
A Software Development Kit to Implement
Integration Solutions

Rafael Z. Frantz
UNIJUÍ University, Department of Technology
Rua do Comércio, 3000, Ijuí, 98700-000, RS,

Brazil
rzfrantz@unijui.edu.br

Rafael Corchuelo
Universidad de Sevilla, ETSI Informática

Avda. de la Reina Mercedes, s/n, Sevilla 41012,
Spain

corchu@us.es

ABSTRACT
Typical companies rely on their software ecosystems to 

support and optimise their business processes. There are a 
few proposals to help software engineers devise enterprise 
application integration solutions. Some companies need to 
adapt these proposals to particular contexts. Unfortunately, 
our analysis reveals that they are not so easy to maintain 
as expected. This motivated us to work on a new proposal 
that has been carefully designed in order to reduce main-
tainability efforts.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Software li-

braries; D.2.11 [Software Architectures]: Domain-specific 
architectures; D.2.13 [Reusable Software]: Domain engi-
neering

Keywords
Enterprise Application Integration; Business Modelling, 

Integration Framework; Domain-Specific Languages.

1. INTRODUCTION
Companies rely on applications to support their business 

activities. Frequently, these applications are legacy systems, 
packages purchased from third parties, or developed at home 
to solve a particular problem. This usually results in hetero-
geneous software ecosystems, which are composed of appli-
cations that were not usually designed taking integration 
into account. Integration is necessary, chiefly because it 
allows to reuse two or more applications to support new 
business processes, or because the current business processes 
have to be optimised by interacting with other applications 
within the software ecosystem. Enterprise Application In-
tegration (EAI) provides methodologies and tools to design 
and implement EAI solutions. The goal of an EAI solution 
is to keep a number of applications’ data in synchrony or to

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.

develop new functionality on top of them, so that applica-
tions do not have to be changed and are not disturbed by
the EAI solution [9].

In the last years, several tools have emerged to support
the design and implementation of EAI solutions. Hohpe and
Woolf [9] documented many patterns found in the develop-
ment of EAI solutions. Camel and Spring Integration are
two well-known proposals to support these patterns.

We are concerned with maintainability. According to IEEE
[10], maintenance can be classified as corrective, perfective,
and adaptive. Corrective maintenance aims to repair soft-
ware systems to eliminate faults that might cause them to
deviate from their normal processing. Perfective mainte-
nance aims to modify a software system, usually to improve
the performance of current functionalities or even to improve
the maintainability of the overall software system. Adaptive
maintenance focuses on adapting a software system to use
it in new execution environments or business processes.

In this paper, we are interested adaptive maintenance,
which is very important for companies that need to build
their own tools building on existing tools. Many companies
rely on open-source tools that can be adapted to a particular
context within their business domain. For example, a com-
pany that develops EAI solutions may need tools that can
be adapted to particular contexts, e.g., e-commerce (Roset-
taNet [16]), health (HL7 [8]), or insurance (HIPPA [7]).

It is not new that how a software system was designed and
implemented, has an impact on its maintenance costs [1, 4,
11, 17]. In both design and implementation, software engi-
neers need to pay attention to readability, understandability,
and complexity. The resulting models and source code must
be easy to read and understand, because it is very common
that the people who work on them are not involved in main-
tenance tasks. The complexity of the algorithms should be
kept low, not only for performance reasons, but because it
makes it easier for a software engineer to follow execution
flows and debug them. Thus, to reduce the costs involved in
the adaptation of a software system to a particular context,
it is very important that the software system was designed
taking into account properties that have a negative impact
on maintenance.

How costly it is to maintain a tool depends on a variety
of properties. We have calculated these measures on Camel
and Spring Integration, and the results do not seem promis-
ing enough. This motivated us to work on a Software Devel-
opment Kit (SDK) to which we refer to as Guaraná SDK 1

that provides a well-designed architecture that is intended

1http://www.guarana-project.net

mailto:rzfrantz@unijui.edu.br
mailto:corchu@us.es


to reduce maintainability costs. Guaraná SDK aims to sup-
port the implementation of EAI solutions. Its design pro-
vides better values for the maintainability measures, which
suggests that Guaraná SDK is more maintainable and thus
easier to adapt for a particular context than Camel or Spring
Integration.
Guaraná SDK is composed of two layers, namely: the

framework and the toolkit. The former provides a num-
ber of classes and interfaces that provide the foundation to
implement tasks, adapters, and workflows, as well as a run-
time system. The latter extends the framework to provide
an implementation of tasks and adapters that is intended to
be general purpose; other toolkits for specific contexts are
currently under development.
The rest of the paper is organised as follows: Section 2

presents the related work and compares other proposals to
ours; Section 3 presents the framework layer of Guaraná
SDK; Section 4, presents the toolkit layer, which extends the
framework layer for a particular context; finally, Section 5
reports on our main conclusions.

2. RELATED WORK
The Software Engineering community uses a number of

measures proposed by Chidamber and Kemerer [2], Henderson-
Sellers [6], Martin [13] and McCabe [14] to have an overall
idea of how difficult maintaining a system can be.
Camel and Spring integration are the most closely-related

proposals. They both are based on the catalogue of inte-
gration patters by Hohpe and Woolf [9]. Camel provides a
graphical editor and an API that can be used in Java, Scala,
and Spring configuration files. Spring integration also pro-
vides a graphical editor and an API that can be used in Java
or Spring configuration files.
Since we are interested in how maintainable they are, we

have studied the following maintainability metrics:

NOP: Number of packages that contain at least one class
or interface. This measure can be used as indicator of
how much effort it is required to understand how pack-
ages are organised; note that this provides the overall
picture of the design of a system [3]. The greater this
number, the more effort shall be required.

NOC: Number of classes. This and the following measure
(NOI) can be used as indicators of how much effort
shall be required to understand the source code of a
software system. The grater is this value, the more
difficult it is to understand a software system.

NOI: Number of interfaces.

NOM: Number of methods in classes and interfaces. This
measure can be used as an indicator for the potential
reuse of a class. According to Chidamber and Kemerer
[2], Lorenz and Kidd [12], a large number of methods
may indicate a class is likely to be application specific,
limiting the possibility of reuse.

LOC: Number of lines of code, excluding blank lines and
comments. In general, the greater this value, the more
effort shall be required to maintain a software system.

MLC: Number of lines in methods, excluding blank lines
and comments. According to Henderson-Sellers [6],
this value should not exceed fifty. If it does, the author

suggests to split this method into other methods to
improve readability and maintainability. The greater
this number, the more difficult it is to understand and
maintain the method.

NPM: Number of parameters per method. This measure
can be used as an indicator of how complex it is to un-
derstand and use a method. According to Henderson-
Sellers [6], the number of parameters should not exceed
five. If it does, the author suggest that a new type must
be designed to wrap the parameters into a unique ob-
ject. The greater this number, the more difficult it is
to understand the method.

LCM: Lack of cohesion of methods. In this context, cohe-
sion refers to the number of methods that share com-
mon attributes in a class. It is calculated with the
Henderson-Sellers LCOM* method [6]. A low value
indicates a cohesive class; contrarily, a value close to
one indicates lack of cohesion and suggests the class
might better be split into two or more subclasses be-
cause there can be methods that should probably not
belong to that class.

MCC: The McCabe Cyclomatic complexity. This measure
can be used as an indicator of how complex the algo-
rithm in a method is. According to [14], this value
should not exceed ten. The greater this value, the
more difficult it is to maintain a piece of code.

We have calculated these measures regarding the core im-
plementation of Camel, Spring Integration, and Guaraná
SDK i.e., we do not take into account the code required to
implement the adapters necessary to interact with the ap-
plications being integrated. We do not considered this code
because it is peripheral to the tools’ main architecture, and
in most cases comes from other open-source projects that
are maintained separately. Table 1 summarises the results.

The architecture of Camel and Spring Integration is or-
ganised in several packages, 54 and 32, respectively. There
are cases in which the maximum number of classes in a pack-
age reaches 96 in Camel and 58 in Spring Integration. These
values show that Camel has almost double as many classes
in a package as Spring Integration. The same happens re-
garding the number of interfaces. Consequently, Camel has
the highest standard deviation and mean values per package
regarding both, classes and interfaces. The highest stan-
dard deviation calculated for Camel, indicates that there
are packages containing many more classes than the average
calculated per package, which may have an impact on the
understandability of the package. Spring Integration has a
low value for the standard deviation regarding the number
of interfaces. The architecture of Guaraná is organised into
18 packages, and the maximum number of classes in a pack-
age is no more than 11. Furthermore, Guaraná provides no
more than 9 interfaces distributed in these packages. The
standard deviation calculated for the number of classes and
interfaces per package is very low, 3.09 and 0.76, respec-
tively.

When analysing the methods in classes and interfaces,
we found that Camel has 7, 015 methods compared to the
1, 431 found for Spring Integration. Most probably the dif-
ference amongst Spring Integration and Camel is because it
has less than a half the number of classes and interfaces of



Measure Total Mean Dev. Max Total Mean Dev. Max Total Mean Dev. Max

NOP 54 - - - 32 - - - 18 - - -

NOC 730 13.52 19.55 96 269 8.41 10.52 58 79 4.39 3.09 11

NOI 140 2.59 9.07 58 40 1.25 1.84 9 9 0.50 0.76 2

NOM 7,015 9.61 15.36 192 1,431 5.32 5.60 39 369 4.67 4.61 24

LOC 62,439 - - - 14,929 - - - 2,878 - - -

MLC 34,839 4.52 8.15 141 8,264 5.65 9.59 110 1,748 4.72 6.43 54

NPM - 0.93 1.05 11 - 1.13 0.94 9 - 1.20 1.04 4

LCM - 0.29 0.35 1 - 0.22 0.33 0.94 - 0.14 0.27 0.91

MCC - 1.67 2.06 46 - 1.80 2.04 30 - 1.35 0.91 8

Camel Spring Integration Guaraná SDK

NOP = Number of packages; NOC = Number of classes; NOI = Number of interfaces; NOM = Number of methods; LOC =
Number of lines of code; MLC = Number of lines in methods; NPM = Number of parameters per method; LCM = Lack of

cohesion of methods; MCC = McCabe’s Cyclomatic Complexity.

Table 1: Comparison of maintainability measures.

Camel. The values that stand out are the maximum number
of methods per class/interface calculated in Camel, which is
192, against to 39 in Spring Integration. We have analysed
the methods in classes/interfaces and found that Guaraná
has in total 369 methods, with a maximum number of 24
methods per class/interface.
Other values that are impressive for these tools are re-

garding the total number of lines of code, which is very high,
chiefly for Camel. There are 62, 439 lines of code in Camel
and 14, 929 in Spring Integration. The implementation of
Guaraná has a total number of 2, 878 lines of code.
Counting the number of lines of code inside methods, we

found Camel has a total number of 34, 839, Spring Integra-
tion has 8, 264, which if compared to the total number of
lines of code, represents 0.55% and 0.55% of these values,
respectively. It means there are many attributes declared
in classes. The maximum value calculated demonstrate that
there are some methods with up to 141 lines of code in Camel
and 110 in Spring Integration. These values indicate there
may be necessary more effort to maintain and understand
the methods in these tools. Counting the number of lines of
code inside methods, we found Guaraná has a total number
of 1, 748, which, if compared to the total number of lines of
code in Guaraná, represents 0.61% of this value. Further-
more, there is no method with more than 54 lines of code,
being the average 4.72 lines of code per method. These val-
ues indicate that classes shall be easier to understand and
maintain.
If we look at the maximum number of parameter per

method, it is also impressive how large it is, chiefly in Camel.
This tool has up to 11 and Spring Integration has up to 9
parameters per method. These values indicate some classes
in these tools are likely too application specific, with a lim-
ited possibility to be reused; furthermore, this makes some
of their methods difficult to understand, chiefly in the case
of Camel. Guaraná has no more than 4 parameters per
method. These values indicate that classes in Guaraná are
expected to be more reusable and its methods not so difficult
to understand.
The lack of cohesion of methods is similar in every anal-

ysed tool. Camel has 0.29 and 0.35 and Spring Integration
has 0.22 and 0.33. Guaraná presents a mean of only 0.14.
The values calculated for the McCabe cyclomatic com-

plexity have indicate that there are cases in which they are
extremely high. This is indicated by the maximum values

Figure 1: Message model in the framework.

calculated for the tools, which reaches 46 and 30 in Camel
and Spring Integration, respectively. Consequently, they are
also very complex tools, which may have a serious impact
on their maintenance. The values calculated for the Mc-
Cabe cyclomatic complexity have indicated that the max-
imum value is 8, which indicates the architecture is well
designed and maintenance is expected to be easy.

From the analysis of the maintainability measures, it fol-
lows that the tools we have analysed may have problems re-
garding maintenance, chiefly adaptive maintenance, which
is our main concern in this paper. It is not difficult to see
that the values of these properties are generally significantly
smaller in Guaraná SDK, which suggests that maintaining
our proposal is easier than maintaining the other technolo-
gies.

3. THE FRAMEWORK LAYER
In the following sections, we describe the packages in the

framework layer.

3.1 Messages
Messages are used to wrap the data that is manipulated

in an EAI solution. They are composed of a header, a body
and one or more attachments, cf. Figure 1. The header holds
several meta-data properties, including: message identifier,
expiration time, and list of parents. The message identifier
is a UUID that uniquely identifies every message; the expi-
ration time allows to set a deadline after which a message is
considered outdated for further processing; the list of par-
ents allows to track which messages originate from which
ones, i.e., it helps find correlated messages. The body holds



Figure 2: Task model in the framework.

Figure 3: Port model in the framework.

the payload data. Attachments allow messages to carry ex-
tra pieces of data associated with the payload, e.g., an image
or an e-mail message. Messages implement two interfaces so
that they can be serialised and compared, respectively. Se-
rialisation is required to deep copy, to persist, and to trans-
fer messages, and comparison enables a workflow to process
messages according to their priority.

3.2 Tasks
The task package provides the foundations to implement

domain-specific tasks in specialised toolkits. Figure 2 shows
the task model in our proposal. A task models how a set
of inbound messages must be processed to produce a set
of outbound messages. Tasks communicate indirectly by
means of slots. A slot is an in-memory priority buffer that
helps transfer messages asynchronously so that no task has
to wait until the next one is ready to start working. Tasks
become ready to be executed according to a time criterion or
a slot criterion. In the former case, a task becomes ready to
be executed periodically, after a user-defined period of time
elapses since it became ready for the last time; in the later
case, it becomes ready when the appropriate set of messages
is available in its input slots. For instance, a merger is a
task that reads messages from two or more slots and merges
them into one slot; this task can transfer messages as they
are available. Contrarily, a context-based content enricher
is a task that reads a base message and a context message
from two slots and uses the later to enrich the former; this
task cannot become ready to be executed until two mes-
sages are available in its input slots. Slots and tasks are
both observable objects, which means that they can notify
other objects of changes to their state; in addition, tasks are
observer objects since they monitor slots.

3.3 Ports
Ports abstract away from the communication mechanism

used to interact with the environment, cf. Figure 3. Note
that every port must be associated with a process, and that
we distinguish between one way and two way ports. The for-
mer are unidirectional ports that allow to read/write mes-

Figure 4: Process model in the framework.

sages; the latter are bidirectional ports that allow to either
send a message and wait for the answer (responder ports) or
to receive a message and produce a response message (solic-
itor port). Internally, ports are composed of tasks, namely:
a communicator, a pipeline, and a mapper. Communicators
are the tasks that allow to actually read or write a message,
namely: in communicators are used to read a message in
raw from; contrarily, out communicators are used to write
a message in raw form. By raw form, we mean a stream
of bytes that is understood by the corresponding process or
asset. The pipeline helps pre- or post-process a message in
raw form to decrypt/encrypt, decode/encode, or unzip/zip
it. The pipeline in an input port ends with a mapper task
that transforms the resulting stream of bytes into a text doc-
ument, for instance; the pipeline in an output port begins
with a mapper that transforms the text document into a
stream of bytes. Bidirectional ports can actually be seen as
a combination of an input and an output port.

3.4 Processes
Processes are the central processing units in an integration

solution, cf. Figure 4. They are composed of ports and tasks,
extend class Observable, and implement interface ITaskCon-

tainer. The reason why processes are observable is that they
are just an abstraction that helps organise groups of tasks
that co-operate to achieve a goal; from the point of view of
our proposal, they are just a container that reports which of
their tasks are ready for execution to an external observer.
The ITaskContainer defines the interface to add, remove, and
search for tasks in objects that may contain tasks. A pro-
cess may have several observers, e.g., to log or to monitor
its activities; however, the most important one is a runtime
system, which we describe in the following section.

Processes serve two purposes, namely: there are processes
that allow to wrap applications and processes that allow to
orchestrate the workflow. The former are reusable processes
that endow an application with a message-oriented API that
simplifies interacting with it. Implementing such a wrapping
process may range from using a JDBC driver to interact
with a database to implementing a scrapper that emulates
the behaviour of a person who interacts with a user inter-
face. Orchestration processes, on the contrary, are intended
to orchestrate the interactions with a number of services,
wrapping processes, and other orchestration processes. In-
dependently from their role, processes are composed of ports
and tasks.

3.5 Adapters
This package aims to provide the foundations to imple-

ment adapters in specialised toolkits, cf. Figure 5. Adapters
are the piece of software that implements the low-level com-



Figure 5: Adapter model

Figure 7: Task model in the toolkit

munication protocol necessary to interact with the processes
or assets involved in an integration solution. The framework
layer provides four interfaces to describe the operations used
by ports to read, write, solicit, and respond.

3.6 The execution engine
The engine package provides an implementation to the

task-based runtime system on which Guaraná SDK relies,
cf. Figure 6. Scheduler is the central class in this package.
At run-time, a scheduler owns a work queue, a list of work-
ers, and three monitors. The work queue is a priority queue
that contains work units to be processed. A work unit con-
sists of a task to be executed and a deadline. In most cases,
the deadline is set to the current time, which means that the
corresponding task can execute as soon as possible; there are
a few time-dependent tasks for which the deadline is set to
a time in future, e.g., a timer that ticks every minute or a
communicator that polls a service every ten minutes. Work-
ers are an extension to the Thread class and they have a
reference to the work unit that they have to execute. The
monitors are intended to gather statistics about how mem-
ory is used, the time tasks take to complete, and the size
of the work queue. They have been implemented as inde-
pendent threads that run at regular intervals, gather the
previous information, dump it to a file, and become idle the
sooner as possible.

4. THE TOOLKIT LAYER
The framework provides two extension points, namely:

Task and Adapter. We have designed a core toolkit that pro-
vides extensions to deal with a variety of tasks that support
the majority of integration patterns in the literature [9], and
provide active and passive adapters that enable the use of
several low-level communication protocols.
Figure 7 presents the extensions to the Task class. Below

we provide an explanation in which term schema is used to
refer to the logical structure of the body of a message. It
may range from a DTD or an XML schema to a Java class.

• Router: a router is a task that does not change the
messages it processes at all, but routes them through
a process. This includes filtering out messages that

Figure 8: Adapter model in the toolkit

do not satisfy a condition or replicating a message, to
mention a few tasks in this category.

• Modifier: a modifier is a task that adds data to a mes-
sage or removes data from it as long as this does not
result in a message with a different schema. This in-
cludes enriching a message with contextual informa-
tion or promoting some data to its headers, to mention
a few examples in this category.

• Transformer: a transformer is a task that translates one
or more messages into a new message with a different
schema. Examples of these tasks include splitting a
message into several ones or aggregating them back.

• Timer: a timer is a task that performs a time-related
action, e.g., delaying a message or producing a message
at regular intervals.

• StreamDealer: a stream dealer is a task that deals with a
stream of bytes and helps zip/unzip, encrypt/decrypt,
or encode/decode it.

• Mapper: a mapper is a task that changes the represen-
tation of the messages it processes, e.g., from a stream
of bytes into an XML document.

• Communicator: a communicator is a task that encapsu-
lates an adapter. Communicators serve two purposes:
first, they allow adapters to be exported to a registry so
that they can be accessed remotely; second, a commu-
nicator can be configured to poll periodically a process
or application using an adapter.

There is a package associated with every of the previous
tasks, which provide a variety of specific-purpose implemen-
tations in each integration patten category [5].

Figure 8 shows the extension to the adapters. They can
be either active or passive. An active adapter allows to poll
periodically the process or application with which it inter-
acts; contrarily, a passive adapter is intended to export an
interface to a registry, so that other applications or processes
can interact with it. Note that entry and exit ports can be
implemented using either active or passive adapters.

The active package is divided into two packages to provide
implementations that are based on JBI and RMI protocols,
respectively. Note that supporting JBI adapters allows to
plug Guaraná SDK into a variety of ESBs; for instance,
our reference implementation is ready to be plugged into
Open ESB [15]. This, in turn, allows Guaraná SDK pro-
cesses to have access to a variety of applications in current
software ecosystems, including files, databases, web services,



Figure 6: Engine model in the toolkit.

RSS feeds, SMTP messaging systems, JMS queues, DCOM
servers, and so on. The rmi package provides several imple-
mentations that are intended to be used to interact with an
RMI-compliant server.

5. CONCLUSIONS
Companies rely on applications to support their business

activities. The integration of these applications is necessary,
chiefly because it allows to reuse applications to support new
business processes or to optimise existing ones. Enterprise
Application Integration (EAI) provides methodologies and
tools to design and implement EAI solutions. Although it is
possible to use current tools to design and implement EAI
solutions, it is still necessary to provide domain-specific tools
that are easy to maintain in order to customise them for a
particular context.
In this paper we have reported on nine maintainability

measures that can be used as an indicator regarding how
expensive a software tool can be to maintain. We have anal-
ysed two widely-used tools in the EAI marked: Camel and
Spring Integration. Our results indicate that these tools are
expected to be more difficult to maintain than our proposal.
We have introduced Guaraná SDK, which is our soft-

ware tool to design and implement EAI solutions. Guaraná
SDK is organised in two layers, namely: framework and
toolkit. An abstract implementation of the core concepts in
the domain-specific language introduced in [5] are provided
by the former layer, and, although we also provide a toolkit
implementation, the framework can be reused by engineers
to build other new specialised toolkits. We have also calcu-
lated the values for the maintainability measures regarding
Guaraná SDK. Our conclusion is that Guaraná SDK is much
easier to maintain than Camel or Spring Integration.

6. ACKNOWLEDGMENTS
The work in this paper was supported by the Evangelis-

cher Entwicklungsdienst e.V. (EED), the Spanish and the
Andalusian R&D&I programmes (grants: TIN2007-64119,
P07-TIC-2602, P08-TIC-4100, TIN2008-04718-E, TIN2010-
21744, TIN2010-09809-E, TIN2010-10811-E, and TIN2010-
09988-E), and the European Commission (FEDER).

References
[1] S. Bergin and J. Keating. A case study on the adaptive

maintenance of an Internet application. Journal of Software
Maintenance, 15(4):254–264, 2003

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Software Eng., 20(6):
476–493, 1994

[3] X. Dong and M. W. Godfrey. Understanding source pack-
age organization using the hybrid model. In International
Conference on Software Maintenance, 2009

[4] A. Epping and C. M. Lott. Does software design complexity
affect maintenance effort? In Goddard Space Flight Center,
pages 297–313, 1994

[5] R. Z. Frantz, A. M. Reina-Quintero, and R. Corchuelo. A
domain-specific language to design enterprise application in-
tegration solutions. International Journal of Cooperative In-
formation Systems, 20(2):143–176, 2011

[6] B. Henderson-Sellers. Object-oriented metrics, measures of
complexity. Prentice Hall, 1996

[7] Health Insurance Portability and Accountability Act Home,
Oct 2011.

[8] Health Level Seven International Home, Oct 2011.

[9] G. Hohpe and B. Woolf. Enterprise integration patterns
- designing, building, and deploying messaging solutions.
Addison-Wesley, 2003

[10] IEEE. IEEE standard glossary of software engineering ter-
minology. IEEE Computer Society, 1990

[11] M. Jørgensen. An empirical study of software maintenance
tasks. Journal of Software Maintenance, 7(1):27–48, 1995

[12] M. Lorenz and J. Kidd. Object oriented software metrics.
Prentice Hall, 1994

[13] R. C. Martin. Agile software development, principles, pat-
terns, and practices. Prentice Hall, 2002

[14] T. J. McCabe. A complexity measure. IEEE Trans. Software
Eng., 2(4):308–320, 1976

[15] T. Rademakers and J. Dirksen. Open-source ESBs in action.
Manning, 2009

[16] RosettaNet Home, Oct 2011.

[17] N. F. Schneidewind. The state of software maintenance.
IEEE Trans. Software Eng., 13(3):303–310, 1987

http://www.hipaa.com/
http://www.hl7.org
http://www.rosettanet.org



