Metalated Ir-CNP complexes containing imidazolin-2ylidene and imidazolidin-2-ylidene donors. Synthesis, structure, luminescence and metal-ligand cooperative reactivity

Martín Hernández-Juárez,^[a,b] Práxedes Sánchez,^[a] Joaquín López-Serrano,*^[a] Patricia Lara,^[a] Pablo González-Herrero,*^[c] Nuria Rendón,^[a] Eleuterio Álvarez,^[a] Margarita Paneque,^[a] and Andrés Suárez*^[a]

- [a] Dr. M. Hernández-Juárez, Dr. P. Sánchez, Dr. J. López-Serrano, Dr. P. Lara, Dr. N. Rendón, Dr. E. Álvarez, Prof. M. Paneque, Dr. A. Suárez
 Instituto de Investigaciones Químicas (IIQ), Departamento de Química
 Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
 CSIC and Universidad de Sevilla
 Sevilla 41092, Spain
 https://osaca.iiq.us-csic.es/
 E-mail: joaquin.lopez@iiq.csic.es; andres.suarez@iiq.csic.es
- [b] Dr. M. Hernández-Juárez
 Área Académica de Química, Centro de Investigaciones Químicas
 Universidad Autónoma del Estado de Hidalgo (UAEH)
 Km. 14.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, C.P.
 42184, Mineral de la Reforma, Hidalgo, Mexico
- [c] Dr. P. González-Herrero
 Departamento de Química Inorgánica, Facultad de Química
 Universidad de Murcia
 Murcia 30071, Spain
 E-mail: pgh@um.es

Abstract

The iridium complex **1** based on a metalated CNP ligand containing an imidazolin-2ylidene fragment has been prepared by treatment of the ligand precursor **4** with Ag₂O followed by reaction with [IrCl(COE)₂]₂. The chlorohydride imidazolidin-2-ylidene complex 6, which is isostructural to 1, was synthetized by reaction of the previously reported dihydride derivative 3 with CH₂Cl₂. Complexes 1 and 6 exhibit luminescence arising from a ³MLCT/ILCT state involving the metalated CNP ligand, which is particularly intense for 1 in the solid state at 298 K. Furthermore, the reactivity of complexes 1 and 6 towards bases was compared. Deprotonation of 1 with KOtBu produced the selective formation of the dinuclear complex 7; meanwhile, the reaction of 6 led to a complex mixture of products. The same reactions carried out in the presence of PPh₃ produced the selective deprotonation of the P-bonded methylene bridges of 1 and 6, yielding the isostructural derivatives 9 and 10. DFT calculations performed on the *u*NHC-containing tautomers I and II, and the *s*NHC-based isomers III and IV, showed that the NHC-deprotonated derivatives II and IV are more stable by 3.20 and 2.73 kcal mol⁻¹, respectively, than their P-deprotonated counterparts (I and **III**). However, a reverse stability order was observed for hexacoordinated tautomers I·L and II·L, and III·L and IV·L (L = PPh₃, CO, MeCN). Finally, the catalytic activity of complex 3 in the transfer hydrogenation of ketones has been assessed.

Introduction

The study of metal complexes capable of metal–ligand cooperation has become a pivotal aspect to the development of new stoichiometric and catalytic processes.^[1,2] Among the proton-responsive ligand-metal systems, derivatives based on lutidine-derived pincer ligands have received a special attention due to their ability to promote ligand-assisted substrate activation triggered by the reversible deprotonation of the methylene arms of the ligand and concomitant dearomatization of the central pyridine ring.^[2] While development of these systems has been mainly associated to PNX (P = bulky electron-rich phosphane, X = phosphane or hemilabile N-donor) pincers (Figure 1),^[2,3] structural variations involving the substitution of the side PR₂ groups by other strong σ -donors, such as N-heterocyclic carbenes (NHC), should have an effect on both the electronic and steric properties of the complexes, and lead to significant differences in their reactivity.

[Figure 1]

Imidazolin-2-ylidenes (*u*NHC, Figure 2) and imidazolidin-2-ylidenes (*s*NHC), two important classes of N-heterocyclic carbenes,^[4] are nowadays amply employed

spectator ligands in prominent homogeneous catalytic reactions, including C-C and C-X couplings,^[5] olefin metathesis^[6] and hydrogenations,^[7] due to their substantial structural diversity and excellent σ -donor characteristics.^[4] The stereoelectronic properties of imidazolin-2-ylidenes and imidazolidin-2-ylidenes are relatively similar,^[8] as shown by the slightly lower Tolman Electronic Parameter (TEP) values and larger buried volumes of *s*NHCs in comparison to their *u*NHC counterparts. However, the metal-NHC bonding of *u*NHCs and *s*NHCs is significantly different since, although both are strong σ -donors, in electron-rich metal complexes imidazolidin-2-ylidenes are also able to accept significant π -backdonation.^[8,9] These electronic differences have a profound impact on both the stoichiometric and catalytic reactivity of metal-NHC complexes.^[6,10]

[Figure 2]

Unsurprisingly, several groups have studied the coordination properties and reactivity of metal complexes based on NHC-containing lutidine-based CNX pincers (C = imidazolin-2-ylidene, X = imidazolin-2-ylidene or hemilabile N-donor), as well as their applications in catalytic reactions.^[11-17] Deprotonation of the methylene CH₂uNHC arms of these derivatives lead to species that are able to participate in ligandassisted processes. Moreover, since 6-membered chelates are formed upon coordination of the $Py-CH_2-uNHC$ linkage, replacement of phosphane donors by *u*NHCs not only affects the electronic properties of the complexes, but also confers a greater flexibility to the ligand in comparison to the 5-membered rings formed with PNX pincers. This larger flexibility imparted by the presence of the uNHC donors in lutidinebased CNX pincer ligands allows to stabilize metal complexes in a variety of coordination geometries, what is an important feature in a catalytic process since reaction intermediates might need to adopt different coordination environments. For example, while PNP ligands only exhibit meridional coordination modes, facial coordination of CNC ligands in Ru complexes has been observed.^[17] More remarkable, however, is the fact that the larger chelate ring of the CNC pincer complexes might result in enhanced reactivities, as shown by the Pidko's group in the reactions of deprotonated Ru–CNC systems towards H₂ and CO₂.^[13]

Recently, some of us reported new iridium complexes stabilized by ligands having *u*NHC and phosphane side donors and a lutidine central fragment (CNP, Figure 1), and assessed their ability to adapt to different coordination geometries and participate in the ligand-assisted activation of H₂.^[18,19] These non-symmetric pincer ligands permit the tuning of two different side donors, thus allowing a larger electronic and steric diversity,^[20] and serve for a direct comparison of the properties of the uNHC- and phosphane-containing halves of the pincer. Furthermore, we have communicated the selective hydrogenation of the olefinic backbone of a coordinated imidazolin-2-ylidene fragment that occurs in an iridium complex based on a metalated κ^{4} -(P,N,C^{uNHC},C^{aryl}) lutidine-derived ligand.^[21] It is worth noting that, with few notable exceptions, the reactivity of the -HC=CH- backbone of coordinated imidazolin-2-ylidenes has been scarcely explored.^[22] The reaction of complex 1 with H_2 in the presence of base (KOtBu) initially yielded the dihydride complex 2, involving a ligand-assisted H-H activation (Scheme 1). Upon prolonged exposure to H₂, complex 2 was hydrogenated at the imidazolin-2-ylidene -CH=CH- moiety leading to the imidazolidin-2-ylidene dihydride derivative 3. In contrast to complex 2, which is only stable under H_2 , the dihydride 3 was readily isolated as an air-stable solid. This difference is expected to arise from the presence of a better electron-donating imidazolidin-2-ylidene fragment in **3**.

[Scheme 1]

To get further insight into the effect of substituting a *u*NHC donor by a *s*NHC fragment, we deemed interesting to expand our investigations on these metalated iridium complexes containing κ^{4} -(P,N,C^{*NHC*},C^{*aryl*}) ligands. These include a detailed study of their structural features and photophysical properties, as well as a comparison of the acid-base reactivity of the CH₂-P, CH₂-*u*NHC and CH₂-*s*NHC methylene bridges of the ligands and their participation in ligand assisted processes.

Results and Discussion

Synthesis and structure of metalated Ir-CNP complexes

Treatment of the imidazolium salt **4** with Ag_2O in CH_2CI_2 followed by reaction with $[IrCl(COE)_2]_2$ in a **4**/Ir 1:1 ratio resulted in the expected coordination of the lutidinederived CNP pincer ligand accompanied of the activation of the *ortho* C-H bond of the xylyl fragment,^[23] thus allowing the isolation of complex **1** (Scheme 2). The synthesis of **1** has been previously accomplished by the prolonged heating of a toluene suspension of the diolefin complex **5**.^[21]

[Scheme 2]

As reported, complex **1** reacts with H₂ (1-2 bar) in the presence of KO*t*Bu (1 equiv) producing the initial formation of the imidazolin-2-ylidene dihydride derivative **2**, which upon standing under a H₂ atmosphere for 48 h is transformed to the dihydride Ir derivative **3** that features an imidazolidin-2-ylidene ligand fragment (Scheme 1).^[21] Reaction of **3** with CH₂Cl₂ yielded the chlorohydride derivative **6** (Scheme 3), which has been fully characterized. The ¹H NMR spectrum in CD₂Cl₂ of **6** shows a doublet hydride signal at δ –22.26 (²J_{HP} = 16.0 Hz); whereas in the ¹³C{¹H} NMR experiment the carbene carbon produces a doublet resonance at 203.9 ppm (J_{CP} = 113 Hz). As expected from the comparison of the NMR properties of metal complexes containing saturated and unsaturated NHCs, in the ¹³C{¹H} NMR spectrum, the latter signal is significantly shifted downfield with respect to the same resonance of the complex [IrH(PNC^{*u*NHC}C^{*aryl*})(MeCN)]BF₄ (δ c 172.3; d, J_{CP} = 108 Hz),^[24] an analogue soluble version of complex **1**.^[21]

[Scheme 3]

The structure of **6** was studied by single crystal X-ray diffraction techniques (Figure 3). Although complex **6** in the solid state exhibits very similar features to complex **1**, the tetradentate ligand adopts a slightly less planar structure than in **1**,^[21] as reflected in the values of the torsion angles of the chelates involving the pyridine moiety with the phosphane and *s*NHC donors (C(17)-N(3)-Ir(1)-P(1) = $-22.9(4)^{\circ}$; C(13)-N(3)-Ir(1)-C(1) = $-11.2(5)^{\circ}$). Moreover, as expected, a significantly elongated C-C distance of 1.521(9) Å in the carbene moiety with respect to complex **1** (1.348(4) Å) is found, as well as a small but significant widening of the N-C-N angle (N(1)-C(1)-N(2) = $109.4(6)^{\circ}$, **6**; $106.8(2)^{\circ}$, **1**).^[8] Furthermore, the *s*NHC ring has a planar configuration, albeit a significantly larger torsion angle N(1)-C(3)-C(2)-N(2) of $4.5(6)^{\circ}$ in comparison to **1** (0.3(3)°) is observed, as expected from the disruption of the π -electron delocalization between the NCN and C–C units of the imidazolidin-2-ylidene.^[25] Finally, it is worth mentioning that the carbene NCN moiety remains coplanar to the arene fragment, as indicated by the C(1)-N(1)-C(4)-C(5) dihedral angle of 0.6(8)°.

[Figure 3]

As shown with complex **1**, derivative **6** cleanly reacted with H_2 in the presence of KO*t*Bu to yield the dihydride derivative **3**, likely involving a ligand-assisted H-H activation (Scheme 3).

Photophysical properties of 1 and 6

Solid samples of complexes **1** and **6** display significant luminescence at room temperature, which motivated us to carry out a complete photophysical study.^[26,27] Both complexes show a broad band at around 390 nm as the lowest-energy feature in the UV-vis absorption spectra (Table 1 and Figure S8). On the basis of its solvatochromic behavior (Figure S9),^[28] relatively low molar extinction coefficients and lack of vibrational structure, we assign the corresponding transition as having a marked metal-to-ligand charge-transfer (MLCT) character. Further insight into its nature was gained from DFT and TDDFT calculations on complex **1** (see Supporting Information). The HOMO in this complex is a combination of π orbitals of the aryl-NHC fragment of the ligand with d(Ir) and p(CI) orbitals, while the LUMO is a π^* orbital of the pyridine fragment (Figure S15). The lowest-energy singlet excitation, predicted at 424 nm in CH₂Cl₂ solution, corresponds to a HOMO-LUMO transition, and can be therefore described as an admixture of metal-to-ligand and intraligand charge transfer (MLCT/ILCT) with some ligand-to-ligand charge-transfer (LLCT) character due to the involvement of p(CI) orbitals.

[Table 1]

The emission data of **1** and **6** are summarized in Table 2. Complex **1** displays strong emission in the solid state at 298 K, while complex **6** is a very weak emitter. In all cases the emissions are broad and do not show vibrational structure, which agree with a significant MLCT contribution to the emitting state. None of the studied complexes emits appreciably in fluid solutions at 298 K and therefore their emissions were examined in 2-methyltetrahydrofuran (MeTHF) frozen glasses at 77 K (Figure 4). The excitation profiles consistently reproduce the lowest-energy charge-transfer band observed in the absorption spectra. The emission lifetimes are consistent with an emitting state of triplet parentage and high MLCT character.^[29] The TDDFT calculations on **1** show that the lowest-energy vertical triplet excitation corresponds to

a HOMO–LUMO transition and therefore the emitting excited state in these complexes probably has a similar orbital nature.

[Table 2]

[Figure 4]

Deprotonation of complexes 1 and 6

The acid-base properties of the methylene bridges of lutidine-derived ligands are of relevance to the development of processes involving metal–ligand cooperation.^[2] Reactions of complexes **1** and **6** with H₂ in the presence of KO*t*Bu produced the dihydride complexes **2** and **3**, respectively, whose formation is assumed to involve a ligand-assisted process. Since these Ir-CNP complexes contain two non-equivalent methylene pincer arms, they are suitable systems to compare the acid-base reactivity of the CH₂P arm with that of both CH₂-*u*NHC and CH₂-*s*NHC pincer bridges. Previously, the reactivity of ruthenium complexes incorporating unsymmetrical PNN and CNN ligands towards bases has been investigated.^[14,30]

As previously communicated, reaction of **1** with KO*t*Bu in THF yielded the poorly soluble bimetallic species **7** (Scheme 4).^[21] Formation of this derivative was also observed upon removal of the H₂ atmosphere from pressurized solutions of **2**. Complex **7** possesses a dinuclear structure, in which the two iridium centers are bonded to the opposite ligands through the CH-*u*NHC bridges, and the metalated CNP ligands have a rather planar conformation. Formation of **7** might involve the initial deprotonation of the CH₂N arm of **1**, and a subsequent dimerization of the resulting species facilitated by the planarity of the deprotonated Ir-CNP units.^[31,32] The Pidko group and some of us, independently, have previously noted that picolyl-NHC fragments of Ru-CNC complexes are readily deprotonated upon reaction with base, and the resulting species are prone to react with electrophiles.^[12,13,17]

[Scheme 4]

Subsequent treatment of **7** with CHCl₃ gave rise to the highly insoluble chloro complex **8** (Scheme 4). Crystals adequate for an X-ray diffraction study of the dinuclear derivative **8** were obtained from saturated THF solutions (Figure 5). The iridium atoms of **8** have an octahedral coordination geometry, however at variance with complex **7**, the carbene and phosphane moieties adopt a *cisoid* coordination, as shown by the

C_{NHC}-Ir-P angle of 103°. This coordination mode of the CNP ligand is also manifested in the C_{Py}-N_{Py}-Ir-P and C_{Py}-N_{Py}-Ir-C_{NHC} dihedral angles of 33.63° and -32.28°, respectively, that reflect the substantial flexibility of the CNP ligand.^[18] Moreover, there are short H-Cl contacts between the axial methylene CH₂P hydrogens (2.61 Å) and the chloro ligands (sum of the van der Waals radii = 2.9–3.0 Å).^[33] In solution, the ¹H NMR spectrum of **8** shows the resonances corresponding to the CH₂P bridges as two mutually coupled doublet of doublets at δ 4.26 (²J_{HH} = 16.6 Hz, ²J_{HP} = 10.2 Hz) and 3.99 (²J_{HP} = 11.2 Hz), while the hydrogens of the Py-CHN fragments appear as an overlapped signal at 6.59 ppm. Nevertheless, a meaningful ¹³C{¹H} NMR spectrum of **8** could not be registered due to its low solubility.

[Figure 5]

In an attempt to prevent the observed process leading to **7**, reaction of **1** with KO*t*Bu was carried out in the presence of PPh₃, yielding the P-bridge deprotonated complex **9** (Scheme 4). The ¹H NMR spectrum of **9** shows a doublet of doublet at – 12.55 ppm with a large ²*J*_{HP} coupling constant of 138.4 Hz and a small ²*J*_{HP} of 22.0 Hz, indicative of the presence of phosphane donors *trans* and *cis* to the hydrido ligand, respectively. Moreover, two doublet signals are observed for the methylene protons of the CH₂N bridge appearing at 4.32 and 4.05 ppm (²*J*_{HH} = 14.8 Hz), while the phosphane arm produces a singlet at 4.02 ppm, integrating to 1H.^[18] Also, the resonances of the pyridine protons show significant upfield shifts as a consequence of the ligand dearomatization, appearing between 5.43 and 6.48 ppm. The ³¹P{¹H} NMR spectrum revealed two mutually coupled doublet signals at δ –15.3 and 1.1 (*J*_{PP} = 23 Hz), corresponding to PPh₃ and the phosphorus atom of the lutidine-derived ligand, respectively. Finally, diagnostic resonances in the ¹³C{¹H} NMR spectrum of **9** include a doublet at 77.4 ppm (*J*_{CP} = 70 Hz), assignable to the CHP carbon, and a doublet of doublets at 173.9 ppm (*J*_{CP} = 96 Hz, *J*_{CP} = 6 Hz) produced by the C²(NHC) carbon.

Confirmation of the structure of **9** was obtained from an X-ray diffraction study of suitable crystals of the complex (Figure 6, Table 3). A shortened C_{Py} -CHP (C(18)-C(17) = 1.363(6) Å) bond length is observed with respect to the C_{Py} -CH₂P (C(18)-C(17) = 1.50 Å) distance in complex **1**. This change is accompanied by a modification of the C-C bond lengths in the pyridine ring, with alternating elongated (C-C = 1.41-1.44 Å) and shortened (C-C = 1.34-1.38 Å) distances (average C-C bond in the pyridine ring of complex **1** = 1.38 Å).

[Figure 6] [Table 3]

Interestingly, complete H/D scrambling of the CHP and CH₂N hydrogens occurs upon addition of CD₃OD to a sample of **9**, suggesting that reversible protonation/deprotonation of both ligand bridges takes place.

Next, the reactivity of complex 6 towards bases was also assessed. While 6 reacted with KOtBu leading to a complex reaction mixture, in the presence of PPh₃ selective deprotonation of the CH₂P arm took place (Scheme 5). The resulting complex 10 shows in their NMR spectra very similar features to those of 9, including the presence in the ¹H NMR experiment of a doublet of doublets at δ –12.29 (²J_{HP} = 132.3, ${}^{2}J_{HP}$ = 22.9 Hz) due to the hydrido ligand. The methylene protons of the CH₂N bridge appear in the same experiment as two mutually coupled doublets appearing at 4.72 and 3.78 ppm (${}^{2}J_{HH}$ = 14.1 Hz), while the CHP arm produces a singlet at 3.98 ppm.^[18] Also, the upfield shift of the pyridine proton resonances (δ 5.53-6.49) indicates ligand dearomatization. In the ³¹P{¹H} NMR spectrum, two doublet signals are observed at δ -17.4 and -2.0 ppm ($J_{PP} = 25$ Hz), corresponding to PPh₃ and the CNP ligand, respectively. Like in the case of complex 9, the structure of 10 in the solid state demonstrates the dearomatization of the nitrogen-containing central ring of the CNP ligand, as shown by the shortened distance of the C_{Py} -CHP bond (C(18)-C(17) = 1.367(8) Å) in comparison to the $C_{P\gamma}$ -CH₂P (C(18)-C(17) = 1.50 Å) length in complex 6, as well as the alternating shortened (1.33-1.36 Å) and elongated (1.40-1.45 Å) C-C bonds in the pyridine moiety (Figure 6, Table 3).

[Scheme 5]

To get further insight into the preferred deprotonation of the various methylene bridges, DFT calculations (B3LYP-D3, 6-31g(d,p)/SDD) were performed to determine the relative stability of species I–IV, with I and III corresponding to the calculated species resulting from removing the PPh₃ ligands from 9 and 10 respectively, and II and IV to the analogous species resulting from deprotonation of the CH₂-NHC bridge (Figure 7, Table 4; see Supporting Information). In agreement with the formation of species 7, the calculated species II is more stable than its P-arm deprotonated counterpart I by *ca.* 3.2 kcal·mol⁻¹. Conversely, species I-L (where L = PPh₃, CO,

MeCN) resulting from deprotonation of the CH₂P arm are more stable than **II**·L, which is consistent with the formation of 9 and 10. Thus, analogous trends are observed for imidazolidin-2-ylidene (sNHC) containing species III-L and IV-L. A plausible explanation for the greater stability of II and IV comes from inspection of their computed structures, which evidences a significant planarity of the dearomatized pyridine ring, the NCN unit of the NHC fragments and the metalated aryl moieties that could facilitate electronic delocalization. Conversely, deprotonation of the CH₂P arm yields vinyl phosphane fragments that destabilize species I. These notions are reflected in P-Ir distances that are up to 0.04 Å longer for I and III than for II and IV, respectively, and in the relatively shorter N-Ir and NHC-Ir distances found for II and IV compared to those of I and III, as well as in the Wiberg bond orders of the metal linkage (Tables S9 and S11). However, in the presence of an additional ligand L, derivatives I L and III L are favored despite these exhibit the same trends in their P-Ir, N-Ir and NHC-Ir distances. This rather puzzling result was addressed *via* Energy Decomposition Analysis (EDA) of the interaction between the L-type ligands and the CNP-Ir(H) moieties in adducts **I**·L-IV·L. In this type of analysis, the bonding energy (ΔE_f) is calculated as the energy difference between the adduct and their separate fragments at infinite distance (allowing their geometries to relax), and the interaction energy (ΔE_{int} usually negative) as the energy difference between the adduct and their fragments retaining the geometries they adopt in the complex. The difference is the deformation energy (positive) required for the two fragments to adopt the geometry in their complexes from their geometry at infinite distance (from $\Delta E_f = \Delta E_{int} + \Delta E_{def}$) (see Supporting Information). Thus EDA of complexes I-L-IV-L (L = PPh₃, CO) reveals that interaction energies between L (L = PPh₃, CO) and metal fragments I and III are ca. 10 kcal·mol⁻ ¹ higher than between the same ligands and **II** and **IV**, which compensates for the greater stability of the latter two. While we cannot offer a clear explanation for this result at this stage, EDA also shows that deformations energies are 2-4 kcal mol⁻¹ lower for fragments I and III, hinting at a higher flexibility of the six-membered Py-Ir-NHC chelate in comparison to the smaller ring involving a CH₂P arm. Both results combine to yield bonding energies 10-13 kcal·mol⁻¹ higher for the adducts **II·L** and **IV·L** in agreement with the experimental observations.

> [Figure 7] [Table 4]

Transfer hydrogenation of ketones

In comparison to the low stability of the dihydride complex **2** towards the release of H₂, the imidazolidin-2-ylidene derivative **3** is stable in the solid state under ambient conditions. This makes **3** a potentially useful catalytic precursor. In order to initially assess the catalytic potential of complex **3**, its performance in the transfer hydrogenation of ketones using 2-propanol as hydrogen source was studied (Table 5).^[34] Using 1.0 mol% of **3**, under base-free conditions, the reduction of 4-methylacetophenone was performed at 80 °C with 97% conversion (entry 1). Similarly, high conversions were obtained in the case of acetophenone derivatives bearing *p*-chloro, *o*-bromo, *p*-nitro and *p*-trifluoromethyl substituents (entries 2–5). Finally, the hydrogenation of cyclic ketones, such as α -tetralone and cyclohexanone, also provided high yields of the corresponding alcohols (entries 6 and 7).

[Table 5]

Conclusions

As previously reported, the iridium complex **1** featuring a metalated lutidine-derived CNP ligand containing an imidazolin-2-ylidene fragment react with H₂ in the presence of base (KO*t*Bu) initially yielding the dihydride complex **2** in a ligand-assisted H-H activation. Upon prolonged exposure to H₂, complex **2** is hydrogenated at the imidazolin-2-ylidene –CH=CH– moiety leading to the imidazolidin-2-ylidene dihydride derivative **3**. In contrast to complex **2**, which easily losses H₂ leading to the formation of the bimetallic species **7**, the dihydride **3** is stable in solution and in the solid state. This difference is expected to arise from the presence of a better electron-donating imidazolidin-2-ylidene fragment in **3**. Furthermore, the catalytic competence of complex **3** in the base-free transfer hydrogenation of a series of ketones using 2-propanol as hydrogen source has been demonstrated.

Comparison of the structures of the chlorohydride derivatives **6** and **1** shows that both complexes are isostructural, with minor differences arising from the NHC rings. Also the photophysical properties of complexes **1** and **6** are very similar, both showing luminescence from a triplet excited state of mixed MLCT/ILCT character involving the cyclometalated ligand, with the exception that **1** emits strongly at 298 K in the solid state, while its imidazolidin-2-ylidene counterpart is a very weak emitter. The reactivity of complexes **1** and **6** towards bases allows us to compare the relative acidities of the methylene CH₂-P, CH₂-*u*NHC and CH₂-*s*NHC bridges. Deprotonation of **1** and **6** with KO*t*Bu in the presence of PPh₃ leads to the selective deprotonation of the P-bonded methylene bridge; meanwhile, the reaction of **1** in the absence of PPh₃ produces the formation of the bimetallic complex **7**, likely arising from the deprotonation of the CH₂*u*NHC arm and subsequent dimerization of the resulting halogen-free species. DFT calculations show a slightly higher stability of the NHC-arm deprotonated tautomers **II** and **IV**. However, a reverse stability order is observed for hexacoordinated tautomers **I**-L and **III**-L (L = PPh₃, CO, MeCN), what might be partially attributed to the higher flexibility of the CH₂-NHC containing chelates that should facilitate the accommodation of an additional L ligand.

Overall, the results collected herein demonstrate that, as previously shown with uNHCs,^[11-17] imidazolidin-2-ylidenes can also be employed as side donors in the design of lutidine-derived complexes capable to participate in ligand-assisted processes. This fact significantly broadens the structural and electronic diversity of this class of proton-responsive ligands.

Experimental Section

General procedures

All reactions and manipulations were performed under nitrogen or argon, either in a Braun Labmaster 100 glovebox or using standard Schlenk-type techniques. All solvents were distilled under nitrogen with the following desiccants: sodiumbenzophenone-ketyl for diethyl ether (Et₂O) and tetrahydrofuran (THF); sodium for pentane and toluene; CaH₂ for dichloromethane and acetonitrile (CH₂Cl₂, CH₃CN). Imidazolium salt 4 was prepared as previously described.^[18] Synthesis and characterization of complexes 1, 3 and 7 have been previously communicated.^[21] All other reagents were purchased from commercial suppliers and used as received. NMR spectra were obtained on Bruker DPX-300, DRX-400, AVANCEIII/ASCEND 400R or DRX-500 spectrometers. ³¹P{¹H} NMR shifts were referenced to external 85% H₃PO₄, while ¹³C{¹H} and ¹H shifts were referenced to the residual signals of deuterated solvents. All data are reported in ppm downfield from Me₄Si. All NMR measurements were carried out at 25 °C, unless otherwise stated. NMR signal assignations were confirmed by 2D NMR spectroscopy (1H-1H COSY, 1H-1H NOESY, 1H-13C HSQC and ¹H-¹³C HMBC) for all the complexes. Due to the low solubility of complexes **6-10**, NMR spectra were registered using impure samples that were prepared before complete

purification and drying of the compounds. Elemental analyses were run by the Analytical Service of the Instituto de Investigaciones Químicas in a Leco TrueSpec CHN elemental analyzer. IR spectra were acquired on a Bruker Tensor 27 instrument. Deposition Numbers 1581044 (**6**), 1944657 (**8**), 1944658 (**9**) and 1944659 (**10**) contain the supplementary crystallographic data for this paper. These data are provided free of charge *via:* https://www.ccdc.cam.ac.uk/structures/

Photophysical studies

UV-vis absorption spectra were recorded on a Perkin-Elmer Lambda 750S spectrophotometer. Excitation and emission spectra were recorded on a Jobin Yvon Fluorolog 3-22 spectrofluorometer with a 450 W xenon lamp, double-grating monochromators, and a TBX-04 photomultiplier. The solid-state measurements were made in a front-face configuration using polycrystalline samples between quartz coverslips; the solution measurements were carried out in a right angle configuration using degassed solutions of the samples in 5 mm quartz NMR tubes. A liquid nitrogen Dewar with quartz windows was employed for the low-temperature measurements. Emission lifetimes (τ) were measured using either the Fluorolog's FL-1040 phosphorimeter accessory ($\tau > 10 \ \mu$ s) or an IBH FluoroHub TCSPC controller and a NanoLED pulse diode excitation source ($\tau < 10 \ \mu$ s); the estimated uncertainty is ±10% or better. Emission quantum yields (ϕ) were measured using a Hamamatsu C11347 Absolute PL Quantum Yield Spectrometer; the estimated uncertainty is ±5% or better.

Computational details

DFT calculations were carried out with the Gaussian 09 program.^[35] The hybrid functional B3LYP^[36] was used, with dispersion effects taken into account by adding the D3 version of Grimme's empirical dispersion.^[37] C, H, N, O and P atoms were represented by the 6-31g(d,p) basis set,^[38] whereas Ir was described using the Stuttgart/Dresden Effective Core Potential and its associated basis set SDD.^[39] All geometry optimizations were performed without restrictions in THF (bulk solvent effects modelled with the SMD continuum model).^[40] The EDA analysis has been performed using the counterpoise correction as implemented in Gaussian09.^[41] Wiberg bond orders in the Lowdin orthogonalized basis^[42] have been calculated with the Multiwn software.^[43]

Synthesis of metalated Ir-CNP complexes

Complex 1.^[21] A solution of imidazolium salt **4** (0.083 g, 0.167 mmol) in CH₂Cl₂ (5 mL) was treated with Ag₂O (0.020 g, 0.085 mmol), and the mixture was stirred at the dark for 20 h. The suspension was filtered, and added to a solution of [IrCl(COE)₂]₂ (0.074 g, 0.083 mmol) in CH₂Cl₂ (10 mL). The resulting solution was stirred overnight, and filtered. Solvent was removed under reduced pressure, and the residue was washed with Et₂O (3×5 mL) and dried under vacuum. Yellow solid (0.104 g, 91%).

Complex 6. A solution of complex 3 (0.100 g, 0.15 mmol) in CH₂Cl₂ (7 mL) was stirred for 6 h. Solvent was evaporated, and the resulting solid was washed with Et₂O (3×5 mL) and pentane $(3 \times 5 \text{ mL})$ and dried under vacuum. Pale yellow solid (0.090 g, 86%). Crystals suitable for X-ray diffraction analysis were grown from a saturated solution of complex **6** in THF. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.85 (dd, ³J_{HH} = 8.9 Hz, ³J_{HP} = 6.8 Hz, 2H, 2 H arom PPh), 7.72 (m, 3H, 2 H arom PPh + H arom Py), 7.53 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H, H arom Py), 7.40 (m, 6H, 6 H arom PPh), 7.23 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H, H arom Py), 6.47 (s, 1H, H arom Xyl), 6.35 (s, 1H, H arom Xyl), 5.32 (d, ${}^{2}J_{HH} = 16.0$ Hz, 1H, NC*H*H), 4.67 (d, ${}^{2}J_{HH}$ = 16.0 Hz, 1H, NC*H*H), 4.42 (dd, ${}^{2}J_{HH}$ = 16.0 Hz, ${}^{2}J_{HP}$ = 8.0 Hz, 1H, PC*H*H), 4.13 (m, 4H, 4 C*H*H NHC), 3.87 (dd, ${}^{2}J_{HH}$ = 16.0 Hz, ${}^{2}J_{HP}$ = 8.0 Hz, 1H, PC*H*H), 2.31 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), -22.26 (d, ${}^{2}J_{HP}$ = 16.0 Hz, 1H, IrH); ${}^{31}P{}^{1}H{}$ NMR (121 MHz, CD₂Cl₂): δ 11.5; ¹³C{¹H} NMR (101 MHz, CD₂Cl₂): δ 203.9 (d, J_{CP} = 113 Hz, C-2 NHC), 165.3 (d, J_{CP} = 5 Hz, C_a arom), 156.4 (C_a arom), 151.1 (d, J_{CP} = 4 Hz, C_q arom), 145.4 (C_q arom), 137.0 (CH arom), 134.7 (d, $J_{CP} = 48$ Hz, C_q arom), 134.7 (d, $J_{CP} = 12$ Hz, 2 CH arom), 133.5 (d, $J_{CP} = 9$ Hz, 2 CH arom), 131.8 (C_a arom), 131.0 (d, J_{CP} = 2 Hz, CH arom), 129.9 (d, J_{CP} = 2 Hz, CH arom), 128.8 (d, J_{CP} = 10 Hz, 2 CH arom), 128.3 (d, J_{CP} = 9 Hz, 2 CH arom), 123.8 (CH arom), 122.7 (CH arom), 122.1 (d, $J_{CP} = 8$ Hz, CH arom), 107.8 (CH arom), 57.5 (CH₂N), 52.6 (d, $J_{CP} = 5$ Hz, CH₂ NHC), 48.8 (d, J_{CP} = 29 Hz, CH₂P), 47.0 (d, J_{CP} = 4 Hz, CH₂ NHC), 29.3 (d, J_{CP} = 6 Hz, CH₃), 20.8 (CH₃), signals for two C_q could not be detected due to the low solubility of the complex; IR (nujol): v = 2151 (v_{IrH}) cm⁻¹; Anal. Calcd (%) for C₃₀H₃₀IrClN₃P: C 52.13, H 4.37, N 6.08; found: C 52.14, H 4.45, N 6.08.

Complex 8. A suspension of complex **7** (0.052 g, 0.04 mmol) in CHCl₃ (7 mL) was stirred for 3 h at 50 °C. Solvent was evaporated, and the resulting solid was washed with Et₂O (3×5 mL) and pentane (3×5 mL), and dried under vacuum. Pale yellow solid (0.040 g, 84%). Crystals suitable for X-ray diffraction analysis were grown from a saturated solution of complex **8** in THF. ¹³C{¹H} NMR spectrum of **8** could not be

registered due to the low solubility of the complex in common deuterated solvents. ¹H NMR (300 MHz, CD₂Cl₂): δ 8.09 (m, 4H, 4 H arom PPh), 7.70 (m, 8H, 8 H arom), 7.33 (m, 4H, 4 H arom), 7.24 (m, 6H, 6 H arom PPh), 7.06 (d, ³*J*_{HH} = 7.4 Hz, 2H, 2 H arom Py), 6.85 (m, 4H, 2 H arom Py + 2 H arom NHC), 6.59 (m, 6H, 4 H arom + 2 NCH-Py), 6.05 (d, ³*J*_{HH} = 7. 8 Hz, 2H, 2 H arom Py), 4.26 (dd, ²*J*_{HH} = 16.6 Hz, ²*J*_{HP} = 10.2 Hz, 2H, 2 PC*H*H), 3.99 (dd, ²*J*_{HH} = 16.7 Hz, ²*J*_{HP} = 11.2 Hz, 2H, 2 PC*H*H), 3.04 (s, 6H, 2 CH₃), 2.43 (s, 6H, 2 CH₃); ³¹P{¹H} NMR (121 MHz, CD₂Cl₂): δ –0.9; Anal. Calcd (%) for C₆₀H₅₂Cl₂Ir₂N₆P₂: C 52.43, H 3.81, N 6.11; found: C 52.50, H 3.70, N 6.08.

Complex 9. A suspension of **1** (0.047 g, 0.068 mmol) and PPh₃ (0.018 g, 0.068 mmol) in THF (2 mL) was treated with KO*t*Bu (0.008 g, 0.069 mmol). The reaction mixture was stirred for 2 h, and filtered. The solvent was removed under vacuum and the resulting solid was washed with Et₂O (3 × 3 mL) and pentane (3 × 3 mL) to yield complex **9** as a pale brown solid (0.048 g, 77%).

[Figure complex 9]

¹H NMR (400 MHz, THF- d_8 , 323 K): δ 7.61 (d, J_{HH} = 1.6 Hz, 1H, H arom NHC), 7.57 (m, 2H, 2 H arom Ph), 7.43 (dd, J_{HP} = 8.8 Hz, ${}^{3}J_{HH}$ = 7.3 Hz, 2H, 2 H arom Ph), 7.18 (m, 4H, 4 H arom Ph), 7.07 (m, 3H, 3 H arom), 7.03 (d, $J_{HH} = 1.6$ Hz, 1H, H arom NHC), 6.95 (m, 8H, 8 H arom), 6.87 (m, 1H, H arom), 6.67 (dd, $J_{HP} = 8.8$ Hz, ${}^{3}J_{HH} = 8.8$ Hz, 6 H arom Ph), 6.48 (m, 3H, H arom + H^c + H^b), 5.43 (d, ${}^{3}J_{HH} = 6.1$ Hz, 1H, H^d), 4.32 (d, ²J_{HH} = 14.8 Hz, 1H, NC*H*H), 4.05 (d, ²J_{HH} = 14.8 Hz, 1H, NC*H*H), 4.02 (s, 1H, H^a), 2.35 (s, 3H, CH₃), 1.61 (s, 3H, CH₃), -12.55 (dd, ${}^{2}J_{HP}$ = 138.4 Hz, ${}^{2}J_{HP}$ = 22.0 Hz, 1H, IrH); ³¹P{¹H} NMR (162 MHz, THF- d_8): δ 1.1 (d, J_{PP} = 23 Hz, CH₂PPh₂), -15.3 (d, J_{PP} = 23 Hz, PPh₃); ¹³C{¹H} NMR (101 MHz, THF- d_8 , 323 K): δ 173.9 (dd, J_{CP} = 96 Hz, J_{CP} = 6 Hz, C-2 NHC), 173.8 (d, J_{CP} = 18 Hz, C_q arom), 150.6 (C_q arom), 148.9 (2 C_q arom), 145.8 (dd, J_{CP} = 39 Hz, J_{CP} = 3 Hz, C_q arom), 144.0 (dd, J_{CP} = 58 Hz, J_{CP} = 4 Hz, C_q arom), 137.7 (d, J_{CP} = 36 Hz, 3 C_q arom), 135.4 (d, J_{CP} = 11 Hz, 2 CH arom), 134.5 (d, $J_{CP} = 10$ Hz, 2 CH arom), 134.1 (d, $J_{CP} = 11$ Hz, 6 CH arom), 131.5 (C_g arom), 130.6 (d, *J*_{CP} = 3 Hz, CH Py), 129.1 (3 CH arom), 128.3 (CH arom), 128.0 (m, 6 CH arom), 127.9 (CH arom), 127.5 (d, $J_{CP} = 4$ Hz, 2 CH arom), 127.4 (d, $J_{CP} = 5$ Hz, 2 CH arom), 125.7 (CH arom), 124.3 (br, Ir-C_g arom), 118.8 (d, J_{CP} = 3 Hz, CH arom), 115.4 (d, J_{CP} = 16 Hz, CH Py), 114.4 (d, J_{CP} = 3 Hz, CH arom), 109.7 (CH arom), 102.4 (C^d), 77.4 (d, $J_{CP} = 70 \text{ Hz}$, C^a), 56.7 (CH₂N), 29.7 (d, $J_{CP} = 5 \text{ Hz}$, CH₃), 20.8 (CH₃); IR (nujol): v =

2053 (v_{IrH}) cm⁻¹; Anal. Calcd (%) for C₄₈H₄₂IrN₃P₂: C 63.00, H 4.63, N 4.59; found: C 63.49, H 4.96, N 4.63.

Complex 10. A suspension of **6** (0.054 g, 0.078 mmol) and PPh₃ (0.020 g, 0.078 mmol) in THF (2 mL) was treated with KO*t*Bu (0.009 g, 0.080 mmol). The reaction mixture was stirred for 2 h, and filtered. The solvent was removed under vacuum and the resulting solid was washed with Et₂O (3 × 3 mL) and pentane (3 × 3 mL) to yield complex **10** as a yellow solid (0.051 g, 71%). Suitable crystals for X-ray diffraction analysis were grown from a saturated solution of complex **10** in Et₂O.

[Figure complex 10]

¹H NMR (400 MHz, THF- d_8): δ 7.57 (m, 2H, 2 H arom PPh), 7.43 (dd, J_{HP} = 8.5 Hz, ³*J*_{HH} = 7.3 Hz, 2H, 2 H arom PPh), 7.24 (m, 2H, 2 H arom PPh), 7.20 (m, 1H, H arom PPh), 7.06 (m, 8H, 8 H arom PPh), 6.98 (m, 2H, 2 H arom PPh), 6.72 (br m, 8H, 8 H arom PPh), 6.46 (m, 2H, H^b + H^d), 6.36 (s, 1H, H arom), 6.32 (s, 1H, H arom), 5.53 (dd, ³*J*_{HH} = 3.9 Hz, ³*J*_{HH} = 3.8 Hz, 1H, H^c), 3.99 (m, 1H, C*H*H NHC), 3.98 (s, 1H, H^a), 3.89 (m, 2H, 2 C*H*H NHC), 3.78 (d, ${}^{2}J_{HH}$ = 14.1 Hz, 1H, NC*H*H), 3.55 (d, ${}^{2}J_{HH}$ = 14.1 Hz, 1H, NC*H*H), 2.84 (m, 1H, C*H*H NHC), 2.32 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), -12.25 (dd, ²J_{HP} = 132.8 Hz, ${}^{2}J_{HP}$ = 23.1 Hz, 1H, IrH); ${}^{31}P{}^{1}H$ NMR (121 MHz, THF-d₈): δ –2.0 (d, J_{PP} = 25 Hz, CH₂PPh₂), -17.4 (d, J_{PP} = 25 Hz, PPh₃); ¹³C{¹H} NMR (101 MHz, THF- d_8): δ 173.5 (d, $J_{CP} = 18$ Hz, C_{a} arom), 152.0 (C_{a} arom), 151.5 (C_{a} arom), 147.4 (C_{a} arom), 146.1 (d, J_{CP} = 38 Hz, C_{q} arom), 144.1 (d, J_{CP} = 58 Hz, C_{q} arom), 35.4 (d, J_{CP} = 11 Hz, 2 CH arom), 134.4 (br m, 10 CH arom), 131.4 (C_a arom), 130.9 (CH Py), 129.4 (2 CH arom), 128.2 (CH arom), 128.0 (br m, 6 CH arom), 127.4 (d, J_{CP} = 7 Hz, 2 CH arom), 127.3 (d, $J_{CP} = 8$ Hz, 2 CH arom), 122.8 (CH arom), 114.6 (d, $J_{CP} = 16$ Hz, CH Py), 107.2 (CH arom), 101.9 (C^d), 76.7 (d, $J_{CP} = 70$ Hz, C^a), 56.6 (CH₂N), 51.3 (CH₂ NHC), 46.6 (CH₂ NHC), 29.1 (d, J_{CP} = 4 Hz, CH₃), 21.0 (CH₃), the C²(NHC) and 4 C_q carbon signals could not be detected due to significant line broadening and the low solubility of the complex in THF- d_8 ; IR (nujol): v = 2082 (v_{IrH}) cm⁻¹; Anal. Calcd (%) for C₄₈H₄₄IrN₃P₂: C 62.87, H 4.84, N 4.58; found: C 62.72, H 5.06, N 4.42.

Transfer hydrogenation of ketones

A solution of complex **3** (1.0 mg, 1.5 μ mol) and the corresponding ketone (0.15 mmol) in 2-propanol (1.0 mL) was heated to 80 °C for 24 h. Conversion was determined after solvent evaporation by ¹H NMR spectroscopy using mesitylene as internal standard.

Acknowledgements

Financial support (FEDER contribution) from the Spanish Ministerio de Ciencia, Innovación y Universidades (CTQ2015-69568-P, CTQ2016-75193-P, CTQ2016-80814-R and CTQ2016-81797-REDC), Fundación Séneca (19890/GERM/15) and Junta de Andalucía (PY18-3208) is gratefully acknowledged. M.H.J. thanks SECITI-DF for a postdoctoral fellowship, and CONACyT Mexico for postdoctoral funding (263719). The use of computational facilities of the Supercomputing Centre of Galicia (CESGA) is gratefully acknowledged.

Keywords: ligand design • proton-responsive ligands • carbene ligands • luminescence • hydrogenation

- [1] a) J. R. Khusnutdinova, D. Milstein, Angew. Chem. Int. Ed. 2015, 54, 12236–12273; b) J. I. van der Vlugt, Eur. J. Inorg. Chem. 2012, 363–375; c) H. Grützmacher, Angew. Chem. Int. Ed. 2008, 47, 1814–1818.
- [2] a) J. I. van der Vlugt, J. N. H. Reek, *Angew. Chem. Int. Ed.* 2009, *48*, 8832–8846;
 b) C. Gunanathan, D. Milstein, *Acc. Chem. Res.* 2011, *44*, 588–602; c) D. Milstein, *Phil. Trans. R. Soc. A* 2015, *373*, 20140189; d) T. Zell, D. Milstein, *Acc. Chem. Res.* 2015, *48*, 1979–1994.
- [3] For some selected examples of M-PNP and M-PNN complexes: a) J. Zhang, M. Gandelman, L. J. W. Shimon, H. Rozenberg, D. Milstein, *Organometallics* 2004, 23, 4026–4033; b) J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, *J. Am. Chem. Soc.* 2005, 127, 10840–10841; c) A. Anaby, M. Feller, Y. Ben-David, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, D. Milstein, *J. Am. Chem. Soc.* 2016, 138, 9941–9950; d) M. Vogt, A. Nerush, M. A. Iron, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, Y. Ben-David, D. Milstein, *J. Am. Chem. Soc.* 2013, 135, 17004–17018; e) A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben-David, N. A. Espinosa Jalapa, D. Milstein, *J. Am. Chem. Soc.* 2016, 138, 4298–4301; f) R. Langer, G. Leitus, Y. Ben-David, D. Milstein, *Angew. Chem. Int. Ed.* 2011, *50*, 2120–2124; g) D. Srimani, A. Mukherjee, A. F. G. Goldberg, G.

Leitus, Y. Diskin-Posner, L. J. W. Shimon, Y. Ben-David, D. Milstein, *Angew. Chem. Int. Ed.* **2015**, *54*, 12357–12360; h) A. Mukherjee, D. Srimani, S. Chakraborty, Y. Ben-David, D. Milstein, *J. Am. Chem. Soc.* **2015**, *137*, 8888–8891.

- [4] a) *N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis* (Ed.: S. P. Nolan), Wiley-VCH, Weinheim, **2014**; b) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, *Nature* **2014**, *510*, 485–496.
- [5] a) G. C. Fortman, S. P. Nolan, *Chem. Soc. Rev.* 2011, 40, 5151–5169; b) V. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal. 2016, 6, 890–906; c) R. D. J. Froese, C. Lombardi, M. Pompeo, R. P. Rucker, M. G. Organ, Acc. Chem. Res. 2017, 50, 2244–2253.
- [6] G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746–1787.
- [7] a) S. Kaufhold, L. Petermann, R. Staehle, S. Rau, *Coord. Chem. Rev.* 2015, 304–305, 73–87; b) D. Zhao, L. Candish, D. Paul, F. Glorius, *ACS Catal.* 2016, 6, 5978–5988; c) H. M. Lee, T. Jiang, E. D. Stevens, S. P. Nolan, *Organometallics* 2001, 20, 1255–1258; d) L. D. Vázquez-Serrano, B. T. Owens, J. M. Buriak, *Chem. Commun.* 2002, 2518–2519; e) C. Gandolfi, M. Heckenroth, A. Neels, G. Laurenczy, M. Albrecht, *Organometallics* 2009, 28, 5112–5121; f) J. W. Sprengers, J. Wassenaar, N. D. Clement, K. J. Cavell, C. J. Elsevier, *Angew. Chem. Int. Ed.* 2005, *44*, 2026–2029; g) H. M. Lee, D. C. Smith, Z. He, E. D. Stevens, C. S. Yi, S. P. Nolan, *Organometallics* 2001, 20, 794–797.
- [8] D. J. Nelson, S. P. Nolan, Chem. Soc. Rev. 2013, 42, 6723-6753.
- [9] N. S. Antonova, J. J. Carbó, J. M. Poblet, Organometallics 2009, 28, 4283-4287.
- [10] a) C-F. Fu, C-C. Lee, Y-H. Liu, S-M. Peng, S. Warsink, C. J. Elsevier, J-T. Chen, S-T. Liu, *Inorg. Chem.* 2010, *49*, 3011–3018; b) S. Khumsubdee, Y. Fan, K. Burgess, *J. Org. Chem.* 2013, *78*, 9969–9974; c) M. Süβner, H. Plenio, *Chem. Commun.* 2005, 5417–5419; d) S. Leuthäußer, V. Schmidts, C. M. Thiele, H. Plenio, *Chem. Eur. J.* 2008, *14*, 5465–5481; e) G. De Bo, G. Berthon-Gelloz, B. Tinant, I. E. Markó, *Organometallics* 2006, *25*, 1881–1890; f) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, *Org. Lett.* 1999, *1*, 953–956; g) A. C. Hillier, W. J. Sommer, B. S. Yong, J. L. Petersen, L. Cavallo, S. P. Nolan, *Organometallics* 2003, *22*, 4322–4326; h) M. S. Viciu, O. Navarro, R. F. Germaneau, R. A. Kelly III, W. Sommer, N. Marion, E. D. Stevens, L. Cavallo, S. P. Nolan, *Organometallics* 2004, *23*, 1629–1635; i) U. L. Dharmasena, H. M. Foucault, E. N. dos Santos, D.

E. Fogg, S. P. Nolan, Organometallics 2005, 24, 1056–1058; j) J. A. M. Lummiss,
C. S. Higman, D. L. Fyson, R. McDonald, D. E. Fogg, Chem. Sci. 2015, 6, 6739–6746.

- [11] a) R. E. Andrew, A. B. Chaplin, *Inorg. Chem.* 2015, *54*, 312–322; b) R. E. Andrew, L. González-Sebastián, A. B. Chaplin, *Dalton Trans.* 2016, *45*, 1299–1305; c) R. E. Andrew, A. B. Chaplin, *Dalton Trans.* 2014, *43*, 1413–1423; d) R. E. Andrew, D. W. Ferdani, C. A. Ohlin, A. B. Chaplin, *Organometallics* 2015, *34*, 913–917; e) R. E. Andrew, C. M. Storey, A. B. Chaplin, *Dalton Trans.* 2016, *45*, 8937–8944; f) M. R. Gyton, B. Leforestier, A. B. Chaplin, *Organometallics* 2018, *37*, 3963–3971; g) C. M. Storey, M. R. Gyton, R. E. Andrew, A. B. Chaplin, *Angew. Chem. Int. Ed.* 2018, *57*, 12003–12006.
- [12] G. A. Filonenko, E. Cosimi, L. Lefort, M. P. Conley, C. Copéret, M. Lutz, E. J.
 M. Hensen, E. A. Pidko, ACS Catal. 2014, 4, 2667–2671.
- [13] G. A. Filonenko, D. Smykowski, B. M. Szyja, G. Li, J. Szczygiel, E. J. M. Hensen,
 E. A. Pidko, ACS Catal. 2015, 5, 1145–1154.
- [14] Y. Sun, C. Koehler, R. Tan, V. T. Annibale, D. Song, *Chem. Commun.* 2011, 47, 8349–8351.
- [15] E. Fogler, E. Balaraman, Y. Ben-David, G. Leitus, L. J. W. Shimon, D. Milstein, Organometallics 2011, 30, 3826–3833.
- [16] C. del Pozo, M. Iglesias, F. Sánchez, Organometallics **2011**, *30*, 2180–2188.
- [17] a) M. Hernández-Juárez, M. Vaquero, E. Álvarez, V. Salazar, A. Suárez, *Dalton Trans.* 2013, *42*, 351–354; b) M. Hernández-Juárez, J. López-Serrano, P. Lara, J. P. Morales-Cerón, M. Vaquero, E. Álvarez, V. Salazar, A. Suárez, *Chem. Eur. J.* 2015, *21*, 7540–7555.
- [18] P. Sánchez, M. Hernández-Juárez, E. Álvarez, M. Paneque, N. Rendón, A. Suárez, Dalton Trans. 2016, 45, 16997–17009.
- [19] P. Sánchez, M. Hernández-Juárez, N. Rendón, J. López-Serrano, E. Álvarez,
 M. Paneque, A. Suárez, *Dalton Trans.* 2018, 47, 16766–16776.
- [20] a) M. Asay, D. Morales-Morales, *Dalton Trans.* 2015, 44, 17432–17447; b) B.
 G. Anderson, J. L. Spencer, *Chem. Eur. J.* 2014, 20, 6421–6432; c) A. J. Nawara-Hultzsch, J. D. Hackenberg, B. Punji, C. Supplee, T. J. Emge, B. C. Bailey, R. R. Schrock, M. Brookhart, A. S. Goldman, *ACS Catal.* 2013, 3, 2505–2514; d) H.

Valdés, M. A. García-Eleno, D. Canseco-Gonzalez, D. Morales-Morales, *ChemCatChem* **2018**, *10*, 3136–3172; e) *Pincer Compounds: Chemistry and Applications* (Ed.: D. Morales-Morales), Elsevier, Netherlands, **2018**.

- [21] M. Hernández-Juárez, J. López-Serrano, P. González-Herrero, N. Rendón, E. Álvarez, M. Paneque, A. Suárez, *Chem. Commun.* **2018**, *54*, 3843–3846.
- [22] a) J. B. Waters, J. M. Goicoechea, *Coord. Chem. Rev.* 2015, 293–294, 80–94;
 b) T. Simler, P. Braunstein, A. Danopoulos, *Chem. Commun.* 2016, *52*, 2717–2720; c) A. El-Hellani, V. Lavallo, *Angew. Chem. Int. Ed.* 2014, *53*, 4489–4493; d)
 W. A. Herrmann, P. W. Roesky, M. Elison, G. Artus, K. Öfele, *Organometallics* 1995, *14*, 1085–1086; e) A. A. Danopoulos, D. Pugh, J. A. Wright, *Angew. Chem. Int. Ed.* 2008, *47*, 9765–9767.
- [23] M. Albrecht, Chem. Rev. 2010, 110, 576–623.
- [24] D. Tapu, D. A. Dixon, C. Roe, *Chem. Rev.* **2009**, *109*, 3385–3407.
- [25] M. S. Viciu, O. Navarro, R. F. Germaneau, R. A. Kelly III, W. Sommer, N. Marion,
 E. D. Stevens, L. Cavallo, S. P. Nolan, *Organometallics* 2004, 23, 1629–1635.
- [26] J. C. Deaton, F. N. Castellano in *Iridium(III) in Optoelectronic and Photonics Applications* (Ed.: E. Zysman-Colman), John Wiley & Sons, Chichester, **2017**, pp 1–69.
- [27] For some examples of luminescence studies of NHC-Ir complexes: a) T. Sajoto,
 P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes, S. R. Forrest, *Inorg. Chem.* 2005, *44*, 7992–8003; b) J. Lee, H.-F. Chen,
 T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson, S. R. Forrest, *Nat. Mater.* 2016, *15*, 92–98; c) F. Kessler, R. D. Costa, D. Di Censo, R. Scopelliti, E. Ortí, H. J. Bolink, S. Meier, W. Sarfert, M. Grätzel, M. K. Nazeeruddin, E. Baranoff, *Dalton Trans.* 2012, *41*, 180–191; d) J. Torres, M. C. Carrión, J. Leal, F. A. Jalón, J. V. Cuevas, A. M. Rodríguez, G. Castañeda, B. R. Manzano, *Inorg. Chem.* 2018, *57*, 970–984; e) C. Yang, F. Mehmood, T. L. Lam, S. L. F. Chan, Y. Wu, C. S. Yeung, X. Guan, K. Li, C. Y. S. Chung, C. Y. Zhou, X. Guan, C.-M. Che, *Chem. Sci.* 2016, *7*, 3123–3136; f) C. H. Yang, J. Beltran, V. Lemaur, J. Cornil, D. Hartmann, W. Sarfert, R. Fröhlich, C. Bizzarri, L. De Cola, *Inorg. Chem.* 2010, *49*, 9891–9901.
- [28] P. Chen, T. J. Meyer, *Chem. Rev.* **1998**, *98*, 1439–1478.
- [29] H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 2011, 255, 2622-2652.

- [30] a) C. Hou, J. Jiang, Y. Li, C. Zhao, Z. Ke, ACS Catal. 2017, 7, 786–795; b) X.
 Yang, M. B. Hall, J. Am. Chem. Soc. 2010, 132, 120–130.
- [31] For some examples of reactions of deprotonated lutidine-derived complexes with electrophiles, see: a) J. I. van der Vlugt, E. A. Pidko, D. Vogt, M. Lutz, A. L. Spek, *Inorg. Chem.* 2009, 48, 7513–7515; b) C. A. Huff, J. W. Kampf, M. S. Sanford, *Organometallics* 2012, 31, 4643–4645; c) C. A. Huff, J. W. Kampf, M. S. Sanford, *Chem. Commun.* 2013, 49, 7147–7149; d) S. Perdriau, D. S. Zijlstra, H. J. Heeres, J. G. de Vries, E. Otten, *Angew. Chem. Int. Ed.* 2015, 54, 4236–4240; e) M. Vogt, A. Nerush, Y. Diskin-Posner, Y. Ben-David, D. Milstein, *Chem. Sci.* 2014, 5, 2043–2051; f) M. Montag, J. Zhang, D. Milstein, *J. Am. Chem. Soc.* 2012, 134, 10325–10328.
- [32] M. Gargir, Y. Ben-David, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, D. Milstein, Organometallics 2012, 31, 6207–6214.
- [33] a) R. S. Rowland, R. Taylor, J. Phys. Chem. 1996, 100, 7384–7391; b) J.
 Reedijk, Chem. Soc. Rev. 2013, 42, 1776–1783.
- [34] D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621–6686.
- [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 09, Revision E.01*, Gaussian, Inc., Wallingford CT, **2016**.
- [36] a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648–5652; b) C. Lee, W. Yang, R.
 G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, *37*, 785–789; c) B.
 Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* **1989**, *157*, 200–206.
- [37] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [38] a) R. Ditchfield, W. J. Hehre, J. A. Pople, *J. Chem. Phys.* 1971, *54*, 724–728; b)
 W. J. Hehre, R. Ditchfield, J. A. Pople, *J. Chem. Phys.* 1972, *56*, 2257–2261; c) P.

C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, *28*, 213–222; d) M. M. Francl,
W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* 1982, *77*, 3654–3665.

- [39] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* 1990, 77, 123–141.
- [40] A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* 2009, *113*, 6378–6396.
- [41] a) S. F. Boys, F. Bernardi, *Mol. Phys.* 1970, *19*, 553–556; b) S. Simon, M. Duran,
 J. J. Dannenberg, *J. Chem. Phys.* 1996, *105*, 11024–11031.
- [42] O. V. Sizov, L. V. Skripnikov, A. Yu. Sokolov, *J. Mol. Struc-Theochem.* 2008, 870, 1–9.
- [43] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592; Multiwfn 3.6 (http://sobereva.com/multiwfn/).

[Figure 1]

Figure 1. General structures of metal complexes with lutidine-derived PNP, PNN, CNC and CNP ligands.

[Figure 2]

Figure 2. General structures of imidazolin-2-ylidene (*u*NHC) and imidazolidin-2-ylidene (*s*NHC) ligands.

[Figure 3]

Figure 3. ORTEP drawing at 30% ellipsoid probability of complex **6**. Hydrogen atoms, except hydrido ligands and the sNHC hydrogens, have been omitted for clarity. Ir(1)-C(1) 1.955(6), Ir(1)-N(3) 2.163(5), Ir(1)-P(1) 2.3408(15), Ir(1)-Cl(1) 2.5452(15), Ir(1)-C(5) 2.081(6), C(1)-Ir(1)-P(1) 170.4(2), C(1)-Ir(1)-C(5) 78.0(3), C(1)-Ir(1)-N(3) 89.5(2), P(1)-Ir(1)-N(3) 81.33(13).

[Figure 4]

Figure 4. Excitation (left) and emission (right) spectra of **1** and **6** in MeTHF frozen glasses at 77 K.

[Figure 5]

Figure 5. ORTEP drawing at 30% ellipsoid probability of complex **8**. Hydrogen atoms, except NHC hydrogens, have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Ir(1)-C(1) 1.922(7), Ir(1)-N(3) 2.195(5), Ir(1)-P(1) 2.3034(17), Ir(1)-Cl(1) 2.4901(15), Ir(1)-C(5) 2.074(7), Ir(1)-C(42) 2.156(6), C(1)-Ir(1)-P(1) 103.11(18), C(1)-Ir(1)-C(5) 79.5(3), C(1)-Ir(1)-N(3) 83.9(2), P(1)-Ir(1)-N(3) 77.20(15).

[Figure 6]

Figure 6. ORTEP drawing at 30% ellipsoid probability of complexes **9** (left) and **10** (right). Hydrogen atoms, except hydrido ligand and NHC hydrogens, have been omitted for clarity.

[Figure 7]

Figure 7. Structures of calculated species I-IV and I-L-IV-L.

[Figure complex 9]

[Figure complex 10]

[Scheme 1]

Scheme 1. Hydrogenation of complex 1 to yield 2 and 3.

[Scheme 2]

Scheme 2. Synthesis of complex 1.

Scheme 3. Synthesis of complexes 3 and 6.

Scheme 4. Synthesis of complexes 7-9.

Scheme 5. Deprotonation of complex 6 in the presence of PPh₃.

Complex	λ [nm] (ε [M ⁻¹ cm ⁻¹])
1	289 (sh, 5300), 336 (sh, 2200), 393 (2500)
6	289 (sh, 9300), 391 (2700)

Table 1. Electronic absorption data of 1 and 6 in CH_2CI_2 solution at 298 K.

[Table 2]

	Medium	$\lambda_{exc}[{\sf nm}]^{[{\sf a}]}$	λ_{em} [nm]	τ [μS] ^[b]	$arPhi^{[extsf{c}]}$
1	Solid, 298 K	366, 448	506	2.1 (13%), 6.3 (87%)	0.281
	MeTHF, 77 K	<i>300</i> , 336, 391	492	21 (62%), 53 (38%)	_
6	Solid, 298 K	<i>364</i> , 416	517	0.21 (10%), 0.93 (90%)	< 0.01 ^[d]
	MeTHF, 77 K	<i>289</i> , 383	486	30 (28%), 62 (72%)	_

[a] The most intense peak is italicized. [b] Emission lifetime; biexponential decays were observed; relative amplitudes are given in parentheses. [c] Absolute quantum yield. [d] Could not be measured accurately.

[Table 3]

	Complex 9	Complex 10
lr(1)-C(1)	1.967(4)	1.968(6)
lr(1)-N(3)	2.188(3)	2.186(4)
lr(1)-P(1)	2.3425(10)	2.3471(16)
lr(1)-C(5)	2.111(4)	2.099(6)
lr(1)-H(1)lr	1.635(18)	1.5095
lr(1)-P(2)	2.3872(10)	2.3766(15)
C(1)-Ir(1)-P(1)	160.48(11)	159.68(16)
C(1)-Ir(1)-C(5)	77.75(15)	78.2(2)
C(1)-Ir(1)-N(3)	86.27(14)	86.8(2)
P(1)-Ir(1)-N(3)	82.32(9)	82.62(13)
P(1)-Ir(1)-H(1)Ir	79.4(14)	70.4
C(1)-Ir(1)-H(1)Ir	83.1(14)	90.7
P(2)-Ir(1)-H(1)Ir	174.8(14)	173.1

 Table 3. Selected bond lengths [Å] and angles [°] for complexes 9 and 10.

L	<i>E</i> (II)– <i>E</i> (I) [kcal mol ⁻¹]	<i>E</i> (IV)– <i>E</i> (III) [kcal mol ⁻¹]
-	-3.20	-2.73
PPh_3	7.15	5.46
CO	6.66	5.55
MeCN	2.04	3.16

Table 4. Relative stabilities (ΔE in THF) of I-IV and I-L-IV-L.^[a]

[a] Energies are relative to the most stable conformer of I·L/II·L and III·L/IV·L in each case (see Supporting Information).

[Table 5]

Table 5. Transfer hydrogenation of ketones catalyzed by complex 3.^[a]

Entry	Ketone	Conv. [%]
1	4-Methylacetophenone	97
2	4-Chloroacetophenone	94
3	2-Bromoacetophenone	99
4	4-Nitroacetophenone	>99
5	4-(Trifluoromethyl)acetophenone	>99
6	α -Tetralone	89
7	Cyclohexanone	>99

[a] Reaction conditions: 1.0 mol-% complex **3**, 2-propanol, 80 °C, 24 h. [S] = 0.15 M. Conversions were determined by ¹H NMR spectroscopy.

Entry for the Table of Contents

Ir complexes based on metalated CNP ligands containing either imidazolin-2-ylidene or imidazolidin-2-ylidene donors have been prepared, and their structure, photophysical properties and reactivity towards bases and H_2 have been compared. These studies allow to propose imidazolidin-2-ylidenes as new side donors in the design of proton-responsive lutidine-derived ligands.

Institute and/or researcher Twitter usernames:

@IIQ_US_CSIC / @GroupOsaca / @GqoLab