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Departamento de Ecuaciones Diferenciales y Análisis Numérico
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Abstract. In this paper we analyse the asymptotic behaviour of some non-
local diffusion problems with local reaction term in general metric measure

spaces. We find certain classes of nonlinear terms, including logistic type terms,

for which solutions are globally defined with initial data in Lebesgue spaces.
We prove solutions satisfy maximum and comparison principles and give sign

conditions to ensure global asymptotic bounds for large times. We also prove

that these problems possess extremal ordered equilibria and solutions, asymp-
totically, enter in between these equilibria. Finally we give conditions for a

unique positive stationary solution that is globally asymptotically stable for

nonnegative initial data. A detailed analysis is performed for logistic type
nonlinearities. As the model we consider here lack of smoothing effect, impor-

tant focus is payed along the whole paper on differences in the results with

respect to problems with local diffusion, like the Laplacian operator.

1. Introduction. Diffusion is an ubiquitous phenomenon in nature. It appears
for example in the process by which matter is transported from one location of a
system to another as a result of random molecular motions, cf. [16]. When the
media is reactive to the diffusion process, reaction diffusion model appear naturally.
Hence reaction–diffusion equations model different phenomena and appear in many
different areas such as physics, biology, chemistry and even economics. In biology for
example they describe the evolution in time and space of the density of population
of one or several biological species, [21].
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When the media is smooth, e.g. a smooth open domain in euclidean space
or a smooth manifold, diffusion is naturally modeled using differential operators,
e.g. Laplace or Laplace–Beltrami operators, respectively. In such a situation one
typicaly encounters the local reaction–difusion model

ut −∆u = f(x, u) (1)

in some smooth open domain Ω ⊂ RN , complemented with some boundary condi-
tions on the boundary ∂Ω. In (1) the nonlinear term

f : Ω× R → R (2)

describes the local rate of production/consumption of the magnitud u at each point
x ∈ Ω.

In nonsmooth media however diffusion must be described by other means, and in
this context some nonlocal diffusion operators appear naturally; e.g. [6, 17, 18, 19,
30]. This approach is applicable in metric measure spaces defined as follows, [26],

Definition 1.1. A metric measure space Ω is a metric space (Ω, d) with a σ-
finite, regular, and complete Borel measure dx in Ω, and that associates a finite
positive measure to the balls of Ω.

Then, if Ω is a measure metric space, assume u(x, t) is the density of some
population at the point x ∈ Ω at time t, and J(x, y) is a positive function de-
fined in Ω× Ω that represents the fraction of the population jumping from a loca-
tion y to location x, per unit time. Then

∫
Ω
J(x, y)u(y, t) dy is the rate at which

the individuals arrive to location x from all other locations y ∈ Ω. Analogously,∫
Ω
J(y, x)u(x, t) dy = u(x, t)

∫
Ω
J(y, x) dy is the rate at which individuals leave from

location x to any other place in Ω. Hence the evolution in time of the population
can be written as ut(x, t) =

∫
Ω

J(x, y)u(y, t) dy− h∗(x)u(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(3)

where u0 is the initial distribution density of the population and h∗(x) =
∫
Ω
J(y, x)

dy. Observe that in a symmetric media we have J(x, y) = J(y, x) and (3) can be
recast as

ut(x, t) =

∫
Ω

J(x, y)
(
u(y, t)− u(x, t)

)
dy, x ∈ Ω, t > 0.

This allows to study diffusion processes in very different types of media like,
for example, graphs (which are used to model complicated structures in chemistry,
molecular biology or electronics, or they can also represent basic electric circuits
in digital computers), compact manifolds, multi-structures composed by several
compact sets with different dimensions (for example, a dumbbell domain), or even
some fractal sets such as the Sierpinski gasket, see [24] for some details. The case
when Ω is an open set of euclidean space (3) and variations of it have been consider
thoroughly in [1, 4, 5, 7, 10, 12, 13, 14, 15, 27, 28, 29] and references therein. Other
approaches to diffusion in nonsmooth media can be found in [6, 11, 20, 30].

A nonlinear version of (3) that we consider in this paper reads ut(x, t) =

∫
Ω

J(x, y)u(y, t) dy+ f(x, u(x, t)), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(4)
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where the nonlinear local reaction is as in (2).
The aim of this paper is to make a general study of the nonlinear problem (4) and

show some similarities and differences between (4) and the local reaction-diffusion
problem (1). We will show that both models share positivity properties and the
strong maximum principle. However, the lack of smoothing effect of the linear
equation (3) affects to some results of existence and asymptotic behaviour of the
nonlocal problem which are weaker than for the local problem.

The paper is organized as follows. In section 2 we introduce all the standing
assumptions on the metric measure space Ω and the nonlocal kernel J . Also we
recall some of the results in [23, 24] on the linear nonlocal problem (3) that will
be used throughout this paper. In particular, depending on properties of J we can
consider initial data for (3) and (4) in the spaces of integrable functions X = Lp(Ω),
1 ≤ p ≤ ∞, or X = Cb(Ω), the space of bounded continuous functions in Ω.

In Section 3 we prove global existence of solutions for (4) for initial u0 ∈ X for
some classes of nonlinear terms f(x, u). First, in Section 3.1 we consider the case
when f is globally Lipschitz and u0 ∈ X. We also prove that solutions of (4) satisfy
both weak, strict or strong comparison and maximum principles, depending on
conditions for the kernel J . These results are analogous to the results of the local
nonlinear reaction-diffusion problem with boundary conditions, (cf. [2]). Using
these results, in Section 3.2 we first prove global existence, uniqueness, comparison
and maximum principles for the solution of (4) for bounded initial data when the
nonlinear term f(x, u), is locally Lipschitz in the variable u ∈ R, uniformly with
respect to x ∈ Ω, and satisfies a sign condition that reads

f(x, u)u ≤ Cu2 +D|u|, for all u ∈ R, x ∈ Ω. (5)

for some C,D ∈ R with D > 0. This differs from the local reaction-diffusion
problems since for f locally Lipschitz the local existence, at least for smooth initial
data, can be proved without any extra sign condition on f . Finally, for some
particular nonlinear terms that satisfy (5) and some growth condition we are able
to prove global existence for initial data u0 in a suitable Lp(Ω) space. In this case,
we also prove comparison and maximum principles for the solutions.

In Section 4, we give some asymptotic estimates of the solution constructed
in Section 3. In particular we prove asymptotic pointwise L∞(Ω) bounds on the
solutions. These estimates are improved in Section 5 where we prove the existence
of two extremal ordered equilibria of (4) in L∞(Ω). These are equilibria of (4)
that enclose all other equilibria, that is, all other equilibrium lies in between of the
extremal ones, with respect to the (pointwise) order relation of functions. These
extremal equilibria give pointwise asymptotic bounds of any weak limit in Lp(Ω)
for 1 ≤ p < ∞, or weak* limit in L∞(Ω), of the solution of (4) with initial data
u0 ∈ Lp(Ω) or L∞(Ω), respectively. We also prove that the maximal extremal
equilibria is “stable from above” and the minimal extremal equilibria is “stable from
below”. We find again here another difference with the nonlinear local problem (1),
where the asymptotic dynamics of the solution enter between extremal equilibria,
uniformly in space, for bounded sets of initial data, cf. [25] and they are part of the
global attractor of the problem. This difference is again due to the lack of smoothing
of the linear group associated to (3). Another striking difference with (1) is given in
Example 5.2 where we show that it is possible to construct an uncountable family
of nonisolated, discontinuous, piecewise constant equilibria that even may coincide
in sets of positive measure. Such family of equilibria can be made also of positive
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equilibria. Observe that the discontinuity of equilibria is related once more to the
lack of smoothing of solutions of (4).

Then in Section 5.1 for nonnegative solutions we prove that if f(x, 0) is nonneg-
ative then there exists a minimal nonnegative equilibrium, 0 ≤ φ+

m ≤ φM , such
that the solutions of (4) with nonnegative initial data enter asymptotically between
these nonnegative extremal equilibria. If moreover f(x, 0) = 0 and u = 0 is linearly
unstable then every nontrivial nonnegative equilibria is strictly positive. We finally
give a sufficient conditions for uniqueness of a positive equilibrium. In such a case
we obtain that the unique equilibria is globally asymptotically stable for nonneg-
ative solutions. Then in Section 5.2 we also analyze in detail the case of logistic
nonlinearities for which

f(x, u) = g(x) + n(x)u−m(x)|u|ρ−1u

with g, n,m ∈ L∞(Ω), m ≥ 0 not identically zero and ρ > 1. For these problems
we show that extremal equilibria always exist and give conditions on g,m, n that
guarantee uniqueness of a positive, globally stable equilibria. In doing so we prove
a result that states that by acting on an arbitrary small subset of the domain with
a large negative constant, we can shift the spectrum of a linear nonlocal operator
plus a potential h(x), to have negative real part, a result that does not hold for the
local diffusion operator −∆+ h(x)I.

Finally, in Section 6 we give some further comments about the asymptotic be-
haviour of (4) and the lack of asymptotic compactness. In particular, we show that
if we had enough compactness to guarantee that, along subsequences of large times,
solutions converge a.e. x ∈ Ω, then it would be possible to prove the solutions
approach equilibria and even the existence of a suitable attractor. We have failed
in proving that such pointwise asymptotic convergence holds true for (4).

2. Preliminaries on linear equations. Let Ω be a metric measure space and let
J be a nonnegative kernel defined as J : Ω× Ω → R, considered as a mapping

Ω ∋ x 7→ J(x, ·) ≥ 0.

Then consider the nonlocal diffusion operator given by

Ku(x) =

∫
Ω

J(x, y)u(y) dy, x ∈ Ω

for suitable functions defined in Ω. Consider also h ∈ L∞(Ω) a bounded measurable
function.

The operator K will be considered below in the Lebesgue spaces X = Lp(Ω),
with 1 ≤ p ≤ ∞ or in the space of bounded continuous functions X = Cb(Ω). In
the latter case we will assume h ∈ Cb(Ω).

As general notations, |A| will denote the measure of a measurable set A ⊂ Ω.

2.1. Stationary problems. The next results state regularity and compactness
properties of K derived from properties of the kernel J , see e.g. [24] for details.
First we have the following.

Proposition 1. i) Let 1 ≤ p ≤ ∞ and p′ its conjugate exponent, 1
p + 1

p′ = 1.

If J ∈ Lp(Ω, Lp
′
(Ω)) then K ∈ L(Lp(Ω), Lp(Ω)). If moreover, p < ∞ then K ∈

L(Lp(Ω), Lp(Ω)) is compact.
ii) If J ∈ Cb(Ω, L

1(Ω)) then K ∈ L(Cb(Ω), Cb(Ω)). Moreover if J ∈ BUC(Ω,
L1(Ω)), that is, J is bounded and uniformly continuous in Ω with values in L1(Ω),
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then K ∈ L(L∞(Ω), Cb(Ω)) is compact. In particular, K∈ L(L∞(Ω), L∞(Ω)) is
compact and K∈L(Cb(Ω), Cb(Ω)) is compact.

iii) If |Ω| < ∞ and J ∈ L∞(Ω, Lp
′
0(Ω)) for some 1 ≤ p0 ≤ ∞, then K ∈

L(Lp(Ω), Lp(Ω)), for all p0 ≤ p < ∞ and is compact. If moreover, J ∈ BUC(Ω,

Lp
′
0(Ω)) then K ∈ L(L∞(Ω), L∞(Ω)) and K ∈ L(Cb(Ω), Cb(Ω)) are compact.

Notice in particular that if J ∈ L∞(Ω, L1(Ω)) then K ∈ L(L∞(Ω), L∞(Ω)) and
the function

h0(x) =

∫
Ω

J(x, y)dy (6)

satisfies h0 ∈ L∞(Ω). If moreover J ∈ BUC(Ω, L1(Ω)) then h0 ∈ Cb(Ω).
Also, for a measurable function g : Ω → R we define the essential range of g

(range for short) as

R(g) = {s ∈ R : |{x : |g(x)− s| < ε}| > 0 for all ε > 0} (7)

which coincides with the set of s ∈ R such that 1
g(x)−s ̸∈ L∞(Ω). Also, if g is

continuous this coincides with the image set of g. We will also make use of the
essential infimum and essential supremum of a measurable function, which we will
denote infimum and supremum for short, defined as

inf
Ω
g = sup{α ∈ R : |{g ≤ α}| = 0}, sup

Ω
g = inf{α ∈ R : |{g ≥ α}| = 0}.

Note that both infΩ g and supΩ g belong to the (essential) range R(g) if they are
finite.

Then Proposition 1 implies that the spectrum of K − hI satisfies σ(K − hI) =
σess ∪ σp where the essential spectrum is

σess = R(−h)
where R(−h) is the essential range of the function −h, see (7), and a (possibly

empty) discrete point spectrum σp = {µn}Mn=1, M ∈ N ∪ {∞}. If M = ∞, then
{µn}∞n=1 accumulates in R(−h).

Note that the essential spectrum σess(K−hI) = R(−h) is independent of X and
it is formed by the points such that K − (h + λ)I is not a Fredholm operator of

index zero. Also note that the point spectrum σp(K−hI) = {µn}Mn=1 is potentially
dependent of the space X. Hence, the following result, taken from [24, Proposition
3.25], guarantees that the point spectrum, hence the whole spectrum σ(K − hI), is
independent of X.

Proposition 2. Assume |Ω| < ∞ and J ∈ L∞(Ω, Lp
′
0(Ω)) for some 1 ≤ p0 ≤

∞ and h ∈ L∞(Ω) then for all p0 ≤ p < ∞, K − hI ∈ L(Lp(Ω), Lp(Ω)), and
σLp(Ω)(K − hI) is independent of p.

If moreover J ∈ BUC(Ω, Lp
′
0(Ω)), the spectrum above coincides also with σL∞(Ω)

(K − hI). If, additionally, h ∈ Cb(Ω), the spectrum above coincides also with
σCb(Ω)(K − hI).

Below we give several definitions that will be useful for the following results.

Definition 2.1. Let z be a nonnegative measurable function z : Ω → R. We define
the essential support of z (support for short) as:

supp(z) =
{
x ∈ Ω : ∀δ > 0, |{y ∈ Ω : z(y) > 0} ∩B(x, δ)| > 0},

where B(x, δ) is the ball centered in x, with radius δ.
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Observe that for a measurable nonnegative function z : Ω → R

supp(z) = Ω if and only if z > 0 a.e. in Ω.

In such a case we say that z is essentially positive (positive for short), and write
it z > 0.

Given two measurable functions w, z : Ω → R we will say that w is (essentially)
strictly above z and write w > z, if w − z > 0 in the sense above.

We also define

Definition 2.2. If R > 0, we say that Ω is R-connected if for all x, y ∈ Ω, there
exist N ∈ N and a finite set of points {x0, . . . , xN} in Ω such that x0 = x, xN = y
and d(xi−1, xi) < R, for all i = 1, . . . , N .

Definition 2.3. Assume that J , h and X are as in Proposition 2.
i) We say µ ∈ R is a principal eigenvalue of K−hI in X iff there exists 0 < ϕ ∈ X
such that

Kϕ− hϕ = µϕ in Ω.

ii) We say that for λ ∈ R the maximum principle is satisfied if u ∈ X with

Ku− (h+ λ)u ≤ 0 in Ω, implies u ≥ 0 in Ω.

iii) We say that for λ ∈ R the strong maximum principle is satisfied if u ∈ X
with

Ku− (h+ λ)u ≤ 0 in Ω, implies either u = 0 or u ≥ α > 0

for some α > 0.

The following theorem gives sufficient conditions for the existence of the principal
eigenvalue ofK−hI, and it gives a characterization of the principal eigenvalue when
the measure of Ω is finite, cf. [23].

Theorem 2.4. Assume that J , h and X are as in Proposition 2, Ω is R–connected,
|Ω| <∞, for some µ0 > 0

|B(x,R)| ≥ µ0 > 0 for all x ∈ Ω, (8)

J ≥ 0 and there exists J0 > 0

J(x, y) > J0 > 0 for all x, y ∈ Ω, such that d(x, y) < R (9)

and J ∈ L∞(Ω, Lp
′
(Ω)) so K ∈ L(X,L∞(Ω)).

Then Λ = supRe(σX(K − hI)) can be characterized as

Λ = inf
0<φ∈X

sup
Ω

Kφ− hφ

φ
= sup

0<ϕ∈X
inf
Ω

Kϕ− hϕ

ϕ
(10)

and satisfies − infΩ h ≤ Λ ≤ supΩ
(
h0−h

)
where h0 is defined in (6). In particular,

Λ is the only possible principal eigenvalue of K − hI in X.
i) If Λ > − infΩ h then Λ is the principal eigenvalue of K − hI in X. In such a
case Λ is a simple isolated eigenvalue of K − hI in X with bounded eigenfunctions.
If moreover J ∈ BUC(Ω, Lp

′
0(Ω)) and h ∈ Cb(Ω), the eigenfunction is continuous.

ii) The maximum principle is satisfied for λ > Λ and is not satisfied for λ < Λ nor
for λ = Λ > − infΩ h.
iii) If λ > Λ then the strong maximum principle is satisfied.
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Denoting m = infΩ h, some criteria were also developed in [23] to guarantee that
Λ > −m, hence Λ is the principal eigenvalue of K − hI. These include either one
of the following conditions

|{h = m}| > 0, (11)

or, there exists x0 ∈ Ω and r ≤ R as in (9) such that∫
B(x0,r)

dx

h(x)−m
= ∞, (12)

or,

oscΩ(h) := sup
Ω
h− inf

Ω
h < inf

Ω
h0 (13)

where h0 is defined in (6).
The following result, for the case of a symmetric kernel, gives an alternative

description of Λ using the variational properties in L2(Ω).

Proposition 3. Assume Ω, J and h are as in Theorem 2.4 and assume furthermore
that J ∈ L∞(Ω, Lp

′
0(Ω)) for some 1 ≤ p0 ≤ 2 and J(x, y) = J(y, x).

Then the spectrum of K − hI is real, independent of X and

Λ = sup
φ∈L2(Ω)

∥φ∥
L2(Ω)

=1

E(φ)

where

E(φ) = −1

2

∫
Ω

∫
Ω

J(x, y)(φ(y)− φ(x))2 dy dx−
∫
Ω

(h(x)− h0(x))φ
2(x) dx

with h0 as in (6).

Also in [23] the following criteria for the sign of the principal eigenvalue Λ were
obtained. Notice that this information will be used for the stability of the evolution
equations, see Proposition 7 below.

Proposition 4. With the assumptions in Theorem 2.4 and denoting m = infΩ h,
we have the following results.
i) If m < 0 then Λ > 0.
ii) If m = 0, and either |{h = 0}| > 0 or 1

h /∈ L1
loc(Ω) or supΩ h < infΩ h0 or

h+ δ ≤ h0 for some δ > 0, then Λ > 0 and is the principal eigenvalue.
iii) If m > 0, assume there exists 0 < ξ ∈ X such that Kξ − hξ ̸≤ 0, then Λ < 0.
iv) If m > 0, assume there exists η ∈ X that changes sign in Ω such that Kη−hη ≤ 0
then Λ > 0.

We also get the following result that sets h0 as a threshold for the sign of Λ.

Corollary 1. i) If h = h0 then Λ = 0 with constant eigenfunction.
ii) If h0 ≨ h then Λ < 0.
iii) If for some δ > 0, h+ δ ≤ h0 then Λ > 0.
iv) In the symmetric case and 1 ≤ p0 ≤ 2 as in Proposition 3, then

∫
Ω
h <

∫
Ω
h0

implies Λ > 0.

2.2. Evolutionary problems. In this section we present results concerning ex-
istence, uniqueness, maximum principles, bounds and stability results concerning
linear evolution equation (3), cf. [23, 24]. For more information see [1, 9, 14].
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Proposition 5. Assume that J ∈ Lp(Ω, Lp
′
(Ω)) for some 1 ≤ p ≤ ∞ and then

denote X = Lp(Ω) and assume h ∈ L∞(Ω). Alternatively, assume J ∈ Cb(Ω, L
1(Ω))

and then denote X = Cb(Ω) and assume h ∈ Cb(Ω).
i) Then L = K−hI ∈ L(X,X) generates a group eLt ∈ L(X,X) for t ∈ R, and the
solutions of the initial value problem{

ut(x, t) = (K − hI)u(x, t) x ∈ Ω,
u(x, 0) = u0(x) x ∈ Ω,

(14)

are given by u(t) = eLtu0. Finally if Λ = supRe(σX(L)) < δ then ∥eLt∥L(X) ≤
Meδt.
ii) For each u0 ∈ X and t ∈ R we have

u(x, t) = eLtu0(x) = e−h(x)tu0(x) +

∫ t

0

e−h(x)(t−s)K(u)(x, s)ds.

iii) If J ≥ 0, then for every nonnegative u0 ∈ X, the solution of problem (14),
u(t) = eLtu0, is nonnegative for all t ≥ 0, and it is nontrivial if u0 ̸≡ 0.

Moreover, if J satisfies

J(x, y) > 0 for all x, y ∈ Ω, such that d(x, y)<R, (15)

for some R > 0 and Ω is R-connected as in Definition 2.2, then for every u0 ∈ X,
nonnegative and not identically zero,

supp(eLtu0) = Ω, for all t > 0,

that is, the solution of (14) is strictly positive in Ω, for all t > 0.

In [23] the following results were proven concerning the strong maximum principle
and some stability results.

Proposition 6. (Parabolic strong maximum principle) With the assumptions
in Proposition 5, assume furthermore that |Ω| < ∞, Ω is R–connected and the
measure satisfies (8) and J satisfies (9).

Then for every u0 ∈ X, nonnegative and not identically zero,

inf
Ω
eLtu0 > 0, t > 0.

Proposition 7. (Bounds and stability) Assume Ω is R–connected, |Ω| < ∞,

(8) holds true, J satisfies (9). Also assume J ∈ L∞(Ω, Lp
′
(Ω)) with 1 ≤ p ≤ ∞

and then denote X = Lp(Ω) and assume h ∈ L∞(Ω). Alternatively, assume J ∈
Cb(Ω, L

1(Ω)) and then denote X = Cb(Ω) and assume h ∈ Cb(Ω).

Fix any λ̃ < Λ < λ. Then
i) Any solution of (3) with u0 ∈ X satisfies

∥u(t)∥X ≤Meλt∥u0∥X , t ≥ 0.

ii) Assume either Λ > − infΩ h or J ∈ BUC(Ω, Lp
′
(Ω)). Also, by Proposition 6,

assume without loss of generality that 0 ≤ u0 ∈ X is such that u0 ≥ α > 0.
Then there exists a positive bounded function φ̃ in Ω such that

0 < eλ̃tφ̃(x) ≤ u(x, t), x ∈ Ω, t > 0.

iii) For any solution of (3) with u0 ∈ L∞(Ω) there exists a positive function φ ∈ X
such that

|u(x, t, u0)| ≤ eλtφ(x) x ∈ Ω, t > 0.

Both parts ii) and iii) hold true for λ = λ̃ = Λ provided Λ > − infΩ h.
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In particular, if Λ < 0 all solutions of (3) converge to 0 in X as t → ∞.
Moreover, if u0 ∈ L∞(Ω) then u(t) → 0 uniformly in Ω as t→ ∞.

On the other hand, if Λ > 0 then all positive solutions of (3) converge pointwise
to ∞ as t→ ∞.

Remark 1. For later use, notice that part ii) is based on the fact that the spectrum
of K − hI in X coincides with the spectrum in L∞(Ω) and then from (10) given

λ̃ < Λ we can chose 0 < φ̃ ∈ L∞(Ω) such that λ̃ < infΩ
Kφ̃−hφ̃

φ̃ ≤ Λ and then

u(x, t) = eλ̃tφ̃ > 0 satisfies ut ≤ Ku− hu, i.e. it is a positive subsolution of (14).

3. Existence, uniqueness, positiveness and comparison results for non-
linear problems. In this section we prove results of existence and uniqueness for
some nonlocal nonlinear problems of the form ut(x, t) =

∫
Ω

J(x, y)u(y, t) dy− h(x)u(x) + f(x, u(x, t)), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω
(16)

for some classes of locally Lipschitz functions f : Ω × R → R. We will prove also
maximum principles and comparison results for solutions with initial data u0 ∈ X
with either X = Lp(Ω), 1 ≤ p ≤ ∞ or X = Cb(Ω), depending on J and h as
in Proposition 5. For such f we will consider the associated Nemitcky operator,
defined for measurable functions u defined in Ω as

F (u)(x) = f(x, u(x)), x ∈ Ω. (17)

Now we prove some monotonicity and comparison properties for the problem
(16). For this we define the following.

Definition 3.1. For u0 ∈ X denote by u(t, u0, f) the solution of (16) which we
assume to exist for some class of nonlinear terms f .
i) We say that (16) satisfies a weak comparison principle if for any f0 ≥ f1 and
u0, u1 ∈ X such that u0 ≥ u1, then

u(t, u0, f0) ≥ u(t, u1, f1), for all t ≥ 0,

ii) If moreover u0 ̸= u1 or f0 ̸= f1 and

u(t, u0, f0) > u(t, u1, f1), for all t ≥ 0,

we say that (16) satisfies a strict comparison principle.
iii) If furthermore

inf
Ω

(
u(t, u0, f0)− u(t, u1, f1)

)
> 0, for all t ≥ 0,

we say that (16) satisfies a strong comparison principle.

With respect to maximum principles we define the following.

Definition 3.2. For u0 ∈ X denote by u(t, u0, f) the solution of (16) which we
assume to exist for some class of nonlinear terms f .
i) We say that (16) satisfies a weak maximum principle if for any u0 ∈ X such that
u0 ≥ 0, then

u(t, u0, f) ≥ 0, for all t ≥ 0.

ii) If moreover u0 ̸= 0 and

u(t, u0, f) > 0, for all t ≥ 0,

we say that (16) satisfies a strict maximum principle.



1740 ANÍBAL RODRÍGUEZ-BERNAL AND SILVIA SASTRE-GÓMEZ

iii) If furthermore
inf
Ω
u(t, u0, f) > 0, for all t ≥ 0,

we say that (16) satisfies a strong maximum principle.

3.1. The case of a globally Lipschitz reaction term. In this section we will
assume f : Ω × R → R is globally Lipschitz in the second variable. This implies
that for either X = Lp(Ω), 1 ≤ p ≤ ∞ or X = Cb(Ω), the Nemitcky operator
F : X → X is Lipschitz.

We can even consider here a little more general situation by considering a general
globally Lipschitz operator G : X → X, not necessarily a Nemitcky operator, and
consider the nonlocal nonlinear problem{

ut(x, t)= Lu(x, t) +G(u)(x, t), x ∈ Ω, t ∈ R,
u(x, 0) = u0(x), x ∈ Ω,

(18)

where, as above, L = K − hI. Observe that for a Nemitcky operator (17), if
X = Lp(Ω), 1 ≤ p ≤ ∞ then we will require f(x, s) to be Lipchitz in s ∈ R,
uniformly in x ∈ Ω and g(x) = f(x, 0) ∈ X. On the other hand, if X = Cb(Ω) then
we will additionally requiere f(x, s) continuous in (x, s) ∈ Ω× R.

The following result gives the existence and uniqueness of solutions to (18).

Proposition 8. Assume, as in Proposition 5, J ∈ Lp(Ω, Lp
′
(Ω)) for some 1 ≤ p ≤

∞ and then denote X = Lp(Ω) and assume h ∈ L∞(Ω), or J ∈ Cb(Ω, L
1(Ω)) and

then denote X = Cb(Ω) and assume h ∈ Cb(Ω).
Then problem (18) has a unique global solution u ∈ C((−∞,∞), X), for every

u0 ∈ X, given by

u(·, t) = eLtu0 +

∫ t

0

eL(t−s)G(u)(·, s) ds, t ∈ R. (19)

Moreover, u ∈ C1((−∞,∞), X) is a strong solution of (18) in X.

This result can be proved using a fixed point argument using the variation of
constants formula in C([−τ, τ ], X) for some τ > 0 independent of the initial data,
and a prolongation argument. As the arguments are standard, we will omit the
proof. Also note that the variation of constants formula, that is, the right hand side
of (19) maps L1([−τ, τ ], X) into C([−τ, τ ], X). Hence the solution of (18) is unique
in both spaces. The fact that (19) is a strong solution of (18) follows from Theorem
in [22, p. 109].

Remark 2. Observe that for any β ∈ R we can rewrite (18) as

ut(x, t) = Lu(x, t)− β u(x, t) +G(u)(x, t) + β u(x, t). (20)

Since L− βI and G+ βI satisfy the same assumptions as in Proposition 8 then we
obtain the alternative representation of the solution of (18) as

u(t) = e(L−βI)tu0 +

∫ t

0

e(L−βI)(t−s) (G(u)(s) + βu(s)) ds, t ∈ R (21)

and Proposition 8 remains true under this alternative formulation.

Now we prove monotonicity properties with respect to the nonlinear term for
problem (18). Notice that for the case of the Nemitcky operator (17) if f is globally
Lipschitz in the second variable, then there exists a constant β > 0, such that
u 7→ f(x, u) + βu is increasing, for all x ∈ Ω. Hence the assumptions below on the
nonlinear terms are satisfied.
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Proposition 9. (Weak, strict and strong comparison principles) Under
the assumptions in Proposition 8, consider globally Lipschitz functions G : X → X
such that there exists a constant β > 0, such that G+ βI is increasing. Then
i) If J ≥ 0 then problem (18) satisfies a weak comparison principle.
ii) If, additionally, Ω is R-connected and J satisfies hypothesis (15) then problem
(18) satisfies a strict comparison principle.
iii) Finally, if moreover |Ω| < ∞, Ω is R–connected and the measure satisfies (8)
and J satisfies (9) then problem (18) satisfies a strong comparison principle.

Proof. Take two such functions such that G0 ≥ G1 and take β such that both
Gi+βI, i = 0, 1, are increasing. Denote ui(t) = u(t, ui, Gi), t ∈ R the corresponding
solutions of (18), which by Remark 2 and Proposition 8 are the unique fixed points
of

Fi(u)(t) = e(L−βI)tui +

∫ t

0

e(L−βI)(t−s) (Gi(u)(s) + βu(s)) ds

in V = C([−τ, τ ], X) because Fi is a contraction in V provided τ small enough, for
i = 0, 1 (independent of the initial data). Consider then the sequence of Picard
iterations, uin+1(t) = Fi(uin)(t), n = 1, 2, . . ., 0 ≤ t ≤ τ , ui1 = ui. Then the

sequence uin(·, t) converges to ui(·, t) in V . Now, we are going to prove that the
solutions are ordered for all t ≥ 0. We take the first term of the Picard iteration as
u01(x, t) = u0(x) ≥ u1(x) = u11(x, t), then

ui2(t) = Fi(ui1)(t) = e(L−βI)tui +

∫ t

0

e(L−βI)(t−s) (Gi(ui) + βui) ds, 0 ≤ t ≤ τ.

i) If J ≥ 0, by Proposition 5, e(L−βI)tu0 ≥ e(L−βI)tu1 for t ∈ [0, τ ] and since
G0 + βI ≥ G1 + βI and are increasing, we have

e(L−βI)(t−s)(G0(u0)+βu0)≥e(L−βI)(t−s)(G1(u1)+βu1) , 0 ≤ s ≤ t ≤ τ.

Hence u02(t) ≥ u12(t) for all t ∈ [0, τ ]. Repeating this argument, we obtain that
u1n(t) ≥ u2n(t) for all t ∈ [0, τ ] for every n ≥ 1. Since uin(t) converges to u

i(t), in V ,
then u0(t) ≥ u1(t) for t ∈ [0, τ ].

Now, we consider the solutions of (18) with initial data u0(τ) ≥ u1(τ), and
arguing as above we obtain that u0(t) ≥ u1(t) for all t ∈ [τ, 2τ ]. Repeating this
argument, we obtain that

u0(t) ≥ u1(t), for all t ≥ 0. (22)

ii) Using (22), ui(t) = Fi(ui)(t) and that G0 + βI ≥ G1 + βI and are increasing,
we get

G0(u
0)(s) + βu0(s) ≥ G0(u

1)(s) + βu1(s) ≥ G1(u
1)(s) + βu1(s), s ≥ 0.

From Proposition 5, we have that e(L−βI)(t−s)
(
G0(u

0)(s) + βu0(s)
)
> e(L−βI)(t−s)(

G1(u
1)(s) + βu1(s)

)
for 0 ≤ s ≤ t. Therefore,∫ t

0

e(L−βI)(t−s)
(
G0(u

0)(s) + βu0(s)
)
>

∫ t

0

e(L−βI)(t−s)
(
G1(u

1)(s) + βu1(s)
)
ds,

for all t > 0. Thus, u1(t) > u2(t), for all t > 0.
iii) In this case, by Proposition 6, infΩ e

(L−βI)t(u0 − u1) > 0, t > 0 and we get the
result.

Concerning maximum principles, we get the following result.
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Proposition 10. (Weak, strict and strong parabolic maximum principle)
Under the assumptions in Proposition 8, assume G : X → X globally Lipschitz,
there exists a constant β > 0, such that G+ βI is increasing and G(0) ≥ 0.
i) If J ≥ 0 then problem (18) satisfies a weak maximum principle.
ii) If, additionally, Ω is R-connected and J satisfies hypothesis (15) then problem
(18) satisfies a strict maximum principle.
iii) Finally, if moreover |Ω| < ∞, Ω is R–connected and the measure satisfies (8)
and J satisfies (9) then problem (18) satisfies a strong maximum principle.

Proof. We have that u(t) = u(t, u0, G), t ≥ 0, is the unique fixed point of

F(u)(t) = e(L−βI)tu0 +

∫ t

0

e(L−βI)(t−s) (G(u)(·, s) + βu(s)) ds

which is a contraction in V = C([−τ, τ ], X), for some τ small enough independent of
the initial data. We consider the sequence of Picard iterations, un+1(t) = F(un)(t),
n = 1, 2 . . ., 0 ≤ t ≤ τ which converges to u(·, t) in V .
i) We take u1(t) = u0 ≥ 0, then

u2(t) = F(u1)(t) = e(L−βI)tu0 +

∫ t

0

e(L−βI)(t−s) (G(u0) + βu0) ds.

Thanks to Proposition 5 we have e(L−βI)tu0 ≥ 0 for t ∈ [0, τ ] while on the other
hand, since G(0) ≥ 0, β > 0 and G(·)+βI is increasing, then G(u)+βu ≥ 0 for all
u ≥ 0. Hence, from Proposition 5 we obtain that e(L−βI)(t−s) (G(u0) + βu0) ≥ 0,
for all 0 ≤ s ≤ t ≤ τ . Hence, u2(t) ≥ 0 for all t ∈ [0, τ ].

Repeating this argument, we get that un(t) ≥ 0 for every n ≥ 1 and t ∈ [0, τ ].
Since un(t) converges to u(t) in V then u(t) ≥ 0 for all t in [0, τ ].

Now we consider the solution of (18) with initial data u(τ) ≥ 0 and arguing as
above we have that u(t) ≥ 0 is nonnegative for all t ∈ [τ, 2τ ] and thus for t ∈ [0, 2τ ].
Repeating this argument, we prove that u(t) ≥ 0 for all t ≥ 0.
ii) Using part i), u(t) = F(u)(t), Proposition 5 and

(
G+βI

)
(u) ≥ 0 for all u ≥ 0, we

get that e(L−βI)tu0 > 0, for t > 0 and
∫ t
0
e(L−βI)(t−s) (G(u)(x, s) + βu(x, s)) ds ≥ 0,

for t ≥ 0. Thus, we have that u(t) > 0 for all t > 0.
iii) In this case, from Proposition 6 we have infΩ e

(L−βI)tu0 > 0 for t > 0, and we
conclude.

Now we introduce the definition of supersolution and subsolution to (18).

Definition 3.3. Let X = Lp(Ω), with 1 ≤ p ≤ ∞ or X = Cb(Ω), we say that
u ∈ C([a, b], X) is a supersolution to (18) in [a, b], if for any t ≥ s, with s, t ∈ [a, b]

u(t) ≥ eL(t−s)u(s) +

∫ t

s

eL(t−r)G(u)(r)dr. (23)

We say that u is a subsolution if the reverse inequality holds.

Remark 3. i) As above, using (20) and (21) we have the following alternative
defnition of supersolutions of (18) in [a, b], if for any t ≥ s, with s, t ∈ [a, b]

u(t) ≥ e(L−βI)(t−s)u(s) +

∫ t

s

e(L−βI)(t−r) (G(u)(r) + βu(r)) dr (24)

with an analogous definition of subsolution with reverse inequality.
ii) Assuming J ≥ 0 if u ∈ C([a, b], X) is differentiable and satisfies that

ut(t) ≥ Lu(t) +G(u)(t), for t ∈ [a, b]
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then u is a supersolution in the sense of (23) or (24). The same happens for subso-
lutions if the reverse inequality holds.

The following proposition states that supersolutions and subsolutions of (18) are
above and below solutions respectively.

Proposition 11. Under the assumptions in Proposition 8, assume J ≥ 0 and
G : X → X is globally Lipschitz and there exists a constant β > 0, such that G+βI
is increasing. Let u(t, u0) be the solution to (18) with initial data u0 ∈ X, and let
ū(t) be a supersolution to (18) in [0, T ].

If u(0) ≥ u0, then

ū(t) ≥ u(t, u0), for t ∈ [0, T ].

The same is true for subsolutions with reversed inequality.

Proof. We have that u(t) = u(t, u0, G), t ≥ 0, the unique fixed point of

F(u)(t) = e(L−βI)tu0 +

∫ t

0

e(L−βI)(t−s) (G(u)(·, s) + βu(s)) ds t ∈ [0, τ ]

in C([0, τ ], X), for some τ small enough independent of the initial data. Also, we
can assume without loss of generality that τ ≤ T . Also, we consider the sequence
of Picard iterations in V = C([0, τ ], X), un+1(t) = F(un)(t), n = 1, 2 . . ., t ∈ [0, τ ]
with u1(t) = u(t). Then the sequence un(t) converges to u(t) in V and we show
below that ū(t) ≥ un(t), for n = 1, 2, . . . and t ∈ [0, τ ].

Note that u1 = ū satisfies by definition ū(t) ≥ F(ū)(t) for t ∈ [0, τ ] and then we
have that ū(t) ≥ F(ū)(t) = u2(t), t ∈ [0, τ ]. Observe now that from the proof of
Proposition 9 we have that F is increasing in V , and therefore u(t) ≥ F(u)(t) ≥
F(u2)(t) = u3(t), t ∈ [0, τ ]. By induction we get the claim. Since un(t) converges
to u(t) in V we have that ū(t) ≥ u(t, u0), t ∈ [0, τ ]. Repeating this argument with
initial data u(τ) ≤ ū(τ) we get the result in [0, T ].

3.2. The case of a locally Lipchitz reaction term. In this section we consider
(16) with some classes of nonlinear functions f : Ω × R → R. More precisely we
consider {

ut(x, t) = Lu(x, t)+f(x, u(x, t)), x ∈ Ω, t > 0,
u(x, t0) = u0(x), x ∈ Ω,

(25)

with L = K − hI and f : Ω × R → R such that f(x, s) is locally Lipschitz in the
variable s ∈ R, uniformly with respect to x ∈ Ω, and f satisfies the sign condition
(28) below. If we work in X = Cb(Ω) then we will additionally requiere f(x, s)
continuous in (x, s) ∈ Ω× R.

The strategy we use to solve (25) is as follows. For k > 0, let us consider a
globally Lipschitz function in the second variable, fk : Ω× R → R, such that

fk(x, u) = f(x, u) for |u| ≤ k, and x ∈ Ω. (26)

For example we can define, for u > k, fk(x, u) = f(x, k) and for u < −k, fk(x, u) =
f(x,−k), for all x ∈ Ω.

Then we consider the problem{
ut(x, t)= Lu(x, t) + Fk(u)(x, t), x ∈ Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(27)

where Fk : X → X is the globally Lipschitz Nemitcky operator associated to the
globally Lipschitz function fk. Then Proposition 8 gives the existence and unique-
ness of solutions to (27).
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Also, for fixed k, since fk is globally Lipschitz, there exists β > 0 such that fk+βI
is increasing, and then Fk + βI is increasing. Hence, we can apply Propositions 9,
10 and 11 for the problem (27).

Hence, in order to solve (25) we show that under the sign condition (28) on f , for
bounded initial data we estimate the sup norm of the solution uk(t), see Proposition
12. Later we solve (25) for initial data in X = Lp(Ω) by assuming some natural
growth condition on f , see Theorem 3.4 below.

Proposition 12. Assume 0 ≤ J ∈ L∞(Ω, L1(Ω)) and then denote X = L∞(Ω) and
assume h ∈ L∞(Ω), or J ∈ Cb(Ω, L

1(Ω)) and then denote X = Cb(Ω) and assume
h ∈ Cb(Ω). Also, assume that the locally Lipschitz function f : Ω×R → R satisfies
that g = f(·, 0) ∈ X and there exist C, D ∈ R, with C > 0 and D ≥ 0 such that

f(·, s)s ≤ Cs2 +D|s|, s ∈ R. (28)

Then there exists a unique global solution of (25) with initial data u0 ∈ X, such
that u(·, t) in C([0, T ], X), for all T > 0, with

u(·, t) = eLtu0 +

∫ t

0

eL(t−s)f(·, u(·, s)) ds, t ≥ 0. (29)

Moreover, we have that u is a strong solution of (25) in X.

Proof. First of all, observe that the function h0 defined in (6), belongs to X and let
us prove that (h0 − h)s+ f(·, s) satisfies hypothesis (28). Since f satisfies (28) and
h, h0 ∈ X, then

(h0 − h)s2 + f(·, s)s ≤
(
∥h0 − h∥L∞(Ω) + C

)
s2 +D|s| ≤ C1s

2 +D|s|. (30)

We will denote C1 again by C in order to to simplify the notation.

Fix 0 < M ∈ R. We introduce the auxiliary problem

{
ż(t) = Cz(t) +D
z(0) =M.

Since z(t) is increasing, for any given T > 0

0 ≤ z(t) ≤ z(T ) t ∈ [0, T ]. (31)

Given T > 0 and M > 0, from (31) we choose k ≥ z(T ) and consider a globally
Lipchitz truncation of f , fk, as in (26). Thus

fk(·, z(t)) = f(·, z(t)), t ∈ [0, T ]. (32)

We prove below that z is a supersolution of (27) in [0, T ]. First since z(t) is
independent of the variable x, we have that Kz(t) = h0z(t). Now since z(t) is
nonnegative for all t ∈ [0, T ], using (32) and (30) we get, for t ∈ [0, T ],

Kz(t)− hz(t) + fk(·, z(t)) = (h0 − h)z(t) + fk(·, z(t)) ≤ Cz(t) +D = ż(t).

Hence, z is a supersolution of (27) in [0, T ], see Remark 3.

Analogously, let us consider the auxiliary problem

{
ẇ(t) = Cw(t)−D
w(0) = −M.

Then

w(t) = −z(t), and we obtain that |w(t)| < z(T ) for t ∈ [0, T ]. Moreover w is a
subsolution of (27) in t ∈ [0, T ]. Hence, if ∥u0∥X ≤ M , from Proposition 11, we
obtain w(t) ≤ uk(t, u0) ≤ z(t), for t ∈ [0, T ] and therefore

|uk(t, u0)| ≤ z(T ) ≤ k for all t ∈ [0, T ].

In particular fk(·, uk(t, u0)) = f(·, uk(t, u0)) and thus, uk(x, t, u0) is a (strong)
solution to (25) in t ∈ [0, T ] and satisfies (29).
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Now, let us prove uniqueness. Consider a solution u ∈ C([0, T ], X) of problem
(25) with initial data u0 ∈ X, given by (29). Since u ∈ C([0, T ], X), then

sup
t∈[0,T ]

sup
x∈Ω

|u(x, t, u0)| < C̃.

Thus, if we choose k > C̃, then fk(·, u(·, t)) = f(·, u(·, t)) and then u coincides in
[0, T ] with the solution of (27), uk.

Thus, we have the uniqueness of the solution of (25).

Remark 4. Observe that the condition (28) on f reduces to

f(x, s) ≤ Cs+D, s > 0, x ∈ Ω, f(x, s) ≥ Cs−D, s < 0, x ∈ Ω

that is, f is below or above a suitable affine function in s for all x ∈ Ω. So, this is a
one side restriction on the sign of f for s > 0 or s < 0 respectively. As will be seen
in Section 5.2, logistic type nonlinearities

f(x, s) = g(x) + n(x)s−m(x)|s|ρ−1s

with g, n,m ∈ L∞(Ω), m ≥ 0 not identically zero and ρ > 1, fall within this class
of nonlinear terms.

Remark 5. Observe that hypothesis (28) on f in Proposition 12 is somehow opti-
mal. For this assume J(x, y) = J(y, x), and consider the problem ut(x, t) =

∫
Ω

J(x, y)u(y, t) dy − h(x)u(x, t) + uρ(x, t)

u(x, 0) = u0(x)
(33)

with ρ > 1, u0 ∈ L∞(Ω), and u0 ≥ 0.
Observe first that the operator K has a principal eigenvalue Λ, see (13) with

h = 0 cf. [23]. Let ϕ > 0 be an eigenfunction associated to Λ normalized as∫
Ω
ϕ(x)dx = 1 and define z(t) =

∫
Ω
u(t)ϕ. Then

dz

dt
(t) =

∫
Ω

ut(x, t)ϕ(x)dx

=

∫
Ω

∫
Ω

J(x, y)ϕ(x)dxu(y, t)dy −
∫
Ω

h(x)ϕ(x)u(x, t)dx+

∫
Ω

uρ(x)ϕ(x)dx.

Since J(x, y) = J(y, x) and ϕ is an eigenfunction of K we have that

dz

dt
(t) =

∫
Ω

∫
Ω

J(y, x)ϕ(x) dxu(y, t)dy −
∫
Ω

h(x)ϕ(x)u(x, t)dx+

∫
Ω

uρ(x, t)ϕ(x)dx

= Λ

∫
Ω

ϕ(y)u(y, t) dy −
∫
Ω

h(x)ϕ(x)u(x, t)dx+

∫
Ω

uρ(x, t)ϕ(x)dx

= Λz(t)−
∫
Ω

h(x)ϕ(x)u(x, t)dx+

∫
Ω

uρ(x, t)ϕ(x)dx.

Then using Jensen’s inequality we get

dz

dt
(t) ≥

(
Λ− ∥h∥∞

)
z(t) + zρ(t) = F (z(t)).

Thus, if z(0) is sufficiently large the solution of (33) must cease to exist in finite
time.
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Since we have proved that the solutions of (25) for initial data u0 in L∞(Ω)
or in Cb(Ω) coincides, on a given time interval, with a solution of some problem
(27), with a truncated globally Lipschitz function fk, these solutions inherit all the
monotonicity properties in Section 3.1 as we now state.

Corollary 2. (Weak, strict and strong comparison principles) Under the
hypotheses of Proposition 12, then for any initial data u0 ∈ X = L∞(Ω) or X =
Cb(Ω)
i) If J ≥ 0 then problem (25) satisfies a weak comparison principle.
ii) If, additionally, Ω is R-connected and J satisfies hypothesis (15) then problem
(25) satisfies a strict comparison principle.
iii) Finally, if moreover |Ω| < ∞, Ω is R–connected and the measure satisfies (8)
and J satisfies (9) then problem (25) satisfies a strong comparison principle.

Corollary 3. (Weak, strict and strong parabolic maximum principle) Un-
der the hypotheses of Proposition 12, assume moreover that f(·, 0) ≥ 0. Then for
initial data in X = L∞(Ω) or X = Cb(Ω),
i) If J ≥ 0 then problem (25) satisfies a weak maximum principle.
ii) If, additionally, Ω is R-connected and J satisfies hypothesis (15) then problem
(25) satisfies a strict maximum principle.
iii) Finally, if moreover |Ω| < ∞, Ω is R–connected and the measure satisfies (8)
and J satisfies (9) then problem (25) satisfies a strong maximum principle.

Corollary 4. Under the hypotheses of Proposition 12, let u(t, u0) be a solution to
(25) with initial data u0 ∈ X = L∞(Ω) or X = Cb(Ω), and let ū(t) be a supersolution
to (25) in [0, T ].

If ū(0) ≥ u0, then

ū(t) ≥ u(t, u0), for all t ∈ [0, T ].

The same is true for subsolutions with reversed inequality.

Now we prove the existence and uniqueness for the problem (25) with initial data
in Lq(Ω) for some suitable 1 < q <∞, depending on the growth of f .

Theorem 3.4. Assume |Ω| < ∞, J(x, y) = J(y, x) and 0 ≤ J ∈ L∞(Ω, L1(Ω)) ∩
Lp(Ω, Lp

′
(Ω)) for some 1 ≤ p <∞.

Moreover assume that the locally Lipschitz function f satisfies that f(·, 0) ∈
L∞(Ω), and

∂f

∂s
(·, s) ≤ β(·) ∈ L∞(Ω), s ∈ R, (34)

and for some 1 < ρ <∞∣∣∣∣∂f∂s (·, s)
∣∣∣∣ ≤ C(1 + |s|ρ−1), s ∈ R. (35)

Then equation (25) with initial data u0 ∈ X = Lpρ(Ω) has a unique global solution
given by the Variation of Constants Formula

u(·, t) = eLtu0 +

∫ t

0

eL(t−s)f(·, u(·, s)) ds, (36)

with u ∈ C
(
[0, T ], Lpρ(Ω)

)
∩ C1

(
[0, T ], Lp(Ω)

)
for all T > 0, and it is a strong

solution in Lp(Ω).



NONLINEAR NONLOCAL REACTION-DIFFUSION 1747

Proof. Observe that from the assumptions on J we get K ∈ L(L∞(Ω), L∞(Ω))
and K ∈ L(Lp(Ω), Lp(Ω)). Then by Riesz–Thorin interpolation we get K ∈
L(Lpρ(Ω), Lpρ(Ω)).

Now we prove that f satisfies (28). Let s > 0 be arbitrary. Integrating (34) in
[0, s], and multiplying by s > 0, we obtain

f(·, s)s ≤ β(·)s2 + f(·, 0)s ≤ Cs2 +D|s|,
with an analogous argument for s < 0. Thus, from Proposition 12 we have the
existence and uniqueness of solutions for (25) with initial data u0 ∈ L∞(Ω).

Denoting q = pρ, since L∞(Ω) is dense in Lq(Ω), we consider a sequence of initial
data {un0}n∈N ⊂ L∞(Ω) such that un0 → u0 in Lq(Ω) as n goes to ∞. Thanks to
Proposition 12, we know that the solution of (25) associated to the initial data
un0 ∈ L∞(Ω), satisfies

unt (x, t) = Lun(x, t) + f(x, un(x, t)).

We prove first that {un}n∈N ⊂ C([0,∞), Lq(Ω)) is a Cauchy sequence in compact
sets of [0,∞). Since

ukt (t)− ujt (t) = L(uk − uj)(t) + f(·, uk(t))− f(·, uj(t)), (37)

multiplying (37) by |uk − uj |q−2(uk − uj)(t), and integrating in Ω, we obtain

1

q

d

d t
∥uk(t)− uj(t)∥qLq(Ω) =

∫
Ω

L(uk − uj)(t)|uk − uj |q−2(uk − uj)(t)

+

∫
Ω

(
f(·, uk(t))− f(·, uj(t))

)
|uk− uj |q−2(uk − uj)(t).

(38)

Denoting w(t) = uk(t)− uj(t) and g(w) = |w|q−2w ∈ Lq
′
(Ω), we write

Lw(t) = (K − h0(·))w(t) + (h0(·)− h(·))w(t) (39)

and then since J(x, y) = J(y, x) and K ∈ L(Lq(Ω), Lq(Ω)), we get∫
Ω

(K − h0I)wg(w) dx = −1

2

∫
Ω

∫
Ω

J(x, y)(w(y)− w(x))(g(w)(y)− g(w)(x))dy dx.

Since J is nonnegative and g(w) = |w|q−2w is increasing, then we obtain∫
Ω

(K − h0I)wg(w) dx = −1

2

∫
Ω

∫
Ω

J(x, y)(w(y)−w(x))(g(w)(y)− g(w)(x))dy dx ≤ 0.

(40)

Moreover, h, h0 ∈ L∞(Ω), then from the second part on the right hand side of (39)
we obtain in (38) ∫

Ω

(h0(x)− h(x)) |w|q(x) dx ≤ C∥w∥qLq(Ω). (41)

On the other hand, thanks to (34) and the mean value Theorem, there exists
ξ = ξ(x, t), such that, the second term on the right hand side of (38) satisfies that∫

Ω

(
f(·, uk(t))−f(·, uj(t))

)
|uk − uj |q−2(uk − uj)(t)=

∫
Ω

∂f

∂u
(·, ξ)|w|q ≤ ∥β∥L∞(Ω)∥w∥q

Lq(Ω)
.

(42)

Therefore, thanks to (38), (40), (41), and (42), we obtain

d

d t
∥uk(t)− uj(t)∥qLq(Ω) ≤ C∥uk(t)− uj(t)∥qLq(Ω)

and Gronwall’s inequality gives

∥uk(t)− uj(t)∥qLq(Ω) ≤ eCt∥uk0 − uj0∥
q
Lq(Ω), (43)
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and from this

sup
t∈[0,T ]

∥uk(t)− uj(t)∥qLq(Ω) ≤ C(T )∥uk0 − uj0∥
q
Lq(Ω). (44)

Now the right hand side of (44) goes to zero as k and j go to ∞. Therefore we
have that {un}n ⊂ C([0,∞), Lq(Ω)) is a Cauchy sequence in compact sets of [0,∞),
and then the limit of the sequence {un}n in C([0, T ], Lq(Ω)) for any T > 0,

u(t) = lim
n→∞

un(t)

exists and it is independent of the sequence {un0}n.
From (35), and since |Ω| < ∞, we have that f : Lpρ(Ω) → Lp(Ω) is Lipschitz in

bounded sets of Lpρ(Ω). Then for any T > 0, as n→ ∞ we have

f(un) → f(u) in C([0, T ], Lp(Ω)). (45)

Since L ∈ L(Lp(Ω), Lp(Ω)), then there exists δ > 0, such that ∥eLt∥L(Lp(Ω)) ≤
C0e

δt. Thus ∥∥∥∥∫ t

0

eL(t−s)f(·, un(s))ds−
∫ t

0

eL(t−s)f(·, u(s))ds
∥∥∥∥
Lp(Ω)

≤ C0e
δt
∫ t
0
∥f(·, un(s))− f(·, u(s)))∥Lp(Ω) ds.

(46)

Taking supremums in [0, T ] in (46), and from (45) we obtain∫ t

0

eL(t−s)f(·, un(s))ds→
∫ t

0

eL(t−s)f(·, u(s))ds in C([0, T ], Lp(Ω)), ∀T >0.

Also, since un0 → u0 in Lpρ(Ω) as n → ∞ we have eLtun0 → eLtu0 in C ([0, T ],

Lpρ(Ω)) for all T > 0 as n→ ∞ and using

∫ t

0

eL(t−s)f(·, un(s))ds = un(t)− eLtun0 ,
passing to the limit as n→ ∞ we get∫ t

0

eL(t−s)f(·, un(s))ds →
∫ t

0

eL(t−s)f(·, u(s))ds = u(t)− eLtu0

in C ([0, T ], Lpρ(Ω)) for any T > 0. Hence, u ∈ C([0, T ], Lpρ(Ω)) satisfies (36).
Consider now g(t) = f(·, u(t)). Since u : [0, T ] 7→ Lpρ(Ω) is continuous, and

f : Lpρ(Ω) 7→ Lp(Ω) is continuous, we have that g : [0, T ] 7→ Lp(Ω) is continuous.
Moreover, L ∈ L(Lp(Ω), Lp(Ω)), then, thanks to [22, Th 2.9, p. 109], we have that
u ∈ C1([0, T ], Lp(Ω)) and it is a strong solution of (25) in Lp(Ω).

Finally, let us prove the uniqueness of solutions of (25) with initial data u0 ∈
Lpρ(Ω), such that u ∈ C ([0, T ], Lpρ(Ω))∩C1([0, T ], Lp(Ω)) for any T > 0, is a strong
solution of (25) and is given by the variations of constants formula (36). Indeed
there exist two such solutions u and v, following the steps of this proof from (37)
to (43), replacing uk for u and uj for v, we obtain

∥u(t)− v(t)∥pρLpρ(Ω) ≤ eCt∥u(0)− v(0)∥pρLpρ(Ω).

From this, uniqueness follows.

Remark 6. Observe that conditions (35) imposes a bound on the growth of the

derivative ∂f
∂s (·, s) for large s, while condition (34) is a one side restriction on the

sign of the derivative. As will be seen in Section 5.2, logistic type nonlinearities

f(x, s) = g(x) + n(x)s−m(x)|s|ρ−1s
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with g, n,m ∈ L∞(Ω), m ≥ 0 not identically zero and ρ > 1, fall within this class
of nonlinear terms.

In the following Corollaries we enumerate the monotonicity properties that are
satisfied for the solution of (25) constructed in Theorem 3.4.

Corollary 5. (Weak, strict and strong comparison principles) Under the
assumptions of Theorem 3.4, for any initial data u0 ∈ X = Lpρ(Ω)
i) If J ≥ 0 then problem (25) satisfies a weak comparison principle.
ii) If, additionally, Ω is R-connected and J satisfies hypothesis (15) then problem
(25) satisfies a strict comparison principle.
iii) Finally, if moreover |Ω| < ∞, Ω is R–connected and the measure satisfies (8)
and J satisfies (9) then problem (25) satisfies a strong comparison principle.

Proof. Given u0, u1 ∈ Lpρ(Ω), with u0 ≥ u1, since L
∞(Ω) is dense in Lpρ(Ω), then

we choose two sequences {un0}n∈N and {un1}n∈N in L∞(Ω) that converge to the
initial data u0 and u1 respectively, and such that un0 ≥ un1 , for all n ∈ N.

Thanks to Corollary 2 we know that the associated solutions satisfy u0n(t) ≥
u1n(t), for t ≥ 0 and n ∈ N. From Theorem 3.4, we know that uin(t) converges to
ui(t), for i = 0, 1 in C([0, T ], Lpρ(Ω)). Therefore u0(t) ≥ u1(t), for t ≥ 0. As in
Proposition 9 we arrive to u0(t) > u1(t) or infΩ(u

0(t) − u1(t)) > 0 for all t > 0
respectively.

Corollary 6. (Weak, strict and strong parabolic maximum principle) Un-
der the assumptions in Theorem 3.4, assume moreover that f(·, 0) ≥ 0, Then for
initial data in X = Lpρ(Ω)
i) If J ≥ 0 then problem (25)satisfies a weak maximum principle.
ii) If, additionally, Ω is R-connected and J satisfies hypothesis (15) then problem
(25) satisfies a strict maximum principle.
iii) Finally, if moreover |Ω| < ∞, Ω is R–connected and the measure satisfies (8)
and J satisfies (9) then problem (25) satisfies a strong maximum principle.

Corollary 7. Under the assumptions in Theorem 3.4, let u(t, u0) be the solution
to (25) with initial data u0 ∈ Lpρ(Ω) and ū(t) be a supersolution to (25) in [0, T ].

If ū(0) ≥ u0, then

ū(t) ≥ u(t, u0), for all t ∈ [0, T ].

The same is true for subsolutions with reversed inequality.

4. Asymptotic estimates. In this section we will show how structure conditions
on the nonlinear term, which correspond to some sign condition at infinity, allow
to obtain suitable estimates on the solutions of{

ut(x, t) = Ku(x, t)+f(x, u(x, t)), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω
(47)

where we assume |Ω| < ∞. Notice that we have set, without loss of generality,
h(x) = 0 and we will assume f(x, s) is locally Lipchitz in s ∈ R, uniformly in x ∈ Ω.
If we work in X = Cb(Ω) then we will additionally requiere f(x, s) continuous in
(x, s) ∈ Ω× R.
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Notice that, from the previous sections, for the existence of solutions of (47) we
will assume either one of the following situations:

As in Proposition 8, 0 ≤ J ∈ Lp(Ω, Lp
′
(Ω)) for some 1 ≤ p ≤ ∞ and

then denote X = Lp(Ω), or J ∈ Cb(Ω, L
1(Ω)), then denote X = Cb(Ω).

Also g = f(·, 0) ∈ X and f(x, s) globally Lipschitz in s.

(48)

As in Proposition 12, 0 ≤ J ∈ L∞(Ω, L1(Ω)) and then denote X =
L∞(Ω), or J ∈ Cb(Ω, L

1(Ω)) and then denote X = Cb(Ω). Also g =
f(·, 0) ∈ X and f(x, s) locally Lipschitz in s and satisfies (28).

(49)

As in Theorem 3.4, J(x, y) = J(y, x), 0 ≤ J ∈ L∞(Ω, L1(Ω)) ∩
Lp(Ω, Lp

′
(Ω)) for some 1 ≤ p <∞ and for some 1 < ρ <∞
∂f

∂s
(·, s) ≤ β(·) ∈ L∞(Ω),

∣∣∣∣∂f∂s (·, s)
∣∣∣∣ ≤ C(1 + |s|ρ−1),

g = f(·, 0) ∈ L∞(Ω), and X = Lpρ(Ω).

(50)

Hence, in all three cases the global solutions of (47) for u0 ∈ X allows us to define
a nonlinear semigroup of solutions in X by

S(t)u0 = u(t, u0), t ≥ 0, u0 ∈ X. (51)

Proposition 13. With either one of the assumptions above (48), (49) or (50),
there exist C,D ∈ L∞(Ω) such that |g(x)| ≤ D(x) and

f(x, s)s ≤ C(x)s2 +D(x)|s|, s ∈ R, x ∈ Ω (52)

and moreover assume C,D ∈ Cb(Ω) if X = Cb(Ω).
Let U(t) be the solution of{

Ut(x, t) = K U(x, t) + C(x)U(x, t) +D(x) x ∈ Ω, t > 0,
U(x, 0) = |u0(x)| x ∈ Ω.

(53)

Then the solution, u, of (47), satisfies that

|u(t)| ≤ U(t), for all t ≥ 0. (54)

Proof. Observe that in case of assumptions (48) above, (52) is satisfied with C(x) =
L0 where L0 is the Lipschitz constant of f(x, s) in s, and D(x) = |g(x)|. On the
other hand, for assumptions (49), we have (52) since f satisfies (28). Finally in case
of assumption (50) then (52) is satisfied with C(x) = β(x) and D(x) = |g(x)|.

Now we prove that the solution of (53) is nonnegative. In fact we know that,
denoting LC = K + CI,

U(t) = eLCt|u0|+
∫ t

0

eLC(t−s)Dds. (55)

Since |u0|, D ≥ 0, then we can apply Proposition 5 and then we have that eLCt|u0| ≥
0 and eLC(t−s)D ≥ 0 for t ≥ 0. Thus, we have that U(t) is nonnegative for all t ≥ 0.

Now, we prove that U is a supersolution of (47). First, since in any of the cases
(48), (49) or (50) we haveD ∈ X then U ∈ C([0,∞), X). Now since U is nonnegative
and f satisfies (52), we obtain

KU + f(·,U) ≤ KU + CU +D = Ut.
Moreover u0 ≤ |u0| = U(0), then from either Proposition 11 or Corollary 4 or 7
we have u(t) ≤ U(t) for t ≥ 0. Arguing analogously for −U(t) we obtain −U(t) ≤
u(t) ≤ U(t) for t ≥ 0 and thus the result.
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Now, we obtain asymptotic estimates on the solutions of (47).

Proposition 14. Let X, J, h and f : Ω × R → R be as in Proposition 13. If
X = Lp(Ω) with 1 ≤ p < ∞ we furthermore assume that J ∈ BUC(Ω, Lp

′
(Ω))

whence K ∈ L(Lp(Ω), L∞(Ω)) is compact. Finally assume f satisfies (52) and

supRe
(
σX(K + CI)

)
≤ −δ < 0. (56)

Then there exists a unique equilibrium solution, Φ ∈ X, associated to (53), that
is, a solution of

KΦ+ C(x)Φ +D(x) = 0, x ∈ Ω (57)

which moreover satisfies Φ ∈ L∞(Ω) and Φ ≥ 0. If additionally Ω is R–connected
and the measure satisfies (8) and J satisfies (9) then, either D = 0 and then Φ = 0
or infΩ Φ > 0 in Ω.

Also, for any u0 ∈ X, the solution u of (47) satisfies that

lim sup
t→∞

∥u(t, u0)∥X ≤ ∥Φ∥X

and, denoting (f)+ = max{f, 0} the positive part of a function f ,(
|u(t)| − Φ

)
+
→ 0 in X as t→ ∞.

If moreover u0 ∈ L∞(Ω) then

lim sup
t→∞

|u(x, t, u0)| ≤ Φ(x), uniformly in x ∈ Ω (58)

and uniformly in u0 in a bounded set of L∞(Ω). In particular, any equilibrium, that
is, any constant in time solution of (47), φ ∈ X, satisfies φ ∈ L∞(Ω) and

|φ(x)| ≤ Φ(x), a.e. x ∈ Ω.

Finally if |u0| ≤ Φ then |u(t, u0)| ≤ Φ for t ≥ 0.

Proof. First of all observe that if X = Lp(Ω) with 1 ≤ p < ∞, the additional as-

sumption J ∈ BUC(Ω, Lp
′
(Ω)) and Proposition 2 imply that the spectrum σX(K+

CI) coincides with the spectrum in L∞(Ω).
Now from (56), we have that 0 does not belong to the spectrum of LC = K+CI

hence, it is invertible. Thus, the solution Φ of (57) in X is unique. On the other
hand, since D ∈ L∞(Ω) and LC is linear and continuous and invertible in L∞(Ω),
from equation (57) we also get Φ ∈ L∞(Ω).

Now, we prove that Φ is nonnegative. Observe that since we know that U(t) ≥ 0
satisfies (55) and, thanks to (56), we have that ∥eLCt∥L(X,X) ≤ Me−δt, then the

limit lim
t→∞

U(t) =

∫ ∞

0

eLCsDds ≥ 0 exists in X, which, from Lemma 4.1 below,

is an equilibrium of (53). Since this problem has a unique equilibrium we obtain
Φ =

∫∞
0
eLCsDds ≥ 0.

If additionally Ω is R–connected and the measure satisfies (8) and J satisfies (9)
then either D = 0 and then Φ = 0 or by the strong maximum principle in Theorem
2.4, infΩ Φ > 0 in Ω.

Now, since (53) is a linear non–homogenous problem we can write

|u(t)| ≤ U(t) = Φ + eLCt(|u0| − Φ) (59)

for any u0 ∈ X. From this, we obtain

∥u(t)∥X ≤ ∥U(t)∥X ≤ ∥Φ∥X +Me−δt∥(|u0| − Φ)∥X . (60)
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Since δ > 0, then we have lim supt→∞ ∥u(t)∥X ≤ ∥Φ∥X . Also (59) gives(
|u(t, u0)| − Φ

)
+
≤

(
eLCt(|u0| − Φ)

)
+
→ 0 in X as t→ ∞.

On the other hand, from (54), if u0 ∈ L∞(Ω) we have U(t) → Φ in L∞(Ω) and
we get (58). The result for the equilibria is then immediate.

Finally, if |u0| ≤ Φ we get |u(t, u0)| ≤ Φ+ eLCt(|u0| − Φ) ≤ Φ for t ≥ 0.

Remark 7. Notice that for a given nonlinear term there might be however many
different choices of C,D satisfying (52). See Section 5.2 for the case of a logistic
type nonlinearity.

Remark 8. Observe that, using the notations in Theorem 2.4, condition (56) is
equivalent to Λ(C) := Λ(K + CI) < 0 and then Proposition 4 and Corollary 1
provide sufficient conditions for that.

Now we prove the lemma used above.

Lemma 4.1. Let X be a Banach space and S(t) : X → X be a continuous semi-
group. Assume that u0, v ∈ X satisfy that S(t)u0 → v in X as t → ∞. Then v is
an equilibrium point for S(t).

Proof. Since v = lim
t→∞

S(t)u0. Then applying S(s) for s > 0, and using the conti-

nuity of S(t) for t > 0, S(s)v = S(s) lim
t→∞

S(t)u0 = lim
t→∞

S(s + t)u0 = v. Then v is

an equilibrium point.

The next result gives some information about the asymptotic behavior of solu-
tions.

Corollary 8. Under the assumptions of Proposition 14, for any u0 ∈ X and any
sequence tn → ∞ there exists a subsequence (that we denote the same) such that
u(tn, u0) converges weakly in X (or weak* if X = L∞(Ω)) to some bounded function
ξ such that |ξ(x)| ≤ Φ(x) a.e. x ∈ Ω and

lim sup
n

|u(tn, x, u0)| ≤ Φ(x), a.e. x ∈ Ω. (61)

Proof. From (60) we have that {u(t, u0), t ≥ 0} is bounded in X. Therefore, taking
subsequences if necessary, we can assume that u(tn, u0) converges weakly to ξ ∈ X
and eLCtn(|u0| − Φ) → 0 a.e. in Ω. Hence from (59) we get the result.

5. Extremal equilibria. In this section we prove that (47) has two ordered ex-
tremal equilibria φm ≤ φM , stable from below and from above, respectively, that
enclose the asymptotic behavior of all solutions.

Observe that from Proposition 14 and Corollary 8, in order to analyze the as-
ymptotic behavior of solutions, one can always assume that

|u0| ≤ Φ ∈ L∞(Ω), and then |u(t, u0)| ≤ Φ ∈ L∞(Ω) for all t ≥ 0.

In particular we can always assume f(x, s) is globally Lipschitz in its second variable
and the nonlinear semigroup in (51) is continuous in the norm of Lq(Ω) for any
1 ≤ q ≤ ∞.

Theorem 5.1. Under the assumptions of Proposition 14, there exist two ordered
bounded extremal equilibria of the problem (47), φm ≤ φM , with |φm|, |φM | ≤ Φ,
such that any other equilibria ψ of (47) satisfies φm ≤ ψ ≤ φM .
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Furthermore, the set {v ∈ L∞(Ω) : φm ≤ v ≤ φM} attracts the dynamics of the
solutions u(t, u0) of the problem (47), in the sense that for each u0 ∈ L∞(Ω), there
exist u(t) and u(t) in L∞(Ω) such that u(t) ≤ u(t, u0) ≤ u(t), and

lim
t→∞

u(t) = φm, lim
t→∞

u(t) = φM

in Lq(Ω) for any 1 ≤ q <∞.

Proof. From (59), since ∥eLCt∥L(L∞(Ω)) ≤ Me−δt, with δ > 0, and u0 ∈ L∞(Ω)

then for ε > 0 there exists T (u0) > 0 such that ∥eLCt(|u0| − Φ)∥L∞(Ω) < ε, for
t ≥ T (u0). Then (59) gives −Φ− ε ≤ u(t, u0) ≤ Φ+ ε for t ≥ T (u0) which, writing
T = T (u0), we recast as

−Φ− ε ≤ S(t+ T )u0 ≤ Φ+ ε, ∀t ≥ 0. (62)

In particular, for the initial data u0 = Φ+ε, then there exists T = T (Φ+ε) such
that

−Φ− ε ≤ S(t+ T )(Φ + ε) ≤ Φ+ ε, ∀t ≥ 0. (63)

Now, from the comparison principles in Section 3 and applying S(T ) to (63) with
t = 0, we obtain

−Φ− ε ≤ S(2T )(Φ + ε) ≤ S(T )(Φ + ε) ≤ Φ+ ε.

Iterating this process, we obtain that

−Φ− ε ≤ S(nT )(Φ + ε) ≤ S((n− 1)T )(Φ + ε) ≤ · · · ≤ S(T )(Φ + ε) ≤ Φ+ ε,

for all n ∈ N. Thus, {S(nT )(Φ + ε)}n∈N is a monotonically decreasing sequence
bounded from below. From the Monotone Convergence Theorem, the sequence
converges pointwise and in Lq(Ω), for any 1 ≤ q <∞, to some function φM , i.e.

S(nT )(Φ + ε) → φM as n→ ∞ in Lq(Ω). (64)

From (61) we get |φM (x)| ≤ Φ(x) in Ω and φM ∈ L∞(Ω).
Now we prove that, in fact, the whole solution S(t)(Φ+ ε) converges in Lq(Ω) to

φM as t → ∞. Let {tn}n∈N be a time sequence tending to infinity. We can write
tn = knT + sn with integers kn → ∞ and 0 ≤ sn < T . Then from (63) we get
S(sn + T )(Φ + ε) ≤ Φ+ ε and then applying S((kn − 1)T ) to both sides we get

S(tn)(Φ + ε) ≤ S((kn − 1)T )(Φ + ε). (65)

On the other side, again from (63) we also get S(2T − sn)(Φ+ ε) ≤ Φ+ ε and then
applying S(tn) to both sides we get

S((kn + 2)T )(Φ + ε) ≤ S(tn)(Φ + ε). (66)

Then, using (64) and taking limits as n goes to infinity in (65) and (66), we obtain
that lim

n→∞
S(tn)(Φ + ε) = φM in Lq(Ω) for any 1 ≤ q < ∞. Since the previous

argument is valid for any sequence {tn}n∈N we actually have

lim
t→∞

S(t)(Φ + ε) = φM in Lq(Ω) (67)

for any 1 ≤ q <∞. From Lemma 4.1 φM is an equilibria.
Analogously, we obtain the equilibria φm as lim

t→∞
S(t)(−Φ − ε) = φm in Lq(Ω)

for any 1 ≤ q <∞ and φm ≤ φM .
Now, for a general initial data u0 ∈ L∞(Ω), from (62), for T = T (u0)

u(t+ T, u0) = S(t+ T )u0 ≤ Φ+ ε, ∀t ≥ 0. (68)
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Letting the semigroup act at time t in (68), we have

u(2t+ T, u0) = S(2t+ T )u0 ≤ S(t)(Φ + ε) := u(t), ∀t ≥ 0. (69)

Thanks to (67) we obtain the result.
Finally, let ψ ∈ L∞(Ω) be another equilibrium. From (67) and (69) with u0 = ψ,

we have ψ ≤ φM . Thus φM is maximal in the set of equilibrium points. The results
for φm can be obtained in an analogous way.

In particular, we obtain the one side stability of the extremal equilibria.

Corollary 9. Under the hypotheses of Theorem 5.1, if u0 ∈ L∞(Ω), and u0 ≥ φM ,
then

lim
t→∞

u(t, u0) = φM ,

in Lq(Ω), for any 1 ≤ q <∞, i.e., φM is “stable from above”.
If u0 ∈ L∞(Ω), and u0 ≤ φm, then

lim
t→∞

u(t, u0) = φm,

in Lq(Ω), for any 1 ≤ q <∞, i.e. φm is “stable from below”.

Remark 9. If the extremal equilibria was more regular φM ∈ Cb(Ω), then the
result of the previous Theorem 5.1 could be improved because we would obtain the
asymptotic dynamics of the solution of (47) enter between the extremal equilibria
uniformly on compact sets of Ω. In fact, thanks to Dini’s Criterium (cf. [3, p. 194]),
we have that the monotonic sequence S(nT )(Φ+ ε) in (64), converges uniformly in
compact subsets of Ω to φM as n goes to infinity and from this, as in (67),

lim
t→∞

S(t)(Φ + ε) = φM in L∞
loc(Ω).

Then Theorem 5.1 and Corollary 9 can be stated with this convergence. However,
since there is no regularization for the semigroup S(t) associated to (47), we can
not assure that φM ∈ Cb(Ω), as happens for the local reaction diffusion equations.
Indeed there are explicit examples of (non isolated and) discontinuous equilibria.
See the example below.

Example 5.2. (Example of non-isolated and discontinuous equilibria)
Choose J(x, y) = 1, for all x, y ∈ Ω. Then the equilibria of the problem

ut(x, t) =

∫
Ω

(u(y)− u(x)) dy + f(u(x)),

satisfy that ∫
Ω

u(y) dy = |Ω|u(x)− f(u(x)) x ∈ Ω. (70)

We construct piecewise constant solutions of (70) in the following way. Define
g(u) = |Ω|u − f(u). Then choose A ∈ R and consider the set of (real) solutions
of g(u) = A, that is f(u) = |Ω|u − A. Then any piecewise constant function u(x)
with values in the set of solutions of g(u) = A will be an equilibria of the problem,
provided ∫

Ω

u(y) dy = A.

For example we can consider f ∈ C2
b (R) such that it coincides in an interval of the

form u ∈ [−M,M ], withM large, with the function f0(u) = λu(1−u2), with λ ∈ R.
Thus f gives three constant equilibria u01 = −1, u02 = 0 and u03 = 1. For this choice
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of f , we have for u ∈ [−M,M ], g(u) =
(
|Ω| − λ

)
u+ λu3. Depending on the choice

of λ and A we can assume that there are three different roots of g(u) = A, which
we denote by u1, u2, u3 ∈ [−M,M ]. If we divide the set Ω in three arbitrary subsets
Ω1, Ω2, Ω3, then we can construct the piecewise constant equilibria

ū(x) = u1 χΩ1(x) + u2 χΩ2(x) + u3 χΩ3(x), x ∈ Ω

provided u1|Ω1| + u2|Ω2| + u3|Ω3| = A, |Ω1| + |Ω2| + |Ω3| = |Ω|. This family of
equilibria is not isolated in Lp(Ω), 1 ≤ p < ∞, because by slightly changing the
partition (without changing the measure of each set) of Ω to new sets denoted by

Ω̃1, Ω̃2, and Ω̃3, the piecewise constant equilibrium ũ(x) = u1 χΩ̃1
(x)+u2 χΩ̃2

(x)+

u3 χΩ̃3
(x), would be as close as we want, in Lp(Ω), 1 ≤ p <∞, to the equilibrium ū.

Note however that in L∞(Ω) the equilibria ũ and ū are not close. Finally note that
this construction only imposes restrictions on the measures of the sets Ω1, Ω2, Ω3.
Thus, once the measures are fixed there are infinitely many possibilities to distribute
these sets in Ω.

Notice that the construction above, by slightly changing the sets Ω1, Ω2, Ω3,
shows that different equilibria can coincide on sets of positive measure. This can not
happen in local reaction diffusion problems like (1) due to the maximum principle.

Finally, by shifting the function f0(u) above to the right, e.g. taking f0(u) =
λ(u−3)(1− (u−3)2), and choosing λ and A properly we can achieve that the three
roots of g(u) = A lie in [−M,M ] and are now positive and so are the piecewise
constant equilibria constructed above.

We also get the following result that improves Corollary 8.

Corollary 10. Under the assumptions and notations in Corollary 8 and Theorem
5.1 for any u0 ∈ X, and any sequence tn → ∞ there exists a subsequence (that
we denote the same) such that u(tn, u0) converges weakly in X (or weak* if X =
L∞(Ω)) to some bounded function ξ with |ξ| ≤ Φ and

φm(x) ≤ ξ(x) ≤ φM (x) for a.e. x ∈ Ω

φm(x) ≤ lim inf
n

u(tn, x, u0) ≤ lim sup
n

u(tn, x, u0) ≤ φM (x), a.e. x ∈ Ω.

Proof. From Proposition 14, we know that for any initial data u0 ∈ X

S(t)u0 = u(t, u0) ≤ Φ+ eLCt(|u0| − Φ). (71)

Applying the nonlinear semigroup S(s) to (71), we have that

S(s)u(t, u0) = u(t+ s, u0) ≤ S(s)(Φ + eLCt(|u0| − Φ)). (72)

Since the semigroup is continuous in X with respect to the initial data, the right
hand side of (72) converges in X, as t→ ∞ to S(s)Φ.

Then for any sequence {tn}n∈N → ∞ we can assume the weak limit in X of
{u(tn + s, u0)}n∈N exists (or weak* if X = L∞(Ω)), and we get from (72) ξ(x) ≤
S(s)Φ(x), for a.e. x ∈ Ω. From this and Corollary 9 we get ξ(x) ≤ lim

s→∞
S(s)Φ(x) =

φM (x), a.e. x ∈ Ω. The result for the minimal equilibrium φm is analogous.

5.1. Nonnegative solutions. Now we pay attention to solutions with nonnegative
initial data.

Proposition 15. Under the assumptions in Theorem 5.1, if

g(x) = f(x, 0) ≥ 0, x ∈ Ω
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then φM ≥ 0 and there exists a minimal nonnegative equilibrium 0 ≤ φ+
m ≤ φM .

Also for any nonnegative nontrivial u0 ≥ 0

lim inf
t→∞

u(x, t, u0) ≥ φ+
m(x), a.e. x ∈ Ω.

Moreover φ+
m is nontrivial iff g is not identically zero and in such a case φ+

m is
stable from below for nonnegative initial data (see Corollary 9).

In particular, if Ω is R-connected and J satisfies hypothesis (15) then any non-
trivial nonnegative equilibria of (47) is in fact strictly positive. If moreover the
measure satisfies (8) and J satisfies (9) then for each nontrivial nonnegative equi-
librium ψ

inf
Ω
ψ > 0.

Finally, if g = 0 then the extremal equilibria in Theorem 5.1 satisfy φm ≤ 0 ≤
φM .

Proof. Since g ≥ 0, then 0 is a subsolution of (47) for nonnegative initial data.
Then using Corollary 4 we know that if u0 ≥ 0, then

0 ≤ u(x, t, u0), x ∈ Ω, t ≥ 0. (73)

Moreover if g = 0 then u(t, 0) = 0 = φ+
m is the minimal nonnegative equilibrium. On

the other hand, if g ̸= 0, then 0 ≤ φM implies 0 ≤ u(t, 0) ≤ φM and is increasing,
nonnegative and bounded above and then converges pointwise and in Lq(Ω) for any
1 ≤ q < ∞ to a positive equilibria φ+

m which is clearly the minimal nonnegative
equilibrium and is stable from below.

From Proposition 14 we know that the solution of (57) satisfies 0 ≤ Φ ∈ L∞(Ω),
then from (73), we have u(·, t,Φ) ≥ 0 for t ≥ 0. From Corollary 9, lim

t→∞
u(·, t,Φ) =

φM in Lq(Ω) for any 1 ≤ q <∞ and then 0 ≤ φ+
m ≤ φM .

Moreover, if ψ is a nontrivial nonnegative equilibria of (47) and if J satisfies (15),
then thanks to Corollary 3 then for t > 0 we have ψ = u(·, t, ψ) > 0 or infΩ ψ > 0
respectively.

Now we consider the case g(x) = 0 and prove that if u = 0 is linearly unstable
then there exists a minimal positive equilibrium which is stable from below.

Proposition 16. Under the hypotheses of Theorem 5.1, assume additionally that
Ω is R–connected, the measure satisfies (8) and J ∈ BUC(Ω, Lp

′
(Ω)) satisfies (9).

Assume g = 0 and that for some s0 > 0 we have

f(x, s) ≥M(x)s, x ∈ Ω, 0 ≤ s ≤ s0

with M ∈ L∞(Ω) and Λ(M) := supRe(σ(K +MI)) > 0.
Then every nonnegative nontrivial equilibrium is strictly positive and

i) For any nonnegative nontrivial u0 ≥ 0 there exists a positive equilibria ψ such
that

lim inf
t→∞

u(x, t, u0) ≥ ψ(x), a.e. x ∈ Ω.

For such ψ there exists some positive initial data 0 < v0 < ψ such that limt→∞ u(t,
v0) = ψ, in Lq(Ω) for any 1 ≤ q <∞.
ii) Moreover, if Λ(M) is a principal eigenvalue (see e.g. (11), (12), (13)), there
exists a strictly positive equilibrium 0 < φ++

m ≤ φM such that it is minimal among
the positive equilibria and stable from below as in Corollary 9.
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The assumption above holds in particular if

lim
s→0

f(x, s)

s
= n(x), uniformly in Ω and Λ(n) > 0 where n ∈ L∞(Ω).

Proof. That every nonnegative nontrivial equilibrium is strictly positive comes from
Proposition 15.
i) Fix 0 < λ̃ < Λ and, using Remark 1, chose 0 < φ̃ ∈ L∞(Ω) such that λ̃φ̃ <
Kφ̃+M(x)φ̃ and 0 < φ̃ ≤ 1.

Then observe that for ϕ = γφ̃ with 0 < γ ≤ s0

Kϕ+ f(x, ϕ) ≥ Kϕ+M(x)ϕ ≥ λ̃ϕ ≥ 0.

Hence ϕ is a subsolution of (47) and then ϕ ≤ u(t, ϕ) for t ≥ 0, and ϕ ≤ Φ
implies that u(t, ϕ) is increasing and bounded by Φ, so it converges in Lq(Ω) for any
1 ≤ q <∞ to a bounded positive equilibria. Denote this limit uγ with 0 < γ ≤ s0.
Then γφ̃ ≤ uγ and is uniformly bounded in L∞(Ω) and is increasing in γ.

If u0 ≥ 0 is nontrivial we know from Corollary 3 that infΩ u(t, u0) > 0 for all
t > 0. Hence we can assume without loss of generality that u0 ≥ α > 0 with α < s0
and then u0 ≥ αφ̃ which gives u(t, u0) ≥ u(t, αφ̃) ≥ αφ̃ for t ≥ 0 and the term in
the middle converges to the equilibria uα. Hence lim inft→∞ u(x, t, u0) ≥ uα(x) a.e.
x ∈ Ω. So ψ = uα satisfies the statement i).

ii) Take λ̃ = Λ in part i) and φ̃ = φ a positive bounded eigenfunction associated to
the principal eigenvalue, Λ = Λ(M), of the operator K +MI, which is simple and
moreover φ ≥ α > 0 in Ω and normalized ∥φ∥L∞(Ω) = 1. Again, for 0 < γ ≤ s0 and
ϕ = γφ ≤ s0 then

Kϕ+ f(x, ϕ) ≥ Kϕ+M(x)ϕ = Λϕ ≥ 0.

Hence ϕ is a subsolution of (47). Arguing as above we have that u converges in
Lq(Ω) for any 1 ≤ q < ∞ to a bounded positive equilibria. Denote this limit uγ
with 0 < γ ≤ s0. Then uγ is uniformly bounded in L∞(Ω) and is increasing in γ.
Then the monotonic limit u∗ = limγ→0 uγ exists in Lq(Ω) for any 1 ≤ q < ∞ and
passing to the limit in Kuγ + f(x, uγ) = 0 we obtain Ku∗+ f(x, u∗) = 0. Below we
show that u∗ is nontrivial (hence strictly positive), minimal and stable from below.

Denote F (x, s) =

{
M(x)s, 0 ≤ s ≤ s0

f(x, s) s > s0
so F (x, s) ≤ f(x, s) for all s ≥ 0 and

globally Lipschitz. Then if 0 ≤ u0 is nontrivial, we get

uf (t, u0) ≥ uF (t, u0) t ≥ 0.

In particular if u0 = ϕ = γφ with 0 < γ < s0 we have, by uniqueness, uF (t, u0) =
γφeΛt and is increasing in time for as long as γeΛt ≤ s0, that is, for t ≤ t0(γ) =
1
Λ log( s0γ ). Also uF (t, u0) is increasing in time since it is increasing for 0 ≤ t ≤ t0.

In particular, uf (t, ϕ) ≥ uF (t, u0) ≥ uF (t0, u0) = s0φ, for t ≥ t0(γ).
As above we can assume without loss of generality that we take initial data such

that u0 ≥ α > 0 and even more that we chose γ < s0 such that u0 ≥ γφ. Therefore
uf (t, u0) ≥ s0φ, for t ≥ t0(γ).

In particular every nontrivial equilibrium ψ satisfies ψ ≥ s0φ and then for every
γ we have uγ ≥ s0φ. Hence u∗ ≥ s0φ and is nontrivial.

Also from ψ ≥ γφ, we get ψ = uf (t, ψ) ≥ uf (t, γφ) → uγ as t → ∞. Therefore
ψ ≥ u∗ and u∗ is the minimal positive equilibrium.

To conclude we show that u∗ is stable from below. In fact if u∗ ≥ u0 > α >
0, chose 0 < γ < s0 such that u0 ≥ γφ. Then for t ≥ 0, u∗ = uf (t, u∗) ≥
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uf (t, u0) ≥ uf (t, γφ) and taking limit as t → ∞ we know uf (t, γφ) → uγ ≥ u∗
hence uf (t, u0) → u∗.

Finally, if lims→0
f(x,s)
s = n(x) uniformly in Ω and Λ(n) > 0, since n ∈ L∞(Ω)

then for ε > 0 small there exists s0 such that for 0 ≤ s ≤ s0 and x ∈ Ω, f(x, s) ≥
(n(x)− ε)s. Also, for ε > 0 small, Λ(n− ε) = Λ(n)− ε > 0. Hence the assumptions
are satisfied with M(x) = n(x)− ε. Observe that Λ(n− ε) is a principal eigenvalue
iff Λ(n) is so.

In particular we get the following result in the spirit of Brezis–Oswald, [8].

Proposition 17. Assume f : Ω× (0,∞) is locally Lipschitz, f(x, 0) = 0,

f(x, s) ≤ Cs+D, s ≥ 0, x ∈ Ω

for some constants C,D ≥ 0 and such that the limits

M0(x) = lim
s→0+

f(x, s)

s
, M∞(x) = lim

s→∞

f(x, s)

s
,

exist uniformly in Ω and M0,M∞ ∈ L∞(Ω) are such that Λ(M∞) < 0 < Λ(M0).
Then there exists at least a positive and bounded solution of

Ku(x)+f(x, u(x)) = 0, x ∈ Ω.

Proof. Assumption Λ(M∞) < 0 implies that we have (52) with supRe
(
σX(K +

CI)
)
≤ −δ < 0 and we can apply Proposition 14 and Theorem 5.1.

Assumption 0 < Λ(M0) implies we can use Proposition 16.

The next result gives a sufficient condition for uniqueness of positive equilibria.

Theorem 5.3. As in Proposition 15, assume g(x) = f(x, 0) ≥ 0, x ∈ Ω and
additionally that the kernel J is symmetric, that is, J(x, y) = J(y, x) and

f(x, s)

s
is decreasing in s for a.e. x ∈ Ω. (74)

Then φM is the unique nontrivial nonnegative equilibrium of (47), and for every
nontrivial u0 ≥ 0 we have

lim
t→∞

u(t, u0) = φM .

That is, φM is globally asymptotically for the solutions of (47) with nonnegative
initial data.

Assume, additionally, that Ω is R-connected, the measure satisfies (8) and J
satisfies hypothesis (15). Then
i) If g is not identically zero then φM is strictly positive in Ω.
ii) If g = 0 assume

lim
s→0

f(x, s)

s
= n(x), uniformly in Ω, with n ∈ L∞(Ω).

Then, if Λ(n) ≤ 0 we have φM = 0, while if Λ(n) > 0 then φM is strictly positive
in Ω.

Proof. From Theorem 5.1, let φM ∈ L∞(Ω) be the maximal equilibria of (47) and
assume φM is nontrivial (otherwise there is nothing to prove). Now, assume that ψ
is another nontrivial nonnegative equilibria, then 0 ≤ ψ ≤ φM . Thus, ψ ∈ L∞(Ω)
and from Proposition 15, 0 < ψ ≤ φM .
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Notice that the equation for any positive equilibrium ξ can be written as Kξ +
f(·,ξ)
ξ ξ = 0. Hence, since ψ,φM are positive equilibria we get that

Λ

(
f(·, ψ)
ψ

)
= 0 = Λ

(
f(·, φM )

φM

)
and they are principal eigenvalues (with ψ,φM as positive eigenfunctions respec-
tively) while, at the same time, since 0 < ψ ≤ φM ,

f(·, ψ)
ψ

≥ f(·, φM )

φM

with strict inequality in a set of positive measure. Now multiplying K(φM ) +
f(φM )
φM

φM = 0 by ψ and K(ψ) + f(ψ)
ψ ψ = 0 by φM , integrating in Ω and using that

J is symmetric, we have
∫
Ω
K(φM )ψ =

∫
Ω
φMK(ψ) and then∫

Ω

(f(ψ)
ψ

− f(φM )

φM

)
φMψ = 0

and this is a contradiction since the integrand is nonnegative and nonzero in a set
of positive measure. Therefore φM is the unique nonnegative equilibrium.

If g is not identically zero, then by Proposition 15 we get that φM is strictly
positive in Ω.

On the other hand, assume g = 0. If Λ(n) > 0 by Proposition 16 we also get
that φM is strictly positive in Ω.

If Λ(n) < 0 by (74) we get f(x,s)
s ≤ lims→0

f(x,s)
s = n(x), s > 0, x ∈ Ω and then

f(x, s) ≤ n(x)s for s > 0, x ∈ Ω. That is, f satisfies (52) for s > 0, C(x) = n(x)
and D(x) = 0. Hence (56) is satisfied and in (57) we get Φ = 0 and then φM = 0.

Finally, if Λ(n) = 0 and φM was nontrivial and thus strictly positive, we will

get as above Λ
(
f(·,φM )
φM

)
= 0 and is a principal eigenvalue and at the same time

f(·,φM )
φM

≤ n which again contradicts the strict monotonicity of the principal eigen-

value in Proposition 2.36 in [23].

Remark 10. i) Theorem 5.3 is known to hold for local diffusion problems like (1),

see e.g. [25] and references therein, assuming in (74) only that f(x,s)
s is nonincreas-

ing. The reason for this is that for (1) the maximum principle implies that in the
proof of the theorem, {ψ < φM} = Ω while in the case of nonlocal problems in this
paper we can not guarantee this, see Example 5.2. In such a case, without strict

decreasing in (74) we can not conclude in the proof above that f(·,ψ)
ψ ≥ f(·,φM )

φM

with strict inequality in a set of positive measure, see (76) for the case of logistic
nonlinearities below.
ii) If f(x, s) is regular in s, we have that (74) is equivalent to f(x, s) > s∂f∂s (x, s),
s ≥ 0, x ∈ Ω. This holds in particular if f(x, s) is strictly concave in s since by

the mean value theorem, for some 0 ≤ ξ(x) ≤ s we have f(x,s)
s ≥ f(x,s)−f(x,0)

s =
∂f
∂s (x, ξ) >

∂f
∂s (x, s).

5.2. Logistic type nonlinearities. Assume that Ω is R-connected, the measure
satisfies (8) and J satisfies hypothesis (15) and consider logistic nonlinearities

f(x, s) = g(x) + n(x)s−m(x)|s|ρ−1s

with g, n,m ∈ L∞(Ω), m ≥ 0 not identically zero and ρ > 1.
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Then we have
f(x, s)s ≤ n(x)s2 + |g(x)||s| (75)

and, since g, n ∈ L∞(Ω), from Proposition 12 we have existence and uniqueness
solution of (47) for u0 ∈ X = L∞(Ω) or X = Cb(Ω).

Moreover since

∂f

∂s
(x, s) = n(x)− ρm(x)|s|ρ−1 ≤ n(x),

∣∣∣∣∂f∂s (x, s)
∣∣∣∣ ≤ c(1 + |s|ρ−1).

Then, if |Ω| < ∞, J(x, y) = J(y, x), from Theorem 3.4 and we have existence and
uniqueness of solution of (47) for u0 ∈ Lpρ(Ω), 1 ≤ p <∞.

As for asymptotic estimates and extremal equilibria results we have the follow-
ing results. First, in the following result the asymptotic behavior of solutions is
determined by the linear terms in the equation.

Proposition 18. Assume Λ(n) < 0.
i) Then there exist two bounded extremal equilibria, φm ≤ φM , which enclose the
asymptotic behavior of the solutions and that are stable from below and from above.
ii) For nonnegative solutions, if g ≥ 0 and g ̸= 0, there exists a minimal positive
equilibria which is stable from below for nonnegative solutions. On the other hand,
if g = 0 then all nonnegative solutions converge to zero.

If
|{g = 0} ∩ {m = 0}| = 0 (76)

and g ̸= 0, then there exists a unique positive equilibria which is moreover globally
asymptotically for nonnegative initial data.

Proof. From (75) we can take C(x) = n(x), D(x) = |g(x)|. Hence, from Theorem
5.1 and Corollary 9 we obtain the existence of two bounded extremal equilibria,
φm ≤ φM , which enclose the asymptotic behavior of the solutions and that are
stable from below and from above.

For nonnegative solutions, if g ≥ 0 and g ̸= 0, from Proposition 15 we have
existence of a minimal positive equilibria which is stable from below for nonnegative
solutions. On the other hand, if g = 0 then φM = 0 = Φ and all nonnegative
solutions converge to zero.

Notice we also have

f(x, s)

s
=
g(x)

s
+ n(x)−m(x)|s|ρ−1

and then (74) holds provided (76) holds true. In such a case, from Theorem 5.3, if
g ̸= 0, then φM > 0 is the unique nonnegative equilibria and is globally asymptoti-
cally for nonnegative initial data.

Proposition 19. Assume Λ(n) ≥ 0.
i) Then there exist two bounded extremal equilibria, φm ≤ φM , which enclose the
asymptotic behavior of the solutions and that are stable from below and from above.
ii) For nonnegative solutions, if g ≥ 0 and g ̸= 0, there exists a minimal positive
equilibria which is stable from below for nonnegative solutions.

Additionally,
ii.1) Assume m(x) ≥ m0 > 0 in Ω.
If g ̸= 0 or g = 0 and Λ(n) > 0, then there exists a unique positive equilibria

which is moreover globally asymptotically for nonnegative initial data. Finally, if
g = 0 and Λ(n) = 0 then every nonnegative solution converges to zero.

ii.2) Assume m(x) vanishes in a set of positive measure of Ω.
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If g = 0 then φm ≤ 0 ≤ φM . Moreover, if g ̸= 0 is such that (76) holds,
then there exists a unique nonnegative equilibria and is globally asymptotically for
nonnegative initial data.

Proof. i) Assume m(x) ≥ m0 > 0 in Ω. Now choose A > 0 such that Λ(n − A) =
Λ(n)−A < 0 and write

f(x, s)s ≤ |g(x)||s|+
(
n(x)−A

)
s2 + |s|

(
A|s| −m(x)|s|ρ

)
.

Then, Young’s inequality gives, for any ε > 0,

A|s| −m(x)|s|ρ ≤ A|s| −m0|s|ρ ≤ ε|s|ρ + CεA
ρ′ −m0|s|ρ

and taking ε = m0

2 we get

f(x, s)s ≤
(
n(x)−A

)
s2 +

(
|g(x)|+ CεA

ρ′
)
|s|.

Then we can take C(x) = n(x)−A and D(x) = |g(x)|+ CεA
ρ′ ∈ L∞(Ω) and from

Theorem 5.1 and Corollary 9 we have again the existence of two bounded extremal
equilibria, φm ≤ φM .

If g ≥ 0 and g ̸= 0, we obtain from Proposition 15 the existence of a minimal
positive equilibria 0 < φ+

m ≤ φm, stable from below for nonnegative equilibria.
Also, if g = 0 then φm ≤ 0 ≤ φM .

Observe that if g = 0 then

lim
s→0

f(x, s)

s
= n(x), uniformly in Ω.

Therefore since (76) holds, then (74) holds and from Theorem 5.3, if g ̸= 0 or g = 0
and Λ(n) > 0, then φM > 0 is the unique nonnegative equilibria and is globally
asymptotically for nonnegative initial data. Finally, if g = 0 and Λ(n) = 0 then
φM = 0 and every nonnegative solution converges to zero.
ii) Now we consider the case in which m(x) vanishes in a set of positive measure of
Ω. Assume that for some δ > 0, ω′ ⊂ supp(m) is such that m(x) > δ for x ∈ ω′

and of positive measure and denote Ω′ = Ω \ ω′.
Now if x ∈ Ω′ then from (75) we take C(x) = n(x) and D(x) = |g(x)| for x ∈ Ω′.

On the other hand, if x ∈ ω′, we proceed as in part i) above, with a large A > 0

f(x, s)s ≤
(
n(x)−A

)
s2 +

(
|g(x)|+ CεA

ρ′
)
|s|, x ∈ ω′.

Then we have (52), that is, f(x, s)s ≤ C(x)s2+D(x)|s|, s ∈ R, x ∈ Ω with

D(x) =

{
|g(x)|, x ∈ Ω′

|g(x)|+ CεA
ρ′ , x ∈ ω′ , C(x) =

{
n(x), x ∈ Ω′

n(x)−A, x ∈ ω′

and by Proposition 20 below, with A large enough we have Λ(C) < 0.
Hence, again from Theorem 5.1 and Corollary 9 we have again the existence of

two bounded extremal equilibria, φm ≤ φM . If g ≥ 0 and g ̸= 0, we obtain from
Proposition 15 the existence of a minimal positive equilibria 0 < φ+

m ≤ φm, stable
from below for nonegative equilibria. Also, if g = 0 then φm ≤ 0 ≤ φM .

Moreover, if g ̸= 0 is such that (76) holds, then (74) holds and from Theorem 5.3,
then φM > 0 is the unique nonnegative equilibria and is globally asymptotically for
nonnegative initial data.

Now we prove the result used above that states that by acting on an arbitrary
small subset of the domain with a large negative constant, we can shift the spectrum
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of a nonlocal operator K + hI to have negative real part. Observe that this result
is not true for local diffusion operators −∆+ hI, see [25].

First, define, if Ω′ ⊂ Ω and for φ ∈ X(Ω′) = Lp(Ω′), with 1 ≤ p ≤ ∞, the
nonlocal operator in X(Ω′)

KΩ′φ(x) =

∫
Ω′
J(x, y)φ(y) dy, x ∈ Ω′

and for h ∈ L∞(Ω′) denote Λ(h,Ω′) = supRe(σ(KΩ′+hI). Also, denote ω′ = Ω\Ω′.

Proposition 20. Assume |ω′| > 0 and h ∈ L∞(Ω) and define, for A > 0, H(x) ={
h(x) x ∈ Ω′,
h(x)−A x ∈ ω′.
Then there exists A0 > 0 such that for A ≥ A0 the operator K + HI in X =

Lp(Ω), 1 ≤ p ≤ ∞, satisfies Λ(H) < 0.

Proof. For φ ∈ X = Lp(Ω) we have, if x ∈ Ω′(Kφ+Hφ

φ

)
(x) =

K(φχω′)(x) +KΩ′(φχΩ′)(x) + h(x)φ(x)

φ(x)

hence

sup
Ω′

Kφ+Hφ

φ
≤ sup

Ω′

K(φχω′)

φ
+ sup

Ω′

KΩ′(φχΩ′) + hφ

φ
.

If x ∈ ω′(Kφ+Hφ

φ

)
(x) =

K(φχΩ′)(x) +Kω′(φχω′)(x) + (h(x)−A)φ(x)χω′

φ(x)

hence

sup
ω′

Kφ+Hφ

φ
≤ sup

ω′

K(φχΩ′)

φ
+ sup

ω′

Kω′(φχω′) + (h−A)φ

φ
.

Therefore, using Theorem 2.4,

Λ(H) = inf
0<φ∈X

sup
Ω

Kφ+Hφ

φ

≤ inf
0<φ∈X

(
sup
Ω′

K(φχω′)

φ
+ sup

ω′

K(φχΩ′)

φ

)
+ Λ(h,Ω′) + Λ(h−A,ω′).

Now, taking φ = 1,

inf
0<φ∈X

(
sup
Ω′

K(φχω′)

φ
+ sup

ω′

K(φχΩ′)

φ

)
≤ sup

Ω
K(1) = sup

Ω
h0

and since Λ(h−A,ω′) = Λ(h, ω′)−A we get

Λ(H) ≤ sup
Ω
h0 + Λ(h,Ω′) + Λ(h, ω′)−A < 0

for sufficiently large A.

6. Further comments on compactness and asymptotic behavior. Observe
that from the asymptotic estimates in Section 4, in order to study the asymptotic
dynamics of (4) it is enough to take (bounded) initial data in the set

B = {u0, |u0(x)| ≤ Φ(x), x ∈ Ω} ⊂ L∞(Ω)



NONLINEAR NONLOCAL REACTION-DIFFUSION 1763

and assume thereafter that f(x, s) is globally Lipschitz in the second variable. No-
tice that from Proposition 14 this set of initial data is invariant for (4), that is, the
nonlinear semigroup (51) satisfies

S(t)B ⊂ B, t ≥ 0.

For such class of initial data, we have that the semigroup S(t) is continuous in
the norm of Lp(Ω) for any 1 ≤ p ≤ ∞, as in Section 3.1. Also, for u0 ∈ B we have
that u(t, u0), ut(t, u0), f(u(t, u0)) are uniformly bounded in L∞(Ω), for all t ≥ 0
and independent of u0. In particular S(·)B is equicontinuous in C([0,∞), L∞(Ω)).

Notice that after the results in Section 5 we could as well reduce ourselves to take
initial data such that φm ≤ u0 ≤ φM since this order interval of bounded functions
is also invariant for (4).

However, in contrast with the standard diffusion equation (1), (4), has very poor
regularizing properties which makes the asymptotic behavior of solutions difficult
to define and analyze. For example, for linear problems it was proved in Theorem
4.5 in [24] that if h(x) ≥ α > 0 then e(K−hI)t is asymptotically smooth. This weak
compactness does not seem enough to translate any compactness to the nonlinear
semigroup (51) given by the variations of constants formula since the Nemitcky
operator f does not have any compactness properties between the Lebesgue spaces.
Hence the semigroup

S(t) : B → B, t ≥ 0

is continuous but we lack of results to prove it is compact, or asymptotically com-
pact. This precludes from having well defined ω–limit sets or an attractor describing
the asymptotic behavior of solutions.

Also notice that if J(x, y) = J(y, x) then

E(φ) =
1

2

∫
Ω

∫
Ω

J(x, y)(φ(y)− φ(x))2 dy dx−
∫
Ω

h0(x)φ
2(x) dx−

∫
Ω

F (x, φ(x)) dx

where F (x, s) =
∫ s
0
f(x, r) dr can also be assumed to be globally bounded and

Lipschitz, is decreasing along trajectories, that is

d

dt
E(u(t, u0)) = −

∫
Ω

|ut(t, u0)|2 ≤ 0

and so it defines a strict Lyapunov functional for the nonlinear semigroup above.
If we had enough compactness to guarantee that for some u0 as above and for

some sequence tn → ∞, we have that u(tn, u0) → ξ a.e. in Ω, then we would have
convergence in Lp(Ω) for 1 ≤ p < ∞ since all functions involved are in B. Then
ξ is necessarily an equilibria. However the lack of compactness/smoothing men-
tioned above precludes from guaranteeing that the trajectory u(·, u0) accumulates
somewhere a.e. in Ω, as t→ ∞.

We could also consider the set B endowed with the weak convergence in, say,
L2(Ω), which we denote Bw, which is a closed, convex, compact (hence complete)
metric space. From the bounds above on the semigroup and Ascoli–Arzela’s theorem
we get that S(·)Bw is relatively compact in C([0,∞),Bw). Again if for a weakly
convergent sequence un0 → u0 we had u(·, un0 ) → ξ a.e. (0, T ) × Ω, for each T > 0,
then we would get that ξ = u(·, u0) and the semigroup

S(t) : Bw → Bw, t ≥ 0

would be continuous and, obviously, compact. In such a case, the semigroup would
have a global attractor in Bw. However, again the poorly regularizing effect of the
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nonlocal diffusion equations seem not enough to prove the pointwise a.e. conver-
gence required in the argument above.
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