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Influence Analysis on Discriminant Coordinates
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J. MUÑOZ-GARCÍA, AND J. L. MORENO-REBOLLO

Departamento de Estadística e I.O., Universidad de Sevilla, Sevilla, Spain

Discriminant analysis (DA), particularly Discriminant Coordinates (DC), is broadly
applied in the scientific literature and included in many statistical software packages.
DC is used to analyze biomedical data, especially for differential diagnosis on the
basis of laboratory profiles. Articles handling influence analysis in DA can be found
in the literature; however, this topic has been scarcely touched upon in DC. In this
article, the case-deletion approach is followed to introduce a perturbation in the
data and influence measures are proposed to assess the effect on three statistics of
interest: the transformation matrix, canonical directions, and configuration, of the
sample centroids.

Keywords Deletion approach; Discriminant coordinates; Influence analysis.

Mathematics Subject Classification 62H30; 62H99.

1. Introduction

Discriminant analysis (DA), also named “classification” and “statistical pattern
recognition,” is a methodology commonly used to classify a set of observations into
predefined classes or to distinguish between a set of groups or sub-populations.

DA has been broadly applied in the scientific literature in almost all scientific
fields. In particular, DA has been frequently applied in medical research in order
to distinguish between several diseases or between health and disease states. Many
medical research articles apply DA for the differential diagnosis on the basis of a
laboratory profile.

DA includes several techniques. Linear discriminant analysis (LDA), DC (also
named canonical variates), and logistic discrimination are probably the most
frequently used in differential diagnosis. Mirkin et al. (2004) studied DC in a study
of human endometrium; Galanaud et al. (1999) studied DA for a non invasive
diagnostic assessment of brain tumors; Struijk et al. (2006) studied a new method for
discriminating between people with a normal genotype and those with the congenital
long-QT syndrome; Guo et al. (1999) and Perelman et al. (2003) studied DA in
microarray data, all illustrate relevant applications of DA in biomedical research.

Received December 10, 2009; Accepted January 17, 2011
Address correspondence to J. M. Muñoz-Pichardo, Departamento de Estadística e I.O.,

Universidad de Sevilla, Avd. Reina Mercedes sn., Sevilla 41012, Spain; E-mail: juanm@us.es

793



794 Muñoz-Pichardo et al.

Generally speaking, influence analysis (IA) deals with the study and assessment
of the variations caused in statistical conclusions by perturbations. Several
perturbation schemes can be considered, although case-deletion may be the most
commonly used in IA. Articles handling IA in almost all statistical techniques can
be found in the literature.

Obviously, accuracy of the estimation and the classification in DA might be
affected by outliers and influential observations. This fact justifies the interest of IA
in DA. The study of influence in linear discriminant analysis is normally carried out
by using the common case-deletion approach, and usually by assessing its effect on
the estimated total probability of misclassification. This approach is applied in the
following articles: Campbell (1978), Critchley and Vitiello (1991), and Fung (1992,
1995b,c, 1996). Recently, Moreno-Roldán et al. (2007) proposed two case-deletion
diagnostics based on the L2-norm which evaluate the effect of the omission on
the linear functions which determine Fisher’s linear discriminant rule. Riani and
Atkinson (2001) provided a unified approach to study influential observations and
outliers in Quadratic Discriminant Analysis.

As far as we know, there is no article which deal with influence in discriminant
analysis focused on DC in the literature, perhaps because analysis based on DC
and LDA lead to identical results if the complete set of discriminant coordinates
is considered. However, for convenience of the subsequent analysis, in particular
for the graphical representation of the transformed feature data, only the first two
discriminant coordinates are often considered in practice. The results obtained from
DC and LDA might differ in such a case.

In this article, case-deletion diagnostics are proposed on three statistics of
interest in DC when only the first two discriminant coordinates are considered: the
transformation or projection matrix, the directions of the projection matrix, and the
configuration of the sample centroids of the first two discriminant coordinates.

• The transformation matrix. Two diagnostic measures related to this statistic are
proposed. The first one assesses the effect of the omission through a matrix
norm, the classic norm of Frobenius, and the second one through a ratio of
determinants.

• The directions of the projection. In this case, the effect of the perturbation
is measured through the angle between the non perturbed and perturbed
directions of the projections.

• The configuration of the sample centroids. The Euclidean distance between the
non perturbed and perturbed centroids is considered as influence measure on
this statistic.

This article is organized as follows. In the next section, the notation, the
discriminant rule and the basic statistics in canonical discriminant analysis are
introduced. The influence measures that we propose are presented in Sec. 3. In
Sec. 4, these influence measures are illustrated with two data sets. Finally, some
conclusions are set out in Sec. 5.

2. Discriminant Coordinates

First a short introduction to DC, which serves as a means to establish the notation,
is given. Let �Gi� i = 1� � � � � g� be g mutually exclusive groups or populations and
let X = �X1� � � � � Xp�

t be a p-dimensional random vector. We assume that the
distribution of X for Gi is Np��i

� ��, i = 1� � � � � g.
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The basic question in DC is to determine linear combinations of X1� � � � � Xp

(discriminant coordinate variables) which reflect the differences between groups,
that is, the linear transformations which lead to the greatest separation among the
mean vectors. To this end, a sample of size ni (“training” data) is selected from each
population, �xij ∈ �p 	 j = 1� � � � � ni�, i = 1� � � � � g� The sample means of the groups
are denoted by xi•� i = 1� � � � � g and the global sample mean by x, that is, x =
1
n

∑g
i=1

∑ni
j=1 xij , where n = ∑g

i ni. W and B denote the within-group and between-
group matrices, respectively, that is,

W =
g∑

i=1

ni∑
j=1

�xij − xi•��xij − xi•�
t and B =

g∑
i=1

ni�xi• − x��xi• − x�t�

The computation of the vectors (coefficients of the linear combinations), ck� k =
1� � � � � d �d = min�p� g − 1��, that determine the discriminant coordinates is well
covered in standard textbooks on multivariate analysis (see, for instance, Seber,
1984, Ch. 5).

The vectors ck , k = 1� � � � � d� are the solutions of the optimization problems

sup
c �=0

ctBc
ctWc

for k = 1 and sup
c �=0�ctjWc=0� j=1�����k−1

ctBc
ctWc

for k = 2� � � � � d� (1)

If 
1 ≥ · · · ≥ 
d are the non zero eigenvalues of W−1B with associated unit
eigenvectors �e1� � � � � ed�, then the kth discriminant coordinate variate is given
by ctkX where ck = � n−g

h2k
�1/2ek and h2

k = etkWek. Then the discriminant coordinates
have null sample correlations, ctkWcr = 0� k �= r� Given k ≤ d� Ck = �c1 � � � ck�

t is
called the transformation or projection matrix. The centroids of the groups in the
transformed space are zi• = Ckxi•� i = 1� � � � � g.

A future observation x is assigned to the ith-group if

dE�Ckx�Ckxi•� = min
l=1�����g

dE�Ckx�Ckxl•��

where dE denotes the vector Euclidean distance.
At this point, it should be borne in mind that the classification rule based

on DC is derived under two assumptions: normality and homoscedasticity. Under
these assumptions, the discriminant coordinates are obtained by maximizing the
F -ratio statistic of the analysis of variance. As this technique is moderately robust
to longer-tailed symmetric distributions, the classification rule can be used under
moderate violation of the normality assumption.

The discriminant coordinates are determined in order to emphasize the
separation between groups, but with decreasing effectiveness. From a practical point
of view, it is necessary to fix the number k of discriminant coordinates to be
considered in the statistical analysis. The relative magnitudes of the eigenvalues

1� � � � � 
d are frequently used to this end. For k = 2 and k = 3, plots of the
transformed data are helpful to study the degree and nature of the separation
between the groups. This option of the discrimination problem is provided by
several statistical packages which allow DC to be broadly applied in statistical data
analysis. Obviously, considering a dimension of the transformed space greater than
3 is not adequate to display the behavior of the groups and the data properly,
although plots of pairs of coordinates still can be explored.
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In this article, only k = 2 is considered although the diagnostics that we propose
can easily be generalized to any value of k.

Hence, the most relevant statistics in DC are the transformation matrix C2,
the directions that determine the linear transformation, that is, the rows c1 and c2
of C2� and the sample means in the transformed space zi•� i = 1� � � � � g.

3. Influence Measures

In the following, influence diagnostics are proposed in order to assess the effect of
this perturbation on the most relevant statistics in DC.

From now on, for any sample statistic T , T�s�l� denotes the statistic perturbed by
deleting xs�l, the lth case of the sth group, from the sample. In particular, xr•�s�l� =
xr• if r �= s, xs•�s�l� = xs• − 1

ns−1 �xs�l − xs•�, C2�s�l� is determined by the eigenvectors of
W−1

�s�l�B�s�l� corresponding to the two largest eigenvalues, and zr•�s�l� = C2�s�l�xr•�s�l�.

3.1. Transformation Matrix

Two diagnostics are proposed to quantify the effect caused on the transformation
matrix C2 by the omission of xs�l:

• The Frobenius norm of the difference matrix C2 − C2�s�l�,

M�s�l� =
∥∥C2 − C2�s�l�

∥∥
F
�

where �A�F = ∑
i

∑
j a

2
ij for any matrix A = ��aij��. Obviously, M�s�l� can be

considered as an influence diagnostic of the effect of the omission of xs�l on
C2. This diagnostic is called “M-measure.” Large values of M correspond
to cases that lead to large changes in the projection matrix upon which the
discriminant rule is based.

• The aim of canonical discriminant analysis is to determine the linear
transformations of the vector of the observed variables that lead to the
greatest separation between the groups in the transformed space. Therefore,
measuring the effect that the deletion of each observation exerts on
discrimination ability of the discriminant coordinates is of interest.
The ratio between the between- and within-group dispersion is a measure
of discrimination ability, and the determinant of the dispersion matrix
of the discriminant coordinates, 1

n−g
C2WCt

2, is a measure of the within-
group dispersion in the transformed space. Therefore, if the omission of an
observation causes a significant change in the value of the determinant, it also
will provoke a significant change in discrimination ability. Since DC leads to
standardized discriminant coordinates,

∣∣ 1
n−g

C2WCt
2

∣∣ = 1, we also propose

R�s�l� =
∣∣∣∣ 1
n− g

C2�s�l�WCt
2�s�l�

∣∣∣∣
as an influence measure of the omission of x�s�l� on the dispersion matrix. We
will call “R-measure” this diagnostic.
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Taking into account that W = W�s�l� + �ns/�ns − 1���xs�l − xs•��xs�l − xs•�
t

R-measure can be expressed by

R =
(
1− 1

n− g

)2

�1+ uts�lus�l��

where us�l =
(

ns
�n−s−1��n−g−1�

)1/2(
zs�l�s�l� − zs•�s�l�

)
, with zs�l�s�l� = C2�s�l�xs�l.

Therefore, values of R far from 1 are associated with influential observations.
Those verifying �R�s�l� − 1� > 0�05 or 0�10 are proposed as influential
observations.
In should be pointed out here that the determinant ratio approach has
previously been applied in the literature as an influence diagnostic and to
identify outliers. For example, Barnett and Lewis (1978) and Munoz-García
et al. (1990) used this approach to identify outliers in a sample from a
q-dimensional normal population, while Belsley et al. (1980) proposed an
influential diagnostic in linear regression.

3.2. Directions of the Projection Matrix

The M-measure quantifies the effect of the omission on the coefficients of the
linear projection as a whole. However, separate conclusions about its effect on the
directions c1 and c2 cannot be obtained using this measure. The directions c1 and c2
are not orthogonal (ct1 c2 �= 0) but uncorrelated (ct1Wc2 = 0). Therefore, the study
of the effect of the omission on c1 and c2 has to be carried out separately.

We propose the angle between cj and cj�s�l�� j = 1� 2� as influence measures of
the omission of x�s�l� on the direction cj ,

A
�1�
�s�l� = �c1� c1�s�l�� =

100


arccos
ct1c1�s�l�

�c1��c1�s�l��
�

A
�2�
�s�l� = �c2� c2�s�l�� =

100


arccos
ct2c2�s�l�

�c2��c2�s�l��
�

We will call “A�1�-measure” and “A�2�-measure”, respectively, these diagnostics.
For convenience, A�1� and A�2� are stated in hexadecimal degrees, and therefore
A�1�� A�2� ∈ �0� 100�. This fact enables reference values to be fixed in such a way that
those cases with “A-measures” greater than the reference values would be considered
as influential observations. The reference values for high and moderate influence are
fixed at 5 and 2.5, respectively.

It should be noted that c1�s�l� is an eigenvector corresponding to the largest
eigenvalue of W−1

�s�l�B�s�l�, thereby verifying the condition ct1�s�l�W�s�l�c1�s�l� = n− g − 1.
Obviously, the opposite vector −c1�s�l� also verifies this condition. Therefore, c1�s�l�
has to be chosen appropriately so that the effect of the omission can be accurately
assessed. A similar consideration has to be made for c2�s�l�.

3.3. Centroids

We propose assessing the effect of the omission of x�s�l� on the centroids through
the sum of the Euclidean distances between the perturbed �zr•�s�l�� r = 1� � � � � g�, and
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the non perturbed centroids �zr•� r = 1� � � � � g�,

D�s�l� =
[ g∑

r=1

(
zr•�s�l� − zr•

)t(
zr•�s�l� − zr•

)]1/2

�

We will call “D-measure” this diagnostic. Obviously, a large value of D�s�l�

means a significant change in the centroid’s configuration and in consequence a
significant change in the classification rule. Therefore, cases with large values in the
D-measure can be considered as influential observations.

To conclude this section, it should be taken into account that the diagnostics
here proposed can obviously be generalized if k > 2 canonical discriminant variates
are necessary to obtain a discriminant rule with admissible error rates.

4. Applications

In this section, two examples with real data are presented to illustrate the diagnostics
proposed. In the first example, the Lubischew data set (Lubischew, 1962) is used.
This data set has been considered by other authors in several studies on discriminant
analysis. See, for example, Moreno-Roldán et al. (2007), Bremner and Taplin (2002),
Fung (1995a), Schott (1990), and McKay (1977). Two variables from the Lubischew
data set have been selected, thereby enabling a simple display and facilitating the
interpretation of the measures proposed. The second example is an application
of discriminant analysis to a medical data set (Plomteux, 1980). This medical
application attempts to determine a differential diagnosis of diseases of the liver on
the basis of a laboratory profile determined by liver enzymes.

4.1. Lubischew Data Set

This application has been included due to two reasons. Firstly, the Lubischew
data set has been widely used in the scientific literature. Secondly, it simplifies
the interpretation of the measures here proposed. Lubischew (1962) analyzed
three groups of genus of flea beetle: Chaetocnema Concinna (G1), Chaetocnema
Heikertingeri (G2), and Chaetocnema Heptapotamica (G3). The groups consist of
21, 31, and 22 observations, respectively. They are labeled as cases 1–21, 22–52,
and 53–74, respectively. Each observation consists of six variables from which two
have been selected: the fourth variable (the maximal width of the aedeagus in the
fore-part in microns) and the sixth variable (the aedeagus width from the side in
microns).

Figures 1(a) and (b) display the original data set and the transformed data set
through the discriminant coordinates, respectively.

The resultant eigenvectors of the analysis are ct1 = �0�1475� 0�0690� and ct2 =
�−0�1650� 0�1268�. Table 1 shows the results of the classification through the
discriminant coordinates, whereby 90�95% of cases are correctly classified. Cases
6, 8, 9, 16, and 17 of G1 are misclassified in G3, and cases 53 and 66 of G3 are
misclassified in G1 through DC. Obviously, these results reflect what Figs. 1(a) and
(b) show: cases in G2 are clearly separated from those in G1 and G3; but some cases
corresponding to G1 and G3 are mixed.

Figures 2(a)–(d) display the index plots of the diagnostics proposed in Sec. 3:
M-measure, D-measure, A�1�-measure, and R-measure. The A�2�-measure plot is
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Figure 1. Lubischew data set: Scatter plots. �∗�-G1; �•�-G2; ���-G3.

Table 1
Lubischew data set. Results of the classification rule

Predicted group

Actual group G1 G2 G3 Total

G1 16 (76.2%) 0 5 (23.8%) 21
G2 0 31 (100%) 0 31
G3 2 (9.1%) 0 20 (90.9%) 22

omitted since no case is identified as influential from this measure. Table 2
summarizes the results of the influence analysis through these diagnostics.

From the results obtained by applying the diagnostics proposed, it can be
concluded that:

• Cases 17 and 46 are the most influential. Case 17 is identified as influential
by the four diagnostics and case 46 by three diagnostics. From Fig. 1(a), it is
observed that cases 17 and 46 are extreme values in G1 and G3, respectively.
Cases 16, 18, 23, 60, and 67 can also be considered as influential observations.

• Different cases are identified by the measures proposed here. That is, the
influence measures M , D, A�1�, A�2�, and R provide different information.
Each one of these measures assesses the effect of the omission on a different
statistic of interest. Hence, each measure provides useful information to the
researcher.

• The reader could consider the R and A measures as the most interesting
diagnostics since they have reference values to determine influential cases.
However the information that they provide may not be comprehensive. For
example, cases 16, 23, and 60 are not identified by these measures, but they
are identified by M and D measures.

• It could be suspected that outliers and influential cases coincide. However,
this fact is not necessarily true as the results of this example illustrate. There
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Figure 2. Lubischew data set. Index plot of influence measures (in all graphics, horizontal
axis: cases).

Table 2
Lubischew data set. Summary of the influence measures

Case M-measure D-measure A�1�-measure R-measure

16 ∗
17 ∗∗ ∗∗ ∗ ∗
18 ∗ ∗
23 ∗ ∗
46 ∗∗ ∗ ∗∗
60 ∗
67 ∗

(**) High influence; (*) moderate influence.
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Table 3
Plomteux data set. Descriptive statistics of log-transformation

of liver enzyme levels

Disease groups

Logarithm of liver AVH PCH ACH PNC
enzyme levels n = 57 n = 44 n = 40 n = 77

X1 (aspartate aminot.) 5�24± 0�67 3�79± 0�64 4�77± 0�93 4�44± 0�52
�5�28� 0�70� �3�60� 0�40� �4�76� 0�71� �4�41� 0�55�

X2 (alanine aminot.) 6�26± 0�56 4�35± 0�69 4�82± 0�95 3�97± 0�54
�6�29� 0�50� �4�09� 0�51� �4�76� 0�91� �3�99� 0�56�

X3 (glutamate dehyd.) 2�52± 0�51 1�88± 0�44 3�03± 0�71 2�32± 0�66
�2�56� 0�49� �1�95� 0�51� �3�09� 0�53� �2�30� 0�60�

First line: mean± S.D. Second line: (median, standardized MAD)

are influential cases which are not outliers. For example, case 23, identified as
influential by M and D measures, cannot be considered as an outlier in G2.
On the other hand, there are also outliers (case 7) which cannot be considered
as influential observations, see Fig. 1(a).

• Associating influential observations with misclassified cases is erroneous.
Cases 6, 8, 9, 53, and 66 are misclassified; but they are not identified as
influential. On the other hand, there are influential cases, 18, 23, 46, 60, and
67, which are correctly classified.

As previously mentioned, the Lubischew data set has been used in the literature
to illustrate influence diagnostics in discriminant analysis. At this point, it should be
noted that cases 16, 17, 66, and 67 (high influence) and cases 9, 46, and 60 (moderate
influence) were identified as influential observations on the estimated probability
of misclassification by Fung (1995a); and cases 16, 17, 18, 46, and 67 were
identified as influential observations on the linear discriminant rule by Moreno-
Roldán et al. (2007). Although diagnostics on a different discriminant technique
are proposed, our results are similar, but not totally identical, to those obtained by
Fung and Moreno-Roldán. This fact shows that the diagnostics proposed here can
be considered as useful complementary influence measures in discriminant analysis.

4.2. Plomteux Data Set

In this example, the influence measures proposed are illustrated in a sample data set
with four groups. The data consists of 218 patients with liver diseases (Plomteux,
1980). Four diseases are considered: acute viral hepatitis (AVH) (n1 = 57 patients),
persistent chronic hepatitis (PCH) (n2 = 44), aggressive chronic hepatitis (ACH)
(n3 = 40), and post-necrotic cirrhosis (PNC) (n4 = 77). The diagnosis of AVH was
carried out by biological and clinical signs. PCH, ACH and PNC were diagnosed
by laparoscopy and biopsy. For convenience, the cases corresponding to each group
are labeled by 1–57, 58–101, 102–141, and 142–218, respectively. The data are
reproduced in Albert and Harris (1987).

The aim of this study is to obtain a differential diagnosis of the four liver
diseases considered by means of an enzyme profile.
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Plomteux (1980) showed that good discrimination between the four
diseases could be achieved on the basis of three liver function tests: aspartate
aminotransferase (Y1), alanine aminotransferase (Y2), and glutamate dehydrogenase
(Y3) (all expressed in international units per litre). The observed variables Yi have
been transformed, Xi = ln Yi, i = 1� 2� 3� to verify the normality assumption. Table 3
summarizes this data set with central tendency and dispersion measures. See Albert
and Harris (1987, Ch. 5, p. 113) for more details on the results of this research.
The Plomteux data set has been considered in the literature to illustrate several
statistical techniques (see Bull et al., 1994; Lesaffre and Albert, 1988, 1989).

Figure 3 displays the scatter plots of the original variables in pairs and the
scatter plot of the first two discriminant coordinates; cases that are identified as
influential below have been labeled.

The eigenvectors corresponding to the first two discriminant coordinates are:
ct1 = �1�8547�−2�7866� 0�4956� and ct2 = �1�3015�−0�3410� 0�7735�.

Figure 3. Plomteux data set. Scatter plots (+)-AVH; (•)-PCH; (
⊗

)-ACH; (∗)-PNC.
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Table 4
Plomteux data set. Results of the classification rule

Predicted group

Actual group AVH PCH ACH PNC Total

AVH 53 (93.0%) 2 (3.5%) 1 (1.8%) 1 (1.8%) 57
PCH 4 (9.1%) 38 (86.4%) 1 (2.3%) 1 (2.3%) 44
ACH 1 (2.5%) 5 (12.5%) 23 (57.5%) 11 (27.5%) 40
PNC 0 1 (1.3%) 15 (19.5%) 61 (79.2%) 77

Table 4 summarizes the results obtained by DC through the canonical
discriminant variates. The overall classification rate is 80.3%; there are 43
misclassified cases, (19.7%), while 93.0% of AVH cases, 86.4% of PCH cases,
and 79.2% of PNC cases are correctly classified. However, only 57.5% of ACH
cases are correctly classified. Aggressive chronic hepatitis and post-necrotic cirrhosis
constitute two groups that are difficult to discriminate between. Albert and Harris
(1987) stated on this point, “this is not surprising because even histological criteria
cannot always clearly distinguish these two disorders”.

Figures 4(a)–(b) display the index plot of R- and A�2�-measures, respectively.
It can be observed that cases 58, 133, 135, 136, and 150 are identified as influential
observations. Omission of case 58 significantly affects the direction of the second
canonical variate. Omission of cases 133, 135, 136, and 150 affects the determinant
of the covariance matrix of the canonical discriminant variates. No case is identified
as influential from M-, D-, or A�1�-measures.

As in the first example, influential cases have been related to outliers and
misclassified cases. Analogous conclusions are obtained. In particular, there are
several misclassified cases that are not influential observations. On the other hand,

Figure 4. Plomteux data set. Index plot of influence measures (in both graphics, horizontal
axis: cases).
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there are influential observations (cases 133 and 135) that are correctly classified by
the assignment rule.

Case 58 is a PCH patient whose enzyme profile �6�16� 6�23� 2�56� is remarkably
higher than those in his/her group with respect to the two first components
(aspartate aminotransferase and alanine aminotransferase); see Figs. 3(a) and (b).
Therefore, case 58 could be considered as an outlying observation in the PCH group
with respect to X1 and X2. This enzyme profile is similar to those patients in the
AVH group, see Figs. 3(a)–(c). This enzyme profile is closer to the enzyme profile
mean of the AVH patients (5.24; 6.26; 2.52) than that of this case’s own group
(3.79; 4.35; 1.88). Moreover, case 58 is misclassified in the AVH group. In short,
case 58 is a PCH patient who is misclassified in the AVH group because the profile
presents outlying values with respect to the aspartate aminotransferase and alanine
aminotransferase levels in this group.

Case 133 is an ACH patient whose enzyme profile is �6�29� 5�21� 5�08�. It presents
a considerably high glutamate dehydrogenase level �X3� in its group, (see Figs. 3(b)
and (c)). Its glutamate dehydrogenase level (5�08) is greater that the mean (3�03) plus
two times the standard deviation (0�71) in its group. However, no extreme values
are presented with respect to the other two enzymes. In spite of its high glutamate
dehydrogenase level, case 133 is correctly classified. That is, case 133 is a correctly
classified ACH patient with an outlying glutamate dehydrogenase level.

Cases 135 and 136 are ACH patients whose enzyme profiles, �7�74� 7�18� 3�76�
and �6�75� 7�35� 3�00�, respectively, are somehow similar. Both of them present
remarkably high aspartate aminotransferase �X1� and alanine aminotransferase
�X2� levels in the ACH group whose mean profile level is �4�77� 4�82� 3�03�. Their
aspartate aminotransferase and alanine aminotransferase levels are closer to the
corresponding mean values in the AVH group, 5.24 and 6.26, respectively. However,
it should be noted that case 135 is correctly classified and case 136 is misclassified
in the AVH group. The reason for their different behavior with respect to the
classification rule can be observed in Fig. 3(d).

It can be concluded that all cases identified as influential observations present
remarkably high levels in some liver enzymes with respect to their groups. However,
no region exists that could be associated with influential observations. For example,
cases 135, 136, and 140 are ACH patients who present similar enzyme levels;
however, case 135 is an influential correctly classified observation, case 136 is an
influential misclassified observation, and case 140 is a non influential correctly
classified observation.

If cases 58, 133, 135, 136, and 150 were omitted, the overall classification rate
would come to 84.0%, that is, it would be increased only by 3.7%. The ACH group
would exhibit the largest increase in the classification rate, from 57.5% to 64.9%.

According to these results, a specific study of those cases identified as influential
(laboratory profile, diagnosis and other clinical aspects) should be carried out before
taking the decision of whether to include them in or omit them from the statistical
analysis.

5. Conclusions

DC is applied in biology, medicine, economics, psychology, sociology, and
other sciences to classify a new case into one of several different groups, in
statistical pattern recognition to select the characteristics or variables that enable
discrimination between populations, etc.
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The classification rule based on the discriminant coordinates might be strongly
affected by the presence of several extreme observations in the sample data and
the results might be substantially altered by some perturbation of the observations.
Therefore, the researcher should be able to identify influential cases and assess their
effects on the main statistics of the analysis.

This article presents influence measures on three relevant statistics on
discriminant coordinates: the transformation matrix, the canonical directions and
the centroid configurations. It is possible that the user of methods of discriminant
analysis is primarily interested in the influence of cases on the classification
probabilities. However, it is advisable to analyze all aspects of the influence
on the discriminant analysis. That is, it is advisable to complement the information
generated by the influence measures based on the probability of misclassification.

Hence, we can conclude that the diagnostic tools that we propose are useful in
many statistical analyses. Although the diagnostics have been developed for the first
two canonical directions, they can easily be generalized to any dimension greater
than 2.

From the illustrative examples presented in the above section we conclude the
following.

• The sets of outliers, misclassified cases and influential observations are
different. Outliers and/or misclassified cases may or may not be influential
observations. Therefore, influence diagnostics provide additional information
to that provided by outlier detection methods and the determination of
misclassified cases.

• Each of the diagnostics proposed in Sec. 3 is designed for a specific
purpose. Each diagnostic has its own interpretation and provides different
and complementary information.

We also highlight that the masking and swamping effects should be taken
into account when using these diagnostics. We think a similar analysis would be
necessary to that carried out by Lawrance (1995) on the regression model. In order
to overcome masking and swamping, it is also possible to add to the three suggested
measures the diagnostics tools which come from the use of robust estimators in
discriminant analysis (see Atkinson et al., 2004; Hubert et al., 2008). However, due
to the huge amount of work implied, it should be the aim of a future article.

Finally, a large value for M-, D-, or A-measures indicates that the corresponding
observation can be considered as influential. However, the following question
can be posed: How large is large? Cutpoints have been associated with several
diagnostics in the literature in such a way that observations can thereby be
identified as highly influential. We propose reference values for A- and R-measures.
Nevertheless, as Hadi et al. (1992) asserted, influence diagnostics are designed to
detect observations whose influence results are greater than other observations in a
data set. They are not designed to be a formal test of hypothesis. Thus, the values of
a given influence measure should be compared with each other. The reference values
proposed can be modified according to the researcher’s opinion.
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