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Abstract. The Muth distribution is a continuous random variable introduced in
the context of reliability theory. In this paper, some mathematical properties of the
model are derived, including analytical expressions for the moment generating func-
tion, moments, mode, quantile function and moments of the order statistics. In this
regard, the generalized integro-exponential function, the Lambert W function and the
golden ratio arise in a natural way. The parameter estimation of the model is per-
formed by the methods of maximum likelihood, least squares, weighted least squares
and moments, which are compared via a Monte Carlo simulation study. A natural
extension of the model is considered as well as an application to a real data set.
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1 Introduction

Muth [18] introduced a continuous probability distribution with application in
reliability theory. A random variable X is said to have a Muth distribution
with parameter α if the probability density function is given by

f(x;α) :=
(
eαx − α

)
exp

(
αx− 1

α

(
eαx − 1

))
, x > 0, (1.1)
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where α ∈ (0, 1]. Figure 1 represents the density function of X for several
values of α.
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Figure 1. Density functions of the Muth distribution with parameters α = 1, 1/2, 1/4.

The cumulative distribution function of X, F (x;α) := P (X ≤ x), is the
following

F (x;α) = 1− exp

(
αx− 1

α

(
eαx − 1

))
, x > 0. (1.2)

Leemis and McQueston [15] summarized in a schematic figure the most
important univariate probability distributions including many of the relation-
ships among these distributions together with the main statistical properties
that each distribution possesses. In particular, in [15] we can find the prob-
ability distribution defined by Eq. (1.1) which the authors called the Muth
distribution. However, the unique statistical property of X highlighted in [15]
is that its limit distribution as the parameter α decreases to zero is the standard
exponential distribution. In fact, only a few properties of X have been given
in [18], specifically that it is a model with strictly positive memory, that the
mean residual life function corresponds to the exponential function and that it
has considerably less probability mass in the tail than commonly used unimodal
distributions, such as the gamma, lognormal and Weibull distributions. The
last property is outlined in [18] and can be easily checked as follows. Denoting
by Sα(x) := P (X > x) the survival function of the Muth distribution with
parameter α and by S(x) the survival function of the gamma, lognormal or
Weibull distribution, routine calculations show that limx→∞ Sα(x)/S(x) = 0,
which implies the result.

As far as the Muth distribution is concerned, with the exception of [15], it
has been overlooked in the literature. As it will be seen in this paper, the Muth
distribution has interesting mathematical properties which have not been pre-
viously considered in [15, 18]. In Section 2, we provide an explicit expression
of the moment generating function in terms of the exponential integral func-
tion. This is used to derive the moments of X as a function of the generalized
integro-exponential function. In Section 3, we show that the Muth distribution
has the variate generation property. In this regard, the Lambert W function
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plays a central role. Section 4 establishes a connection between the mode of X
and the golden ratio. In Section 5, the closed-form expressions obtained for the
mode, median and expected value of X are used to show that the Muth distri-
bution satisfies the so-called mode-median-mean inequality. Section 6 provides
analytical expressions for the moments of the order statistics. Section 7 deals
with the parameter estimation problem. The methods of maximum likelihood,
least squares, weighted least squares and moments are described and compared
via a Monte Carlo simulation study. Section 8 describes a scaling transfor-
mation of the Muth distribution as well as the properties inherited from the
original distribution. An application to a real data set is presented in Section 9.
Finally, Section 10 summarizes the results and concludes the paper.

2 The Moment Generating Function

In this section, we initially provide an analytical expression for the moment
generating function of the Muth distribution in terms of the exponential inte-
gral function. Recall that the moment generating function of X is defined by
M(t;α) := E

[
etX
]
, t ∈ R. Using this function, we shall derive the moments

of X in terms of the generalized integro-exponential function.
First, we introduce some notation. Denote by Γ (a, z) the upper incomplete

gamma function (cf. Olver et al. [19, p. 174]), that is,

Γ (a, z) :=

∫ ∞
z

ta−1e−tdt, a ∈ C, z ∈ C \ R−. (2.1)

In addition, the usual exponential integral function Es(z) can be defined in
terms of the upper incomplete gamma function as follows (cf. Olver et al. [19,
p. 185])

Es(z) := zs−1Γ (1− s, z), s, z ∈ C. (2.2)

With the preceding notations, we state the following.

Theorem 1. Let X be a random variable having a Muth distribution with pa-
rameter α ∈ (0, 1]. The moment generating function of X is

M(t;α) =
e1/α

α
tE−t/α(1/α) + 1, −∞ < t <∞. (2.3)

Proof. From the definition of M together with Eq. (1.2), for any t ∈ R, we
have

M(t;α) = E
[
etX
]

=

∫ ∞
0

etxdF (x;α)

=

∫ ∞
0

etx
(
eαx − α

)
exp

{
αx− 1

α

(
eαx − 1

)}
dx.

By making the change of variable u = eαx/α, we obtain

M(t;α) = e1/αα1+t/α

(∫ ∞
1/α

u1+t/αe−udu−
∫ ∞
1/α

ut/αe−udu

)
= e1/αα1+t/α

{
Γ

(
2 +

t

α
,

1

α

)
− Γ

(
1 +

t

α
,

1

α

)}
. (2.4)
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Now, taking into account in Eq. (2.4) that the upper incomplete gamma func-
tion satisfies the recurrence relation Γ (a+ 1, z) = aΓ (a, z) + zae−z (cf. Olver
et al. [19, p. 178]), we get

M(t;α) = e1/ααt/αtΓ

(
1 +

t

α
,

1

α

)
+ 1, −∞ < t <∞. (2.5)

Finally, from the above equation and Eq. (2.2) we obtain the desired result.
ut

Remark 1. We highlight that the moment generating function of the Muth dis-
tribution can also be expressed alternatively in terms of the upper incomplete
gamma function by virtue of Eq. (2.5).

In order to compute the kth moment of X

E[Xk] :=

∫ ∞
0

xkdF (x;α), k = 1, 2, . . . ,

we shall use the well-known property that

E[Xk] =
∂k

∂tk
M(t;α)|t=0, k = 1, 2, . . .

see, Bartoszyński and Niewiadomska-Bugaj [7, pp. 230–231]. With this aim,
first we show in the next lemma that the derivatives of M(t;α) can be ex-
pressed in terms of the generalized integro-exponential function. The general-
ized integro-exponential function is defined by the following integral represen-
tation (cf. Milgram [17] for further details)

Ems (z) :=
1

Γ (m+ 1)

∫ ∞
1

(log u)mu−se−zudu, s, z ∈ C, m = 0, 1, . . . , (2.6)

where log stands for the natural logarithm. An efficient and accurate computa-
tion algorithm for the above integrals can be found in Ozalp and Bairamov [20].
We also note that these integrals are related to the exponential integral distri-
bution (cf. Meijer and Baken [16]).

Lemma 1. Let X be a random variable having a Muth distribution with pa-
rameter α ∈ (0, 1]. The derivatives of the moment generating function M are
given by

∂k

∂tk
M(t;α) =

e1/αΓ (k + 1)

αk

(
Ek−1−t/α(1/α) +

t

α
Ek−t/α(1/α)

)
, k = 1, 2, . . . .

Proof. From Eq. (2.3), after some calculations we get the following

∂k

∂tk
M(t;α) =

e1/α

α

(
k
∂k−1

∂tk−1
E−t/α(1/α) + t

∂k

∂tk
E−t/α(1/α)

)
, k = 1, 2, . . . .
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Then, the result follows from the above equation by taking into account that
(cf. Milgram [17])

(−1)k
∂k

∂sk
Es(z) = Γ (k + 1)Eks (z), k = 1, 2, . . . ,

and assuming that ∂0

∂s0Es(z) := Es(z). This completes the proof. ut

Proposition 1. Let X be a random variable having a Muth distribution with
parameter α ∈ (0, 1]. The moments of X are given by

E[Xk] =
e1/αΓ (k + 1)

αk
Ek−10 (1/α), k = 1, 2, . . . . (2.7)

Proof. The result follows from Lemma 1 because E[Xk] = ∂k

∂tk
M(t;α)

∣∣
t=0

.
ut

As a consequence of Proposition 1, it is clear that it is not possible to obtain
expressions for the moments of the Muth distribution in terms of elementary
functions, with the exception of the special case k = 1 as we shall see be-
low. Moreover, in the next result, we also see that E[X2] can be alternatively
expressed in terms of the best-known upper incomplete gamma function.

Corollary 1. Let X be a random variable having a Muth distribution with pa-
rameter α ∈ (0, 1]. Then,

(i) E[X] = 1, (ii) E[X2] =
2 e1/α

α
Γ (0, 1/α).

Proof. (i) The result follows from Eq. (2.7) since E0
0(1/α) = αe−1/α. (ii)

From Eqs. (2.6) and (2.7), we have

E
[
X2
]

=
2e1/α

α2
E1

0(1/α) =
2e1/α

α2

∫ ∞
1

log(u)e−u/αdu =
2e1/α

α

∫ ∞
1

e−u/α

u
du,

where the last equality is obtained by integration by parts. Now, part (ii)
follows by virtue of Eq. (2.1). ut

For several values of α, Table 1 displays some numerical results concerning
the variance of X defined by σ2 := E[X2] − E2[X], skewness of X defined
by γ1 := E[(X − E[X])3]/σ3 and kurtosis of X defined by γ2 := E[(X −
E[X])4]/σ4 − 3. Table 1 shows how rapidly the variance, skewness and kur-
tosis decrease as α increases. Recalling that the limit distribution of X as α
decreases to zero is the standard exponential distribution, we also know that
limα→0+ σ2 = 1, limα→0+ γ1 = 2 and limα→0+ γ2 = 6. It is also clear that the
Muth distribution is a right-skewed distribution, that is, γ1 > 0.

Math. Model. Anal., 20(3):291–310, 2015.
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Table 1. Values of σ2, γ1 and γ2 for different values of α.

α σ2 γ1 γ2

0.01 0.980388458 1.941997413 5.548021863
0.1 0.831266679 1.541622673 2.989014642
0.2 0.704221762 1.235599336 1.579050074
0.3 0.602372560 1.002240929 0.764615221
0.4 0.517629182 0.812204500 0.255908197
0.5 0.445314468 0.651973092 -0.069242338
0.6 0.382451878 0.514927916 -0.270994230
0.7 0.327020548 0.398595883 -0.383652943
0.8 0.277582209 0.304031421 -0.430372680
0.9 0.233075574 0.236683935 -0.432614204
1.0 0.192694724 0.209347826 -0.421933390

3 Quantile Function via the Lambert W Function

In this section, we show that the Muth distribution has the variate generation
property, that is, its quantile function can be given in closed form. This is a
useful property since, by using the inverse transform method (cf., for example,
Fishman [13, pp. 149–156]), it allows us to generate by computer pseudo-
random data from that probability distribution.

For the sake of completeness, we recall that the quantile function of an
arbitrary random variable T is defined as the function

QT (u) := inf
{
t ∈ R : FT (t) ≥ u

}
, 0 < u < 1,

where FT (t) is the cumulative distribution function of T . In particular, the
above definition implies that if FT is a continuous and strictly increasing func-
tion then FT has a unique inverse and QT (u) = F−1T (u), 0 < u < 1. See
Parzen [21] for a short review on the quantile function and its applications.

More specifically, the quantile function of the Muth distribution can be
expressed in closed form in terms of the Lambert W function. We briefly
remind that the Lambert W function is defined as the solution of the equation

W (z) exp
(
W (z)

)
= z, z ∈ C. (3.1)

The multivalued complex function W has two real branches if z is a real number
such that z ≥ −1/e. The real branch taking on values in (−∞,−1] is called
the negative branch and denoted by W−1(z), where −1/e ≤ z < 0. The real
branch taking on values in [−1,∞) is called the principal branch and denoted
by W0(z), where z ≥ −1/e. For our purpose, we use the negative branch
which has the following elementary properties: W−1(−1/e) = −1, W−1(z) is
decreasing as z increases and W−1(z) → −∞ as z → 0 (cf. Corless et al. [10]
for more details).

Proposition 2. Let X be a random variable having a Muth distribution with
parameter α ∈ (0, 1]. The quantile function of X, Q(u;α), is

Q(u;α) =
1

α
log (1− u)− 1

α
W−1

(
u− 1

αe1/α

)
− 1

α2
, 0 < u < 1. (3.2)
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Proof. For any α ∈ (0, 1] and u ∈ (0, 1), we have to solve with respect to x
the equation F (x;α) = u, x > 0, that is,

exp

(
αx− 1

α

(
eαx − 1

))
= 1− u.

This equation can be rewritten as follows

αx− 1

α
eαx = log (1− u)− 1

α
.

Now, from Jodrá [14, Lemma 1] we have

x =
1

α
log (1− u)− 1

α
W

(
u− 1

αe1/α

)
− 1

α2
. (3.3)

Moreover, for any α ∈ (0, 1], u ∈ (0, 1) and x > 0, it can be checked that
(u − 1)/(αe1/α) ∈ (−1/e, 0), since limα→0+(u − 1)/(αe1/α) = 0, and also that
log (1− u) − 1/α − αx < −1, which imply that the Lambert W function in
Eq. (3.3) corresponds to the negative branch W−1. The proof is completed. ut

Remark 2. As the Lambert W function is implemented in computer algebra
systems, pseudo-random data from the Muth distribution can be computer-
generated in a straightforward manner by virtue of Proposition 2.

Similarly, as a consequence of Proposition 2, we can also generate by com-
puter pseudo-random data from the extreme order statistics of X. To be
more precise, let X1,. . . , Xn be n independent random variables having a
Muth distribution with parameter α. The extreme order statistics of X are
defined by Xn:n := max{X1, . . . , Xn} and X1:n := min{X1, . . . , Xn}. It is
well-known that the cumulative distribution functions of Xn:n and X1:n can
be expressed in terms of F , namely, FXn:n

(x;α) = Fn(x;α) and FX1:n
(x;α) =

1 − (1 − F (x;α))n, x > 0, where F is given by Eq. (1.2). Let us denote by
QXn:n and QX1:n the quantile functions of Xn:n and X1:n, respectively. Then
the following result is valid:

(i) QXn:n(u;α) = Q(u1/n;α), 0 < u < 1,

(ii) QX1:n
(u;α) = Q(1− (1− u)1/n;α), 0 < u < 1,

where Q is given by Eq. (3.2). Therefore, Xn:n and X1:n also have the variate
generation property.

To end this section, the following result provides a more compact expression
for the quantile function of X, which will be used in Section 5.

Corollary 2. Let X be a random variable having a Muth distribution with pa-
rameter α ∈ (0, 1]. The quantile function of X is

Q(u;α) =
1

α
log

(
−αW−1

(
u− 1

αe1/α

))
, 0 < u < 1. (3.4)

Math. Model. Anal., 20(3):291–310, 2015.
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Proof. It must be noted that multiplying by (−1) both sides of Eq. (3.1) and
taking logarithms we have the equivalent expression

W (z) = log(−z)− log
(
−W (z)

)
. (3.5)

Then, from Eqs. (3.2) and (3.5), the quantile function of X can be rewritten
as follows

Q(u;α) =
1

α

{
log (1− u)− log

(
1− u
αe1/α

)
+ log

(
−W−1

(
u− 1

αe1/α

))}
− 1

α2
,

which leads to Eq. (3.4). ut

4 The Mode and the Golden Ratio

The mode of a continuous probability distribution is the value at which the
probability density function has its maximum. This section shows that the
mode of the Muth distribution, denoted as mode(X), can be expressed in closed
form in terms of the golden ratio. This is an interesting mathematical pro-
perty since, as far as we know, the Muth distribution is the only probability
distribution whose mode involves the golden ratio.

Recall that the golden ratio ϕ can be defined as the positive solution of the
equation x2 − x− 1 = 0, that is, it is the algebraic number

ϕ :=
1 +
√

5

2
≈ 1.618033988749.

We state the following proposition.

Proposition 3. Let X be a random variable having a Muth distribution with
parameter α ∈ (0, 1]. Then,

mode(X) =

{
0, 0 < α ≤ 1/ϕ2,

log(αϕ2)
α , 1/ϕ2 < α ≤ 1.

(4.1)

Proof. The first derivative of Eq. (1.1) can be written as follows

∂

∂x
f(x;α) =

(
αeαx −

(
eαx − α

)2)
exp

(
αx− 1

α

(
eαx − 1

))
.

In order to obtain the mode of X we have to solve with respect to x the equation
(∂/∂x)f(x;α) = 0, which is equivalent to solve the equation

αeαx −
(
eαx − α

)2
= 0. (4.2)

Now, by taking into account that ϕ2 = 1 + ϕ, it is easy to see that x =
log(αϕ2)/α is the unique positive solution of Eq. (4.2) if αϕ2 > 1, other-
wise, the left-hand side of Eq. (4.2) is less than zero. Moreover, after some
calculations it can be checked that

∂2

∂x2
f(x;α)

∣∣∣∣
x=log(αϕ2)/α

= e(1−αϕ
2)/αα4ϕ2

(
ϕ6 − 6ϕ4 + 7ϕ2 − 1

)
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and also that (ϕ6 − 6ϕ4 + 7ϕ2 − 1) < 0. This implies that the mode of the
Muth distribution is located at x = log(αϕ2)/α for α ∈ (1/ϕ2, 1], whereas the
mode is zero for α ∈ (0, 1/ϕ2]. The proof is completed. ut

5 The Mode, Median and Mean Inequality

The closed-form expressions obtained for the mode, the quantile function and
the expected value of the Muth distribution can be used to show an inequality
commonly known as the mode-median-mean inequality, which in general holds
for unimodal right-skewed distributions (cf. Abadir [1] for counterexamples).
Denote by median(X) the median of X, that is, median(X) = Q(1/2;α) where
Q is given in Proposition 2. We state the following proposition.

Proposition 4. Let X be a random variable having a Muth distribution with
parameter α ∈ (0, 1]. Then,

mode(X) < median(X) < E[X] = 1.

Proof. Before proceeding with the proof, recall that the derivative of the Lam-
bert W function is (cf. Corless et al. [10])

∂

∂z
W (z) =

W (z)

z(1 +W (z))
, z 6= 0. (5.1)

Additionally, from Eq. (3.4) the median of X is

median(X) =
1

α
log

(
−αW−1

(
−1

2αe1/α

))
. (5.2)

It is interesting to note that the above expression implies that the argument of
the logarithm function is strictly greater than one, that is

−αW−1
(
−1

2αe1/α

)
> 1 ∀α ∈ (0, 1],

since the median of a strictly positive random variable is a positive number.
Now we are in a position to proceed with the proof. We start by showing

that median(X) < E[X]. To prove this result, we will show that the argument
of the logarithmic function in Eq. (5.2) is a strictly increasing function in α.
Using Eq. (5.1), for any α ∈ (0, 1] we get

∂

∂α

{
−αW−1

(
−1

2αe1/α

)}
= −

W−1
( −1
2αe1/α

) (
1 + αW−1

( −1
2αe1/α

))
α
(
1 +W−1

( −1
2αe1/α

)) > 0,

where the last inequality follows from the fact that αW−1
( −1
2αe1/α

)
< −1 for any

α ∈ (0, 1]. Therefore, the argument of the logarithmic function in Eq. (5.2) is
a strictly increasing function in α and, as a consequence, the median of X is a
strictly increasing function in α. In particular, this implies that median(X) <
E[X] = 1 for any α ∈ (0, 1] since Q(1/2; 1) ≈ 0.985199809.

Math. Model. Anal., 20(3):291–310, 2015.
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Next, we see that mode(X) < median(X). For α ∈ (0, 1/ϕ2], the inequality
holds since the mode is zero whereas the median of X is a strictly increasing
function in α and we also know that limα→0+ Q(1/2;α) = log(2), the latter
because the limit distribution of X as α decreases to zero is the standard
exponential distribution. On the other hand, for α ∈ (1/ϕ2, 1], from Eqs. (4.1)
and (5.2) we have

mode(X)−median(X) =
1

α

{
2 log(ϕ)− log

(
−W−1

(
−1

2αe1/α

))}
. (5.3)

Below, we see that the argument of the logarithm function on the right-hand
side of Eq. (5.3) is a strictly decreasing function in α. Using Eq. (5.1), for any
α ∈ (0, 1) we obtain

∂

∂α

{
−W−1

(
−1

2αe1/α

)}
=

(α− 1)W−1
( −1
2αe1/α

)
α2
(
1 +W−1

( −1
2αe1/α

)) < 0,

where the last inequality holds since W−1
( −1
2αe1/α

)
< −1. As a consequence,

we have

2 log(ϕ) < log

(
−W−1

(
−1

2αe1/α

))
, α ∈

(
1/ϕ2, 1

)
, (5.4)

because 2 log(ϕ) ≈ 0.962423 whereas the logarithmic function on the right-
hand side of Eq. (5.4) takes values in the interval (0.985199, 1.292264) for any
α ∈ (1/ϕ2, 1). Thus, from Eqs. (5.3) and (5.4) we have mode(X) < median(X)
for α ∈ (1/ϕ2, 1); this inequality can be directly checked in the particular case
α = 1. This completes the proof. ut

6 Moments of Order Statistics

This section provides analytical expressions for the moments of the order statis-
tics of the Muth distribution. For reasons that will be given later, we pay special
attention to the minimum order statistic.

First, we introduce some notation. Let X1, . . . , Xn be n independent ran-
dom variables having a Muth distribution with parameter α ∈ (0, 1], that is, a
random sample of size n from X. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order
statistics obtained by arranging Xi, i = 1, . . . , n, in non-decreasing order of
magnitude. For any n = 1, 2, . . . and k = 1, 2, . . . , it is known that the kth
moment of Xr:n, r = 1, . . . , n, can be computed using the following formula
(cf. Balakrishnan and Rao [5, p. 7])

E
[
Xk
r:n

]
= r

(
n

r

)∫ ∞
0

xk
(
F (x;α)

)r−1(
1− F (x;α)

)n−r
dF (x;α). (6.1)

The next result gives an analytical expression for the moments of the
minimum order statistic E[Xk

1:n], which can be used to compute E[Xk
r:n] for

r = 2, . . . , n and k = 1, 2, . . . , as we shall see at the end of this section.
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Theorem 2. Let X1, . . . , Xn be n independent random variables having a Muth
distribution with parameter α ∈ (0, 1]. The moments of the minimum order
statistic X1:n are given by

E
[
Xk

1:n

]
=
Γ (k + 1)en/α

αk
Ek−1−(n−1)(n/α), k = 1, 2, . . . .

Proof. From Eqs. (6.1) and (1.2), for k = 1, 2, . . . we have

E
[
Xk

1:n

]
=

∫ ∞
0

xk
(
1− F (x;α)

)n−1
dF (x;α)

= n

∫ ∞
0

xk
(
eαx − α

)
exp

(
n

(
αx− 1

α

(
eαx − 1

)))
dx.

Now, by making the change of variable u = eαx we get

E
[
Xk

1:n

]
=
nen/α

αk

{
1

α

∫ ∞
1

(log u)kune−nu/αdu−
∫ ∞
1

(log u)kun−1e−nu/αdu

}
=
nen/α

αk
Γ (k + 1)

{
1

α
Ek−n(n/α)− Ek−(n−1)(n/α)

}
,

where in the last equality we have used Eq. (2.6). Finally, by taking into ac-
count in the above equation the following recurrence formula (cf. Milgram [17])

(1− s)Ems (z) = zEms−1(z)− Em−1s (z), z > 0, s 6= 1, m = 0, 1, . . . ,

where it is assumed E−1s (z) := e−z, we obtain the desired result. ut

As a consequence of Theorem 2, in the next result we see that the expected
value of the minimum order statistic X1:n can be easily computed as a finite
sum.

Corollary 3. Let X1, . . . , Xn be n independent random variables having a Muth
distribution with parameter α ∈ (0, 1]. The expected value of the minimum
order statistic X1:n is

E[X1:n] =
αn−1Γ (n)

nn

n−1∑
i=0

ni

i!αi
, n = 1, 2, . . . .

Proof. From Theorem 2, we get

E[X1:n] =
en/α

α
E0
−(n−1)(n/α) =

αn−1en/α

nn
Γ

(
n,
n

α

)
,

where in the last equality we use the fact that E0
s (z) = Es(z) together with

Eq. (2.2). The result follows directly by taking into account that Γ (n, z) =

Γ (n− 1)e−z
∑n−1
i=0 (zi/i!) for n = 1, 2, . . . (cf. Olver et al. [19, p. 177]). ut
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Remark 3. We highlight the importance of Corollary 3 since the expected value
of the minimum order statistic can be used to determine if two distributions
with finite expected values are identical (cf. Chan [9]), that is, to characterize
probability distributions.

Remark 4. The expression of E[Xk
1:n] in Theorem 2 can be used to compute

E[Xk
r:n], for r = 2, . . . , n and k = 1, 2, . . . , avoiding the use of Eq. (6.1).

To do so, we can employ the following well-known formula (see, for example,
Balakrishnan and Rao [5, p. 156] and David and Nagaraja [12, Chapter 3])

E
[
Xk
r:n

]
=

n∑
j=n−r+1

(−1)j−(n−r+1)

(
n

j

)(
j − 1

n− r

)
E
[
Xk

1:j

]
, r = 2, . . . , n.

7 Parameter Estimation

In this section, we describe the following methods to estimate the parameter α:
maximum likelihood (ML), least squares (ULS), weighted least squares (WLS)
and moments (MM), which are presented in Subsections 7.1, 7.2, 7.3 and 7.4,
respectively. As it will be seen, these estimators cannot be obtained in closed
form so their performance must be assessed via a Monte Carlo simulation study,
which is given in Subsection 7.5.

7.1 Maximum likelihood estimate

Let X1, . . . , Xn be a random sample of size n from a Muth distribution with
unknown parameter α. Let us denote by x1, x2, . . . , xn the observed values.
From the likelihood function, L(α) :=

∏n
i=1 f(xi;α), the log-likelihood function

can be written as follows

logL(α) =

n∑
i=1

log
(
eαxi − α

)
− 1

α

n∑
i=1

(
eαxi − 1

)
+ α

n∑
i=1

xi. (7.1)

The ML estimate of α is the value, say α̂, that maximizes Eq. (7.1). Then, to
get α̂ we must numerically solve

∂

∂α
logL(α) =

n∑
i=1

xie
αxi − 1

eαxi − α
+

1

α2

n∑
i=1

eαxi − 1

α

n∑
i=1

xie
αxi +

n∑
i=1

xi −
n

α2
= 0,

and check that the solution α̂ satisfies (∂2 logL(α)/∂α2)|α=α̂ < 0.

7.2 Least squares estimate

Let X1:n < X2:n < . . . < Xn:n be the order statistics of a random sample of
size n from X and denote by x(1) < x(2) < . . . < x(n) the ordered data. As an
estimator of F (x(i)), we consider the empirical distribution function given by

Fn(x(i); d) :=
i− d

n− 2d+ 1
, i = 1, . . . , n (7.2)
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for some real number d, 0 ≤ d < 1. In particular, in Subsection 7.5 we shall use
the commonly used values d = 0, 0.3, 0.375, 0.5. For a justification of choosing
Eq. (7.2) and these values of d we refer the reader to Barnett [6] and D’Agostino
and Stephens [11, Chapter 2].

In order to obtain the ULS estimate of α, say α̂, we apply the approach
proposed by Bain [4], so the parameter α is estimated by minimizing

ULd(α) :=

n∑
i=1

(
log
(
1− Fn(x(i); d)

)
− log

(
1− F (x(i);α)

))2
. (7.3)

Hence, to get α̂ we must numerically solve

∂

∂α
ULd(α) =

n∑
i=1

{(
log

(
1− i− d

n− 2d+ 1

)
+

1

α

(
eαx(i) − 1

)
− αx(i)

)
×
(

1

α
x(i)e

αx(i) − 1

α2

(
eαx(i) − 1

)
− x(i)

)}
= 0,

and check that the solution α̂ satisfies (∂2ULd(α)/∂α2)|α=α̂ > 0.

7.3 Weighted least squares estimate

Next, we estimate α by WLS, using a weight for each term in the sum in
Eq. (7.3). Following Bickel and Doksum [8, pp. 316–317]), we shall consider
wi,d := (1 − Fn(x(i); d))2, i = 1, . . . , n. Therefore, the WLS estimate of α,
say α̂, is obtained by minimizing

WLd(α) :=

n∑
i=1

wi,d
(
log
(
1− Fn(x(i); d)

)
− log

(
1− F (x(i);α)

))2
.

Then, to get α̂ we must numerically solve

∂

∂α
WLd(α) =

n∑
i=1

{
wi,d

(
log

(
1− i− d

n− 2d+ 1

)
+

1

α
(eαx(i) − 1)− αx(i)

)
×
(

1

α
x(i)e

αx(i) − 1

α2

(
eαx(i) − 1

)
− x(i)

)}
= 0,

and check that the solution α̂ satisfies (∂2WLd(α)/∂α2)
∣∣
α=α̂

> 0.

7.4 Method of moments

Let x2 be the second sample moment, x2 := (1/n)
∑n
i=1 x

2
i , where x1, x2,

. . . , xn are the observed values. By virtue of Corollary 1 (ii), the method of
moments estimate of α is obtained by numerically solving in α the equation

2 e1/α

α
Γ (0, 1/α) = x2.
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7.5 Simulation study

A simulation study was carried out to compare the estimation methods ML,
ULS, WLS and MM. For this purpose, we generated N = 100 random samples
of different sizes n for selected values of α. Pseudo-random data from the
Muth distribution were computer-generated by means of Eq. (3.2). For each
estimation method the following quantities were calculated:

(i) The mean of the simulated estimates α̂j , j = 1, . . . , N , that is,

ᾱ := (1/N)

N∑
j=1

α̂j .

(ii) The bias of the simulated estimates

Bias(α̂) := (1/N)

N∑
j=1

(α̂j − α).

(iii) The mean-square error of the simulated estimates

MSE(α̂) := (1/N)

N∑
j=1

(α̂j − α)2.

The estimation methods described in Subsections 7.1–7.4 were implemented
in Matlab R2014a. In particular, ULS and WLS were performed using the val-
ues d = 0, 0.3, 0.375, 0.5. The equations involved were solved numerically using
the Matlab functions solve and vpasolve; more precisely, the value 0.5 was
used as the starting point of vpasolve since α ∈ (0, 1]. All the computations
were performed on an Intel Core i7-4700MQ CPU at 2.40GHz with 16GB RAM.

From the simulation study, we observed that, in general, ML provided be-
tter estimates of α, with less bias and mean-square error, than those obtained
by ULS, WLS and MM. For the sake of saving space, here we present only the
numerical results obtained using ML and ULS in the particular case d = 0,
which are given in Tables 2 and 3, respectively. The latter table is included
because the simulation study suggested that ULS with d = 0 can produce
estimates of α with less bias and mean-square error than those obtained using
ML in the particular cases of small values of α and small sample sizes (see
the results for α = 0.10 in Table 3). In addition, we also observed that ULS
and WLS produced quite similar results, whereas MM yielded poor estimates.
Overall, from the simulation results, we conclude that ML provides better
estimates of α than the other methods.

8 A Scaling Transformation of the Muth Distribution

We remark that the Muth distribution is normalized in [18] to have an expected
value of 1. This fact is a rather strong restriction if we want to use the model
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Table 2. ML estimates.

α = 0.10 α = 0.20 α = 0.30

ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂)
n = 25 0.219418 0.119418 0.032232 0.262985 0.062985 0.029696 0.324885 0.024885 0.026077
n = 50 0.160877 0.060877 0.015763 0.227187 0.027187 0.014470 0.308306 0.008306 0.012125
n = 75 0.144202 0.044202 0.009905 0.212892 0.012892 0.009650 0.310618 0.010618 0.013558
n = 100 0.131696 0.031696 0.009668 0.224059 0.024059 0.010286 0.303534 0.003534 0.007449
n = 150 0.125450 0.025450 0.005604 0.207290 0.007290 0.004966 0.308581 0.008581 0.004489
n = 250 0.111412 0.011412 0.003152 0.213609 0.013609 0.002399 0.299468 -0.000531 0.002844
n = 500 0.105561 0.005561 0.002023 0.206993 0.006993 0.001270 0.304072 0.004072 0.001408
n = 1000 0.101412 0.001412 0.001064 0.197219 -0.002780 0.000614 0.302025 0.002025 0.000742

α = 0.40 α = 0.50 α = 0.60

ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂)
n = 25 0.393594 -0.006405 0.025965 0.512817 0.012817 0.029792 0.594649 -0.005350 0.017332
n = 50 0.442308 0.042308 0.016519 0.511660 0.011660 0.014444 0.635556 0.035556 0.010812
n = 75 0.397479 -0.002520 0.009973 0.504789 0.004789 0.008033 0.599469 -0.000530 0.008323
n = 100 0.402401 0.002401 0.005069 0.507494 0.007494 0.006870 0.607463 0.007463 0.006747
n = 150 0.412889 0.012889 0.004289 0.497006 -0.002993 0.003922 0.606248 0.006248 0.003886
n = 250 0.401093 0.001093 0.002631 0.507523 0.007523 0.003210 0.599820 -0.000179 0.002188
n = 500 0.401904 0.001904 0.001430 0.499173 -0.000826 0.001369 0.596405 -0.003594 0.001321
n = 1000 0.399123 -0.000876 0.000761 0.501869 0.001869 0.000661 0.604364 0.004364 0.000586

α = 0.70 α = 0.80 α = 0.90

ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂)
n = 25 0.679706 -0.020293 0.019868 0.759433 -0.040566 0.018329 0.838109 -0.061890 0.013060
n = 50 0.682240 -0.017759 0.008705 0.780940 -0.019059 0.007914 0.881449 -0.018550 0.004974
n = 75 0.688793 -0.011206 0.006290 0.805659 0.005659 0.004915 0.866872 -0.033127 0.005921
n = 100 0.689708 -0.010291 0.005491 0.794081 -0.005918 0.005488 0.891536 -0.008463 0.003351
n = 150 0.700634 0.000634 0.003293 0.793459 -0.006540 0.003453 0.897719 -0.002280 0.002491
n = 250 0.708097 0.008097 0.002177 0.801045 0.001045 0.001816 0.898684 -0.001315 0.001556
n = 500 0.701857 0.001857 0.000864 0.793970 -0.006029 0.000953 0.894444 -0.005555 0.000723
n = 1000 0.697103 -0.002896 0.000563 0.796297 -0.003702 0.000485 0.898980 -0.001019 0.000473

Table 3. ULS estimates.

α = 0.10 α = 0.20 α = 0.30

ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂)
n = 25 0.174095 0.074095 0.028127 0.212987 0.012987 0.030726 0.220504 -0.079495 0.032534
n = 50 0.128237 0.028237 0.011718 0.158049 -0.041950 0.014260 0.225794 -0.074205 0.024967
n = 75 0.127940 0.027940 0.010146 0.168815 -0.031184 0.012574 0.252180 -0.047819 0.016563
n = 100 0.112016 0.012016 0.005783 0.150410 -0.049589 0.008663 0.237681 -0.062318 0.015039
n = 150 0.096551 -0.003448 0.004663 0.146608 -0.053391 0.008955 0.248848 -0.051151 0.012128
n = 250 0.096939 -0.003060 0.004033 0.161360 -0.038639 0.006409 0.275772 -0.024227 0.004923
n = 500 0.084962 -0.015037 0.003167 0.181867 -0.018132 0.002594 0.291162 -0.008837 0.002389
n = 1000 0.088875 -0.011124 0.001569 0.183846 -0.016153 0.001355 0.286931 -0.013068 0.001176

α = 0.40 α = 0.50 α = 0.60

ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂)
n = 25 0.269170 -0.130829 0.052210 0.393805 -0.106194 0.047733 0.464956 -0.135043 0.055357
n = 50 0.301432 -0.098567 0030100 0.433146 -0.066853 0.025520 0.494654 -0.105345 0.028829
n = 75 0.330180 -0.069819 0.017874 0.438766 -0.061233 0.015044 0.532039 -0.067960 0.017121
n = 100 0.348750 -0.051249 0.015091 0.468291 -0.031708 0.011865 0.546227 -0.053772 0.013628
n = 150 0.336158 -0.063841 0.010401 0.452330 -0.047669 0.009580 0.553814 -0.046185 0.008865
n = 250 0.362530 -0.037469 0.005741 0.461115 -0.038884 0.004553 0.566173 -0.033826 0.005419
n = 500 0.383750 -0.016249 0.002596 0.484314 -0.015685 0.002216 0.576416 -0.023583 0.002761
n = 1000 0.386173 -0.013826 0.001137 0.485701 -0.014298 0.001262 0.593185 -0.006814 0.001385

α = 0.70 α = 0.80 α = 0.90

ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂) ᾱ Bias(α̂) MSE(α̂)
n = 25 0.561582 -0.138417 0.056624 0.653860 -0.146139 0.051370 0.720243 -0.179756 0.053009
n = 50 0.606705 -0.093294 0.024722 0.703384 -0.096615 0.027535 0.800719 -0.099280 0.021167
n = 75 0.630258 -0.069741 0.016247 0.747176 -0.052823 0.012286 0.819144 -0.080855 0.016402
n = 100 0.668332 -0.031667 0.010667 0.745189 -0.054810 0.013088 0.815587 -0.084412 0.014422
n = 150 0.667490 -0.032509 0.008337 0.757325 -0.042674 0.008475 0.857242 -0.042757 0.006831
n = 250 0.674489 -0.025510 0.005357 0.773928 -0.026071 0.004435 0.868235 -0.031764 0.004111
n = 500 0.688233 -0.011766 0.002378 0.789655 -0.010344 0.002108 0.877969 -0.022030 0.002280
n = 1000 0.685223 -0.014776 0.001378 0.791106 -0.008893 0.001182 0.894334 -0.005665 0.000960
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with real data. To overcome this limitation, we consider as a natural extension
the scaled Muth distribution defined by Y = βX, with parameters α ∈ (0, 1]
and β > 0, which is a more flexible model with expected value E[Y ] = β > 0.
In this case, the cumulative distribution function of Y , denoted by FY (y;α, β),
is the following

FY (y;α, β) = F (y/β;α) = 1− exp

(
α

β
y − 1

α

(
eαy/β − 1

))
, y > 0, (8.1)

where F (· ;α) is given by Eq. (1.2). From Eq. (8.1), clearly we see that Y
does not have the scaling property, that is, Y does not come from the same
distribution family defined by Eq. (1.2). Fortunately, as Y is obtained by
a scaling transformation of X, the new probability distribution inherits some
properties from X, as we summarize below. We use notations similar to those
used in the previous sections.

Table 4. The scaled Muth distribution: ML estimates.

α = 0.25, β = 5.0 α = 0.25, β = 15.0

ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂) ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂)
n = 50 0.28330 0.03330 0.01398 5.12731 0.12731 0.28259 0.29431 0.04431 0.01807 15.09489 0.09489 3.40721
n = 75 0.25422 0.00422 0.00969 4.91343 -0.08656 0.18581 0.26228 0.01228 0.00957 15.07469 0.07469 2.14589
n = 100 0.25444 0.00444 0.00820 5.02966 0.02966 0.15416 0.26872 0.01872 0.00985 15.11893 0.11893 1.50599
n = 200 0.26060 0.01060 0.00433 4.99879 -0.00120 0.08426 0.26899 0.01899 0.00472 15.07645 0.07645 0.61633

α = 0.25, β = 30.0 α = 0.25, β = 50.0

ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂) ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂)
n = 50 0.28061 0.03061 0.01824 29.74512 -0.25487 10.73001 0.26800 0.01800 0.01810 49.19190 -0.80809 40.55703
n = 75 0.27035 0.02035 0.01011 29.77874 -0.22125 7.83400 0.27294 0.02294 0.01064 50.55815 0.55815 24.07844
n = 100 0.27484 0.02484 0.00927 30.25639 0.25639 6.64147 0.27165 0.02165 0.00913 49.42345 -0.57654 17.86408
n = 200 0.26739 0.01739 0.00374 30.00175 0.00175 2.35839 0.25655 0.00655 0.00445 49.68650 -0.31349 8.57021

α = 0.50, β = 5.0 α = 0.50, β = 15.0

ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂) ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂)
n = 50 0.53185 0.03185 0.01943 5.14962 0.14962 0.17187 0.52449 0.02449 0.01997 15.10753 0.10753 1.65353
n = 75 0.52068 0.02068 0.01393 5.10329 0.10329 0.12565 0.52215 0.02215 0.01286 14.93310 -0.06689 1.60916
n = 100 0.52824 0.02824 0.01002 5.14817 0.14817 0.10565 0.52490 0.02490 0.00917 15.18816 0.18816 1.13546
n = 200 0.50963 0.00963 0.00427 5.07146 0.07146 0.04963 0.50869 0.00869 0.00517 15.01271 0.01271 0.56019

α = 0.50, β = 30.0 α = 0.50, β = 50.0

ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂) ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂)
n = 50 0.54017 0.04017 0.01723 30.23429 0.23429 8.47979 0.52818 0.02818 0.01590 49.62395 -0.37604 22.73702
n = 75 0.49757 -0.00242 0.01090 29.90316 -0.09683 5.02064 0.51290 0.01290 0.01067 49.65691 -0.34308 14.04159
n = 100 0.50270 0.00270 0.00817 30.07504 0.07504 4.31725 0.50107 0.00107 0.00661 49.61829 -0.38170 10.81860
n = 200 0.51140 0.01140 0.00399 30.07122 0.07122 2.50826 0.50500 0.00500 0.00366 49.63920 -0.36079 5.79705

α = 0.75, β = 5.0 α = 0.75, β = 15.0

ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂) ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂)
n = 50 0.77261 0.02261 0.01108 5.14181 0.14181 0.10502 0.76265 0.01265 0.01080 14.98277 -0.01722 1.30089
n = 75 0.79058 0.04058 0.00758 5.08393 0.08393 0.05860 0.75276 0.00276 0.00883 14.82471 -0.17528 0.75398
n = 100 0.77772 0.02772 0.00569 5.12895 0.12895 0.05536 0.76035 0.01035 0.00677 14.85640 -0.14359 0.63830
n = 200 0.77060 0.02060 0.00299 5.05898 0.05898 0.03181 0.75300 0.00300 0.00331 14.97875 -0.02124 0.37163

α = 0.75, β = 30.0 α = 0.75, β = 50.0

ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂) ᾱ Bias(α̂) MSE(α̂) β̄ Bias(β̂) MSE(β̂)
n = 50 0.75275 0.00275 0.01435 29.72675 -0.27324 4.63122 0.75440 0.00440 0.01147 49.56909 -0.43090 12.88186
n = 75 0.75409 0.00409 0.01229 29.90485 -0.09514 4.10721 0.75472 0.00472 0.00983 50.20775 0.20775 12.23846
n = 100 0.76961 0.01961 0.00621 30.15211 0.15211 2.87633 0.76778 0.01778 0.00620 50.40140 0.40140 8.06633
n = 200 0.75002 0.00002 0.00423 29.92855 -0.07144 1.40879 0.74707 -0.00292 0.00378 49.79454 -0.20545 4.16414

Proposition 5. Let X be a random variable having a Muth distribution with
parameter α ∈ (0, 1]. Let Y = βX with β > 0. Then, we have the following.
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(i) The moment generating function of Y is MY (t;α, β) = M(βt;α), t ∈ R.

(ii) The moments of Y are given by E[Y k] = βkE[Xk], k = 1, 2, . . . .

(iii) The quantile function of Y is QY (u;α, β) = β Q(u;α), 0 < u < 1.

(iv) The mode of Y is: mode(Y ) = βmode(X) for α ∈ (1/ϕ2, 1]; and mode(Y ) =
0 for α ∈ (0, 1/ϕ2].

(v) Let Y1, . . . , Yn be n independent random variables with cumulative distri-
bution function given by Eq. (8.1). Then, the moments of the minimum
order statistic Y1:n are given by E[Y k1:n] = βkE[Xk

1:n], k = 1, 2, . . . .

As in Section 7, the parameters α and β of the scaled Muth distribution can
be estimated by ML. Denoting by logL(α, β) the log-likelihood function based
on a random sample from Y , the ML estimates of α and β are the values that
maximize logL(α, β). We solved the system of equations ∂ logL(α, β)/∂α =

0 and ∂ logL(α, β)/∂β = 0, obtaining (α̂, β̂), and we checked that this pair
corresponds to a global maximum. The details are omitted here. Table 4
displays the results of a Monte Carlo simulation study, where we generated
N = 100 random samples of different sizes n for selected values of α and β. As
it can be seen, ML provides acceptable estimates of the parameters.

9 A Real Data Application

In this section, we use a real data set to illustrate that the scaled Muth distribu-
tion can be a more appropriate model than other traditional distributions, such
as the exponential, the gamma, the lognormal and the Weibull distributions.

The data set was taken from the website of the Bureau of Meteorology of
the Australian Government (www.bom.gov.au). It contains the monthly total
rainfall (in mm) collected from January of 2000 to February of 2007 in the rain
gauge station of Carrol, located in the State of New South Wales on the east
coast of Australia. Table 5 displays the data.

Table 5. Carrol data set (n = 83).

12.0 22.7 75.5 28.6 65.8 39.4 33.1 84.0 41.6 62.3 52.5 13.9 15.4 31.9
32.5 37.7 9.5 49.9 31.8 32.2 50.2 55.8 20.4 5.9 10.1 44.5 19.7 6.4
29.2 42.5 19.4 23.8 55.2 7.7 0.8 6.7 4.8 73.8 5.1 7.6 25.7 50.7
59.7 57.2 29.7 32.0 24.5 71.6 15.0 17.7 8.2 23.8 46.3 36.5 55.2 37.2
33.9 53.9 51.6 17.3 85.7 6.6 4.7 1.8 98.7 62.8 59.0 76.1 67.9 73.7
27.2 39.5 6.9 14.0 3.0 41.6 49.5 11.2 17.9 12.7 0.8 21.1 24.5

The scaled Muth distribution was fitted to the data. The ML estimates
were α̂ = 0.4608 and β̂ = 33.9049. Figure 2 represents the cumulative relative
frequency versus the theoretical cumulative probabilities. Graphically, it can
be seen that the theoretical probabilities fit the empirical ones quite well. In
fact, the associated correlation coefficient between them is 0.9986.

Math. Model. Anal., 20(3):291–310, 2015.
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Figure 2. Fitted scaled Muth distribution to Carrol data set.

Although from Figure 2 we see that the scaled Muth distribution provides
a good fit, we also applied several goodness of fit tests, specifically, the Cramér
von Mises statistic W 2, the Watson statistic U2, the Anderson–Darling statis-
tic A2, the Kolmogorov–Smirnov statistics D+, D− and D, and the Kuiper
statistic V . A detailed definition together with simple formulae for calculating
these statistics can be found in D’Agostino and Stephens [11, Chapter 4]. To
get the p-values we applied a parametric bootstrap by generating 1000 boot-
strap samples (cf. Stute et al. [23] and Babu and Rao [3] for full details). The
results obtained are shown in Table 6 and clearly suggest that the scaled Muth
distribution provides a satisfactory fit.

Table 6. Carrol data set: Goodness-of-fit tests.

W 2 U2 A2 D+ D− D V

p-value 0.8690 0.8690 0.3920 0.8450 0.5170 0.7050 0.7290

Finally, we compared the scaled Muth distribution with other models com-
monly used to fit non-negative data such as the exponential, gamma, lognormal
and Weibull distributions. For this aim, we calculated the Akaike information
criterion AIC (cf. Akaike [2]) and the Bayesian information criterion BIC (cf.
Schwarz [22]), which are defined as follows

AIC = 2r − 2 logL, BIC = −2 logL+ r
(
log n− log(2π)

)
,

where r is the number of parameters and L denotes the maximized value of
the likelihood function. The model with lower values of AIC and/or BIC is
preferred. Table 7 shows the ML estimated parameters and the AIC and BIC
values for each distribution. Accordingly, it is clear that the scaled Muth
distribution provides a better fit.
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Table 7. Carrol data set: Model, ML estimates, AIC and BIC values.

Model ML estimates AIC BIC

Muth(α, β) α̂ = 0.4608, β̂ = 33.9049 740.3600 741.5220
Exponencial(λ)

f(x;λ) = λe−λx λ̂ = 0.0295 753.0520 753.6330
Gamma(a,b)

f(x; a, b) =
1

baΓ (a)
xa−1e−x/b â = 1.5160, b̂ = 22.3838 747.3087 748.4706

Lognormal(µ,σ)

f(x;µ, σ) =
1

xσ
√
2π

e−(log x−µ)2/2σ2
µ̂ = 3.1597, σ̂ = 1.0253 767.1983 768.3602

Weibull(a,b)

f(x; a, b) =
a

b

(
x

b

)a−1

e−(x/b)a â = 1.3665, b̂ = 36.9120 744.4891 745.6511

10 Conclusions

The Muth distribution is a model for non-negative continuous random variables
introduced in the Seventies in the context of reliability theory. For decades,
this probability model has been overlooked in the literature with the exception
of a paper by Leemis and McQueston [15], where its relation with the exponen-
tial distribution was pointed out. In the current paper, various mathematical
properties of the Muth distribution are derived. More precisely, the variate
generation property is shown by using the Lambert W function, the mode is
given in closed form as a function of the golden ratio and tractable expressions
for computing the moments are obtained in terms of the generalized integro-
exponential functions, which are also useful to calculate the moments of the
order statistics. Parameter estimation is performed and a Monte Carlo simu-
lation study reveals that the maximum likelihood method provides acceptable
estimates. In addition, a scaled version of the Muth distribution is considered
and a real data set application illustrates its usefulness.
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