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Abstract

We consider the following repulsive-productive chemotaxis model: Let p ∈ (1, 2), find

u ≥ 0, the cell density, and v ≥ 0, the chemical concentration, satisfying ∂tu−∆u−∇ · (u∇v) = 0 in Ω, t > 0,

∂tv −∆v + v = up in Ω, t > 0,
(1)

in a bounded domain Ω ⊆ Rd, d = 2, 3. By using a regularization technique, we prove

the existence of solutions for problem (1). Moreover, we propose three fully discrete Finite

Element (FE) nonlinear approximations of problem (1), where the first one is defined in

the variables (u, v), and the second and third ones introduce σ = ∇v as auxiliary variable.

We prove some unconditional properties such as mass-conservation, energy-stability and

solvability of the schemes. Finally, we compare the behavior of these schemes throughout

several numerical simulations and give some conclusions.
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1 Introduction

Chemotaxis is the biological process of the movement of living organisms in response to a chemical

stimulus, which can be given towards a higher (chemo-attraction) or lower (chemo-repulsion)
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concentration of a chemical substance. At the same time, the presence of living organisms can

produce or consume chemical substance. A repulsive-productive chemotaxis model can be given

by the following parabolic PDE’s system: ∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,

∂tv −∆v + v = f(u) in Ω, t > 0,

where Ω ⊆ Rd, d = 2, 3, is a bounded domain with boundary ∂Ω. The unknowns for this

model are u(x, t) ≥ 0, the cell density, and v(x, t) ≥ 0, the chemical concentration. Moreover,

f(u) ≥ 0 (if u ≥ 0) is the production term. In this paper, we consider the particular case in

which f(u) = up, with 1 < p < 2, and then we focus on the following initial-boundary value

problem: 

∂tu−∆u = ∇ · (u∇v) in Ω, t > 0,

∂tv −∆v + v = up in Ω, t > 0,

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0 in Ω.

(2)

In the case of linear (p = 1) and quadratic (p = 2) production terms, the problem (2) is well-

posed (see [7, 13] respectively) in the following sense: there exist global in time weak solutions

(based on an energy inequality) and, for 2D domains, there exists a unique global in time strong

solution. However, as far as we know, there are not works studying problem (2) with production

up, with 1 < p < 2.

Problem (2) is conservative in u, because the total mass
∫

Ω u(·, t) remains constant in time, as

we can check integrating equation (2)1 in Ω,

d

dt

(∫
Ω
u(·, t)

)
= 0, i.e.

∫
Ω
u(·, t) =

∫
Ω
u0 := m0, ∀t > 0. (3)

The first aim of this work is to study the existence of weak-strong solutions for problem (2) (in

the sense of Definition 3.1 below), satisfying in particular the energy inequality (9) below. The

second aim of this work is to design numerical methods for model (2) conserving, at the discrete

level, the mass-conservation and energy-stability properties of the continuous model (see (3) and

(9), respectively).

There are only a few works about numerical analysis for chemotaxis models. For instance, for the
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Keller-Segel system (i.e. with chemo-attraction and linear production), in [9] Filbet proved the

existence of discrete solutions and the convergence of a finite volume scheme. Saito, in [20, 21],

studied error estimates for a conservative Finite Element (FE) approximation. In [8], some error

estimates are proved for a fully discrete discontinuous FE method, and a mixed FE approxima-

tion is studied in [18].

Energy stable numerical schemes have also been studied in the chemotaxis framework. An

energy-stable finite volume scheme for a Keller-Segel model with an additional cross-diffusion

term has been studied in [6]. In [13, 14], unconditionally energy stable time-discrete numerical

schemes and fully discrete FE schemes for a chemo-repulsion model with quadratic production

have been analyzed. In [15], the authors studied unconditionally energy stable fully discrete FE

schemes for a chemo-repulsion model with linear production. However, as far as we know, for the

chemo-repulsion model with production term up (2) there are not works studying energy-stable

numerical schemes.

The outline of this paper is as follows: In Section 2, we give the notation and some preliminary

results that will be used throughout the paper. In Section 3, we prove the existence of weak-strong

solutions of model (2) (in the sense of Definition 3.1 below) by using a regularization technique.

In Section 4, we propose three fully discrete FE nonlinear approximations of problem (2), where

the first one is defined in the variables (u, v), and the second and third ones introduce σ = ∇v as

an auxiliary variable. We prove some unconditional properties such as mass-conservation, energy-

stability and solvability of the schemes. In Section 5, we compare the behavior of the schemes

throughout several numerical simulations; and in Section 6, the main conclusions obtained in

this paper are sumarized.

2 Notation and preliminary results

We recall some functional spaces which will be used throughout this paper. We will consider the

usual Lebesgue spaces Lq(Ω), 1 ≤ q ≤ ∞, with norm ‖ · ‖Lq . In particular, the L2(Ω)-norm will

be denoted by ‖ · ‖0. From now on, (·, ·) will denote the standard L2-inner product over Ω. We

also consider the usual Sobolev spaces Wm,p(Ω) = {u ∈ Lp(Ω) : ‖∂αu‖Lp < +∞, ∀|α| ≤ m}, for

a multi-index α and m ∈ N, with norm denoted by ‖ · ‖Wm,p . In the case when p = 2, we denote
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Hm(Ω) := Wm,2(Ω), with respective norm ‖ · ‖m. Moreover, we denote by

Wm,p
n (Ω) :=

{
u ∈Wm,p(Ω) :

∂u

∂n
= 0 on ∂Ω

}
,

H1
σ(Ω) := {σ ∈H1(Ω) : σ · n = 0 on ∂Ω},

and we will use the following equivalent norms in H1(Ω) and H1
σ(Ω), respectively (see [19] and

[2, Corollary 3.5], respectively):

‖u‖21 = ‖∇u‖20 +

(∫
Ω
u

)2

, ∀u ∈ H1(Ω),

‖σ‖21 = ‖σ‖20 + ‖rot σ‖20 + ‖∇ · σ‖20, ∀σ ∈H1
σ(Ω), (4)

where rot σ denotes the well-known rotational operator (also called curl) which is scalar for 2D

domains and vectorial for 3D ones. In particular, (4) implies that, for all σ = ∇v ∈H1
σ(Ω),

‖∇v‖21 = ‖∇v‖20 + ‖∆v‖20. (5)

If Z is a general Banach space, its topological dual space will be denoted by Z ′. Moreover, the

letters C,K will denote different positive constants which may change from line to line.

We will use the following results:

Theorem 2.1. ([10]) Let 1 < q < +∞ and suppose that f ∈ Lq(0, T ;Lq(Ω)), u0 ∈ Ŵ 2− 2
q
,q

(Ω),

where

Ŵ
2− 2

q
,q

(Ω) :=

 W
2− 2

q
,q

(Ω) if q < 3,

W
2− 2

q
,q

n (Ω) if q > 3.

Then, the problem 
∂tu−∆u = f in Ω, t > 0,

∂u

∂n
= 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) in Ω,

admits a unique solution u in the class

u ∈ Lq(0, T ;W 2,q(Ω)) ∩ C([0, T ]; Ŵ
2− 2

q
,q

(Ω)), ∂tu ∈ Lq(0, T ;Lq(Ω)).
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Moreover, there exists a positive constant C = C(q,Ω, T ) such that

‖u‖
C([0,T ];Ŵ

2− 2
q ,q

(Ω))
+‖∂tu‖Lq(0,T ;Lq(Ω))+‖u‖Lq(0,T ;W 2,q(Ω)) ≤ C(‖f‖Lq(0,T ;Lq(Ω))+‖u0‖

Ŵ
2− 2

q ,q
(Ω)

).

Proposition 2.2. ([1]) Let X be a Banach space, Ω ⊆ X an open subset, U ⊆ Ω a nonempty

convex subset and J : Ω→ R a functional. Suppose that J is G−differentiable in Ω. Then, J is

convex over U if and only if the following relation holds

J(x1)− J(x2) ≤ δJ(x1, x1 − x2), ∀x1, x2 ∈ U, x1 6= x2. (6)

Finally, we will use the following result to get large time estimates [16]:

Lemma 2.3. Assume that δ, β, k > 0 and dn ≥ 0 satisfy

(1 + δk)dn+1 ≤ dn + kβ, ∀n ≥ 0.

Then, for any n0 ≥ 0,

dn ≤ (1 + δk)−(n−n0)dn0 + δ−1β, ∀n ≥ n0.

3 Analysis of the continuous model

In this section, we will prove the existence of weak-strong solutions of problem (2) in the sense

of the following definition.

Definition 3.1. (Weak-strong solutions of (2)) Let 1 < p < 2. Given (u0, v0) ∈ Lp(Ω) ×

H1(Ω) with u0 ≥ 0, v0 ≥ 0 a.e. in Ω, a pair (u, v) is called weak-strong solution of problem (2)

in (0,+∞), if u ≥ 0, v ≥ 0 a.e. in (0,+∞)× Ω,

u ∈ L∞(0,+∞;Lp(Ω)) ∩ L
5p
p+3 (0, T ;W

1, 5p
p+3 (Ω)), ∀T > 0,

v ∈ L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)), ∀T > 0,

∂tu ∈ L
10p
3p+6 (0, T ;W

1, 10p
7p−6 (Ω)′), ∂tv ∈ L

5
3 (0, T ;L

5
3 (Ω)), ∀T > 0,

the following variational formulation for the u-equation holds

∫ T

0
〈∂tu, ū〉+

∫ T

0
(∇u,∇ū) +

∫ T

0
(u∇v,∇ū) = 0, ∀ū ∈ L

10p
7p−6 (0, T ;W

1, 10p
7p−6 (Ω)), ∀T > 0, (7)
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the v-equation holds pointwisely

∂tv −∆v + v = up a.e. (t, x) ∈ (0,+∞)× Ω, (8)

the boundary condition
∂v

∂n
= 0 and the initial conditions (2)4 are satisfied, and the following

energy inequality (in integral version) holds for a.e. t0, t1 with t1 ≥ t0 ≥ 0:

E(u(t1), v(t1))− E(u(t0), v(t0)) +

∫ t1

t0

(
4

p
‖∇(up/2(s))‖20 + ‖∇v(s)‖21

)
ds ≤ 0, (9)

where

E(u, v) =
1

p− 1
‖u‖pp +

1

2
‖∇v‖20. (10)

Observe that any weak-strong solution of (2) is conservative in u (see (3)). In addition, integrating

(2)2 in Ω, we deduce
d

dt

(∫
Ω
v

)
+

∫
Ω
v =

∫
Ω
up. (11)

3.1 Regularized problem

In order to prove the existence of weak-strong solution of problem (2) in the sense of Definition

3.1, we introduce the following regularized problem associated to model (2): Let ε ∈ (0, 1), find

(uε, zε), with uε ≥ 0 a.e. in (0,+∞)× Ω, such that, for all T > 0,

uε, zε ∈ X̃ := {w ∈ L∞(0, T ;W
4
5
, 5
3 (Ω)) ∩ L

5
3 (0, T ;W 2, 5

3 (Ω)) : ∂tw ∈ L
5
3 (0, T ;L

5
3 (Ω))}, (12)

and 

∂tu
ε −∆uε = ∇ · (uε∇v(zε)) in Ω, t > 0,

∂tz
ε −∆zε + zε = (uε)p in Ω, t > 0,

∂uε

∂n
=
∂zε

∂n
= 0 on ∂Ω, t > 0,

uε(x, 0) = uε0(x) ≥ 0, zε(x, 0) = vε0(x)− ε∆vε0(x) in Ω,

(13)

where vε = v(zε) is the unique solution of the elliptic-Newman problem

 vε − ε∆vε = zε in Ω,

∂vε

∂n
= 0 on ∂Ω,

(14)
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and (uε0, z
ε
0) ∈W

4
5
, 5
3 (Ω)2 with

(uε0, z
ε
0)→ (u0, z0) in L2(Ω)× L2(Ω), as ε→ 0. (15)

Taking into account (12), system (13) is satisfied a.e. in (0,+∞) × Ω. From now on in this

section, we will denote vε(zε) solution of (14) only by vε. Observe that if (uε, zε) is any solution

of (13), then (3) and (11) are satisfied for (u, v) = (uε, vε).

Theorem 3.2. Let ε ∈ (0, 1). Then, there exists at least one solution of problem (12)-(13).

Proof. We will use the Leray-Schauder fixed point theorem. With this aim, we denote

X := L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

and we define the operator R : X × X → X̃ × X̃ ↪→ X × X by R(ũε, z̃ε) = (uε, zε), such that

(uε, zε) solves the following linear decoupled problem



∂tu
ε −∆uε = ∇ · (ũε+∇ṽε) in Ω, t > 0,

∂tz
ε −∆zε = (ũε)p − z̃ε in Ω, t > 0,

∂uε

∂n
=
∂zε

∂n
= 0 on ∂Ω, t > 0,

uε(x, 0) = uε0(x) ≥ 0, zε(x, 0) = vε0(x)− ε∆vε0(x) in Ω,

(16)

where ṽε = v(z̃ε) and, in general, we denote a+ := max{a, 0}. Then, (uε, zε) is a solution of (13)

iff (uε, zε) is a fixed point of the operator R defined in (16). Let us check every hypotheses of

Leray-Schauder Theorem:

1. R is well defined. Observe that if z̃ε ∈ X , from the H2 and H3-regularity of problem (14)

(see [11, Theorems 2.4.2.7 and 2.5.1.1] respectively), we have that

ṽε ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)). (17)

Thus, we deduce that ∇ṽε ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ↪→ L10(0, T ;L10(Ω)).

Then, using this fact and taking into account that (ũε, z̃ε) ∈ X×X ↪→ L10/3(0, T ;L10/3(Ω))2,

we obtain that ∇ · (ũε+∇ṽε) = ∇ũε+∇ṽε + ũε+∆ṽε ∈ L
5
3 (0, T ;L

5
3 (Ω)) and (ũε)p + z̃ε ∈

L
5
3 (0, T ;L

5
3 (Ω)) for any p ∈ (1, 2) (using that ũε+,∆ṽε ∈ L

10
3 (0, T ;L

10
3 (Ω))). Thus, ap-

plying Theorem 2.1 to (16), we deduce that there exists a unique solution (uε, zε) of (16),
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(uε, zε) ∈ X̃ × X̃ (where X̃ is defined in (12)).

2. All possible fixed points of λR (with λ ∈ (0, 1]) are bounded in X ×X and uε ≥ 0. In fact,

observe that if (uε, zε) is a fixed point of λR, then (uε, zε) satisfies



∂tu
ε −∆uε = λ∇ · (uε+∇vε) in Ω, t > 0,

∂tz
ε −∆zε = λ(uε)p − λzε in Ω, t > 0,

∂uε

∂n
=
∂zε

∂n
= 0 on ∂Ω, t > 0,

uε(x, 0) = uε0(x) ≥ 0, zε(x, 0) = vε0(x)− ε∆vε0(x) in Ω,

(18)

Multiplying (18)1 by uε− := min{uε, 0} and integrating in Ω, we have

1

2

d

dt
‖uε−‖20 + ‖∇uε−‖20 = λ(uε+∇vε,∇uε−) = 0,

which, taking into account that uε0(x) ≥ 0 a.e. in Ω, implies that uε ≥ 0 a.e. in (0,+∞)×Ω.

Thus, uε+ = uε. Now, we test (18)1 and (18)2 by
p

p− 1
(uε)p−1 and −∆vε respectively, and

adding both equations, the terms −λ p

p− 1
(uε∇vε,∇(uε)p−1) and λ(∇(uε)p,∇vε) cancel,

and taking into account (14), we obtain

d

dt
Eε(uε, vε) +

4

p

∫
Ω
|∇((uε)p/2)|2

+ε‖∇(∆vε)‖20 + ‖∆vε‖20 = −λ‖∇vε‖20 − λε‖∆vε‖20 ≤ 0, (19)

where

Eε(uε, vε) :=
1

p− 1
‖uε‖pLp +

1

2
‖∇vε‖20 +

ε

2
‖∆vε‖20.

Moreover, we observe that the function yε(t) =
(∫

Ω
vε(x, t) dx

)2
satisfies (yε)′(t)+yε(t) ≤

wε(t), with wε(t) = ‖uε(t)‖2pLp . In fact, it follows by multiplying (11) (for (u, v) =

(uε, vε)) by
∫

Ω
vε(x, t) dx and using the Young inequality. Therefore, yε(t) = yε(0) e−t +∫ t

0
e−(t−s)wε(s) ds, which implies that

(∫
Ω
vε(x, t) dx

)2
≤
(∫

Ω
vε0(x) dx

)2
+ ‖uε‖2pL∞(0,+∞;Lp), ∀t ≥ 0. (20)
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Then, from (19)-(20) and using (5), we deduce the following estimates with respect to λ:


(uε, vε) is bounded in L∞(0,+∞;Lp(Ω)×H2(Ω)),

(uε)
p
2 is bounded in L∞(0,+∞;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ↪→ L

10
3 (0, T ;L

10
3 (Ω)),

uε is bounded in Lp(0, T ;L3p(Ω)) and vε is bounded in L2(0, T ;H3(Ω)).

(21)

Then, from (21) we conclude that zε is bounded in X . Moreover, testing (18)1 by uε, we

have

1

2

d

dt
‖uε‖20 + ‖uε‖21 = −λ(uε∇vε,∇uε) + ‖uε‖20 ≤

1

2
‖uε‖21 + C

(
‖∇vε‖41 + 1

)
‖uε‖20,

from which, taking into account (21) and using the Gronwall Lemma, we deduce that uε

is bounded in X .

3. R is compact. Let {(ũεn, z̃εn)}n∈N be a bounded sequence in X × X . Then (uεn, z
ε
n) =

R(ũεn, z̃
ε
n) solves (16) (with (ũεn, z̃

ε
n) and (uεn, z

ε
n) instead of (ũε, z̃ε) and (uε, zε) respectively).

Therefore, analogously as in item 1, we obtain that∇·(ũεn+∇ṽεn) and (ũεn)p+z̃εn are bounded

in L
5
3 (0, T ;L

5
3 (Ω)); and therefore, from Theorem 2.1 we conclude that {R(ũεn, z̃

ε
n)}n∈N is

bounded in X̃ ×X̃ which is compactly embedded in X ×X , and thus R is compact. Observe

that the compactness embedding comes from the continuous embedding (using embeddings

W k,p(Ω) ↪→ Hs(Ω), see [17, Theorem 9.6]):

X̃ ↪→ L∞(0, T ;H1/2(Ω)) ∩ L5/3(0, T ;H17/10(Ω)) ↪→ L2(0, T ;H3/2(Ω)).

Then uε, zε ∈ L∞(0, T ;H1/2(Ω))∩L2(0, T ;H3/2(Ω)) and ∂tuε, ∂tzε ∈ L5/3(0, T ;L5/3(Ω)),

hence the compactness holds by applying the Aubin-Lions Lemma (see [22]).

4. R is continuous from X × X into X × X . Let {(ũεn, z̃εn)}n∈N ⊂ X × X be a sequence such

that

(ũεn, z̃
ε
n)→ (ũε, z̃ε) in X × X , as n→ +∞. (22)

Therefore, {(ũεn, z̃εn)}n∈N is bounded in X ×X , and from item 3 we deduce that {(uεn, zεn) =

R(ũεn, z̃
ε
n)}n∈N is bounded in X̃ × X̃ . Then, there exist (ûε, ẑε) and a subsequence of

9



{R(ũεn, z̃
ε
n)}n∈N still denoted by {R(ũεn, z̃

ε
n)}n∈N such that

R(ũεn, z̃
ε
n)→ (ûε, ẑε) weakly in X̃ × X̃ and strongly in X × X . (23)

Then, from (22)-(23), a standard procedure allows us to pass to the limit, as n goes

to +∞, in (16) (with (ũεn, z̃
ε
n) and (uεn, z

ε
n) instead of (ũε, z̃ε) and (uε, zε) respectively),

and we deduce that R(ũε, z̃ε) = (ûε, ẑε). Therefore, we have proved that any convergent

subsequence of {R(ũεn, z̃
ε
n)}n∈N converges to R(ũε, z̃ε) strong in X×X , and from uniqueness

of R(ũε, z̃ε), we conclude that the whole sequence R(ũεn, z̃
ε
n)→ R(ũε, z̃ε) in X × X . Thus,

R is continuous.

Therefore, the hypotheses of the Leray-Schauder fixed point theorem are satisfied and we conclude

that the map R(ũε, z̃ε) has a fixed point (uε, zε), that is, R(uε, zε) = (uε, zε), which is a solution

of problem (12)-(13).

3.2 Existence of weak-strong solutions of (2)

Theorem 3.3. There exists at least one (u, v) weak-strong solution of problem (2).

Proof. Observe that a variational problem associated to (13) is:


∫ T

0
〈∂tuε, ū〉+

∫ T

0
(∇uε,∇ū) +

∫ T

0
(uε∇vε,∇ū) = 0, ∀ū ∈ L

10p
7p−6 (0, T ;W

1, 10p
7p−6 (Ω))∫ T

0
〈∂tzε, z̄〉+

∫ T

0
(∇zε,∇z̄) +

∫ T

0
(zε, z̄) =

∫ T

0
((uε)p, z̄), ∀z̄ ∈ L

5
2 (0, T ;H1(Ω)).

(24)

Recall that vε = v(zε) is the unique solution of problem (14). From (19) we have that (uε, vε)

satisfies the following energy equality:

d

dt
Eε(uε, vε) +

4

p
‖∇((uε)p/2)‖20 + ε‖∆vε‖21 + ‖∇vε‖21 = 0. (25)

Then, from (25) and using (20) we deduce the following estimates (independent of ε)


{(uε)

p
2 } is bounded in L∞(0,+∞;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ↪→ L

10
3 (0, T ;L

10
3 (Ω)),

{vε} is bounded in L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

{
√
ε∆vε} is bounded in L∞(0,+∞;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

(26)

10



and therefore,



{uε} is bounded in L∞(0,+∞;Lp(Ω)) ∩ Lp(0, T ;L3p(Ω)) ↪→ L
5p
3 (0, T ;L

5p
3 (Ω)),

{zε} is bounded in L∞(0,+∞;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

{∂tuε} is bounded in [L
10p
7p−6 (0, T ;W

1, 10p
7p−6 (Ω))]′,

{∂tzε} is bounded in [L
5
2 (0, T ;H1(Ω))]′.

(27)

Moreover, taking into account that from (26)1 we have that∇((uε)p/2) is bounded in L2(0, T ;L2(Ω))

and from (27)1 u1− p
2 is bounded in L

10p
6−3p (0, T ;L

10p
6−3p (Ω)), we conclude that∇uε =

2

p
u1− p

2∇((uε)p/2)

is bounded in L
5p
p+3 (0, T ;L

5p
p+3 (Ω)). Therefore, we deduce that

{uε} is bounded in L
5p
p+3 (0, T ;W

1, 5p
p+3 (Ω)). (28)

Notice that from (14) and (26)3, we can deduce that

‖zε − vε‖L∞L2∩L2H1 ≤ ε‖∆vε‖L∞L2∩L2H1 → 0 as ε→ 0. (29)

Then, from (26)-(29), we deduce that there exists (u, v), with

 u ∈ L∞(0,+∞;Lp(Ω)) ∩ L
5p
3 (0, T ;L

5p
3 (Ω)) ∩ L

5p
p+3 (0, T ;W

1, 5p
p+3 (Ω)),

v ∈ L∞(0,+∞;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

such that for some subsequence of {uε, zε, vε} still denoted by {uε, zε, vε}, the following weak

convergences hold when ε→ 0,



uε → u weakly in L
5p
3 (0, T ;L

5p
3 (Ω)) ∩ L

5p
p+3 (0, T ;W

1, 5p
p+3 (Ω)),

vε → v weakly in L2(0, T ;H2(Ω)),

zε → v weakly in L2(0, T ;H1(Ω)),

∂tu
ε → ∂tu weakly- ? in [L

10p
7p−6 (0, T ;W

1, 10p
7p−6 (Ω))]′,

∂tz
ε → ∂tv weakly- ? in [L

5
2 (0, T ;H1(Ω))]′.

(30)

On the other hand, taking into account (27)3 and (28), the Aubin-Lions Lemma implies that

{uε} is relatively compact in L
5p
p+3 (0, T ;L2(Ω)) (31)

11



(and also in Lr(0, T ;Lr(Ω)), for all r < 5p
3 ). In particular, since uε ≥ 0 then u ≥ 0 a.e. in

(0,+∞)×Ω. Moreover, since the embedding L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) ↪→ L
10
3 (0, T ;L

10
3 (Ω))

is continuous, from (26)2 we deduce that

∇vε → ∇v weakly in L
10
3 (0, T ;L

10
3 (Ω)). (32)

Thus, from (31)-(32) and using that uε∇vε is bounded in L
10p
3p+6 (0, T ;L

10p
3p+6 (Ω)), we deduce that

uε∇vε → u∇v weakly in L
10p
3p+6 (0, T ;L

10p
3p+6 (Ω)). (33)

Moreover, since uε → u strongly in Lp(0, T ;Lp(Ω)), we have that

(uε)p → up strongly in L1(0, T ;L1(Ω)). (34)

Thus, taking to the limit when ε→ 0 in (24), and using (30) and (33)-(34), we obtain that (u, v)

satisfies

∫ T

0
〈∂tu, ū〉+

∫ T

0
(∇u,∇ū) +

∫ T

0
(u∇v,∇ū) = 0, ∀ū ∈ L

10p
7p−6 (0, T ;W

1, 10p
7p−6 (Ω)), (35)

∫ T

0
〈∂tv, z̄〉+

∫ T

0
(∇v,∇z̄) +

∫ T

0
(v, z̄) =

∫ T

0
(up, z̄), ∀z̄ ∈ L

5
2 (0, T ;H1(Ω)), (36)

and therefore, integrating by parts in (36) and taking into account that up ∈ L
5
3 (0, T ;L

5
3 (Ω))

and v ∈ L2(0, T ;H2(Ω)), we arrive at

∂tv −∆v + v = up in L
5
3 (0, T ;L

5
3 (Ω)), (37)

with
∂v

∂n
= 0 on ∂Ω. Notice that the limit function v is nonnegative. In fact, it follows by testing

(37) by v− and taking into account that v0 ≥ 0. Finally, we will prove that (u, v) satisfies the

energy inequality (9). Indeed, integrating (25) in time from t0 to t1, with t1 > t0 ≥ 0, and taking

into account that

∫ t1

t0

d

dt
Eε(uε, vε) = Eε(uε(t1), vε(t1))− Eε(uε(t0), vε(t0)) ∀t0 < t1,

12



since Eε(uε(t), vε(t)) ∈W 1,1(0, T ) for all T > 0, is continuous in time, we deduce

Eε(uε(t1), vε(t1))− Eε(uε(t0), vε(t0))

+

∫ t1

t0

(4

p
‖∇((uε(t))p/2)‖20 + ε‖∆vε(t)‖21 + ‖∇vε(t)‖21

)
dt = 0, ∀t0 < t1. (38)

Now, we will prove that

Eε(uε(t), vε(t))→ E(u(t), v(t)), a.e. t ∈ [0,+∞). (39)

Since uε is relatively compact in Lp(0, T ;Lp(Ω)), we have

uε → u strongly in Lp(0, T ;Lp(Ω)). (40)

Moreover, for any T > 0,

‖Eε (uε(t), vε(t))− E(u(t), v(t))‖L1(0,T ) =

∫ T

0
|Eε(uε(t), vε(t))− E(u(t), v(t))|dt

≤
∫ T

0

∣∣∣∣ 1

p− 1

(
‖uε(t)‖pLp − ‖u(t)‖pLp

)
+

1

2

(
‖∇vε(t)‖20 − ‖∇v(t)‖20

)
+
ε

2
‖∆vε‖20

∣∣∣∣ dt
≤ C p

p− 1
‖uε − u‖Lp(0,T ;Lp)(‖uε‖Lp(0,T ;Lp) + ‖u‖Lp(0,T ;Lp))

p−1

+
1

2
‖∇vε −∇v‖L2(0,T ;L2)(‖∇vε‖L2(0,T ;L2) + ‖∇v‖L2(0,T ;L2)) +

ε

2
‖∆vε‖2L2(0,T ;L2). (41)

Then, taking into account that uε → u strongly in Lp(0, T ;Lp(Ω)), ∇vε → ∇v strongly in

L2(0, T ;L2(Ω)) for any T > 0, and ∆vε is bounded in L2(0, T ;L2(Ω)), from (41) we conclude

that Eε(uε(t), vε(t))→ E(u(t), v(t)) strongly in L1(0, T ) for all T > 0, which implies in particular

(39). Finally, observe that from (40) we have that (uε)p/2 → up/2 strongly in L2(0, T ;L2(Ω));

and since ∇((uε)p/2 is bounded in L2(0, T ;L2(Ω)) we deduce that

∇((uε)p/2)→ ∇(up/2) weakly in L2(0, T ;L2(Ω)).

Then, on the one hand

lim inf
ε→0

∫ t1

t0

(4

p
‖∇((uε(t))p/2)‖20 + ε‖∆vε(t)‖21 + ‖∇vε(t)‖21

)
dt

≥
∫ t1

t0

(4

p
‖∇(u(t)p/2)‖20 + ‖∇v(t)‖21

)
dt ∀t1 ≥ t0 ≥ 0,

13



and on the other hand, owing to (39),

lim inf
ε→0

[
Eε(uε(t1), vε(t1))− Eε(uε(t0), vε(t0))

]
= E(u(t1), v(t1))− E(u(t0), v(t0)),

for a.e. t1, t0 : t1 ≥ t0 ≥ 0. Thus, taking lim inf as ε → 0 in inequality (38), we deduce the

energy inequality (9) for a.e. t0, t1 : t1 ≥ t0 ≥ 0.

4 Fully discrete numerical schemes

In this section we will propose three fully discrete numerical schemes associated to model (2). We

prove some unconditional properties such as mass-conservation, energy-stability and solvability

of the schemes.

4.1 Scheme UVε

In this section, in order to construct an energy-stable fully discrete scheme for model (2), we

are going to make a regularization procedure, in which we will adapt the ideas of [3] (see also

[12]). With this aim, given ε ∈ (0, 1) we consider a function Fε : R→ [0,+∞), approximation of

f(s) = sp, such that Fε ∈ C2(R) and

F ′′ε (s) :=


εp−2 if s ≤ ε,

sp−2 if ε ≤ s ≤ ε−1,

ε2−p if s ≥ ε−1.

(42)

Then, Fε is obtained by integrating in (42) and imposing the conditions F ′ε(1) = 1
p−1 and

Fε(1) = 1
p(p−1) + p3−4p2+3p+2

2p(p−1)2
εp (see Figure 1); and

aε(s) := (p− 1)
F ′ε(s)

F ′′ε (s)
=


(p− 1)s+ (2− p)ε if s ≤ ε,

s if ε ≤ s ≤ ε−1,

(p− 1)s+ (2− p)ε−1 if s ≥ ε−1.

(43)
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Figure 1 – The function Fε and its derivatives.

Lemma 4.1. The function Fε satisfies

Fε(s) ≥
εp−2s2

4
∀s ≤ ε and Fε(s) ≥ Csp ∀s > ε, (44)

where the constant C > 0 is independent of ε.

Proof. Since Fε ∈ C2(R), using the Taylor formula as well as the definition of Fε and F ′ε, we

have that, for some s0 ∈ R between 0 and s,

Fε(s) = Fε(0) + F ′ε(0)s+
1

2
F ′′ε (s0)s2 =

(2− p
p− 1

)2
εp +

2− p
p− 1

εp−1s+
1

2
F ′′ε (s0)s2. (45)

Then, taking into account that F ′′ε (s) = εp−2 for all s ≤ ε, from (45) we have that: (a) if s ∈ [0, ε],

Fε(s) ≥ 1
2ε
p−2s2; and (b) if s < 0, by using the Young inequality,

Fε(s) ≥
(2− p
p− 1

)2
εp − 1

4
εp−2s2 −

(2− p
p− 1

)2
εp +

1

2
εp−2s2 =

1

4
εp−2s2,

from which we deduce (44)1. Finally, (44)2 follows directly from the definition of Fε for s ≥ ε.
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Remark 4.2. Notice that estimates in (44) imply that |s|p ≤ K1Fε(s) +K2 for all s ∈ R, where

the constants K1,K2 > 0 are independent of ε.

Then, taking into account the functions Fε, its derivatives and aε, a regularized version of problem

(2) reads: Find uε : Ω× [0, T ]→ R and vε : Ω× [0, T ]→ R, with uε, vε ≥ 0, such that



∂tuε −∆uε −∇ · (aε(uε)∇vε) = 0 in Ω, t > 0,

∂tvε −∆vε + vε = p(p− 1)Fε(uε) in Ω, t > 0,

∂uε
∂n

=
∂vε
∂n

= 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, vε(x, 0) = v0(x) ≥ 0 in Ω.

(46)

Remark 4.3. The idea is to define a fully discrete scheme associated to (46), taking in general

ε = ε(k, h), such that ε(k, h)→ 0 as (k, h)→ 0, where k is the time step and h the mesh size.

Observe that (formally) multiplying (46)1 by pF ′ε(uε), (46)2 by −∆vε, integrating over Ω and

adding, the chemotaxis and production terms cancel and we obtain the following energy law

d

dt

∫
Ω

(
pFε(uε) +

1

2
|∇vε|2

)
dx +

∫
Ω
pF ′′ε (uε)|∇uε|2dx + ‖∇vε‖21 = 0.

In particular, the modified energy

Eε(u, v) =

∫
Ω

(
pFε(u) +

1

2
|∇v|2

)
dx

is decreasing in time. Thus, we consider a fully discrete approximation of the regularized problem

(46) using a FE discretization in space and the backward Euler discretization in time (considered

for simplicity on a uniform partition of [0, T ] with time step k = T/N : (tn = nk)n=N
n=0 ). Let Ω

be a polygonal domain. We consider a shape-regular and quasi-uniform family of triangulations

of Ω, denoted by {Th}h>0, with simplices K, hK = diam(K) and h := maxK∈Th hK , so that

Ω = ∪K∈ThK. Further, let Nh = {ai}i∈I denote the set of all the vertices of Th, and in this case

we will assume the following hypothesis:

(H) The triangulation is structured in the sense that all simplices have a right angle.

We choose the following continuous FE spaces for uε and vε:

(Uh, Vh) ⊂ H1(Ω)2, generated by P1,Pr with r ≥ 1.
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Remark 4.4. The right-angled constraint (H) and the approximation of Uh by P1-continuous

FE are necessary to obtain the relations (49)-(50) below, which are essential in order to obtain

the energy-stability of the scheme UVε (see Theorem 4.9 below).

We denote the Lagrange interpolation operator by Πh : C(Ω) → Uh, and we introduce the

discrete semi-inner product on C(Ω) (which is an inner product in Uh) and its induced discrete

seminorm (norm in Uh):

(u1, u2)h :=

∫
Ω

Πh(u1u2), |u|h =
√

(u, u)h. (47)

Remark 4.5. In Uh, the norms | · |h and ‖ · ‖0 are equivalents uniformly with respect to h (see

[5]).

We consider also the L2-projection Qh : L2(Ω)→ Uh given by

(Qhu, ū)h = (u, ū), ∀ū ∈ Uh, (48)

and the standard H1-projection Rh : H1(Ω) → Vh. Moreover, owing to the right angled con-

straint (H) and the choice of P1-continuous FE for Uh, following the ideas of [3] (see also [12]),

for each ε ∈ (0, 1), we can construct two operators Λiε : Uh → L∞(Ω)d×d (i = 1, 2) such that

Λiεu
h are symmetric matrices and Λ1

εu
h is positive definite, for all uh ∈ Uh and a.e. in Ω, and

satisfy

(Λ1
εu
h)∇Πh(F ′ε(u

h)) = ∇uh in Ω, (49)

(Λ2
εu
h)∇Πh(F ′ε(u

h)) = (p− 1)∇Πh(Fε(u
h)) in Ω. (50)

Basically, Λiεu
h (i = 1, 2) are constant by elements matrices such that (49) and (50) holds by

elements. In the 1-dimensional case, Λiε are constructed as follows: For all uh ∈ Uh and K ∈ Th
with vertices aK0 and aK1 , we set

Λ1
ε(u

h)|K :=


uh(aK

1 )−uh(aK
0 )

F ′ε(uh(aK
1 ))−F ′ε(uh(aK

0 ))
= 1

F ′′ε (uh(ξ))
if uh(aK0 ) 6= uh(aK1 ),

1
F ′′ε (uh(aK

0 ))
if uh(aK0 ) = uh(aK1 ),

(51)

17



for some ξ ∈ K, and

Λ2
ε(u

h)|K :=

 (p− 1)
Fε(uh(aK

1 ))−Fε(uh(aK
0 ))

F ′ε(uh(aK
1 ))−F ′ε(uh(aK

0 ))
= (p− 1) F

′
ε(uh(ξ1))

F ′′ε (uh(ξ2))
if uh(aK0 ) 6= uh(aK1 ),

(p− 1)
F ′ε(uh(aK

0 ))

F ′′ε (uh(aK
0 ))

if uh(aK0 ) = uh(aK1 ),
(52)

for some ξ1, ξ2 ∈ K. Following [3] (see also [12]), these constructions can be extended to dimen-

sions 2 and 3, and from (51) the following estimate holds:

ε2−pξT ξ ≤ ξTΛ1
ε(u

h)−1ξ ≤ εp−2ξT ξ, ∀ξ ∈ Rd, uh ∈ Uh. (53)

Now, we prove the following result which will be used in order to prove the well-posedness of the

scheme UVε.

Lemma 4.6. Let ‖ · ‖ denote the spectral norm on Rd×d. Then for any given ε ∈ (0, 1) the

function Λ2
ε : Uh → [L∞(Ω)]d×d satisfies, for all uh1 , u

h
2 ∈ Uh and K ∈ Th with vertices {aKl }dl=0,

‖(Λ2
ε(u

h
1)− Λ2

ε(u
h
2))|K‖

≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)} max
l=1,...,d

{|uh1(aKl )− uh2(aKl ))|+ |uh1(aK0 )− uh2(aK0 )|},(54)

where aK0 is the right-angled vertex.

Proof. The proof follows the ideas of [4, Lemma 2.1], with some modifications. For simplicity

in the notation, we will prove (54) in the 1-dimensional case, but this proof can be extended to

dimensions 2 and 3 as in [4, Lemma 2.1]. Observe that, from (52)

‖(Λ2
ε(u

h
1)− Λ2

ε(u
h
2))|K‖ ≤ |(Λ2

ε(u
h
1)− Λ2

ε(u
h
1,2))|K |+ |(Λ2

ε(u
h
1,2)− Λ2

ε(u
h
2))|K |

= (p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣+ (p− 1)

∣∣∣∣ F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ21)

F ′′ε (µ22)

∣∣∣∣ , (55)

where uh1,2 ∈ P1(K) with uh1,2(aK0 ) = uh2(aK0 ) and uh1,2(aK1 ) = uh1(aK1 ), µ1i (i = 1, 2) lie between

uh1(aK0 ) and uh1(aK1 ), µ2i (i = 1, 2) lie between uh2(aK0 ) and uh2(aK1 ), and ξi (i = 1, 2) lie between

uh1(aK1 ) and uh2(aK0 ). Then, first we will show that

(p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣ ≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )|, (56)

for uh1(aK0 ) 6= uh2(aK0 ), because the case uh1(aK0 ) = uh2(aK0 ) is trivially true. With this aim, we
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consider γi (i = 1, 2) lying between uh1(aK0 ) and uh2(aK0 ) such that

F ′ε(γ1) =
Fε(u

h
2(aK0 ))− Fε(uh1(aK0 ))

uh2(aK0 )− uh1(aK0 )
and F ′′ε (γ2) =

F ′ε(u
h
2(aK0 ))− F ′ε(uh1(aK0 ))

uh2(aK0 )− uh1(aK0 )
, (57)

and therefore, from the definitions of ξi, γi and µ1i, i = 1, 2, given after (55) and (57), we deduce

(uh2(aK0 )− uh1(aK0 ))F ′ε(γ1) = (uh2(aK0 )− uh1(aK1 ))F ′ε(ξ1) + (uh1(aK1 )− uh1(aK0 ))F ′ε(µ11), (58)

(uh2(aK0 )− uh1(aK0 ))F ′′ε (γ2) = (uh2(aK0 )− uh1(aK1 ))F ′′ε (ξ2) + (uh1(aK1 )− uh1(aK0 ))F ′′ε (µ12). (59)

Then, for uh2(aK0 ), uh1(aK0 ) and uh1(aK1 ), there are only 3 options: (1) uh1(aK1 ) lies between uh2(aK0 )

and uh1(aK0 ); (ii) uh2(aK0 ) lies between uh1(aK1 ) and uh1(aK0 ); and (iii) uh1(aK0 ) lies between uh1(aK1 )

and uh2(aK0 ).

Notice that from (42)-(43), we have that F ′ε and (p− 1) F
′
ε

F ′′ε
are globally Lipschitz functions with

constants εp−2 and 1 respectively, and 1
|F ′′ε |
≤ εp−2. Then, in case (i), taking into account that

all intermediate values µ1i, γi, ξi (i = 1, 2) lie between uh2(aK0 ) and uh1(aK0 ), we have

(p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣ ≤ (p− 1)

∣∣∣∣F ′ε(µ11)− F ′ε(µ12)

F ′′ε (µ12)

∣∣∣∣
+(p− 1)

∣∣∣∣ F ′ε(µ12)

F ′′ε (µ12)
− F ′ε(ξ2)

F ′′ε (ξ2)

∣∣∣∣+ (p− 1)

∣∣∣∣F ′ε(ξ1)− F ′ε(ξ2)

F ′′ε (ξ2)

∣∣∣∣
≤ (p− 1)ε2(p−2)|µ11 − µ12|+ |µ12 − ξ2|+ (p− 1)ε2(p−2)|ξ1 − ξ2|

≤ 3 max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )|. (60)

In case (ii), all intermediate values µ1i, γi, ξi (i = 1, 2) lie between uh1(aK1 ) and uh1(aK0 ), and from

(58)-(59) by eliminating the term (uh2(aK0 )− uh1(aK1 )), we have the equality

(uh1(aK1 )− uh1(aK0 ))

[
F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ11)

F ′′ε (µ12)

]
= (uh2(aK0 )− uh1(aK0 ))

F ′′ε (γ2)

F ′′ε (µ12)

[
F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(γ1)

F ′′ε (γ2)

]
,

from which, bounding the term
∣∣∣ F ′ε(ξ1)
F ′′ε (ξ2) −

F ′ε(γ1)
F ′′ε (γ2)

∣∣∣ as in (60), we obtain

(p− 1) |uh1(aK1 )− uh1(aK0 ))|
∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣
≤ ε2(p−2)3 max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )||uh1(aK1 )− uh1(aK0 ))|,
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and therefore, dividing by |uh1(aK1 )− uh1(aK0 ))| we arrive at

(p− 1)

∣∣∣∣ F ′ε(µ11)

F ′′ε (µ12)
− F ′ε(ξ1)

F ′′ε (ξ2)

∣∣∣∣ ≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)}|uh1(aK0 )− uh2(aK0 )|. (61)

In case (iii), by arguing analogously to case (ii), from (58)-(59) we have

(uh1(aK1 )− uh2(aK0 ))

[
F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ11)

F ′′ε (µ12)

]
= (uh2(aK0 )− uh1(aK0 ))

F ′′ε (γ2)

F ′′ε (ξ2)

[
F ′ε(γ1)

F ′′ε (γ2)
− F ′ε(µ11)

F ′′ε (µ12)

]
,

which implies (61). Therefore, we have proved (56). Analogously, we can prove that

(p− 1)

∣∣∣∣ F ′ε(ξ1)

F ′′ε (ξ2)
− F ′ε(µ21)

F ′′ε (µ22)

∣∣∣∣ ≤ 3ε2(p−2) max{1, (p− 1)ε2(p−2)}|uh1(aK1 )− uh2(aK1 )|. (62)

Thus, from (55), (56) and (62) we conclude (54).

Let Ah : Vh → Vh be the linear operator defined as follows

(Ahv
h, v̄) = (∇vh,∇v̄) + (vh, v̄), ∀v̄ ∈ Vh.

Then, the following estimate holds (see for instance, [14, Theorem 3.2]):

‖vh‖W 1,6 ≤ C‖Ahvh‖0, ∀vh ∈ Vh. (63)

Thus, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme UVε:

Initialization: Let (u0, v0) = (Qhu0, R
hv0) ∈ Uh × Vh.

Time step n: Given (un−1
ε , vn−1

ε ) ∈ Uh × Vh, compute (unε , v
n
ε ) ∈ Uh × Vh solving

 (δtu
n
ε , ū)h + (∇unε ,∇ū) = −(Λ2

ε(u
n
ε )∇vnε ,∇ū), ∀ū ∈ Uh,

(δtv
n
ε , v̄) + (Ahv

n
ε , v̄) = p(p− 1)(Πh(Fε(u

n
ε )), v̄), ∀v̄ ∈ Vh,

(64)

where, in general, we denote δtan :=
an − an−1

k
.

Remark 4.7. (Positivity of vnε ) By using the mass-lumping technique in all terms of (64)2

excepting the self-diffusion term (∇vnε ,∇v̄), and approximating Vh by P1-continuous FE, we can

prove that if vn−1
ε ≥ 0 then vnε ≥ 0. In fact, it follows testing (64)2 by v̄ = Πh(vnε−) ∈ Vh, where
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vnε− := min{vnε , 0} (see Remark 3.10 in [15]).

4.1.1 Mass-conservation, Energy-stability and Solvability

Since ū = 1 ∈ Uh and v̄ = 1 ∈ Vh, we deduce that the scheme UVε is conservative in unε , that is,

(unε , 1) = (unε , 1)h = (un−1
ε , 1)h = · · · = (u0, 1)h = (u0, 1) = (Qhu0, 1) = (u0, 1) := m0, (65)

and we have the following behavior for
∫

Ω v
n
ε :

δt

(∫
Ω
vnε

)
= p(p− 1)

∫
Ω

Πh(Fε(u
n
ε ))−

∫
Ω
vnε . (66)

Definition 4.8. A numerical scheme with solution (unε , v
n
ε ) is called energy-stable with respect

to the energy

Ehε (u, v) = p(Fε(u), 1)h +
1

2
‖∇v‖20 (67)

if this energy is time decreasing, that is Ehε (unε , v
n
ε ) ≤ Ehε (un−1

ε , vn−1
ε ) for all n ≥ 1.

Theorem 4.9. (Unconditional stability) The scheme UVε is unconditionally energy stable

with respect to Ehε (u, v). In fact, if (unε , v
n
ε ) is a solution of UVε, then the following discrete

energy law holds

δtEhε (unε , v
n
ε )+

kε2−pp

2
‖δtunε ‖20+

k

2
‖δt∇vnε ‖20+pε2−p‖∇unε ‖20+‖(Ah−I)∇vnε ‖20+‖∇vnε ‖20 ≤ 0. (68)

Proof. Testing (64)1 by ū = pΠh(F ′ε(u
n
ε )) and (64)2 by v̄ = (Ah−I)vnε , adding and taking into ac-

count that Λiε(u
n
ε ) are symmetric as well as (49)-(50), the terms −p(Λ2

ε(u
n
ε )∇vnε ,∇Πh(F ′ε(u

n
ε ))) =

−p(∇vnε ,Λ2
ε(u

n
ε )∇Πh(F ′ε(u

n
ε ))) = −p(p− 1)(∇vnε ,∇Πh(Fε(u

n
ε ))) and p(p− 1)(Πh(Fε(u

n
ε )), (Ah−

I)vnε ) = p(p − 1)(∇Πh(Fε(u
n
ε )),∇vnε ) cancel, and using that ∇Πh(F ′ε(u

n
ε )) = Λ1

ε(u
n
ε )−1∇unε we

obtain

p(δtu
n
ε , F

′
ε(u

n
ε ))h +p

∫
Ω

(∇unε )T ·Λ1
ε(u

n
ε )−1 ·∇unε dx

+δt

(1

2
‖∇vnε ‖20

)
+
k

2
‖δt∇vnε ‖20 + ‖(Ah − I)vnε ‖20 + ‖∇vnε ‖20 = 0. (69)

Moreover, observe that from the Taylor formula we have

Fε(u
n−1
ε ) = Fε(u

n
ε ) + F ′ε(u

n
ε )(un−1

ε − unε ) +
1

2
F ′′ε (θunε + (1− θ)un−1

ε )(un−1
ε − unε )2,
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and therefore,

δtu
n
ε · F ′ε(unε ) = δt

(
Fε(u

n
ε )
)

+
k

2
F ′′ε (θunε + (1− θ)un−1

ε )(δtu
n
ε )2. (70)

Then, using (70) and taking into account that Πh is linear and F ′′ε (s) ≥ ε2−p for all s ∈ R, we

have

(δtu
n
ε , F

′
ε(u

n
ε ))h = δt

(∫
Ω

Πh(Fε(u
n
ε ))
)

+
k

2

∫
Ω

Πh(F ′′ε (θunε + (1− θ)un−1
ε )(δtu

n
ε )2)

≥ δt
(

(Fε(u
n
ε ), 1)h

)
+
kε2−p

2
|δtunε |2h. (71)

Thus, from (69), (53), (71) and Remark 4.5, we arrive at (68).

Corollary 4.10. (Uniform estimates) Assume that (u0, v0) ∈ L2(Ω)×H1(Ω). Let (unε , v
n
ε )

be a solution of scheme UVε. Then, it holds

p(Fε(u
n
ε ), 1)h+

1

2
‖vnε ‖21+k

n∑
m=1

(
pε2−p‖∇umε ‖20 + ‖(Ah − I)vmε ‖20 + ‖∇vmε ‖20

)
≤ C0

(p− 1)2
, ∀n ≥ 1,

(72)

k

n+n0∑
m=n0+1

‖vmε ‖2W 1,6 ≤
C1

(p− 1)2
(1 + kn), ∀n ≥ 1, (73)

where the integer n0 ≥ 0 is arbitrary, with the constants C0, C1 > 0 depending on the data

(Ω, u0, v0), but independent of k, h, n and ε. Moreover,

‖Πh(unε−)‖20 ≤
C0

(p− 1)2
ε2−p and ‖unε ‖

p
Lp ≤

C0K

(p− 1)2
+K, ∀n ≥ 1, (74)

where unε− := min{unε , 0} ≤ 0 and the constant K > 0 is independent of k, h, n and ε.

Remark 4.11. (Approximated positivity of unε ) From (74)1, the following estimate holds

max
n≥0
‖Πh(unε−)‖20 ≤

C0

(p− 1)2
ε2−p.

Proof. First, taking into account that (u0, v0) = (Qhu0, R
hv0), u0 ≥ 0 (and therefore, u0 ≥ 0),

as well as the definition of Fε, we have that

Ehε (u0, v0) = p

∫
Ω

Πh(Fε(u
0)) +

1

2
‖∇v0‖20 ≤

C

p− 1

∫
Ω

Πh
(

(u0)2 +
1

p− 1

)
+

1

2
‖∇v0‖20
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≤ C

p− 1

(
‖u0‖20 + ‖∇v0‖20 +

1

p− 1

)
≤ C

p− 1

(
‖u0‖20 + ‖v0‖21 +

1

p− 1

)
≤ C0

(p− 1)2
,(75)

where the constant C0 > 0 depends on the data (Ω, u0, v0), but is independent of k, h, n and ε.

Therefore, from the discrete energy law (68) and estimate (75), we have

Ehε (unε , v
n
ε ) + k

n∑
m=1

(
pε2−p‖∇umε ‖20 + ‖(Ah − I)vmε ‖20 + ‖∇vmε ‖20

)
≤ Ehε (u0, v0) ≤ C0

(p− 1)2
. (76)

Moreover, from (66), the definition of Fε, Remark 4.2 and (76), we have

(1 + k)

∣∣∣∣∫
Ω
vnε

∣∣∣∣− ∣∣∣∣∫
Ω
vn−1
ε

∣∣∣∣ ≤ kp(p− 1)

∫
Ω

Πh(Fε(u
n
ε )) ≤ k C

p− 1
, (77)

where the constant C > 0 is independent of k, h, n and ε. Then, applying Lemma 2.3 in (77)

(for δ = 1 and β = C
p−1), we arrive at

∣∣∣∣∫
Ω
vnε

∣∣∣∣ ≤ (1 + k)−n
∣∣∣∣∫

Ω
v0
h

∣∣∣∣+
C

p− 1
= (1 + k)−n

∣∣∣∣∫
Ω
Rhv0

∣∣∣∣+
C

p− 1
,

which, together with (76), imply (72). Moreover, adding (68) fromm = n0+1 tom = n+n0, and

using (63) and (72), we deduce (73). On the other hand, from (44)1, we have 1
4ε
p−2(unε−(x))2 ≤

Fε(u
n
ε (x)) for all unε ∈ Uh; and therefore, using that (Πhu)2 ≤ Πh(u2) for all u ∈ C(Ω), we have

1

4
εp−2

∫
Ω

(Πh(unε−))2 ≤ 1

4
εp−2

∫
Ω

Πh((unε−)2) ≤
∫

Ω
Πh(Fε(u

n
ε )) ≤ C0

(p− 1)2
,

where estimate (72) was used in the last inequality. Thus, we obtain (74)1. Finally, taking into

account that |Πhu|p ≤ Πh(|u|p) for all u ∈ C(Ω), as well as Remark 4.2 and (72), we have

‖unε ‖
p
Lp =

∫
Ω
|Πhunε |p ≤

∫
Ω

Πh(|unε |p) ≤
∫

Ω
Πh(K1Fε(u

n
ε ) +K2) ≤ C0K

(p− 1)2
+K,

arriving at (74)2.

Theorem 4.12. (Unconditional existence) There exists at least one solution (unε , v
n
ε ) of

scheme UVε.

Proof. The proof follows by using the Leray-Schauder fixed point theorem. With this aim, given

(un−1
ε , vn−1

ε ) ∈ Uh × Vh, we define the operator R : Uh × Vh → Uh × Vh by R(ũ, ṽ) = (u, v), such
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that (u, v) ∈ Uh × Vh solves the following linear decoupled problems

u ∈ Uh s.t.
1

k
(u, ū)h + (∇u,∇ū) =

1

k
(un−1
ε , ū)h − (Λ2

ε(ũ)∇ṽ,∇ū), ∀ū ∈ Uh,

v ∈ Vh s.t.
1

k
(v, v̄) + (Ahv, v̄) =

1

k
(vn−1
ε , v̄) + p(p− 1)(Πh(Fε(ũ)), v̄), ∀v̄ ∈ Vh.

The hypotheses of the Leray-Schauder fixed point theorem are satisfied as in Theorem 3.11 of

[15], but applying in this case Lemma 4.6 in order to prove the continuity of the operator R.

Thus, we conclude that the map R has a fixed point (u, v), that is R(u, v) = (u, v), which is a

solution of the scheme UVε.

4.2 Scheme USε

In this section, in order to construct another energy-stable fully discrete scheme for (2), we are

going to use the regularized functions Fε, F ′ε and F ′′ε defined in Section 4.1 and we will consider

the auxiliary variable σ = ∇v. Then, another regularized version of problem (2) reads: Find

uε : Ω× [0, T ]→ R and σε : Ω× [0, T ]→ Rd, with uε ≥ 0, such that



∂tuε −∆uε −∇ · (uεσε) = 0 in Ω, t > 0,

∂tσε + rot(rot σε)−∇(∇ · σε) + σε = p uε∇(F ′ε(uε)) in Ω, t > 0,

∂uε
∂n

= 0, σε · n = 0, [rot σε × n]tang = 0 on ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0, σε(x, 0) = ∇v0(x), in Ω.

(78)

This kind of formulation considering σ = ∇v as auxiliary variable has been used in the con-

struction of numerical schemes for other chemotaxis models (see for instance [14, 15, 23]). Once

problem (78) is solved, we can recover vε from uε by solving


∂tvε −∆vε + vε = upε in Ω, t > 0,

∂vε
∂n

= 0 on ∂Ω, t > 0,

vε(x, 0) = v0(x) ≥ 0 in Ω.

Observe that (formally) multiplying (78)1 by pF ′ε(uε), (78)2 by σε, integrating over Ω and adding

both equations, the terms p(uε∇(F ′ε(uε)),σε) cancel, and we obtain the following energy law

d

dt

∫
Ω

(
pFε(uε) +

1

2
|σε|2

)
dx +

∫
Ω
pF ′′ε (uε)|∇uε|2dx + ‖σε‖21 = 0.
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In particular, the modified energy Eε(u,σ) =

∫
Ω

(
pFε(u) +

1

2
|σ|2

)
dx is decreasing in time.

Then, we consider a fully discrete approximation of the regularized problem (78) using a FE

discretization in space and the backward Euler discretization in time (considered for simplicity

on a uniform partition of [0, T ] with time step k = T/N : (tn = nk)n=N
n=0 ). Concerning the

space discretization, we consider the triangulation as in the scheme UVε, imposing again the

constraint (H) related with the right angled simplices. We choose the following continuous FE

spaces for uε, σε, and vε:

(Uh,Σh, Vh) ⊂ H1(Ω)3, generated by P1,Pm,Pr with m, r ≥ 1.

Remark 4.13. The right-angled constraint (H) and the approximation of Uh by P1-continuous

FE are again necessary in order to obtain the relation (49) and estimate (53) for Λ1
ε, which are

essential in order to obtain the energy-stability of the scheme USε (see Theorem 4.17 below).

Then, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme USε:

Initialization: Let (u0,σ0) = (Qhu0, Q̃
h(∇v0)) ∈ Uh ×Σh.

Time step n: Given (un−1
ε ,σn−1

ε ) ∈ Uh ×Σh, compute (unε ,σ
n
ε ) ∈ Uh ×Σh solving

 (δtu
n
ε , ū)h + (∇unε ,∇ū) = −(unεσ

n
ε ,∇ū), ∀ū ∈ Uh,

(δtσ
n
ε , σ̄) + (Bhσ

n
ε , σ̄) = p(unε∇Πh(F ′ε(u

n
ε )), σ̄), ∀σ̄ ∈ Σh,

(79)

where Qh is the L2-projection on Uh defined in (48), Q̃h is the standard L2-projection on Σh,

and the operator Bh is defined as

(Bhσ
n
ε , σ̄) = (rot σnε , rot σ̄) + (∇ · σnε ,∇ · σ̄) + (σnε , σ̄), ∀σ̄ ∈ Σh.

We recall that Πh : C(Ω) → Uh is the Lagrange interpolation operator, and the discrete semi-

inner product (·, ·)h was defined in (47).

Remark 4.14. Notice that the right-angled constraint (H) is necessary in the implementation

of the scheme UVε (in order to construct the matricial function Λ2
ε(u

n
ε )); but, for the implemen-

tation of the scheme USε, this hypothesis (H) is not necessary.

Remark 4.15. Following the ideas of [15], we can construct another unconditionally energy-
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stable nonlinear scheme in the variables (unε ,σ
n
ε ) without imposing the right-angled constraint

(H), replacing the self-diffusion term (∇unε ,∇ū) by ∇ · ( 1
F ′′ε (unε )∇Πh(F ′ε(u

n
ε ))). However, this

scheme has convergence problems for the linear iterative method as p→ 1 and ε→ 0.

Once the scheme USε is solved, given vn−1
ε ∈ Vh, we can recover vnε = vnε (unε ) ∈ Vh solving:

(δtv
n
ε , v̄) + (∇vnε ,∇v̄) + (vnε , v̄) = p(p− 1)(Fε(u

n
ε ), v̄), ∀v̄ ∈ Vh. (80)

Given unε ∈ Uh and vn−1
ε ∈ Vh, Lax-Milgram theorem implies that there exists a unique vnε ∈ Vh

solution of (80). Moreover, notice that the result concerning to the positivity of vnε solution of

scheme UVε established in Remark 4.7 remains true for vnε in the scheme USε.

4.2.1 Mass-conservation and Energy-stability

Observe that the schemeUSε is also conservative in u (satisfying (65)), and we have the following

behavior for
∫

Ω v
n
ε :

δt

(∫
Ω
vnε

)
= p(p− 1)

∫
Ω
Fε(u

n
ε )−

∫
Ω
vnε .

Definition 4.16. A numerical scheme with solution (unε ,σ
n
ε ) is called energy-stable with respect

to the energy

Ehε (u,σ) = p(Fε(u), 1)h +
1

2
‖σ‖20 (81)

if this energy is time decreasing, that is Ehε (unε ,σ
n
ε ) ≤ Ehε (un−1

ε ,σn−1
ε ) for all n ≥ 1.

Theorem 4.17. (Unconditional stability) The scheme USε is unconditionally energy stable

with respect to Ehε (u,σ). In fact, if (unε ,σ
n
ε ) is a solution of USε, then the following discrete

energy law holds

δtEhε (unε ,σ
n
ε ) +

kε2−pp

2
‖δtunε ‖20 +

k

2
‖δtσnε ‖20 + pε2−p‖∇unε ‖20 + ‖σnε ‖21 ≤ 0. (82)

Proof. Testing (79)1 by ū = pΠh(F ′ε(u
n
ε )), (79)2 by σ̄ = σnε and adding, the terms

p(unε∇Πh(F ′ε(uε)),σ
n
ε ) cancel, and using that ∇Πh(F ′ε(u

n
ε )) = Λ1

ε(u
n
ε )−1∇unε , we arrive at

p(δtu
n
ε , F

′
ε(u

n
ε ))h + p

∫
Ω

(∇unε )T ·Λ1
ε(u

n
ε )−1 ·∇unε dx + δt

(1

2
‖σnε ‖20

)
+
k

2
‖δtσnε ‖20 + ‖σnε ‖21 = 0,

which, proceeding as in (70)-(71) and using Remark 4.5 and estimate (53), implies (82).
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Corollary 4.18. (Uniform estimates) Assume that (u0, v0) ∈ L2(Ω)×H1(Ω). Let (unε ,σ
n
ε )

be a solution of scheme USε. Then, it holds

p(Fε(u
n
ε ), 1)h +

1

2
‖σnε ‖20 + k

n∑
m=1

(
pε2−p‖∇umε ‖20 + ‖σmε ‖21

)
≤ C0

(p− 1)2
, ∀n ≥ 1, (83)

with the constant C0 > 0 depending on the data (Ω, u0, v0), but independent of k, h, n and ε; and

the estimates given in (74) also hold.

Remark 4.19. (Approximated positivity of unε ) The approximated positivity result for unε

established in Remark 4.11 remains true for the scheme USε.

Proof. Proceeding as in (75) (using the fact that (u0,σ0) = (Qhu0, Q̃
h(∇v0))), we can deduce

that

p

∫
Ω

Πh(Fε(u
0)) +

1

2
‖σ0‖20 ≤

C0

(p− 1)2
, (84)

where the constant C0 > 0 depends on the data (Ω, u0, v0), but is independent of k, h, n and ε.

Therefore, from the discrete energy law (82) and estimate (84), we have

Ehε (unε ,σ
n
ε ) + k

n∑
m=1

(
pε2−p‖∇umε ‖20 + ‖σmε ‖21

)
≤ Ehε (u0,σ0) ≤ C0

(p− 1)2
,

which implies (83). Finally, the estimates given in (74) are proved as in Corollary 4.10.

4.2.2 Well-posedness

The following two results are concerning to the well-posedness of the scheme USε.

Theorem 4.20. (Unconditional existence) There exists at least one solution (unε ,σ
n
ε ) of

scheme USε.

Proof. The proof follows as in Theorem 4.5 of [15], by using the Leray-Schauder fixed point

theorem.

Lemma 4.21. (Conditional uniqueness) If k f(h, ε) < 1 (where f(h, ε) ↑ +∞ when h ↓ 0 or

ε ↓ 0), then the solution (unε ,σ
n
ε ) of the scheme USε is unique.

Proof. The proof follows as in Lemma 4.6 of [15].
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4.3 Scheme US0

In this section, we are going to study another unconditionally energy-stable fully discrete scheme

associated to model (2). With this aim, we consider the following reformulation of problem (2):

Find u : Ω× [0, T ]→ R and σ : Ω× [0, T ]→ Rd, with u ≥ 0, such that



∂tu−∆u−∇ · (uσ) = 0 in Ω, t > 0,

∂tσ + rot(rot σ)−∇(∇ · σ) + σ = ∇(up) in Ω, t > 0,

∂u

∂n
= 0, σ · n = 0, [rot σ × n]tang = 0 on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, σ(x, 0) = ∇v0(x), in Ω.

(85)

Once system (85) is solved, we can recover v from u by solving


∂tv −∆v + v = up in Ω, t > 0,

∂v
∂n = 0 on ∂Ω, t > 0,

v(x, 0) = v0(x) > 0 in Ω.

(86)

Observe that (formally) multiplying (85)1 by p
p−1u

p−1, (85)2 by σ, integrating over Ω and adding

both equations, the terms p
p−1(uσ,∇(up−1)) and (∇(up),σ) vanish, we obtain the following

energy law
d

dt

∫
Ω

( 1

p− 1
|u|p +

1

2
|σ|2

)
dx +

∫
Ω

4

p
|∇(up/2)|2dx + ‖σ‖21 = 0.

In particular, the modified energy E(u,σ) =

∫
Ω

( 1

p− 1
|u|p +

1

2
|σ|2

)
dx is decreasing in time.

Then, taking into account the reformulation (85)-(86), we consider a fully discrete approximation

using a FE discretization in space and the backward Euler discretization in time (considered for

simplicity on a uniform partition of [0, T ] with time step k = T/N : (tn = nk)n=N
n=0 ). Concerning

the space discretization, we consider the triangulation as in the scheme UVε, but in this case

without imposing the constraint (H) related with the right-angles simplices. We choose the

following continuous FE spaces for u, σ and v:

(Uh,Σh, Vh) ⊂ H1(Ω)3, generated by P1,Pm,Pr with m, r ≥ 1.

Then, we consider the following first order in time, nonlinear and coupled scheme:

• Scheme US0 :
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Initialization: Let (u0,σ0) = (Qhu0, Q̃
h(∇v0)) ∈ Uh ×Σh.

Time step n: Given (un−1,σn−1) ∈ Uh ×Σh, compute (un,σn) ∈ Uh ×Σh solving

 (δtu
n, ū)h + 1

p−1((un+)2−p∇(Πh((un+)p−1)),∇ū) = −(unσn,∇ū), ∀ū ∈ Uh,

(δtσ
n, σ̄) + (Bhσ

n, σ̄) = p
p−1(un∇(Πh((un+)p−1)), σ̄), ∀σ̄ ∈ Σh,

(87)

where un+ := max{un, 0} ≥ 0. Recall that Qh is the L2-projection on Uh defined in (48), Q̃h

is the standard L2-projection on Σh, Πh : C(Ω) → Uh is the Lagrange interpolation operator,

(Bhσ
n, σ̄) = (rot σn, rot σ̄) + (∇ · σn,∇ · σ̄) + (σn, σ̄) and the discrete semi-inner product

(·, ·)h was defined in (47). Once the scheme US0 is solved, given vn−1 ∈ Vh, we can recover

vn = vn(un) ∈ Vh solving:

(δtv
n, v̄) + (∇vn,∇v̄) + (vn, v̄) = ((un+)p, v̄), ∀v̄ ∈ Vh. (88)

Given un ∈ Uh and vn−1 ∈ Vh, Lax-Milgram theorem implies that there exists a unique vn ∈ Vh
solution of (88).

Remark 4.22. (Positivity of vn) Imposing the geometrical property of the triangulation where

the interior angles of the triangles or tetrahedra must be at most π/2, the result concerning to

the positivity of vn stablished in Remark 4.7 remains true for the scheme US0.

4.3.1 Mass-conservation, Energy-stability and Solvability

Since ū = 1 ∈ Uh and v̄ = 1 ∈ Vh, we deduce that the scheme US0 is conservative in un, that is,

(un, 1) = (un, 1)h = (un−1, 1)h = · · · = (u0, 1)h = (u0, 1) = m0, (89)

and we have the following behavior for
∫

Ω v
n:

δt

(∫
Ω
vn
)

=

∫
Ω

(un+)p −
∫

Ω
vn.

Definition 4.23. A numerical scheme with solution (un,σn) is called energy-stable with respect

to the energy

Eh(u,σ) =
1

p− 1
((u+)p, 1)h +

1

2
‖σ‖20, (90)

if this energy is time decreasing, that is Eh(un,σn) ≤ Eh(un−1,σn−1), for all n ≥ 1.
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Theorem 4.24. (Unconditional stability) The scheme US0 is unconditionally energy stable

with respect to Eh(u,σ). In fact, if (un,σn) is a solution of US0, then the following discrete

energy law holds

δtEh(un,σn) +
k

2
‖δtσn‖20 +

p

(p− 1)2

∫
Ω

(un+)2−p|∇(Πh((un+)p−1))|2dx + ‖σn‖21 ≤ 0. (91)

Proof. Testing (87)1 by ū = p
p−1Πh((un+)p−1), (87)2 by σ̄ = σn and adding, the terms

p
p−1(un∇(Πh((un+)p−1)),σn) cancel, and we obtain

p

p− 1

∫
Ω

Πh(δtu
n · (un+)p−1)dx +

1

2
δt‖σn‖20 +

k

2
‖δtσn‖20

+
p

(p− 1)2

∫
Ω

(un+)2−p|∇(Πh((un+)p−1))|2dx + ‖σn‖21 = 0.(92)

Denoting by F (un) =
1

p
(un+)p, we have that F is a differentiable and convex function, and then,

from (6) we have that

δtu
n · (un+)p−1 =

1

k
F ′(un)(un − un−1) ≥ 1

k
(F (un)− F (un−1)) = δtF (un),

and therefore,

∫
Ω

Πh(δtu
n · (un+)p−1) ≥ δt

(∫
Ω

ΠhF (un)

)
=

1

p
δt

(∫
Ω

Πh((un+)p)

)
. (93)

Therefore, from (92) and (93) we deduce (91).

Corollary 4.25. (Uniform estimates) Let (un,σn) be a solution of scheme US0. Then, it

holds for all n ≥ 1,

1

p− 1
((un+)p, 1)h+

1

2
‖σn‖20+k

n∑
m=1

(
p

(p− 1)2

∫
Ω

(um+ )2−p|∇(Πh((um+ )p−1))|2dx + ‖σm‖21
)
≤ C0

p− 1
,

(94)∫
Ω
|un| ≤ C1, (95)

with the constants C0, C1 > 0 depending on the data (Ω, u0, v0), but independent of (k, h) and n.

Proof. In order to obtain (94), by multiplying (91) by k and adding from m = 1 to m = n, it suf-

fices to bound the initial energy Eh(u0,σ0). Taking into account that (u0,σ0) = (Qhu0, Q̃
h(∇v0))
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and u0 ≥ 0 (and therefore, u0 ≥ 0), we have

Eh(u0,σ0) ≤ C

p− 1

∫
Ω

Πh((u0)2 + 1) +
1

2
‖v0‖21 ≤

C

p− 1
(‖u0‖20 + ‖v0‖21 + 1).

On the other hand, by considering un− = min{un, 0} ≥ 0, taking into account that |un| =

2un+ − un, using the Hölder and Young inequalities as well as (89), we have

∫
Ω
|un| ≤

∫
Ω

Πh|un| = 2

∫
Ω

Πh(un+)−
∫

Ω
un

≤ C
(∫

Ω
(Πh(un+))p + 1

)
≤ C

(∫
Ω

Πh((un+)p) + 1
)
. (96)

Therefore, from (94) and (96), we deduce (95).

Theorem 4.26. (Unconditional existence) There exists at least one solution (un,σn) of

scheme US0.

Proof. The proof follows as in Theorem 4.5 of [15], by using the Leray-Schauder fixed point

theorem.

5 Numerical simulations

In this section, we will compare the results of several numerical simulations using the schemes

derived through the paper. We have chosen the 2D domain [0, 2]2 using a structured mesh (then

the right-angled constraint (H) holds and the scheme UVε can be defined), the spaces for u

and σ have been generated by P1-continuous FE, and all the simulations have been carried out

using FreeFem++ software. We will also compare with the usual Backward Euler scheme for

problem (2), which is given for the following first order in time, nonlinear and coupled scheme:

• Scheme UV :

Initialization: Let (u0, v0) ∈ Uh × Vh an approximation of (u0, v0) as h→ 0.

Time step n: Given (un−1, vn−1) ∈ Uh × Vh, compute (un, vn) ∈ Uh × Vh by solving

 (δtu
n, ū) + (∇un,∇ū) = −(un∇vn,∇ū), ∀ū ∈ Uh,

(δtv
n, v̄) + (∇vn,∇v̄) + (vn, v̄) = ((un+)p, v̄), ∀v̄ ∈ Vh.
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Remark 5.1. The scheme UV has not been analyzed in the previous sections because it is not

clear how to prove its energy-stability. In fact, observe that the scheme UVε (which is the

“closest” approximation to the scheme UV considered in this paper) differs from the scheme

UV in the use of the regularized functions Fε and its derivatives (see Figure 1) and in the

approximation of the cross-diffusion and production terms, (u∇v,∇ū) and (up, v̄) respectively,

which are crucial for the proof of the energy-stability of the scheme UVε.

The linear iterative methods used to approach the solutions of the nonlinear schemes UVε, USε,

US0 and UV are the following Picard methods:

(i) Picard method to approach a solution (unε , v
n
ε ) of the scheme UVε:

Initialization (l = 0): Set (u0
ε, v

0
ε) = (un−1

ε , vn−1
ε ) ∈ Uh × Vh.

Algorithm: Given (ulε, v
l
ε) ∈ Uh × Vh, compute (ul+1

ε , vl+1
ε ) ∈ Uh × Vh such that

 1
k (ul+1

ε , ū)h + (∇ul+1
ε ,∇ū) = 1

k (un−1
ε , ū)h − (Λ2

ε(u
l
ε)∇vlε,∇ū), ∀ū ∈ Uh,

1
k (vl+1

ε , v̄) + (Ahv
l+1
ε , v̄) = 1

k (vn−1
ε , v̄) + p(p− 1)(ΠhFε(u

l+1
ε ), v̄), ∀v̄ ∈ Vh,

choosing the stopping criteria max

{
‖ul+1

ε − ulε‖0
‖ulε‖0

,
‖vl+1
ε − vlε‖0
‖vlε‖0

}
≤ tol.

(ii) Picard method to approach a solution (unε ,σ
n
ε ) of the scheme USε:

Initialization (l = 0): Set (u0
ε,σ

0
ε) = (un−1

ε ,σn−1
ε ) ∈ Uh ×Σh.

Algorithm: Given (ulε,σ
l
ε) ∈ Uh ×Σh, compute (ul+1

ε ,σl+1
ε ) ∈ Uh ×Σh such that

 1
k (ul+1

ε , ū)h + (∇ul+1
ε ,∇ū) + (ul+1

ε σlε,∇ū) = 1
k (un−1

ε , ū)h, ∀ū ∈ Uh,
1
k (σl+1

ε , σ̄) + (Bhσ
l+1
ε , σ̄) = 1

k (σn−1
ε , σ̄) + p(ul+1

ε ∇Πh(F ′ε(u
l+1
ε )), σ̄), ∀σ̄ ∈ Σh,

choosing the stopping criteria max

{
‖ul+1

ε − ulε‖0
‖ulε‖0

,
‖σl+1

ε − σlε‖0
‖σlε‖0

}
≤ tol.

(iii) Picard method to approach a solution (un,σn) the scheme US0:

Initialization (l = 0): Set (u0,σ0) = (un−1,σn−1) ∈ Uh ×Σh.

Algorithm: Given (ul,σl) ∈ Uh ×Σh, compute (ul+1,σl+1) ∈ Uh ×Σh such that


1
k (ul+1, ū)h + (∇ul+1,∇ū)− (∇ul,∇ū) + (ul+1σl,∇ū)

= 1
k (un−1, ū)h − 1

p−1((ul+)2−p∇(Πh(ul+)p−1),∇ū), ∀ū ∈ Uh,
1
k (σl+1, σ̄) + (Bhσ

l+1, σ̄) = 1
k (σn−1, σ̄) + p

p−1(ul+1∇(Πh(ul+1
+ )p−1), σ̄), ∀σ̄ ∈ Σh,
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choosing the stopping criteria max

{
‖ul+1 − ul‖0
‖ul‖0

,
‖σl+1 − σl‖0
‖σl‖0

}
≤ tol. Observe that the

residual term (∇(ul+1 − ul),∇ū) is considered.

(iv) Picard method to approach a solution (un, vn) of the scheme UV:

Initialization (l = 0): Set (u0, v0) = (un−1, vn−1) ∈ Uh × Vh.

Algorithm: Given (ul, vl) ∈ Uh × Vh, compute (ul+1, vl+1) ∈ Uh × Vh such that

 1
k (ul+1, ū) + (∇ul+1,∇ū) + (ul+1∇vl,∇ū) = 1

k (un−1, ū), ∀ū ∈ Uh,
1
k (vl+1, v̄) + (∇vl+1,∇v̄) + (vl+1, v̄) = 1

k (vn−1, v̄) + ((ul+1
+ )p, v̄), ∀v̄ ∈ Vh,

choosing the stopping criteria max

{
‖ul+1 − ul‖0
‖ul‖0

,
‖vl+1 − vl‖0
‖vl‖0

}
≤ tol.

Remark 5.2. In all cases, first we compute ul+1 solving the u-equation, and then, inserting ul+1

in the v-equation (resp. σ-system), we compute vl+1 (resp. σl+1).

5.1 Positivity of un

In this subsection, we compare the positivity of the variable un in the four schemes. Here, we

choose the space for v generated by P2-continuous FE. We recall that for the three schemes

studied in this paper, namely schemes UVε, USε and US0, the positivity of the variable un is

not clear. Moreover, for the schemes UVε and USε, it was proved that Πh(unε−)→ 0 as ε→ 0

(see Remarks 4.11 and 4.19). For this reason, in Figures 3-9 we compare the positivity of the

variable unε in the schemes, for different values of p, 1 < p < 2, and taking ε = 10−3, ε = 10−5

and ε = 10−8 in the schemes UVε and USε. We consider k = 10−5, h = 1
40 , the tolerance

parameter tol = 10−3 and the initial conditions (see Figure 2)

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x− 1)2) + 10.0001,

v0=100xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x− 1)2) + 0.0001.

Note that u0, v0 > 0 in Ω, min(u0) = u0(1, 1) = 0.0001 and max(v0) = v0(1, 1) = 100.0001. We

obtain that:

(i) All the schemes take negative values for the minimum of un in different times tn ≥ 0, for

the different values considered for p and ε. However, in the case of the schemes UVε and

USε, it is observed that these values are closer to 0 as ε→ 0 (see Figures 3-9).
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(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 2 – Initial conditions.

(ii) In all cases, the scheme UVε “preserves” better the positivity than the schemes UV, USε

and US0 (see Figures 3-9).
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Figure 3 – Minimum values of un
ε for p = 1.1, computed using the scheme UVε. We also obtain negative

values for ε = 10−8 of order 10−8.
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Figure 4 – Minimum values of un
ε for p = 1.1, computed using the scheme USε.
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Figure 5 – Minimum values of un
ε for p = 1.1, computed using the schemes UV and US0.

5.2 Energy stability

In this subsection, we compare numerically the stability of the schemes UVε, USε, US0 and

UV with respect to the “exact” energy

Ee(u, v) =

∫
Ω

1

p− 1
(u+)pdx +

1

2
‖∇v‖20. (97)
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Figure 6 – Minimum values of un
ε for p = 1.5, computed using the scheme UVε. We also obtain negative

values for ε = 10−8 of order 10−5.

It was proved that the schemes UVε, USε and US0 are unconditionally energy-stables with

respect to modified energies defined in terms of the variables of each scheme, and some energy

inequalities are satisfied (see Theorems 4.9, 4.17 and 4.24). However, it is not clear how to

prove the energy-stability of these schemes with respect to the “exact” energy Ee(u, v) given in

(97), which comes from the continuous problem (2) (see (9)-(10)). Therefore, it is interesting to

compare numerically the schemes with respect to this energy Ee(u, v), and to study the behavior

of the corresponding discrete energy law residual

REe(u
n, vn) := δtEe(un, vn) +

4

p

∫
Ω
|∇((un+)p/2)|2dx + ‖∆hv

n‖20 + ‖∇vn‖20. (98)

We consider k = 10−5, h = 1
25 , p = 1.4, tol = 10−3 and the initial conditions (see Figure 10)

u0 = 14cos(2πx)cos(2πy) + 14.0001 and v0 = −14cos(2πx)cos(2πy) + 14.0001.

We choose the space for v generated by P1-continuous FE. Then, we obtain that:

(i) All the schemes UVε, USε, UV and US0 satisfy the energy decreasing in time property

for the exact energy Ee(u, v) (see Figure 11), that is,

Ee(un, vn) ≤ Ee(un−1, vn−1) ∀n.
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Figure 7 – Minimum values of un for p = 1.5, computed using the schemes UV, USε and US0.

0 0.005 0.01 0.015

Time

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
in

 u
n UVǫ - ǫ=10

-3

UVǫ - ǫ=10
-5

UVǫ - ǫ=10
-8

Figure 8 – Minimum values of un
ε for p = 1.9, computed using the scheme UVε.

(ii) The schemes US0 and USε satisfy the discrete energy inequality REe(u
n, vn) ≤ 0, for

REe(u
n, vn) defined in (98), independently of the choice of ε; while the schemes UV and

UVε have RE(un, vn) > 0 for some tn ≥ 0. However, it is observed that the scheme UVε

introduces lower numerical source than the scheme UV, and lower numerical dissipation

than the schemes US0 and USε (see Figure 12).
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Figure 9 – Minimum values of un for p = 1.9, computed using the schemes UV, USε and US0.

(a) Initial cell density u0 (b) Initial chemical concentration v0

Figure 10 – Initial conditions.

6 Conclusions

In this paper we have developed three new mass-conservative and unconditionally energy-stable

fully discrete FE schemes for the chemorepulsion production model (2), namely UVε, USε and

US0. From the theoretical point of view we have obtained:

(i) The solvability of the numerical schemes.

(ii) The schemesUVε andUSε are unconditionally energy-stables with respect to the modified

energies Ehε (u, v) (given in (67)) and Ehε (u,σ) (given in (81)) respectively, under the right-

angles constraint (H); while the scheme US0 is unconditionally energy-stable with respect
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Figure 11 – Ee(u
n, vn) of the schemes UV, US0, UVε and USε (for ε = 10−4, 10−7).
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Figure 12 – REe(u
n, vn) of the schemes UV, US0, UVε and USε (for ε = 10−4, 10−7).

to the modified energy Eh(u,σ) given in (90), without this restriction (H) on the mesh.

(iii) It is not clear how to prove the energy-stability of the nonlinear scheme UV (see Remark

5.1).

(iv) In the schemes UVε and USε there is a control for Πh(unε−) in L2-norm, which tends to
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0 as ε → 0. This allows to conclude the nonnegativity of the solution unε in the limit as

ε→ 0.

On the other hand, from the numerical simulations, we can conclude:

(i) The four schemes have decreasing in time energy Ee(u, v), independently of the choice of ε.

(ii) The schemes US0 and USε satisfy the discrete energy inequality REe(u
n, vn) ≤ 0, for

REe(u
n, vn) defined in (98), independently of the choice of ε; while the schemes UV and

UVε have RE(un, vn) > 0 for some tn ≥ 0. However, it was observed that the schemeUVε

introduces lower numerical source than the scheme UV, and lower numerical dissipation

than the schemes US0 and USε.

(iii) Finally, it was observed numerically that for the schemes UVε and USε, min
Ω×[0,T ]

unε → 0

as ε→ 0.
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