
ROM-based FSM implementation using
input multiplexing in FPGA devices

R. Senhadji-Navarro, I. Garcı́a-Vargas, G. Jiménez-Moreno
and A. Civit-Ballcels

A new approach for ROM implementation of finite state machines

(FSMs) is proposed, based on the selection of a subset of inputs in

each state using multiplexers. This technique has been applied to

different FSM standard benchmarks and very good results have been

obtained.

Introduction: The growing interest in the implementation of finite

state machines (FSMs) based on ROM has been motivated by the

inclusion of embedded memory blocks in modern field programmable

gate array (FPGA) devices. In many cases, these resources are not

used and can be exploited to implement sequential circuits, saving

logic cells for other purposes [1, 2]. However, in a ROM-based FSM

implementation, the size of the required memory increases exponen-

tially with the number of inputs and state encoding bits. This aspect is

critical because little FSMs may require more memory than available

in the FPGA.

Different techniques for reducing the amount of memory used by a

ROM-based FSM implementation have been reported in the literature

[2, 3]. They make use of additional resources to reduce the ROM size.

Some techniques, which are applied to microcode optimisation, exploit

the fact that not all inputs of an FSM have influence in all states. Only

the inputs that have influence on each state are selected by multiplexing.

Thus, the ROM address space depends on a smaller number of inputs.

A new approach based on input multiplexing is proposed. Besides

reducing the number of inputs, the approach improves the memory

usage reduction by decreasing the number of state encoding bits.

Moreover, an algorithm to simplify the complexity of the multiplexers

is presented. Small multiplexers can be efficiently implemented in

modern FPGA devices [4, 5]. For example, a 32:1 multiplexer occupies

only two configurable logic blocks (CLB) in Xilinx Virtex-II FPGAs

[6]. In some FPGA families, tri-state buffers can be used to implement

multiplexers without consuming logic cells [7].

Approach description: A FSM is a 5-tuple (X, Y, S, f, g) where X, Y

and S are a finite set of input variables, output variables, and states,

respectively; f: XS! S is the transition function and g: XS! Y is the

output function. A FSM can be expressed using a tabular representa-

tion named state transition table (STT). Each row in the STT contains

the 4-tuple (in, ps, ns, out), where in and out are an assignment of the

input and output, respectively; ps is the present state, and ns is the

next state. An STT example is shown in Fig. 1a.

Fig. 1 FSM example

a STT representation b ESTT representation
c ESTT representation after state encoding bit reduction

A FSM can be implemented using ROM [1]. Fig. 2a shows the

general architecture of the traditional implementation. The ROM

addresses are composed of the encoding present state and the FSM

inputs. The ROM words contain the encoding next state and the FSM

outputs. The amount of memory used by this implementation is

expressed by 2mþp
� (nþ p), where m is number of inputs, n is

number of outputs, and p is number of bits needed for binary encoding

states.

The previous architecture can be modified as shown in Fig. 2b to

reduce the address space of the ROM. This idea has been used in

microprogramming. The multiplexer bank selects for each state the

subset of input which has influence on it. These inputs are named

effective inputs. Each state has a different number of effective inputs

associated to it. However, the number of inputs selected by the

multiplexers is fixed. Those selected inputs that are not effective are

denoted by don’t care selected inputs. Some bits, which are named

selection bits, are added to the ROM word to control the multiplexers.

The size of the ROM is expressed by 2m0 þ p
� (nþ pþ r), where m0 is

maximum number of effective inputs per state, n is number of outputs,

p is number of state encoding bits, and r is number of selection bits.

Fig. 2 ROM-based FSM implementation

a Traditional implementation b Implementation with input multiplexing

To represent a finite state machine with input multiplexing

(FSMIM), the STT must be extended. The rows of this extended

state transition table (ESTT) contain the 6-tuple (pis, in, ps, nis, ns,

out), where the new elements pis and nis are the present and next input

selection, respectively. For each state, pis contains information about

the inputs selected and nis specifies the inputs to be selected for the

next state. Fig. 1b shows the ESTT of the FSM described. Unlike a

FSM, the states of a FSMIM are identified not only by ps, but also by

pis.

In the proposed approach, the amount of memory usage is reduced

by decreasing the number of state encoding bits. For this purpose, the

don’t care selected inputs in a state can also be employed to codify it.

Let A and B be two states each of them with almost one don’t care

selected inputs. Let state A be defined by the pair (PSj, PISj), where PSj

is the present state and PISj is the present input selection. In

the same way, let state B be defined by (PSk, PISk). Both states can

be identified by the same present state PSr. To distinguish them, the

don’t care selected input is fixed to ‘0’ in one state and to ‘1’ in the

other. So, the states A and B are identified by (PSr, PISj
0) and (PSr,

PISk
0 ), respectively, where PISj

0 and PISk
0 have the don’t care selected

input fixed to different values. In Fig. 1c, the states (s0, a-) and (s2, c-)

have been identified by the same symbol s02 and distinguished by the

input in2 (‘0’ for s0 and ‘1’ for s2). The resultant states are (s02, a0) and

(s02, c1).

The complexity of the multiplexer bank and thus the number of

selection bits stored in ROM depend on the manner of assigning inputs

to each multiplexer. An appropriate input assignment allows reducing

the complexity of multiplexers. Fig. 3 shows two possible assignments

related to the FSM example. An algorithm that is based on a modifica-

tion of the Knapsack algorithm [8] has been proposed for this purpose.

Fig. 3 Example of multiplexer bank with and without simplification

a With simplification b Without simplification

Results: The FSMIM can be implemented in modern FPGA devices

using synchronous memory blocks to implement the ROM and other

resources to implement the multiplexers. When tri-state buffers are

available, the multiplexers can be implemented without using logic

cells. Alternatively, the multiplexers can be implemented using

logic cells. Despite of the tri-state buffer based implementation not

requiring logic cells, the ROM size grows due to the necessary

one-hot codification.



Table 1: Optimisation results (columns MUX contain list of
numbers that represent count of channels of each multi-
plexer)

FSM

Traditional
approach
ROM
size
(bits)

Input multiplexing approach: Tri-state buffer
based implementation

Before
SEBR

After SEBR

ROM
size
(bits)

TSB
ROM
size
(bits)

TSB
ROM

reduction
(%)

bbsse 22528 7168 3 4864 7 78.4

cse 22 528 13 312 2 9216 6 59.1

ex1 393 216 61 440 6 32 768 8 91.7

ex4 13 312 2176 4 1216 6 90.9

ex6 2816 960 4 960 4 65.9

keyb 28 672 28 672 0 11 264 4 60.7

mark1 10 240 5632 2 1792 7 82.5

mc 224 144 2 144 2 35.7

opus 5120 5120 0 1792 4 65.0

planet 204 800 59 392 4 17 920 9 91.3

pma 106 496 32 768 3 18 432 5 82.7

s1 90 112 90 112 0 36 864 6 59.1

s1488 409 600 118 784 4 19 968 12 95.1

s1494 409 600 118 784 4 19 968 12 95.1

s27 512 512 0 384 2 25.0

s386 22 528 7168 3 4096 5 81.8

s510 436 207 616 8192 19 4224 20 �100.0

s820 201 326 592 311 296 14 88 064 18 �100.0

s832 201 326 592 311 296 14 88 064 18 �100.0

sand 917 504 102 400 11 30 720 15 96.7

scf �1012 5 570 560 22 196 608 32 �100.0

sse 22 528 7168 3 4864 7 78.4

styr 245 760 77 824 4 27 648 10 88.8

FSM

Traditional
approach
ROM
size
(bits)

Input multiplexing approach: Logic cell
based implementation

Before
SEBR

After SEBR

ROM
size
(bits)

MUX
(channels)

ROM
size
(bits)

MUX
(channels)

ROM
reduction

(%)

bbsse 22 528 6656 3 4096 3, 2, 2 81.8

Cse 22 528 12 288 2 7680 2, 2, 2 65.9

ex1 393 216 55 296 2, 2, 2 28 672 2, 2, 2, 2 92.7

ex4 13 312 1920 4 1024 4, 2 92.3

ex6 2816 832 2, 2 832 2, 2 70.5

keyb 28 672 28 672 0 9216 2, 2 67.9

mark1 10 240 5376 2 1536 4, 2, 2 85.0

mc 224 128 2 128 2 42.9

opus 5120 5120 0 1536 2, 2 70.0

planet 204 800 55 296 2, 2 15 360 2, 2, 2, 4 92.5

pma 106 496 30 720 3 16 384 3, 2 84.6

s1 90 112 90 112 0 30 720 2, 2, 2 65.9

s1488 409 600 110 592 2, 2 16 384 4, 4, 2, 2, 2 96.0

s1494 409 600 110 592 2, 2 16 384 4, 4, 2, 2, 2 96.0

s27 512 512 0 320 2 37.5

s386 22 528 6656 3 3584 3, 2 84.1

s510 436 207 616 5120 14, 5 2432 14, 7 �100.0

s820 201 326 592 262 144 5, 4, 3, 2 69 632 5, 4, 4, 4, 2 �100.0

s832 201 326 592 262 144 5, 4, 3, 2 69 632 5, 4, 4, 4, 2 �100.0

sand 91 7504 81 920 3, 2, 2, 2, 2 22 528 4, 2, 4, 2, 2, 2 97.5

scf �1012 4 784 128 13, 3, 3, 3 159 744 13, 3, 4, 4, 2, 2, 2, 2 �100.0

sse 22 528 6656 3 4096 3, 2, 2 81.8

styr 245 760 69 632 2, 2 21 504 4, 4, 2, 2 91.3

SEBR: state encoding bit reduction; TSB: tri-state buffer; MUX: multiplexer

The proposed techniques have been applied to a set of FSM standard

benchmarks [9]. Both tri-state buffer and logic cell based implementa-

tions have been used. Table 1 shows the obtained results. The

optimisation process consists of two steps. The multiplexer bank

simplification has been applied to the generated FSMIMs before

using the state encoding bit reduction (SEBR) technique (see columns

‘Before SEBR’). Next, the SEBR technique has been applied to the

results obtained in the previous step (see columns ‘After SEBR’). The

memory reduction ratio (see columns ‘ROM reduction’) has been

calculated with respect to the traditional approach.

The test results show that it is not necessary to have many extra

resources to obtain a large memory reduction (about 83% of the test

cases consume only one CLB). The best reduction ratio has been

obtained for the scf example. In the traditional implementation, there

are not enough memory resources in any FPGA devices. However, after

reduction, the amount of memory usage is suitable for real implementa-

tion in modern FPGAs. For example, in a Xilinx Virtex-II, 10

SelectRAM blocks plus 3 CLBs or 12 SelectRAM blocks plus 32

tri-state buffers are used. Some tests (keyb, opus, s21 and s27)

demonstrate that the proposed approach allows ROM size reduction

even when the input multiplexing technique alone is useless.

Conclusion: We have proposed a new approach which exploits the

don’t care inputs to implement ROM-based FSMs using much fewer

memory resources than the traditional implementation. The bench-

mark results shown demonstrate that large FSMs may be implemented

in FPGA devices using a reduced number of memory blocks.

R. Senhadji-Navarro, I. Garcı́a-Vargas, G. Jiménez-Moreno and

A. Civit-Ballcels (Departamento de Arquitectura y Tecnologı́a de

Computadores, Escuela Superior de Ingenierı́a en Informática,

Universidad de Sevilla, Avda. Reina Mercedes s=n, 41012 Sevilla,

Spain)

References

1 Garcia, E.: ‘Xilinx: creating finite state machines’, Xcell J., 2000, 38
2 Rawski, M., Selvaraj, H., and Łuba, T.: ‘An application of functional

decomposition in ROM-based FSM implementation in FPGA devices’.
Proc. Euromicro Symp. on Digital System Design, Belek-Antalya,
Turkey, 2003, pp. 104–110

3 Katz, R.H.: ‘Contemporary logic design’ (The Benjamin=Cummings
Publishing Company, Inc., California, 1994)

4 Krueger, R.: ‘Xilinx Virtex devices: variable input LUT architecture’,
2004, 4, (1), (The Syndicated)

5 Altera, Corp.: ‘Stratix II device handbook’, 2004, (Ver. 1.0, Chapter 2)
6 Xilinx, Inc.: ‘Virtex-II Platform FPGAs: Detailed description’, 2004,

Ver. 3.2
7 Xilinx, Inc.: ‘HDL synthesis for FPGAs design guide’, 1995
8 Kellerer, H.: ‘Knapsack problems’ (Springer-Verlag, New York, 2004)
9 McElvain, K.: ‘IWLS’93 Benchmark Set: Version 4.0’, 1993 (http://

www.cbl.ncsu.edu/CBL_Docs/lgs93.html)


