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Predictive Receding-Horizon Multi-Robot Task Allocation with Moving
Tasks*

Javier G. Martin , Muhammad Hanif, Takeshi Hatanaka , Senior Member, IEEE, Jose M. Maestre ,
Senior Member, IEEE, and Eduardo F. Camacho , Fellow, IEEE

Abstract— This paper addresses a multi-robot task allo-
cation (MRTA) towards moving tasks and presents a novel
computationally efficient predictive allocation algorithm that
requires solving a linear program (LP) problem. Following the
receding horizon control policy, the present algorithm repeats
the optimization of future task assignments within an allocation
horizon while predicting the evolution of the system. The online
optimization is formulated so that the assignment problem is
reduced exactly to an LP. The algorithm is also compared with
other traditional methods, namely, the greedy approach and a
genetic algorithm (GA). Our results show that the algorithm
herein proposed outperforms the greedy approach for small
prediction horizons and has significantly lower computational
load than GA.

I. INTRODUCTION

Multi-robot systems (MRS) comprise a set of robots
that work collaboratively to perform tasks. Among their
applications, MRS can be used for mapping [1], [2], surveil-
lance [3]–[5], maintenance [6], and also as robotic sensor net-
works (RSN), a particular case of wireless sensor networks
(WSN) where sensors are mounted on mobile robots [7], [8].

A common challenge in MRS management is the so-
called multi-robot task allocation (MRTA) problem [9], [10],
where a set of tasks are assigned to the robots in the
most efficient way. This problem can be addressed both
with decentralized and centralized approaches. While the
decentralized approach tends to be more scalable and robust
to communication failures, the centralized one benefits from
its access to broader information to generate allocations
closer to the optimal one.

According to the taxonomy proposed in [11], MRTA
problems can be classified for the number of simultaneous
tasks per robot (single-task robot (ST) vs. multi-task robot
(MT)), the number of robots per task (single-robot task (SR)
vs. multi-robot task (MR)), and the availability of infor-
mation to plan future allocations (instantaneous assignment
(IA) vs. time-extended assignment (TA)). This taxonomy
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has been further developed in [12] by considering the inter-
dependencies between tasks, e.g., for the cases of in-schedule
(ID) and cross-schedule (XD) dependencies.

TA MRTA problems become more challenging when tasks
move as in [13], where an algorithm based on predator
dynamics is proposed to deal with this issue, and [14], where
manipulators with limited communications must operate over
dynamic tasks. In this work, a novel linear approach is
presented to address the XD[ST-SR-TA] MRTA problem
with moving tasks taking into consideration the order in
which robots perform the tasks. To this end, an algorithm
that predicts the evolution of the tasks and robots as it is
done in the model predictive control (MPC) framework is
proposed [15], [16]. MPC is a control technique that uses a
model to predict the response of a system and to compute
optimal control signals during a certain time horizon. At each
time step, the first control action of the sequence of inputs is
applied after its corresponding update using the most recent
information available. Predictive control methods in the MRS
field have been proposed in other works, e.g., [17], where
a decentralized model-predictive control strategy is used to
address the observation of multiple moving targets; [18],
where a non-linear model predictive control strategy is used
to dynamically set the formation leader, and [19], where it is
used to compute the time to change the assignment of tasks to
robots in XD[ST-SR-TA] MRTA problems with static tasks.

The rest of this paper is organized as follows. In Section II,
the problem formulation is mathematically expressed. In
Section III, the proposed algorithm is introduced. Section IV
presents the case study where the algorithm is tested and the
corresponding results are discussed. Finally, in Section V,
the conclusions of this work are detailed and some future
research lines are given.

Notation: 1a×b denotes a matrix of ones with a rows and
b columns; 0a×b represents a matrix of zeros with a rows
and b columns; Ia stands for the identity matrix with a rows
and columns; and diag(x) is employed to denote a diagonal
matrix containing vector x as its main diagonal.

II. PROBLEM STATEMENT

Let us consider a set of N heterogeneous mobile robots,
R = {r1, r2, ..., rN}, which must complete a set of M
moving tasks, S = {s1, s2, ..., sM}, following a given
sequence specified by ordinal indixes contained in set K =
{1, 2, ...,K}. The speed and the position of robot ri ∈ R
are denoted as vi ∈ R and pi ∈ R2, respectively. On the
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other hand, the changing location and velocity of each task
sj ∈ S can be predicted and are denoted by qj ∈ R2 and
uj ∈ R2, respectively. Likewise, task sj ∈ S has a relevance
quantified by a positive scalar φj and requires an operation
time τj to be performed (besides the time employed to
reach the task position). For simplicity, τj is considered
independent of the robot that performs the task. Likewise,
any time spent performing task sj will be subtracted from
τj in further allocations. Finally, we define bi ∈ [0, 100]
as the State of Charge (SOC) of robot ri, and wi as its
discharge rate, which will be used to avoid the assignment
of unfeasible tasks from an energetic viewpoint. Moreover,
we may want to prioritize some robots over others, e.g.,
unmanned ground vehicles (UGVs) over unmanned aerial
vehicles (UAVs) because UAVs have less autonomy. To this
end, we define the penalty λi for the use of robot ri.

A. Allocation Variables

The allocation, i.e., the assignment of robots to tasks, is
described by a set of Boolean variables δijk that are set to 1
when the k−th mission of robot ri is to perform task sj (0
otherwise). For convenience, x is defined as the aggregated
vector x = [δijk]i∈R,j∈S,k∈K. The following constraints
need to be imposed in the optimization

N∑
i=1

K∑
k=1

δijk = 1 j ∈ S, (1)

M∑
j=1

δijk ≤ 1 i ∈ R. k ∈ K, (2)

to ensure that all tasks are performed (1), and to avoid that
robots are simultaneously assigned more than one task per
mission slot (2).

An example of the described variables can be seen in
Fig. 1, where tasks have been considered static.

B. Distance and Time Computations

The distance between robot ri and task sj is defined as
dij = ||qj − pi||2, and the time for robot ri to reach task sj
becomes tij =

dij
vi

, as shown in Fig. 2.

Fig. 1: r1 performs first s1 and then s2; r2 performs task s3.
Let t1, t2 and t3 be the completion time of s1, s2, and s3
respectively. Then, t1 is the time it takes for r1 to reach s1
plus τ1; t2 is t1 plus the time it takes r1 to go from s1 to
s2 plus τ2; and t3 is the time it takes for r2 to reach task s3
plus τ3. Likewise, the distance traveled by r1 is the distance
from its initial position to s1 plus the distance from s1 to
s2; and the distance traveled by r2 is that from its initial
position to s3.

Let us introduce now the mean time to perform the k−th
task as

tk =
1

M ·N
·

N∑
i=1

M∑
j=1

(tijk + τj) k ∈ K, (3)

where tijk is the time it takes for robot ri to perform task
sj as its k−th mission.

The computation of the time to complete a task sj , say
tj , requires to know all the previous tasks carried out by
the robot that performs sj . To overcome this issue, we
approximate the accumulated time before the beginning of
the k−th mission as

tka =

k−1∑
µ=1

tµ k ∈ K. (4)

Thus, an estimation of tj can be calculated as

tj =
N∑
i=1

K∑
k=1

δijk · tEijk j ∈ S,

tEijk = tka + tijk + τj i ∈ R, j ∈ S, k ∈ K,
(5)

with tEijk as the estimated time if task sj is allocated to robot
ri as its k−th mission.

Finally, we can estimate the distance traveled by the robot
ri as

di =

N∑
i=1

M∑
j=1

K∑
k=1

dijk · δijk i ∈ R. (6)

where dijk is the estimated distance traveled for robot ri if
allocated with task sj as its k−th mission.

C. Energetic Feasibility

Using (5), it is possible to define a family of functions

βijk =

{
1 if bi − wi · tEijk ≥ 0

−1 if bi − wi · tEijk < 0

}
(7)

Fig. 2: Example with 2 robots and 2 tasks. Distances from
robots to task s1 are in red, and to task s2 in blue. Task
trajectories can be seen in green.



to assess whether it will be feasible from an energetic
viewpoint for robot ri to perform task sj as its k−th mission.
This allows us to formulate a new constraint to ensure that
tasks will only be assigned to robots with enough SOC:

βijk · δijk ≥ 0 i ∈ R j ∈ S, k ∈ K, (8)

D. Optimization Goals

The core of the multi-criteria objective function employed
by our algorithm takes into account both the time in which
tasks are performed and the distance traveled by the robots
and it is defined as

Jc =

M∑
j=1

φj · tj(x) +
N∑
i=1

λi · di(x), (9)

where λi ∈ R is the penalty for the use of robot ri; di is the
distance traveled by the robot ri, which can be estimated by
means of (6); φj ∈ R is the penalty for the time employed
to complete task sj ; and tj is the completion time in which
task sj is finished, which can be estimated by means of (5).

Then, the cost function (9) can be transformed into

Js =

N∑
i=1

M∑
j=1

K∑
k=1

k · δijk · (λi · dijk + φj · tEijk), (10)

where the multiplication by k enforces that a robot can only
be assigned a task as its k−th mission if it already has
another task allocated in its (k − 1)−th mission slot.

Considering the feasibility of the fulfillment of all tasks,
we can find two possible cases:

1) All the tasks can be performed. When N ·K ≥ M, there
are enough robots to complete the tasks in the allocation
horizon and the MRTA problem can be formulated as:

min
δijk∈{0,1}

Js

s.t. (1), (2), (8).
(11)

Note that if K = M all allocations can be explored
(including those using the same robot to perform all the
tasks). Thus, if K < M optimality can be lost, although
the computational cost of the problem decreases (the
number of decision variables in the problem is N·M·K).

2) Some tasks cannot be completed when N · K < M,
the problem must be changed considering the following
constraints

N∑
i=1

K∑
k=1

δijk ≤ 1 j ∈ S, (12)



M∑
j=1

δijk = 1 if maxi,k(βijk) = 1

M∑
j=1

δijk = 0 if maxi,k(βijk) = −1

i ∈ R
k ∈ K , (13)

to ensure that not all tasks need to be fulfilled in
the allocation horizon (maintaining that they can be

performed only once) and that robots are not idle (unless
they do not have enough battery to perform any of
the remaining missions). The problem can be then
formulated as

min
δijk∈{0,1}

Js

s.t. (12), (13), (8),
(14)

III. RECEDING HORIZON TASK ALLOCATION
ALGORITHM

In this section, the LP relaxation of the problem presented
in Section II is detailed and the proposed predictive multi-
robot task allocation algorithm is presented.

A. LP relaxation

Both (11) and (14) can be transformed into an equivalent
LP problem to reduce the computational cost. The equivalent
LP problem is as follows:

min
x≥0

c·x

s.t. A·x = b
(15)

where c = [ci]i∈R and xT = [xTi ]i∈R, with

cTi =



1 · (λi · di11 + φ1 · tEi11)
2 · (λi · di12 + φ1 · tEi12)

...
K · (λi · di1K + φ1 · tEi1K)
1 · (λi · di21 + φ2 · tEi21)
2 · (λi · di22 + φ2 · tEi22)

...
K · (λi · di2K + φ2 · tEi2K)

...
1 · (λi · diM1 + φM · tEiM1)
2 · (λi · diM2 + φM · tEiM2)

...
K · (λi · diMK + φM · tEiMK)



, xi =



δi11
δi12

...
δi1K
δi21
δi22

...
δi2K

...
δiM1

δiM2

...
δiMK



.

and the matrixes A and b contain the corresponding con-
straints. For simplicity, we consider only the problem ex-
pressed in (11) because problem (14) can be relaxed in the
same manner. Then, these matrixes A and b can be written
as

A =
[
R 0
V I

]
, b =

[
1M+N·K×1
0N·M·K×1

]
, (16)

with

R =
[
R1 R2 · · · RN

]
,

Ri =


11×K 01×K · · · 01×K
01×K 11×K · · · 01×K

...
...

. . .
...

01×K 01×K · · · 11×K

,

V =
[
V1 V2 · · · VN
diag([β111 · · ·βNMK])

]
,

Vi =


0K×K 0K×K · · · 0K×K

...
...

...
IK IK · · · IK
...

...
...

0K×K 0K×K · · · 0K×K

 .
1
...
i
...
N



Note that the i−th block row in Vi is the one containing the
IK matrices.

Problem (15) is known to be equivalent to (11) in the
sense of having the same optimizer if the matrix A is totally
unimodular and every element of b is an integer [20]. The
latter condition is obviously satisfied in the present case.
Regarding the former, the following lemma is shown to
be true, which is equivalent to total unimodularity of A
(Theorem 19.3 [20]).

Lemma 1 Matrix A satisfies that ∃ξ ∈ {0,±1} s.t. A · ξ ∈
{0,±1}.

Proof: Let us define

ξ =
[
ξ1 −ξ2 ξ3 · · · ±ξN −11×(M+1)·N·K

]
,

ξi =
[
11×K −11×K 11×K · · · ±11×K

]
,

(17)

where ξN is positive if N is odd and negative otherwise.
That is, the first K elements of ξ are equal to 1, the

following K ones are equal to −1, and this pattern is repeated
until the K ·M−th element. Note that the last term will be
positive if K is odd and negative otherwise.

Then, it is easy to see that
[
R 0

]
· ξ ∈ {0, 1}, and

that
[
V I

]
· ξ ∈ {0,±1}. Thus, A · ξ ∈ {0,±1}, which

completes the proof.
Therefore, we can solve the LP (15) rather than the integer

program (11).

B. Predictive Receding-Horizon Multi-Robot Task Allocation
(PMRTA) Algorithm

To solve the problem, we need dijk, tijk, tka , and tEijk
which can be obtained following Algorithm 1.

After computing dijk and tijk ∀k, the LP problem ex-
pressed in (15) is solved and the assignment corresponding
to k = 1 is applied. Once a task is completed, the algorithm
is restarted in an event-driven fashion after updating the
positions of robots and tasks, and the battery status. In
this way, predictions and allocations are constantly updated
based on the current information. See Algorithm 2, where
the proposed predictive receding-horizon multi-robot task
allocation (PMRTA) algorithm is described.

IV. RESULTS

A case study with 4 robots and 16 tasks moving northeast
at different speeds is employed using a sample time of 0.1
seconds. The parameters of the robots and the tasks have
been generated randomly and can be seen in Table I.

An assessment of the effects of the allocation horizon K in
the results and the increase of the computational load with K
can be seen in Table II. For comparison purposes, J has been
computed following (9) for each simulation using the real
distance traveled by each robot and the real time in which
the tasks were finished. Note that the worst value is obtained
with K = 1, which is equivalent to the greedy approach.
The best allocation occurs when K = 3 and stabilizes
after K = 4, obtaining the same allocation disregarding
the value of K and the computational burden increases
linearly up to 2.02 seconds. We have compared it also with

Algorithm 1: dijk, tijk, tka and tEijk estimation.

Let k = 1;
Initialize the estimated position of robots using their
current position, p′ik = pi;

Initialize the estimated position of tasks using their
current position, q′jk = qj ;

while k ≤ K do
Compute `ijk using p′ik, q′jk, vi, and uj ;
Compute dijk = ||`ijk − p′ik||2 ∀i ∈ R, j ∈ S;
Compute tijk as tijk =

dijk
vi

i ∈ R, j ∈ R;
Use tijk and τj to compute tk using (3);
Compute tk by means of (3);
Compute tk+1

a by means of (4);
Estimate the position of tasks in k + 1, q′jk+1,

using q′jk, uj and the time obtained in tka ;
Compute tEijk ∀i ∈ R, j ∈ S by means of (5);
Remove from S the task with the lowest

estimated mean time in k, since we will
consider this is the task that has been completed;

Compute the position of the robots in k + 1,
p′ik+1, by means of

p′ik+1 = p′ik +

|S|+1∑
j=1

tka · vi ·
q′j − pi
||q′j − pi||2

· 1

|S|+ 1
;

end

Algorithm 2: Predictive Receding-Horizon Multi-
Robot Task Allocation (PMRTA)

while |S| > 0 do
Update the real position of the robots;
Update the real position of the tasks;
Update the real state of the batteries;
Update the predicted position of the tasks and the
robots, dijk, tijk, tk, tka and tEijk using
Algorithm 1;

Solve the allocation using (15);
Apply the part of the allocation corresponding to
k = 1;

Complete the corresponding task and update the
number of remaining tasks, |S| = |S| − 1;

end

the allocation obtained by solving (15) once obtaining that
the computational burden is similar to that of K = 1 but
the performance decreases significantly, i.e., the periodic
recomputing of the allocation is necessary. This phenomenon
is to be expected since the predictions employed by the LP
are based on several simplifying assumptions. Finally, the
allocations obtained using K = 3 are shown in Fig. 3. There
are 16 allocations because there are 16 tasks and a new
allocation is computed every time a task is completed.

The results are also compared with those achieved by the
Genetic Algorithm (GA) method presented in [21], which
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Fig. 3: The lines represent the allocation obtained in each iteration. The green line represents the part of the allocation
corresponding to k = 1, i.e., the part of the allocation which is applied, while the blue lines represent the part of the
allocation for k > 1. In the first allocation, robot 2 is sent to task 1, robot 4 is sent to task 4, robot 3 is sent to task 11,
and robot 1 is sent to task 5. The second allocation occurs when robot 2 completes task 1. In this allocation, robots 1, 3,
and 4 keep on completing the current tasks while robot 2 is sent to task 3. Note that in the previous allocation, the second
assignment for robot 2 was not task 3 but task 15. The third allocation is similar to the second one, but robot 4 finishes and
is sent to a new task (task 13). In the fourth allocation, we can see how task 13 is reallocated to robot 4 (since it has not
reached the task yet), and, in the fifth allocation, we can see that the proposed algorithm redirects robot 4 to task 10 and
task 13 is reassigned to robot 3. There are 16 allocations since each time a task is completed a new one is computed.

TABLE I: Parameters of the robots in the case study

Robots pi(0) ||vi|| λi bi(0) wi

r1 (2,5) 4 1 100 0.2
r2 (1,3) 8 2 80 0.5
r3 (4,2) 8 1 40 0.4
r4 (3,3) 16 2 30 0.1

Tasks qj(0) q̇j τj φj
s1 (1,1) (1,1) 1 3
s2 (1,6) (3,2) 2 1
s3 (2,1) (2,1) 3 5
t4 (2,3) (2,2) 2 4
t5 (3,5) (2,1) 2 2
t6 (3,9) (3,1) 1 3
t7 (7,7) (4,2) 4 1
t8 (4,5) (2,2) 5 1
t9 (5,8) (1,1) 7 6
t10 (6,3) (3,3) 1 1
t11 (7,1) (2,1) 2 4
t12 (7,4) (2,4) 1 3
t13 (8,2) (1,2) 4 5
t14 (8,3) (2,3) 9 6
t15 (9,3) (2,3) 3 2
t16 (9,8) (3,1) 5 1

solves

min
U

JGA =
M∑
j=1

φj · tj(U) +
N∑
i=1

λi · di(U) + γ(U)

s.t. ui(n) ∈ S ∪ {0} ∀ i, n, (18)

where U = [u1(1), u1(2), .., u1(M), u2(1), ..., uN(M)] rep-
resents the complete allocation and ui(n) ∈ S ∪ {0},
stands for the n−th allocated task of robot ri. Note that
ui(n) = 0 when robot ri is idle. Here, φj and λi respectively
correspond to the priority given to a certain task sj and the
penalty for using robot ri; tj(U) and di(U) correspond to
nonlinear functions regarding the time that it takes to com-
plete task sj and the distance traveled by robot ri in a given
allocation U . Function γ(U) is a soft restriction ensuring the
energetic feasibility (no robot has a negative battery level

TABLE II: Results of the case-study for different K

K 1 2 3 4 · · · 16 16 (no recom.)
J 609.14 519.38 484.02 504.35 · · · 504.35 945.79
ri di (m)
r1 12.95 26.40 11.20 14.97 · · · 14.97 17.49
r2 31.27 28.24 26.08 32.72 · · · 32.72 25.32
r3 22.12 12.65 28.48 22.54 · · · 22.54 24.60
r4 32.01 28.52 24.74 23.55 · · · 23.55 30.23
sj tj (s)
s1 1.2 1.2 1.2 4.4 · · · 4.4 15.5
s2 2.2 2.2 12 13.3 · · · 13.3 31.5
s3 12.4 4.3 4.3 3.2 · · · 3.2 3.6
s4 4 2 2 2.3 · · · 2.3 4.3
s5 2 2.3 2.1 6.4 · · · 6.4 26.3
s6 5.4 3.8 8.1 8 · · · 8 33.4
s7 6.7 16.3 14.1 12.3 · · · 12.3 38.9
s8 7.4 7.7 16.7 16.7 · · · 16.7 45.5
s9 14.7 10.9 9.9 11 · · · 11 20.4
s10 1.3 10.2 9.4 10.7 · · · 10.7 39.8
s11 9.1 6.9 2.3 2.4 · · · 2.4 4.1
s12 2.5 3.4 9.5 9.3 · · · 9.3 21.2
s13 12.3 8.7 6.4 4.5 · · · 4.5 5.1
s14 18.1 16.1 11.4 11.4 · · · 11.4 21.4
s15 9 11.2 8.3 7.8 · · · 7.8 9.1
s16 7.9 15.6 14.8 16.1 · · · 16.1 27.9

Computational time (s)
0.74 0.79 0.86 0.93 · · · 2.02 0.76

after the allocation) and that every task is performed once.
Finally, GA parameters, which have been tuned by trial and
error to achieve a good balance between performance and
computational load, can be seen in Table III. Note that given
the heuristic nature of GA, the problem has been solved 10
times to average the results.

TABLE III: GA tuning parameters

Pop. size Max Gen. Max Stall Gen. GC GE GM1 GM2

400 50 10 0.7 0.3 0.5 0.5

The computational load of GA is around 60 seconds and
JGA is in the range [600, 650], i.e., GA barely reaches the



performance achieved by the greedy approach despite its
significantly higher computational load. However, it must be
taken into account that, unlike the greedy approach and the
predictive approach, the implementation of GA here lacks
the capability of leaving tasks incomplete.

To validate the proposed method, we have generated 1000
random scenarios with N ∈ [1, 10], and M ∈ [1, 20], located
in random spots of a 15×15 m square area. These scenarios
have been solved using GA and PMRTA ∀K ∈ [1,M]. The
rest of the parameters are contained in the following ranges:
vi ∈ [4, 20] m/s; λ ∈ (0, 5); bi ∈ [0, 100]; wi ∈ (0, 1);
uj constant with ||uj || ∈ (0, 4] m/s and random direction;
τj ∈ (0, 10); and φj ∈ (0, 10) m/s.

Our results show that when GA is constrained to achieve
an allocation in the same time as the proposed algorithm it
achieves a worse allocation in most cases (90.15%). In Fig. 4,
it can be seen that PMRTA is superior in almost all cases with
small K (K > 1), although its performance decreases for
larger prediction horizons until it finally becomes worse than
the greedy algorithm (K = 1). On the other hand, when GA
has unlimited time to converge (the stopping criterion was
set to 30 generations with no improvement), it outperforms
the proposed algorithm in most cases, as expected. However,
even in these unfair conditions, the proposed algorithm
occasionally beats GA. Also, note that for K = 2 PMRTA
outperforms the greedy algorithm and is able to get better
results than GA in 18.9% of the cases (the greedy algorithm
outperforms the unlimited GA only 7% of the simulations).
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Fig. 4: Performance comparison between PMRTA and time
limited GA.

V. CONCLUSIONS

A predictive MRTA algorithm that takes advantage of
the available information regarding the system evolution
has been presented. In particular, the proposed algorithm
computes the best allocation based on the predicted system
evolution for a given horizon and applies the first element of
the calculated sequence in a receding horizon manner.

Our results show that the proposed algorithm outperforms
well-established heuristical methods such as the greedy al-
gorithm and GA in time-limited optimizations. Also, the
proposed algorithm performs remarkably better with small
horizons than with larger ones due to the use of a simple

internal model for the predictions. To overcome this issue,
we plan to iterate the allocation until convergence is obtained
and to employ myopic cost functions in future works. Also,
in future works, experiments with real robots in more chal-
lenging environments will be carried out.
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