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Model-based PI design for irrigation canals with faulty communication
networks

T. Arauz1, J. M. Maestre1, A. Cetinkaya2, E. F. Camacho1

Abstract— A PI design method for faulty networks is pro-
vided based on Linear Matrix Inequalities (LMIs). Feedback
controllers for irrigation canals are designed based on LMIs,
but sparsity constraints are also imposed to make zero the
feedback control law elements not corresponding to the tuning
PI parameters. Therefore, the design method is halfway between
a PI controller and an optimal feedback control law, also
providing stability guarantees up to a maximum probability
of packet losses. The objective of the downstream controller is
to maintain the water levels upstream from each downstream
check structure of each canal pool, while gravity-offtake gates
satisfy downstream water demands. The proposed approach
is tested using the irrigation system of ASCE Test Canal 1
and compared with other tuning methods via simulation. Our
results show that the design method can be a useful tool when
dealing with control systems under faulty networks.

I. INTRODUCTION

Irrigation systems are Cyber-Physical Systems (CPS),
i.e., heterogeneous systems composed of computing devices
that interact with physical processes with high societal
relevance [14]. At the beginning of the 21st century, 2.7
million km2 of land (18% of the total cropland area) were
irrigated, using nearly 85% of the whole amount of human
used water [10]. However, the global distribution of these
percentages is geographically unbalanced with the USA and
Southeast Asia having the majority of irrigation areas [8].
Many authors refer to the lack of canal performance in
some regions, e.g., South and Southeast Asia [33], and the
challenges in arid and semi-arid areas, such as Iran [30].

As a response to irrigation concerns, researchers have been
working to develop effective control algorithms [2], [9], [19],
[29]. However, most commonly employed control algorithms
in canals are based on PI controllers, and different methods
for PI tuning in this type of application can be found in
the literature [11], [15], [32]. Furthermore, many approaches
are based on Linear Matrix Inequalities (LMIs) to design
feedback controllers for irrigation canals, by imposing some
specific constraints that allow the tuning of PI parameters,
e.g., [20]. The introduction of constraints in the design of
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feedback controllers has also been studied previously in other
works [17], [18].

During the last years, cybersecurity threats have become
a relevant research topic for CPS. Different strategies have
been developed to guarantee properties such as system stabil-
ity when CPS cybersecurity is endangered [16], [24]. Regard-
ing water systems under faulty networks, tragic consequences
may be caused when the system is under cyber-attacks, and
some of those methods can also be helpful [13]. One cyberse-
curity incident is packets loss, which can be caused either by
malicious attacks or unreliable transmissions [31]. Different
controllers have been developed to guarantee system stability
in spite of packet losses [22], [23].

This work proposes a new method to tune the coefficients
of PI controllers for irrigation canals control under packet
losses. Our approach is based on LMIs, which are used to de-
sign feedback controllers for irrigation canals. The rationale
is to identify the elements of the feedback control law that
correspond to the tuning parameters of classical controllers
such as P and PI, and to impose sparsity constraints on
the controller design so that the rest of the elements in
the feedback matrix become zero. The proposed method is
based on [1] but including packet losses. Therefore, a PI
controller is designed that guarantees system stability up to
a maximum probability of packet losses. Also, constraints
definition is based on [3]. To study the performance of the
method developed, the ASCE Test Canal 1 [4] is selected as
a case study, and its linear model is built in MATLAB to
implement the controller.

The rest of the paper is organized as follows. First, the
problem setting is given in Section 2. Then, the LMI based
controller design method is presented in Section 3. Section 4
introduces the ASCE Test Canal 1, which is the model
used for tests, the proposed controller parameters along
with other controllers for comparison, and the performance
indicators considered for the assessment. Simulation results
are provided in Section 5. Finally, concluding remarks are
given in Section 6.

II. PROBLEM FORMULATION

An irrigation canal is formed by a set of sections where
water flows, which are separated by gates to control the water
volume of each one. From a mathematical viewpoint, we
assume that the overall system is composed of a set of N =
{1, 2, . . . , N} discrete linear time-invariant subsystems. The
dynamics of subsystem i ∈ N are given by

xi(k + 1) = Aiixi(k) +Biiui(k) + di(k), (1)



where xi ∈ Rqi and ui ∈ Rri are the states and inputs,
respectively, which in this context are typically water level
errors and flows. The number of states and controls of each
subsystem are respectively denoted as qi and ri, and in the
overall system q and r. Here, di represents the disturbances
due to the influence of neighbors’ states and inputs in the
update of xi, which becomes

di(k) =
∑

j 6=iAijxj(k) +
∑

j 6=iBijuj(k), (2)

where matrices Aij and Bij map respectively the state and
inputs of a subsystem j ∈ N into the state of subsystem i.
External disturbances are omitted for simplicity and without
loss of generality regarding the design method proposed.

Each subsystem described by (1) has its own goal: to
minimize a stage cost defined as

`i(k) = xT
i (k)Qixi(k) + uT

i (k)Riui(k), (3)

where Qi ∈ Rqi×qi and Ri ∈ Rri×ri are respectively pos-
itive semi-definite and definite constant weighting matrices.
Physically, the cost penalizes quadratically water deviations
and changes in gates and flows with respect to the operation
point, which is assumed to be the origin for simplicity.

Finally, the overall system dynamics and stage cost can
be obtained aggregating all the subsystem ones, so that the
global model and goal can be described as

xN (k + 1) = ANxN (k) +BNuN (k), (4)

`N (k) = xT
N (k)QNxN (k) + uT

N (k)RNuN (k), (5)

where the subscript N stresses that all system vectors and
matrices come from the aggregation of local subsystems, i.e.,
xN = [xi]i∈N , uN = [ui]i∈N , AN = [Aij ]i,j∈N , and BN =
[Bij ]i,j∈N ; QN = diag(Qi)i∈N and RN = diag(Ri)i∈N .
Finally, note that there is no disturbance term in (4) because
all mutual interactions are embedded in the overall dynamics.

A. Control strategy

The main goal for the overall system defined by (4) is
to minimize the total cost function (5) so that the water
level is steered towards the operation point. To this end, a
sparse linear feedback controller will be designed, i.e., not
all the states can be used to calculate the control actions. For
example, the error in the first reach is not used to calculate
the actions of the last one. Therefore, there is a mapping from
system states to control actions that must be considered in the
design to obtain the desired sparsity pattern in the feedback
controller, thus implementing constraints in the information
flows.

The mapping, denoted hereafter as Λ, connects the set of
state variables, X , and U , which is the set control actions,
i.e., Λ : X → U . This mapping is clearly observed in
the feedback matrix K, which sets that control action ui
can receive information from state xj only if Ki,j 6= 0.
Superscripts will be added in the control law to stress this
fact: uN = KΛxN , with Λ ∈M, where M is the set of all
possible information mappings.

This way, the resulting controller receives actual physical
states through the state vector xN (k) (water-level errors
with respect their target levels) to generate structure flow
adjustments. Moreover, since the gain matrix KΛ has to
include both proportional and integral constants of a PI
controller, not only error values have to be considered, but
also the integral error values. Therefore, the state vector
xN (k) is extended with the water level integral errors of
all states. Finally, the system is considered to be initially in
the steady-state, so all the system variables are referred to
this point, which becomes the origin for the linear model (4).

B. Packet losses

Packet losses are modelled by using a Bernoulli process
with parameter ρ ∈ [0, 1]. Here, ρ represents the probability
(and hence the long-run average ratio) of packet exchange
failures between the system and its controllers, which can
be caused due to the unreliability of transmissions or the
malicious interference of malicious attackers. A binary-
valued process li(k) ∈ {0, 1} for each subsystem i ∈ N is
defined to characterize success or failure of packet exchange
attempts. In this way, the control input applied to subsystem
i is given by

ui(k) = (1− li(k))Kixi(k) (6)

following the packet dropout compensation of [25]: ui(k) =
Kixi(k) when there is a success of packet reception (li(k) =
0), and ui(k) = 0 when there is a failure (li(k) = 1),
whatever the cause of the packet loss is.

III. LMI BASED CONTROLLER DESIGN

First, we will introduce two theorems that will provide us
with useful theoretical results for the design of the controller.
Their proofs are not included, but can be found in the
corresponding references.

Theorem 1. [1] Consider the system (4) with system
and input matrices AN and BN together with the stage
cost (5) defined with QN and RN . Also, let constraints in
the communication flows between states and controls define
a mapping be denoted as Λ. If there exist a positive-definite
matrix W = WT = diag(Wi)i∈N , where Wi ∈ Rqi×qi ,
and matrix Y ∈ Rr×q such that the following constraint is
satisfied


W WAT
N + Y T

Λ BT
N WQ

1/2
N Y T

Λ R
1/2
N

ANW + BNYΛ W 0 0

Q
1/2
N W 0 I 0

R
1/2
N YΛ 0 0 I

 > 0,

(7)

for the specific mapping Λ, with YΛ,ij = Yij if the in-
formation flow from xj to calculate ui is allowed, i.e., if
{xj , ui} ∈ Λ, and YΛ,ij = 0 otherwise; then there exists
a feedback that provides a stabilizing control law KΛ =
YΛW

−1 where KΛ
ij = 0 if YΛ,ij = 0. Also, a Lyapunov

function f(xN (k)) = xT
N (k)PxN (k) that provides a bound

on the cost-to-go of the closed-loop system is obtained, with
P = W−1.



Next, we present a result for the case with centralized
packet losses, i.e., li(k) = lj(k), i, j ∈ N .

Theorem 2. [3] Consider the system (4) with input matrices
AN and BN . Also, let ρ ∈ [0, 1] represent the probability
packet losses. If there exist a positive-definite matrix W =
WT = diag(Wi)i∈N , where Wi ∈ Rqi×qi , and matrix Y ∈
Rr×q , and scalars β ∈ (0, 1) and ϕ ∈ [1, inf) such that the
following constraints are satisfied

[
βW WAT

N + Y T
Λ B

T
N

ANW +BNYΛ W

]
> 0, (8)

[
ϕW WAT

N
ANW W

]
> 0, (9)

(1− ρ) lnβ + ρ lnϕ < 0 (10)

then the control law (6) with P = W−1 and KΛ =
YΛW

−1 guarantees almost sure asymptotic stability of the
zero solution of the closed-loop system dynamics.

A. Design method

To design the controller, we find a possible solution that
complies with (7) – (10) for the specific mapping Λ and a
specific packet loss probability ρ. Then, it is enough to take
KΛ = YΛW

−1.
Note that these LMIs can be solved via any LMI toolbox,

but computation is not direct since β and ϕ have to be
initially set. In this way, the problem has to be solved by
iterating over a set of values for β ∈ (0, 1) and ϕ ∈ [1, inf).
However, it is sufficient to check for larger values of β and
ϕ that are close to the boundary range of (10). To this end, a
small positive real number ∆ > 0 can be set to iterate over
a set of values that fulfill with [3]:

(1− ρ) lnβ + ρ lnϕ = −∆. (11)

Therefore, the algorithm followed to solve the LMIs is
presented in Algorithm 1. Note that there is an upper bound
for the packet loss probability, ρmax, for which the LMIs (7),
(8), (9) can be solved, i.e., the stability guarantees hold. The
maximum probability of packet exchange failures ρmax can
be found by iterating ρ using Algorithm 1 until the LMIs in
Step 2 become unfeasible.

IV. CASE STUDY

The Test Canal 1 is described in [4] and [5]. The ASCE
Test Canal 1 is based on an actual operating canal, concretely
the lateral canal WM within the Maricopa Stanfield Irrigation
and Drainage District in central Arizona, about 50 km south
of Phoenix, which receives water from Colorado River and
irrigates a district area of about 35,000 ha.

The ASCE test canal 1 is 9.5 km long and drops 40 m
in elevation [5]. The whole canal is divided into eight pools
by a series of controllable orifices gates. These gates are
vertical sluice gates and, for the first canal, all gates are
assumed to be always unsubmerged to avoid the problems
associated with the transition from free to submerged flow.

Algorithm 1 Iterative process to solve the Optimization
problem

Set probability of packet losses: ρ value
Initialization: β ← 0.999; ∆β ← 0.001; ∆← 0.00001
Iterative process:

Step 1: Update value ϕ← e−
(1−ρ) ln β−∆

ρ

Step 2: Find a solution for LMIs (7), (8), (9)
Step 3: Suitability test

If solution infeasible then
Update value β ← β −∆β
GO TO Step 1

else
P ←W−1

KΛ ← YΛW
−1

end if

Gate movement is restricted by a minimum value of 0.5% of
the gate height per control time step, and it can be modeled
with suitable equations for the simulation software. Each
of the eight pools starts in a different descending height to
enable the water gravity movement. The canal also includes
some gravity offtakes, located 5 m from the downstream
end of each pool, but it has no flow at the downstream
end. The control of the system is possible thanks to the
motorized gates placed at the end of each canal, including
some ultrasonic flowmeters located in the 11 offtakes placed
next to the gates. The regulation time steep has to be around
5 min, depending on the selected control algorithm.

A. The Linear Canal Model

A simple discrete-time linear model for canal pool re-
sponse was proposed by [28]: the integrator delay (ID)
model, which is based on the method presented in [26] where
an approximation model for an open channel with backwater
effects was derived using the linearized Saint Venant equa-
tions. A canal pool for the ID model is considered to be
formed by the first portion of normal depth and the other
portion, closed to the downstream end of the pool, under
backwater, named reservoir. The ID model is

∆h(k) =
Ts
As

[qu(k − τR)− qd(k)] (12)

where ∆h(k) represents the water level change; k, the integer
time step number; Ts, the duration of the time step; As,
the backwater surface area; qu and qd(k), the upstream and
the downstream flow rates, respectively; and τR the closest
integer representing the delay time (τ/Ts).

Therefore, the model equation relates water level changes
at the downstream end of the pool to flow changes through
gates at the upstream and downstream end of the pool. The
delay time is the main reason for the difference between
the response of the upstream and downstream gates results.
However, although the ID model has been verified as a
good approximation for controller design purposes [27], the
fact that the ID model is a simplification of the real canal



response has to be also taken into account [6]. Finally, note
that (12) can be easily written in the form of (4).

B. Proposed controller

The objective of a downstream feedback canal controller
is to maintain the water levels upstream from each check
structure, which is the downstream end of each canal pool,
with the assumption that gravity-offtake gates are set at the
set-point level satisfying downstream water demands. The
water level at the downstream end of each canal pool is
controlled by a gate at the upstream end of the same pool,
bringing about a significant delay between the gate action
and the water-level response to that action [7].

Furthermore, because of the delay time for water to travel
across canals, the gate control changes of upstream ends may
not be translated in water level changes of downstream end
by the next control time. Thus, to account for this effect
in a discrete-time controller, some additional terms related
to these previous control actions have to be added in the
control law. This addition turns out to be another extra
extension of the state vector xN (k) including these lagged
flow measurements. The proper number of intermediate
measurements depends on the real physical characteristics of
each pool. Note that the added elements in the gain matrix
corresponding to the extra lagged flow measurements will
be forced to be zero since they cannot be controlled by the
designed PI controller.

Regarding control inputs, the controller needs to be de-
signed to keep them fixed when there is a packet loss. There-
fore, the model has to be redefined to get incremental control
signals. This way, the input signal uN of (4) corresponds to

uN (k) = uN (k + 1) + ∆uN (k), (13)

where ∆uN (k) = KΛxN (k). Consequently, the state vector
is enlarged to include also the previous input signals as well.

The linear feedback controller was designed to minimize
the total cost function defined by (5). This expression con-
tains two weighting matrices: QN for deviations from the
setpoint and RN for control effort. Their assigned values
have a significant influence on the tuning of controller param-
eters and system performance. In this work, the matrix RN
is set as RN = I·10−3, where I represents the corresponding
identity matrix. The matrix QN is set as the corresponding
identity matrix except for the diagonal elements correspond-
ing to water level errors and their integrals, which are
[2.5189 1.5314 1.9881 0.6536 0.6196 0.5000 0.8058] · 109

for the error elements, and the same values but [·]·106 for the
error integrals. These elements are set depending on some
coefficients related to the backwater surface area of each
canal, giving higher weights to water level errors than water
level error integrals. Furthermore, the diagonal elements of
QN that are related to the previous input signals are set equal
to the corresponding value of matrix RN .

Regarding packet losses, their probability of occurrence
for controller design is set as ρ = 0.6, i.e., 60% of the
packets are lost along the way almost surely. To design the
corresponding PI controller, the LMIs of Section III-A are

TABLE I
PROPORTIONAL AND INTEGRAL PARAMETERS OF PI CONTROLLERS.

No.
Pool

Designed PI controller PI controller PIF
for 60% of packet losses without losses [1] controller [6]
Kp Ki Ku Kp Ki Kp Ki

1 0.5651 0.0194 -1.0005 1.4104 0.0428 1.4274 0.0151
2 0.6607 0.0214 -1.0002 2.5172 0.0727 1.4626 0.0201
3 0.6843 0.0233 -1.0006 2.1411 0.0659 1.4942 0.0175
4 0.6647 0.0208 -1.0003 6.1181 0.1715 1.7483 0.0255
5 1.0588 0.0307 -1.0006 6.8971 0.1939 1.4000 0.0303
6 0.7607 0.0214 -1.0001 8.5357 0.2331 1.3129 0.0349
7 1.0065 0.0312 -1.0020 5.3329 0.1621 1.2043 0.0467

simultaneously solved with β = 0.999 and ϕ = 1.0007. The
solution found satisfies all requirements at the limit and the
resulting PI coefficients are presented in Table I. Note that
there is an extra element Ku that corresponds to the elements
added in the state vector for the previous control signals.

Remark: The controller is designed in a centralized way
with all canals considered a single system regarding packet
losses, i.e., li(k) = lj(k), i, j ∈ N . However, note the model
is almost decentralized due to system matrices A and B, and
so is matrix P , making the controller suitable in the case
where each canal manages packet losses independently.

C. Alternative tuning methods

The proposed method is compared with the same con-
troller obtained with the same design method but without
considering the possibility of packet losses. That is, the
controller is design by following the method of Section III-A
but only subject to the LMI constraint (7). Thus, this is the
method proposed in [1].

Another tuning method taken from [6] is used to assess
the proposed controllers: the fourth Filtered Proportional-
Integral (PIF) controller. This method presents the best
performance of all methods presented in [6] and consists of
a PIF controller for each pool with the resonance frequency
determined based on the maximum cross-over frequency and
integral constants adjusted based on downstream resonance.

The PI coefficients used for both controllers are also
presented in Table I.

D. Key Performance indicators (KPIs)

Some performance indicators commonly used in canal
control and recommended by [4] are the maximum absolute
error (MAE), the integral of absolute magnitude of error
(IAE) and the integrated absolute discharge change (IAQ).

Besides those indicators, there are some other performance
indicators considered that are usually applied in engineering
studies: the mean of mean absolute error (MMAE), the mean
of standard deviations (MSTD), and the sum of standard
deviations (SSTD).

Finally, regarding water resources management, there are
two indicators commonly used to compare the performances
of different water resource systems: resilience, which is a
metric defining how quickly a system is likely to recover or
bounce back from failure once a failure has occurred, and
vulnerability, which refers to the likely magnitude of failure



Fig. 1. Simulation results for step change of 0.2 m3/s: Scenario 1 with
the designed PI controller.

Fig. 2. Simulation results for step change of 0.2 m3/s: Scenario 1 with
the PI controller of [1].

if it occurs [12], [21]. Note that failure is considered to be
the occurrence of unsatisfactory performance. If the system
is in a steady state, any input flow or offtakes changes are
considered as a failure.

V. SIMULATION RESULTS AND DISCUSSION

All the methods considered were evaluated using the same
scenario. The system starts in a steady state of input flows
and offtakes, and a step of 0.2 m3/s in input flow is given
at hour 4.

Besides, two different scenarios have been simulated:

- Scenario 1: no packet losses.
- Scenario 2: packet losses with a probability of occur-

rence of 30%.
- Scenario 3: packet losses with a probability of occur-

rence of 60%.

For Scenarios 2 and 3, in case of packet loss in a reach, it
maintains the input signal from the previous time step.

The results obtained from Scenario 1 are presented in Figs.
1, 2 and 3 for the proposed PI controller, the PI controller
of [1] and the PIR controller of [6], respectively. Likewise,
Figs. 4, 5 and 6 represent the results for the three methods
from Scenario 2, when packet losses are considered with
a probability of occurrence of 30%. And Figs. 7, 8 and 9
represent the results for the three methods from Scenario 3,
where packet loss probability is 60%. For each method the
water level errors, X (m), and the flow rates through check
gates, U (m3/s), are depicted at each time sample (Ts =
4min).

Moreover, the KPIs indicated in the previous section have
been calculated for each method and simulation, and they
are presented in Tables II–V for the three scenarios.

To summarize all the obtained results, a broad comparison

Fig. 3. Simulation results for step change of 0.2 m3/s: Scenario 1 with
the PIF controller of [6].

Fig. 4. Simulation results for step change of 0.2 m3/s: Scenario 2 with
the designed PI controller.

Fig. 5. Simulation results for step change of 0.2 m3/s: Scenario 2 with
the PI controller of [1].

Fig. 6. Simulation results for step change of 0.2 m3/s: Scenario 2 with
the PIF controller of [6].

Fig. 7. Simulation results for step change of 0.2 m3/s: Scenario 3 with
the designed PI controller.



Fig. 8. Simulation results for step change of 0.2 m3/s: Scenario 3 with
the PI controller of [1].

Fig. 9. Simulation results for step change of 0.2 m3/s: Scenario 3 with
the PIF controller of [6].

TABLE II
MAE, IAE AND IAQ.

Methods MAE (10−2) IAE(103) IAQ (10−2)
Max Mean Max Mean Max Mean

Scenario 1: no packet losses
Proposed PI controller 31.07 25.15 3.20 2.43 34.87 14.95
PI controller of [1] 13.87 6.45 1.12 0.51 8.86 4.44
PIF controller of [6] 13.98 13.07 3.17 2.08 15.69 5.17

Scenario 2: packet losses with a probability of occurrence of 30%
Proposed PI controller 31.80 26.76 3.24 2.43 36.86 15.96
PI controller of [1] 98.46 43.12 1.12 0.71 1524.49 604.71
PIF controller of [6] 35.91 20.42 3.17 2.08 71.26 24.28

Scenario 3: packet losses with a probability of occurrence of 60%
Proposed PI controller 40.89 30.04 3.23 2.43 41.03 22.50
PI controller of [1] 108297218.57 15568047.12 1956151.31 281569.27 3596254605.61 454470210.53
PIF controller of [6] 5978.08 2009.44 167.87 54.14 41248.86 10389.44

TABLE III
MMAE, MSTD AND SSTD.

Methods MMAE MSTD SSTD
(10−3) (10−2) (10−2)

Scenario 1: no packet losses
Proposed PI controller 16.82 4.99 34.95
PI controller of [1] 3.51 1.04 7.30
PIF controller of [6] 14.39 2.90 20.27
Scenario 2: packet losses with a probability of occurrence of 30%

Proposed PI controller 16.85 5.14 35.97
PI controller of [1] 4.93 2.85 19.98
PIF controller of [6] 14.40 3.09 21.62
Scenario 3: packet losses with a probability of occurrence of 60%

Proposed PI controller 16.84 5.23 36.62
PI controller of [1] 1952088.64 1217410.94 8521876.58
PIF controller of [6] 375.35 171.03 1197.22

TABLE IV
RESILIENCE.

RESILIENCE (10−3 min−1)
Methods Canal 1 Canal 2 Canal 3 Canal 4 Canal 5 Canal 6 Canal 7 Mean

Scenario 1: no packet losses
Proposed PI controller 6.45 7.25 9.43 12.50 12.50 12.05 12.82 10.43
PI controller of [1] 6.37 7.04 7.52 8.93 9.43 10.00 10.20 8.50
PIF controller of [6] 2.17 2.91 2.50 3.41 5.75 8.70 13.51 5.56

Scenario 2: packet losses with a probability of occurrence of 30%
Resilience 10( − 3) : ProposedPIcontroller 6.45 7.35 9.35 12.50 13.16 12.66 13.33 10.69
PI controller of [1] 6.37 7.41 8.00 9.52 9.90 7.19 50.00 14.06
PIF controller of [6] 2.17 2.95 2.52 3.46 5.88 9.26 14.93 5.88

Scenario 3: packet losses with a probability of occurrence of 60%
Proposed PI controller 6.49 7.09 9.09 12.82 13.16 12.82 5.92 9.63
PI controller of [1] 4.33 4.29 2.85 2.42 1.96 1.96 1.98 2.83
PIF controller of [6] 1.86 2.02 1.89 2.01 2.84 5.92 5.81 3.19

TABLE V
VULNERABILITY.

VULNERABILITY (10−2 m)
Methods Canal 1 Canal 2 Canal 3 Canal 4 Canal 5 Canal 6 Canal 7 Mean

Scenario 1: no packet losses
Proposed PI controller 31.07 26.64 26.66 26.64 18.15 26.34 20.58 25.15
PI controller of [1] 13.87 7.99 9.65 3.48 3.18 2.64 4.32 6.45
PIF controller of [6] 13.87 13.23 13.20 10.84 12.89 13.44 13.98 13.07

Scenario 2: packet losses with a probability of occurrence of 30%
Proposed PI controller 31.80 29.15 30.03 27.78 19.07 27.48 21.99 26.76
PI controller of [1] 13.87 36.42 46.17 31.15 28.74 47.02 98.46 43.12
PIF controller of [6] 13.87 35.91 33.11 14.90 14.01 14.90 16.23 20.42

Scenario 3: packet losses with a probability of occurrence of 60%
Proposed PI controller 40.89 32.76 33.16 29.19 20.47 29.92 23.93 30.04
PI controller of [1] 2459.91 4629.26 18176.27 61891.34 132780.88 459173.61 108297218.57 15568047.12
PIF controller of [6] 2434.81 2577.15 5978.08 1740.62 753.20 273.02 309.18 2009.44

between all methods is provided for each scenario indepen-
dently:
• Scenario 1: the proposed PI controller reaches higher

maximum error values than the other two controllers,
as Figs. 1 to 3 and MAE values of Table II show. On
the other hand, the designed PI is the softest of the
three controllers, since it has been designed considering
packet losses. This is reflected by the input flow rate
graphs of Figs. 1 to 3, and also, by the IAQ values of
Table II. Therefore, the designed PI performance is not
as good as the performance of the PI designed without
considering packet losses [1], which has the best KPIs
values.

• Scenario 2: in case of packet losses with a low prob-
ability of occurrence, all controllers get worse perfor-
mances and all KPIs achieve higher values than in the
previous scenario (Tables II–V). The worst KPI values
are achieved by the second method considered, PI [1],
since it is the fastest controller and in case of loss,
the performance worsening becomes greater. Its MAE
and IAQ values of Table II are the ones that increase
further if comparing with Scenario 1. However, the PIF
controller [6] successfully faces data losses and system
stability is still held. Its KPIs values are still kept in the
same range as the PI designed.

• Scenario 3: in case of packet losses with a higher
probability of occurrence, the PI controller of [1] pro-
vides very poor results as Fig. 7 shows, and thus,
all KPIs values suffer a large increase. Furthermore,
the PIF controller [6] presents a much worse perfor-
mance than before (Fig. 9). However, the proposed PI
is characterised by the lowest IAQ values (Table II),
since it is the softest controller, with the corresponding
advantage for the preservation of gates. Its reached error
values become greater than in previous scenarios, but
the increase is not as much as the one of the other two
methods, as it is reflected by MAE values (Table II).
Therefore, the designed PI is the only method that
efficiently manages packet losses, without getting hard
system performance worsening.

In conclusion, the designed PI is the controller that faces
better the presence of packet losses between the system and
the controller, especially when their probability of occurrence
increases. Therefore, the proposed controller is the only
one that provides the certainty of stability guarantees when
dealing with faulty communication networks.



VI. CONCLUSION

PID controllers require tuning parameters that create a
map between functions of the error and control actions,
possibly considering several performance indicators along
the way. Here, we tune stage cost weighting parameters,
which are related to water level errors and control effort,
and then the proposed LMI generates the PI controller
mapping seeking for the minimization of the cost-to-go of
the closed-loop system. Hence, the designer is much closer to
system performance. For this reason, our proposal is halfway
between a PI controller and an optimal feedback control law.
The designer focuses on tuning parameters of a cost function
and obtains PI controllers to accomplish that goal. Also, it
is worth mentioning that the design method is centralized,
hence exploiting synergies between local controllers and
avoiding undesired interactions between PIs, as happens with
other design methods.

Finally, the fact that the problem is cast as an LMI
also allows including additional requirements into the de-
sign problem with simplicity. In this case, the controller is
designed as robust against communication failures. This way,
the proposed controller keeps nearly the same performance
features despite the presence of packet losses. Moreover, this
controller is the only one that guarantees system stability
when dealing with packet losses. Hence the proposed PI
controller represents a useful tool for irrigation canal control.

Further work will include the extension towards infinite
dimensional control approaches which take into account the
time delay problem among others.
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