 90.49 0.2840 92.37 0.5006 84.16 0.3977 90.71 0.2729
4 92.27 0.1972 78.76 0.7776 90.66 0.2498 92.22 0.4018 87.44 0.3114 92.69 0.3024
5 92.82 0.2053 96.05 0.1896 91.04 0.2189 89.15 0.4125 85.42 0.3828 88.56 0.3544

32:16

2 84.02 0.4255 87.33 0.3317 83.39 0.4428 82.56 0.4626 76.54 0.6018 69.82 0.8183
3 87.14 0.3266 86.85 0.3478 82.29 0.4534 67.28 1.3948 82.56 0.4612 65.79 0.7522
4 85.35 0.3774 79.55 0.5427 83.31 0.4070 80.31 0.5278 79.33 0.5642 62.15 1.0934
5 84.72 0.4255 82.07 0.5128 75.24 0.6139 75.69 0.6652 77.06 0.5643 75.76 0.6351
Table 9
Results obtained for GSR signal for the three architectures when classifying Valence.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 96.66 0.1079 100.00 0.0228 97.75 0.0641 100.00 0.0298 98.12 0.0539 100.00 0.0076
3 96.11 0.1018 100.00 0.0404 97.32 0.0773 100.00 0.0391 95.32 0.1373 100.00 0.0489
4 94.31 0.1522 100.00 0.0454 96.73 0.0858 95.96 2.3339 94.27 0.1246 100.00 0.0495
5 96.48 0.0932 75.00 7.4356 94.60 0.1398 68.71 10.5939 95.56 0.1158 89.17 0.8851

64:32

2 94.22 0.1612 97.78 0.0715 91.47 0.2465 94.42 0.2036 91.00 0.2455 87.06 0.4023
3 93.05 0.1812 97.47 0.1212 90.94 0.2261 75.94 6.6802 85.92 0.3749 86.83 0.3579
4 93.42 0.2030 94.74 0.1974 89.71 0.2897 75.00 2.2000 88.55 0.3019 91.39 0.3123
5 91.58 0.2197 93.89 0.1981 86.35 0.3734 85.09 1.2349 87.35 0.3415 63.81 4.3691

32:16

2 71.63 0.6483 81.98 0.6813 85.15 0.3947 84.80 0.4549 40.60 2.3906 60.47 0.9503
3 83.89 0.3918 70.50 0.9630 80.41 0.5014 89.77 0.4212 86.33 0.3597 57.45 4.6116
4 85.51 0.3623 66.18 1.0666 47.10 1.0689 68.75 1.0017 77.52 0.5355 75.54 0.6656
5 48.62 1.1818 73.15 1.0565 81.32 0.4861 63.80 3.1625 79.37 0.5235 80.98 0.5281
Table 10
Results obtained for Hb signal for the three architectures when classifying Arousal.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 93.33 0.1752 97.27 0.1558 92.36 0.2106 95.58 0.1473 92.75 0.1938 92.53 0.2251
3 98.19 0.0511 66.53 4.2423 95.28 0.1421 96.69 0.1441 92.02 0.2109 89.25 0.7027
4 97.24 0.0733 87.60 6.8105 95.31 0.1245 66.12 6.5035 96.45 0.1089 83.92 1.7006
5 97.90 0.0730 99.53 0.0606 97.38 0.0617 76.99 3.4677 93.46 0.1698 80.08 1.5687

64:32

2 77.75 0.5148 77.55 0.5431 82.70 0.4061 80.43 0.4695 75.80 0.5554 77.12 0.7400
3 88.71 0.2999 91.05 0.2867 85.22 0.3742 90.07 0.3927 84.96 0.3967 86.78 0.7335
4 85.66 0.3368 84.08 0.9400 91.13 0.2647 81.82 0.7712 84.47 0.4056 80.20 0.5402
5 90.20 0.2706 72.86 2.7277 89.80 0.3212 89.45 0.3221 90.69 0.2457 51.16 5.8066

32:16

2 62.05 0.7986 60.42 0.9100 65.90 0.7420 75.38 0.6226 48.42 1.0092 69.16 0.9327
3 72.54 0.6568 60.96 0.8193 76.11 0.5575 58.85 1.3655 70.59 0.6886 69.58 0.8468
4 77.69 0.5409 58.90 0.8819 67.35 0.7183 72.92 0.7040 73.65 0.6118 47.87 1.1607
5 79.51 0.4971 55.94 1.0931 73.72 0.5942 74.23 0.7133 72.87 0.6297 74.24 0.6313
Therefore, concluding a first reflection on the results obtained in-
ividually by each sensor, the temperature sensor would be the first
o be discarded, while the Hb sensor would have to be compared
ore closely with the other two. In the following subsection, the best

esults obtained by each of these three sensors (definitely discarding
he temperature sensor) will be summarized and the best candidates to
e used in the combination phase will be discussed.
9

4.1.2. Phase 2: Best individual candidates
The objective of this section is to present, in a more summarized

form, the information previously presented. Due to the large amount
of information previously shown, it is not easy to simplify it much (so
results per sensor and architecture will be presented equally), but the
worst sensor (temperature) and the worst results of the remaining ones

will be eliminated. In summary, one table per sensor will be presented.
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Table 11
Results obtained for Hb signal for the three architectures when classifying Valence.

Architecture Window (s)

Batch size

8 16 32

Train Test Train Test Train Test

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

128:64

2 94.55 0.1385 82.71 1.3346 50.83 0.9680 65.70 0.9635 91.50 0.2319 83.33 1.6608
3 95.55 0.1304 96.53 0.2801 95.53 0.1282 96.20 1.0421 95.05 0.1489 90.08 1.4373
4 97.91 0.0583 100.00 0.0198 93.92 0.1679 61.90 2.7557 95.54 0.1286 95.24 1.6512
5 98.55 0.0414 63.64 9.1993 98.32 0.0703 87.10 9.3770 96.43 0.1163 90.26 0.8020

64:32

2 79.05 0.5137 70.60 0.7818 77.80 0.5096 76.83 0.6720 78.89 0.4862 64.95 2.0814
3 85.94 0.3626 50.71 4.3060 85.25 0.3994 67.81 1.0739 85.49 0.3708 77.99 0.5586
4 88.27 0.2922 89.08 0.3616 85.05 0.3653 79.53 0.6276 81.07 0.4399 73.26 0.9680
5 89.52 0.2756 92.05 0.2565 87.69 0.3096 86.60 0.3688 90.46 0.2434 60.87 2.2712

32:16

2 69.77 0.6741 65.43 0.7743 67.95 0.7249 37.33 1.2434 74.03 0.6133 44.61 1.6463
3 76.22 0.5568 46.37 2.3196 72.65 0.6053 71.69 1.0892 72.74 0.6415 54.87 0.9327
4 80.64 0.4429 61.87 2.3723 73.62 0.6192 67.70 0.6946 71.55 0.5960 70.56 0.6391
5 71.68 0.5609 52.96 1.9513 73.21 0.6024 71.76 0.7228 58.60 0.8745 63.69 1.1459
able 12
est results regarding the three architectures for HbO2 signal.

Architecture Window (s)

Best HbO2 results

Arousal Valence

Train Test Train Test

BS Acc (%) Loss Acc (%) Loss BS Acc (%) Loss Acc (%) Loss

128:64

2 8 96.82 0.0964 99.66 0.0609 16 96.64 0.1056 99.54 0.0603
3 8 98.38 0.0524 100.00 0.0150 16 97.42 0.0923 98.68 0.0714
4 8 99.42 0.0174 100.00 0.0089 32 96.55 0.1161 99.68 0.0659
5 16 97.87 0.0634 100.00 0.0496 8 99.27 0.0343 97.48 0.1278

64:32

2 8 86.06 0.3660 83.77 0.4447 32 85.31 0.3849 81.16 0.4762
3 8 92.52 0.2106 97.93 0.1256 8 91.74 0.2296 89.96 0.7649
4 8 93.82 0.1615 98.00 0.0780 8 95.54 0.1333 100.00 0.0459
5 16 92.24 0.2187 97.75 0.1034 8 95.05 0.1467 98.47 0.1198

32:16

2 8 70.95 0.6808 73.08 0.6246 8 40.02 1.3512 80.66 0.7006
3 16 75.28 0.5367 77.60 0.5379 8 77.61 0.5854 74.31 0.8201
4 8 82.22 0.4517 79.64 0.4986 32 73.93 0.5892 74.11 0.7346
5 32 78.68 0.4862 84.00 0.4635 32 80.74 0.4558 79.82 0.4815
Fig. 7. Graphic representation of the best results obtained for HbO2 signal.
a
o
b
a

fter the best results are presented, we will be able of decide which
ensors are most suitable for the final classifier design.

Table 12 presents the best results obtained for HbO2 signal with the
hree architectures. For the 128:64 architecture, although better results
10

a

re obtained for Arousal, all cases surpass 97% accuracy. With the sec-
nd architecture (64:32), sensor HbO2 decreases slightly the accuracy,
ut results remain acceptable with values over 98% for both Arousal
nd Valence. Finally, for this sensor, results for the 32:16 architecture
re clearly worse, but some results are around 80% accuracy. Although,
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Table 13
Best results regarding the three architectures for GSR signal.

Architecture Window (s)

Best GSR results

Arousal Valence

Train Test Train Test

BS Acc (%) Loss Acc (%) Loss BS Acc (%) Loss Acc (%) Loss

128:64

2 8 98.90 0.0368 80.58 4.2113 8 96.66 0.1079 100.00 0.0228
3 8 97.11 0.0787 99.33 0.0538 8 96.11 0.1018 100.00 0.0404
4 8 97.75 0.0706 100.00 0.0401 8 94.31 0.1522 100.00 0.0454
5 8 96.20 0.0779 99.12 0.0556 32 95.56 0.1158 89.17 0.8851

64:32

2 8 93.29 0.1840 94.86 0.1909 8 94.22 0.1612 97.78 0.0715
3 16 90.49 0.2840 92.37 0.5006 8 93.05 0.1812 97.47 0.1212
4 32 87.44 0.3114 92.69 0.3024 8 93.42 0.2030 94.74 0.1974
5 8 92.82 0.2053 96.05 0.1896 8 91.58 0.2197 93.89 0.1981

32:16

2 8 84.02 0.4255 87.33 0.3317 16 85.15 0.3947 84.80 0.4549
3 8 87.14 0.3266 86.85 0.3478 16 80.41 0.5014 89.77 0.4212
4 16 83.31 0.4070 80.31 0.5278 32 77.52 0.5355 75.54 0.6656
5 8 84.72 0.4255 82.07 0.5128 32 79.37 0.5235 80.98 0.5281
Fig. 8. Graphic representation of the best results obtained for GSR signal.
individually, the lighter architecture does not obtain very high results,
it may be improved by the combination with other sensors, so it is not
discarded yet. These observations can also be seen in Fig. 7.

Secondly, Table 13 presents the best results obtained for GSR signal
with the three architectures. In this case, better results are obtained for
Valence, but almost all cases surpass 90% accuracy. With the second
architecture, GSR sensor decreases slightly the accuracy, but results
remain acceptable with values over 92% for both Arousal and Valence
(with better results for Valence). Finally, for GSR sensor, results for the
lightest architecture decrease significantly, but they are over 80% for
all cases, and even some results around 90% are obtained. So far, this
sensor seems to be the one with the best results for all architectures.
These observations can also be seen in Fig. 8.

Finally, Table 14 presents the best results obtained for Hb signal
with the three architectures. It can be observed that good results are
achieved (over 85% for most cases), but they are worse than the ones
obtained with the other sensors. With the second architecture, Hb
signal decreases the accuracy: In some cases this decreasing is low
(around 10%), but in other cases the results decrease more than a 20%.
And finally, for Hb signal, accuracy results obtained for the lightest
architecture are getting worryingly worse, reducing the accuracy to
values around 70% in most cases. These observations can also be seen
in Fig. 9.

After presenting the best results, we can draw an important con-
clusion: the signal whose accuracy is most significantly reduced by the
11
change of architecture is Hb. The other two obtain worse results with
less heavy architectures, but they are still acceptable results (above
80% in most cases).

In a previous work carried out by this research group (Muñoz-
Saavedra et al., 2020), the conclusions obtained are similar: the two
physiological signals that provide the most information for the classi-
fication of emotional state are sweating and heart rate. It is true that
the HbO2 signal is not exactly the same as an ECG (as used in that
previous study) but, by using frequency features extracted from the
DWT, the information obtained indirectly are the peaks of the signal
which, effectively, are correlated with the heart rate. So, it is clear that
the two signals used for the ensemble network will be GSR and HbO2.

In that previous work, the best signal for Arousal and Valence
classifications was GSR with a result between 82 and 83% accuracy;
on the other hand, the second-best signal was ECG with a result around
79%–80%. These results are really similar that the ones obtained with
the lighter architecture of this work. Moreover, the networks used in
the previous work were two hidden layers with 24 to 32 neurons for
the first hidden layer, and with 6 to 12 neurons for the second hidden
layer.

As we want to obtain a light classifier in order to be integrated in
an embedded system, the sensor combination used in next subsection
will use the lighter architecture (32 neurons for the first hidden layer
and 16 for the second one). It is true that the results of this architecture
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Table 14
Best results regarding the three architectures for Hb signal.

Architecture Window (s)

Best Hb results

Arousal Valence

Train Test Train Test

BS Acc (%) Loss Acc (%) Loss BS Acc (%) Loss Acc (%) Loss

128:64

2 8 93.33 0.1752 97.27 0.1558 32 91.50 0.2319 83.33 1.6608
3 16 95.28 0.1421 96.69 0.1441 8 95.55 0.1304 96.53 0.2801
4 8 97.24 0.0733 87.60 6.8105 8 97.91 0.0583 100.00 0.0198
5 8 97.90 0.0730 99.53 0.0606 32 96.43 0.1163 90.26 0.8020

64:32

2 16 82.70 0.4061 80.43 0.4695 16 77.80 0.5096 76.83 0.6720
3 8 88.71 0.2999 91.05 0.2867 32 85.49 0.3708 77.99 0.5586
4 8 85.66 0.3368 84.08 0.9400 8 88.27 0.2922 89.08 0.3616
5 16 89.80 0.3212 89.45 0.3221 8 89.52 0.2756 92.05 0.2565

32:16

2 16 65.90 0.7420 75.38 0.6226 8 69.77 0.6741 65.43 0.7743
3 32 70.59 0.6886 69.58 0.8468 16 72.65 0.6053 71.69 1.0892
4 16 67.35 0.7183 72.92 0.7040 32 71.55 0.5960 70.56 0.6391
5 32 72.87 0.6297 74.24 0.6313 16 73.21 0.6024 71.76 0.7228
Fig. 9. Graphic representation of the best results obtained for Hb signal.
are worse than the ones obtained with the heaviest architectures, but
we expect that the sensor combination improves the final results.

4.1.3. Phase 3: Sensors combination
As detailed before, the two sensors used for the ensemble network

are GSR and HbO2. The frequency features obtained from both sensors
are combined in the input layer of the neural network, so the input
layer has 16 neurons. The hidden layers have 32 and 16 neurons,
respectively, and output layer has 3 neurons (classified classes).

The time windows and batch sizes used for the tests of the ensemble
network are based on those parameters with the best accuracy results
for each sensor. Those best results that share time window and/or batch
size for both sensors are included; moreover, we also analyze the cases
of the best results with parameters not shared between both sensors.

So, finally, for Arousal tests, the combinations of time window and
batch size used are 4–8, 4–16, 5–8 and 5–32. Results are shown in
Table 15.

Similarly, in the case of Valence, the combinations used are 2–18,
2–16, 3–8, 3–16, 3–32 and 5–32. Results are shown in Table 16.

The results obtained are very interesting: in most cases, the combi-
nation of both sensors improves the prediction accuracy (with respect
of the results obtained individually), obtaining results exceeding 90%
and, in some cases, reaching values higher than 98%. Therefore, the
12
Table 15
Results obtained with the combined neural network to detect Arousal using inputs from
HbO2 and GSR.

HbO2 + GSR Train Test

Window (s) BS Acc (%) Loss Acc (%) Loss

4 8 95.96 0.122 98.60 0.092
4 16 94.82 0.143 89.09 0.6869
5 8 93.82 0.177 99.34 0.099
5 32 91.70 0.217 96.24 0.14

Table 16
Results obtained with the combined neural network to detect Valence using inputs from
HbO2 and GSR.

HbO2 + GSR Train Test

Window (s) BS Acc (%) Loss Acc (%) Loss

2 8 85.25 0.369 89.21 0.331
2 16 92.21 0.204 86.00 0.610
3 8 96.25 0.114 99.25 0.065
3 16 94.06 0.171 57.77 4.200
3 32 91.04 0.222 80.41 10.30
5 32 90.00 0.250 83.43 0.715
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Table 17
Summary of the Cross-Validation technique applied with 8 different folds.

Arousal Valence

Repetition 1 Repetition 2 Repetition 1 Repetition 2

Fold Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

1 98.63 0.220 95.06 0.205 93.01 0.208 96.88 0.119
2 95.45 0.225 95.06 0.298 97.84 0.18 94.63 0.125
3 90.98 0.719 93.20 0.237 98.78 0.104 89.75 0.317
4 100 0.083 87.99 0.645 96.47 0.195 79.14 0.83
5 100 0.103 89.99 0.258 87.87 0.507 89.25 0.333
6 87.99 1.019 97.61 0.343 88.76 0.425 88.94 0.382
7 98.06 0.154 80.40 1.348 79.43 0.77 78.80 0.934
8 89.76 0.856 85.30 1.034 87.35 0.6 83.28 0.678

Mean (%) 95.11 0.4223 90.57 0.546 91.19 0.3736 87.58 0.4647
STD 4.86 0.38 5.79 0.43 6.58 0.2385 6.6799 0.3117
Median (%) 98.06 0.22 93.20 0.32 93.01 0.32 89.40 0.36
Table 18
Neuronal Network final results for Arousal classifier.
Class TP TN FP FN Accuracy Sensitivity Specificity Precision F1𝑠𝑐𝑜𝑟𝑒

Low 392 436 0 4 99.5192 98.9899 100 100 99.4924
Medium 140 690 0 2 99.7596 98.5915 100 100 99.2908
High 294 532 6 0 99.2788 100 98.8848 98 98.9899
Table 19
Neuronal Network final results for Valence classifier.
Class TP TN FP FN Accuracy Sensitivity Specificity Precision F1𝑠𝑐𝑜𝑟𝑒

Low 666 710 36 2 97.3126 99.7006 95.1743 94.8718 97.2263
Medium 404 988 2 20 98.4441 95.283 99.798 99.5074 97.3494
High 298 1084 8 24 97.7369 92.5466 99.2674 97.3856 94.9045
combination of both sensors with the lighter architecture allows obtain-
ing results similar to those obtained with the more complex architec-
ture; however, the classifier obtained in this section is computationally
lighter and facilitates the task of integrating it into an embedded system
in future works.

So, we can conclude that, the optimal network for Arousal is formed
using 5 s time windows, with a batch size of 16 and two hidden layers,
the first with 32 nodes and the second with 16.

For valuing Valence the best network is the one that use 3 s temporal
indows, a batch size of 16 and has the same structure as the network

or classifying Arousal, 32 nodes in the first hidden layer and 16 in the
econd.

.1.4. Phase 4: Best candidate results
To verify the robustness of the system, the cross-validation tech-

ique is applied on the selected classifiers. For this purpose, the dataset
as been divided into 8 different, random and non-coincident divisions
f test set and training set. Each of these divisions has been named
old. Moreover, these tests have been repeated 2 times, thus obtaining
n total 16 different tests for Arousal and 16 for Valence.

The results obtained are shown in Table 17 for both Arousal and
Valence. To shown the results, the values of the test subset were used.
In addition, the mean value between each repetition is extracted, with
the standard deviation (STD) and the median.

Certain variations can be observed depending on the fold trained
at each moment, but the result demonstrates the robustness of the
system. In general, the results show accuracy values above 90% for both
Arousal and Valence.

Next, once the robustness and feasibility of the emotion classifier
system based on a classical neural network with frequency features
extracted from sweat and oxygenated hemoglobin signals has been
demonstrated, detailed results on the two systems finally selected are
presented.

The results of the various metrics detailed in Section 3 for these
13

two systems, derived from the median results of the first repetition of
the cross-validation tests, can be seen in Table 18 for Arousal, and in
Table 19 for Valence.

As usual, the accuracy of each class independently is higher than the
average accuracy due to the way it is calculated (taking into account,
in each case, a two-class system in which the true class is the one
evaluated and the false one is a combination of the two remaining
ones).

In any case, it can be seen that the results are more than acceptable
(above 92% in all cases). As can be seen, the results for Arousal are
slightly better than the Valence results; even so, they are acceptable.

The results of the confusion matrices for both classifiers are pre-
sented below. Fig. 10 presents the confusion matrix for Arousal, and
Fig. 11 for Valence.

Finally, the ROC curves for both classifiers are shown. Fig. 12
presents the ROC curve for Arousal, and Fig. 13 presents the ROC curve
for Valence.

For the Arousal classifier, the area under the ROC curve (AUC) for
two of the three classes is 1 (perfect classification), while the value
for class 0 (LOW) is 99.7%. And, for the Valence classifier, the AUC
obtained is 99.8% for class 0 (LOW), 99.4% for class 1 (MID), and
99.5% for class 2 (HIGH).

These results support the conclusions obtained previously: the clas-
sifier resulting from the combination of the sweat sensor and the
oxygenated hemoglobin sensor obtains more than acceptable results
for the detection of Arousal and Valence values when detecting the
emotional state.

4.2. Comparison with previous works

Finally, using the similar work detailed in Section 2, comparative
results are presented in terms of classifier type, classes used in the
classification, sensors used and results obtained. This comparison can
be observed in Table 20.

As can be seen in Table 20, as discussed in Section 2, most of the
previous work reviewed includes a two-class classification only. This

classification, while acceptable for the detection of certain emotions,
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Fig. 10. Confusion matrix obtained for Arousal: (A) absolute values, (B) normalized values.
Fig. 11. Confusion matrix obtained for Valence: (A) absolute values, (B) normalized values.
Fig. 12. ROC curve for Arousal.
14
Fig. 13. ROC curve for Valence.
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Table 20
Works comparison with the results obtained in this work.

Work Year Classes Sensors Classifier Results

García et al. (2016) 2016 [3] Low,
Medium, High

EEG, EMG
and EOGa

SVMd Valence: 88.3%
Arousal: 90.6%

Liu et al. (2016) 2016 [2]: Low, High EEG KNNe and RFf Valence: 69.6%
Arousal: 71.2%

Li et al. (2016) 2016 [2]: Low, High EEG C-RNNg Valence: 72.1%
Arousal: 74.1%

Zhang et al. (2016) 2016 [2]: Low, High EEG PNNh Valence: 81.2%
Arousal: 81.2%

Mirmohamadsadeghi et al. (2016) 2016 [2]: Low, High ECG and
Breathing

SVMd Valence: 74.0%
Arousal: 74.0%

Zheng et al. (2017) 2017 [3]: Negative,
Neutral, Positive

EEG KNNe, LRiand SVMd Mean: 79.3%

Girardi et al. (2017) 2017 [2]: Low, High EEG, GSR
and EMG

SVMd Valence: 63.9%
Arousal: 58.6%

Lee and Yoo (2018) 2018 [2]: Neutral,
Negative

ECG, GSR
and SKTb

NNj Mean: 92.5%

Lee et al. (2019) 2019 [2]: Low, High PPGc CNNk Valence: 75.3%
Arousal: 76.2%

Sonkusare et al. (2019) 2019 [2]: Low, High ECG, GSR
and SKTb

CNNk Mean: 92%

Lee and Yoo (2020) 2020 [2]: Neutral,
Negative

ECG, GSR
and SKTb

B-RNNl Mean: 98.4%

Domínguez-Jiménez et al. (2020) 2020 [3]: Sad, Joy
and Neutral

GSR y PPG SVM Mean: 100%

Ayata et al. (2020) 2020 [2]: Low, High SKT, PPG
and Breathing

RF, SVM y LR Valence: 73.08%
Arousal: 72.18%

Muñoz-Saavedra et al. (2020) 2020 [3]: Low,
Medium, High

ECG and GSR NNj Valence: 90.4%
Arousal: 91.7%

Sepúlveda et al. (2021) 2021 [2]: Low, High ECG Ensemble Valence: 89.1%
Arousal: 89.3%

Tabbaa et al. (2021) 2021 [2]: Low, High ECG, GSR
and EOG

SVM Valence: 90.63%
Arousal: 84.38%

Hammad and Monkaresi (2022) 2022 [2]: Low, High ECG CNN, DNN Valence: 76.19%
Arousal: 80.95%

Jalal and Peer (2022) 2022 [4]: Angry, Happy,
relaxed, sad

GSR, Breathing
and Blood pressure

CNN Mean: 84.20%

This work – [3]: Low, Medium
and High

PPG and GSR NN Valence (average): 84.27%
Arousal (average): 91.82%
Valence (best): 98.72%
Arousal (best): 98.63%

aEOG: Electrooculography
bC-RNN: Convolutional Recurrent Neural Network
cSKT: Skin Temperature
dPNN: Probabilistic Neural Network
ePPG: Photoplethysmography (Blood Pressure)
fLR: Logic Regression
gSVM: Supported Vector Machine
hNN: Classical MLP Neural Network
iKNN: k-nearest neighbors
jCNN: Convolutional Neural Network
kRF: Random Forest

lB-RNN: Bidirectional Recurrent Neural Network
ay cause confusion if the range of emotions is extended beyond the
lassic and most salient emotions.

These are the cases of the works developed by Ayata et al. (2020),
irardi et al. (2017), Lee et al. (2019), Lee and Yoo (2018, 2020),
i et al. (2016), Liu et al. (2016), Mirmohamadsadeghi et al. (2016),
epúlveda et al. (2021), Sonkusare et al. (2019), Tabbaa et al. (2021)
nd Zhang et al. (2016).

In our work, a classification is made on three classes of both Arousal
nd Valence. This, in theory, should cause the prediction results to be
ower than those obtained in works with fewer classes; however, this
s only the case if we look at the average values of our system (not
he best ones) and compare with Lee and Yoo (2018, 2020), Sepúlveda
t al. (2021) and Sonkusare et al. (2019). For the other 9 works, despite
lassifying with only two classes, they obtain worse results than those
btained in this work.

Moreover, if we look closely at those papers with two classes that
btain better accuracy, there are certain extenuating circumstances:
15
• For the case of Lee and Yoo (2018), the accuracy value provided
is the mean (it does not distinguish between Arousal and Valence),
obtaining a mean value of 92.5% (improving the value of 88.05%,
obtained as the mean of the final evaluations in our work).
However, this work uses three sensors to classify emotions (as
opposed to the two finally used in our work). And, likewise, the
best result obtained for our work far exceeds that percentage
(more than 98%).

• In the case of Sonkusare et al. (2019), with an average accuracy of
92%, something similar to the previous case occurs: it uses three
sensors and does not present the results divided.

• For the case of Lee and Yoo (2020), the results obtained rival
the best results of this work (98.4% compared to the average of
98.675% of the best case of this work). Again, in addition to the
fact that it classifies only two classes, it also uses a third sensor.
Moreover, in this case there is another circumstance to be taken
into account: the type of classifier used (Bidirectional RNN) is
far more complex than the one used in this work. Previous work
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by this research group has demonstrated that the computational
complexity of an RNN compared to a system with a classical
neural network and prior feature extraction is practically 10 times
higher when run in an environment without a graphical acceler-
ator (Escobar-Linero, Luna-Perejón, Muñoz-Saavedra, Sevillano,
& Domínguez-Morales, 2022). Therefore, as this work uses a
more complex classifier than a basic RNN, the computational
complexity will be more than 10 times that the one needed to
run our classifier.

• Finally, for the case of Sepúlveda et al. (2021), the results ob-
tained are lower than the best in our work (89.1%–89.3% versus
98.72%–98.63%), although slightly better than those obtained
in the mean of the final tests of our work. Even so, the main
drawback, apart from only classifying two classes, is that the
neural network used for classification is an ensemble of several
independent networks, which multiplies the complexity of the
system used.

Then, if we analyze those works in which three classes are classi-
ied, we find Domínguez-Jiménez et al. (2020), García et al. (2016)
nd Zheng et al. (2017). There is a fourth paper in this case, which
s Muñoz-Saavedra et al. (2020), although this paper corresponds to a
revious study carried out by the main authors of this paper. In that
revious work, the DEAP dataset was also used (like most of the works
ith which we compare ourselves) with three classes and two sensors,
btaining promising results (90.4% for Valence and 91.7% for Arousal
or the best case). If we compare the work presented here with that
revious work, we find several significant differences:

• The dataset used for this work has been collected by this research
group using a device and a protocol developed specifically for
the occasion. This is because we wanted to demonstrate that the
results obtained with a commercial device (DEAP dataset) were
applicable to a customized, low-power device so that, after this
work, we could integrate the classifier in the embedded device
(this could not be done in the case of the commercial device used
in the DEAP dataset).

• The development and optimization process of the classifier car-
ried out for this work is much more exhaustive and robust than
the one used for the previous work. The use of techniques such as
cross-validation and the training of networks combining several
sensors are techniques that were not performed in the previous
work (in which one sensor was used to classify Arousal and
another to classify Valence).

• The features extracted in this work, unlike the previous work,
are based on a previous study performed over previous work and
those who gave the best results in the previous work developed
by this group.

• The best results obtained in this work improve on those obtained
in the previous work (shown in Table 20). It is true that the aver-
age results of this work are lower than the best results obtained in
previous work; however, the average results of the previous work
did not exceed 85%.

Finally, comparing ourselves with the works that classify three
lasses (except for the previous work of this group), we can make the
ollowing analysis:

• For the case of Domínguez-Jiménez et al. (2020), the classifica-
tion of this work does not follow the two-dimensional emotional
theory of Arousal and Valence, but establishes three clearly dif-
ferentiated emotions and classifies based on them. If we deter-
mine the number of classes of our classifier based on how many
different emotions it can distinguish, we can indicate that up
to 9 different categories would be classified (3 possible values
of Valence × 3 possible values of Arousal). Therefore, although
this work has been indicated as a 3-class classifier, the infor-
16

mation it provides is inferior even to a 2-class classifier using e
two-dimensional emotional theory (since, in that case, up to 4
emotional classifications could be distinguished).

• For the case of Zheng et al. (2017), three different classifiers are
used, and none of them is a neural network. Moreover, the results
obtained in this work are much lower that the ones obtained in
our work (79.3% versus 98.63%–98.72% for the best case).

• And, finally, for the case of García et al. (2016), this is the work
with the most similarities with our work. In this work, three
classes are used (same as our classifier) and the results obtained
are very similar to those obtained in our work in average (al-
though the best case of our work surpasses it a 9%). In this case,
the sensors used are not similar to ours: while we use the GSR and
PPG signal, this work uses EEG (discarded by us in the previous
work due to poor results), EMG and EOG. It is interesting to note
that, using a classifier based on SVM, the results are quite good.
Therefore, even if our work obtains better results, we will analyze
the sensors used in this work for future developments to see if
improvements in the classifier are achieved. Finally, it should be
noted that the purpose of our work is to integrate the classifier
in a non-invasive wearable system; but, in the case of this work,
the device should be placed on the head to capture oculography
information, facial muscle activity and electrical activity of the
cerebral cortex. Therefore, our system is much less invasive than
the one indicated in this work.

In summary, an analysis of the most important studies of recent
ears shows that very few studies actually distinguish between the three
lasses and, among those that do, the results obtained are inferior to
hose obtained in our study. Even so, for future work we will carry
ut more exhaustive comparisons with different types of classifiers and
ensors according to what has been observed in previous works.

. Conclusions

The affective or emotional state of a person can be measured by
ariations of physiological signals and is related to the two-dimensional
motional theory theorized by Mehrabian and Russell (1974).

In this work, a non-invasive wearable device is developed, com-
osed of several physiological sensors, which is capable of capturing
uch information in real time and storing it in a computer.

With this, a protocol is designed, endorsed by an ethical committee,
n which emotions are induced in a group of participants using audio-
isual information while the physiological data information registered
n real time by the wearable device is recorded.

This collected dataset is labeled based on Arousal and Valence values
ccording to the two-dimensional emotional theory, and an automatic
lassifier is designed based on neural networks with prior extraction of
requency characteristics of the physiological signals.

For the design of this classifier, a meticulous process consisting of
our phases is followed: first, all the sensors are evaluated; second, the
ost suitable sensors are determined; third, combinations of different

ensors are performed; and, finally, the robustness of the final classifier
s evaluated by applying cross-validation techniques on the developed
eural network.

The test subset classification results of the designed neural network
xceed, for the best case, 98% for both Arousal and Valence. If we
ompare the results obtained with previous works, improvements are
bserved in the number of classes used by the classifier, its accuracy,
ystem architecture complexity, and the non-invasive wearable.

These results demonstrate the feasibility of using a wearable system
or the classification of the user’s emotional state. Furthermore, the
esults obtained, the network simplicity, and the non-invasive wearable
llow our system to be analyzed in order to integrate it into the

mbedded system in future work.
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