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Abstract 

In a networked control architecture, the semivalues of a coalitional game where the communication 
links are the players can be used to provide information regarding their relevance. The linear relationship 
between the characteristic function of the game and the semivalues can be exploited to impose constraints 
on the design of the corresponding networked controllers to promote or penalize the use of certain links 
considering their impact on the overall system performance. In previous works, this approach was 
restricted to small networks due to the combinatorial growth of the problem size with the number of 
links. This work proposes a method to mitigate this issue by performing a random sampling in the set 
of topologies, i.e., coalitions of links, and employing a mild bound to reflect the impact of nonsampled 
topologies in the calculations. The simulation results show that the proposed approach can lead to 
significant reductions in computation time with moderate loss of performance. 
© 2022 The Authors. Published by Elsevier Ltd on behalf of The Franklin Institute. 
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. Introduction 

Distributed control schemes split overall control problems into smaller tightly coupled
ieces, which are assigned to local controllers or agents. As the coupling between subproblems
rows, communication becomes necessary to avoid undesired interactions and increase overall
erformance. In this regard, dynamical changes in coupling can be exploited to rearrange
gents into disjoint loosely coupled clusters that can neglect their mutual interaction and do not
eed to communicate, thereby minimizing coordination efforts with minimum impact on the
ystem performance [1] . This basic idea appears under different names in the literature, such
s switching systems [2] , time-varying partitioning [3] , plug-and-play schemes [4] , sparsity-
romoting control [5] , coupling degree clustering [6] , and coalitional control [7] , on which
e will focus. 
In this context, it is possible to characterize the relevance of links in the networked control

rchitecture by modeling the situation as a cooperative link-game [8] . More specifically, links
ecome the players and a characteristic function has to be defined to assess the impact on the
verall performance of each coalition of links or topology [7] . Then, semivalues [9] – pay-
ff rules from cooperative game theory based on marginal contributions – can be computed
or the game to provide an indication of the specific contribution of each link. Similarly,
onstraints on semivalues can be imposed in the design of the networked controller to pro-
ote or discourage the use of certain links in relation to the system performance, thereby

nfluencing the topologies implemented in the control architecture. For example, constraints
n the Shapley [10] and Banzhaf [11] values, which belong to the set of semivalues, are
espectively considered in [12] and [13] , by means of linear matrix inequalities (LMIs). Like-
ise, in [14] this approach is employed to associate regions of the state space with the
ost appropriate topologies and guarantee the relevant properties of convexity, invariance,

nd submodularity in the design. 
Besides identifying the most relevant links, coalitional methods can be used to design con-

rol networks with limitations in their size [15] , and to distribute the costs or benefits that
erive from the cooperation between the control agents [8] . These tools are also relevant, for
xample, for practical applications in the context of cybersecurity, because they can detect
he critical links in the control system and impose limits in their use considering their im-
act on performance. The coalitional approach has also been extended to model predictive
ontrol [16,17] and has been applied among others to water systems [15] , renewable energy
ources [18] , and freeways traffic networks [19] , considering different partitioning criteria.
ther connections with cooperative game theory have been explored, e.g., in schemes based
n coalitional treatments [20–22] , with applications as studying opinion dynamics [23,24] ,
nd where the LMI approach is also employed [25] . 

The contribution of this work is two-fold. On the one hand, it deals with the full set
f semivalues, generalizing previous works as [12,13] , whose results now become particular
pplications of the proposed framework. On the other hand, the main drawback of the LMI
pproach of [12–14] is the combinatorial explosion in the number of variables of the problem
ith the number of links, which limits the applicability of their results to small networks.
o deal with this issue, we propose a random sampling method that replaces the value of
onsampled topologies in the characteristic function by mild bounds, leading to significant
mprovements regarding computational burden with small performance loss. Finally, note that
 very preliminary version of this article including constraints on semivalues following the
xhaustive approach of [12–14] was presented at a conference [26] , and did not include all
9837 
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he semivalues considered here. Also, the proofs of some relevant properties are not contained
n the conference version. 

The rest of the article is organized as follows. In Section 2 , the problem formulation is
tated in a coalitional setting. In Section 3 , the set of semivalues is formally defined, and
ome properties of interest are presented. In Section 4 , constraints on semivalues are included
y LMIs in the design, and the coalitional control scheme is also introduced. Next, a random
ampling method to relieve the computational burden is presented in Section 5 . An academic
xample that illustrates the proposed approach is given in Section 6 . Finally, concluding
emarks and lines of future work are commented in Section 7 . 

. Problem formulation 

Consider a system composed of a set N = { 1 , 2, . . . , N } of possibly coupled subsystems.
he dynamics of each subsystem i ∈ N are described by 

 i (k + 1) = A ii x i (k) + B ii u i (k) + d i (k) , 

d i (k) = 

∑ 

j � = i 

[
A i j x j (k) + B i j u j (k) 

]
, (1)

here x i (k) ∈ R 

n x i and u i (k) ∈ R 

n u i are respectively the state and input vectors, and with A i j ∈
 

n x i ×n x j , B i j ∈ R 

n x i ×n u j denoting the state and input-to-state matrices of proper dimensions.
erm d i (k) comprises the effect of neighbor interactions on the dynamics of subsystem i. 

rom a global viewpoint, the dynamics of the overall system become 

 N 

(k + 1) = A N 

x N 

(k) + B N 

u N 

(k) , (2)

here subscript N emphasizes the aggregation of local subsystems, i.e., x N 

= [ x i ] i∈N 

, u N 

=
 u i ] i∈N 

, A N 

= [ A i j ] i, j∈N 

, and B N 

= [ B i j ] i, j∈N 

. Note that mutual interactions are implicitly
onsidered. 

.1. Control infrastructure 

Subsystems in N are governed by local controllers or agents, which are interconnected by
 network described by an undirected graph (N , E ) , with E ⊆ E N = N × N being edges,
.e., the set of available communication links between agents. Each link l ∈ E can be enabled
r disabled at each time instant k, considering here a constant cost ˆ c ∈ R 

+ , per enabled link.
n any case, the extension to link-dependent costs ˆ c l ∈ R 

+ , ∀ l ∈ E , is straightforward. 

efinition 1. Let (N , E ) be the controller’s communication network. The set of enabled links
t time step k is defined as network topology and it is symbolized by �(k) ⊆ E . 

The set of possible topologies T = { �0 , �1 , . . . , �2 |E | −1 } , with |T | = 2 

|E | , includes all
ombinations of enabled links from the decentralized topology �0 (all links disabled) to
he centralized one �2 |E | −1 (all links enabled). When a specific topology � ∈ T is active,
ommunication components , i.e., disjoint neighborhoods or clusters of agents derived by
ubgraph (N , �) , arise. Also, note that it is possible to connect the topologies by their
ommon links through the following definition: 

efinition 2. Let �(k) ∈ T be the specific topology at time k. The topologies that contain
t least (at most) the links enabled in topology �(k) are named ascendant (descendant)
opologies of �(k) , and are denoted by set T � ( T �). 
9838 
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Fig. 1. An example of an 8-link network. 
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By using combinatorial analysis we can calculate the number of ascendants and descendants
f a given topology �

T �| = 

|E |−| �| ∑ 

n=1 

(|E | − | �| 
n 

)
, |T �| = 

| �| ∑ 

n=1 

(| �| 
n 

)
. (3)

xample 1. Let the 8-link network depicted in Fig. 1 , where |T | = 256 and with the ele-
ents in T sorted following a lexicographic order. Consider for instance topology �133 =

 II , III , V , VII } ∈ T . The number of ascendants and descendants are given by |T �| = |T �| =
5 . The explicit topologies in those sets and their communication components are detailed
n Table 1 and also drawn in a Hasse diagram in Fig. 2 . 
able 1 
escendants and ascendants of topology �133 = { II , III , V , VII } . 
escendants of �133 Ascendants of �133 

I II III IV V VI VII VIII Components � I II III IV V VI VII VIII Components 

0 X X X X X X X X { 1 } , { 2} , { 3 } , { 4} , { 5 } , { 6 } �168 � � � X � X � X { 1 , 2, 3 , 4, 5 } , { 6 } 
2 X � X X X X X X { 1 , 4} , { 2} , { 3 } , { 5 } , { 6 } �199 X � � � � X � X { 1 , 3 , 4, 5 } , { 2, 6 } 
3 X X � X X X X X { 1 , 5 } , { 2} , { 3 } , { 4} , { 6 } �204 X � � X � � � X { 1 , 3 , 4, 5 , 6 } , { 2} 
5 X X X X � X X X { 1 } , { 2} , { 3 , 4} , { 5 } , { 6 } �206 X � � X � X � � { 1 , 3 , 4, 5 , 6 } , { 2} 
7 X X X X X X � X { 1 } , { 2} , { 3 } , { 4, 5 } , { 6 } �220 � � � � � X � X N 

16 X � � X X X X X { 1 , 4, 5 } , { 2} , { 3 } , { 6 } �225 � � � X � � � X N 

18 X � X X � X X X { 1 , 3 , 4} , { 2} , { 5 } , { 6 } �227 � � � X � X � � N 

20 X � X X X X � X { 1 , 4, 5 } , { 2} , { 3 } , { 6 } �240 X � � � � � � X N 

23 X X � X � X X X { 1 , 5 } , { 2} , { 3 , 4} , { 6 } �242 X � � � � X � � N 

25 X X � X X X � X { 1 , 4, 5 } , { 2} , { 3 } , { 6 } �244 X � � X � � � � { 1 , 3 , 4, 5 , 6 } , { 2} 
32 X X X X � X � X { 1 } , { 2} , { 3 , 4, 5 } , { 6 } �247 � � � � � � � X N 

59 X � � X � X X X { 1 , 3 , 4, 5 } , { 2} , { 6 } �249 � � � � � X � � N 

61 X � � X X X � X { 1 , 4, 5 } , { 2} , { 3 } , { 6 } �251 � � � X � � � � N 

68 X � X X � X � X { 1 , 3 , 4, 5 } , { 2} , { 6 } �254 X � � � � � � � N 

78 X X � X � X � X { 1 , 3 , 4, 5 } , { 2} , { 6 } �255 � � � � � � � � N 

9839 
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Fig. 2. Hasse diagram of ascendants/descendants for topology �133 . Same colors have been utilized for symmetric 
levels of generations. 
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.2. Control goal 

The overall objective from a centralized viewpoint is to regulate the system towards the
rigin while minimizing the following cost function at time instant k: 

 (k) = 

J s (k) ︷ ︸︸ ︷ 
∞ ∑ 

j=0 

(
x 

T 
N 

(k + j) Q N 

x N 

(k + j) + u 

T 
N 

(k + j) R N 

u N 

(k + j) 

)
+ 

J c (k) ︷ ︸︸ ︷ 
ˆ c 

∞ ∑ 

j=0 

(
| �(k + j) | 

)
, (4)

hich is composed of terms J s (k) ∈ R 

+ and J c (k) ∈ R 

+ , which are respectively related to
he cost-to-go of the closed-loop system and the cooperation costs, where ˆ c ∈ R 

+ is the cost
er enabled link introduced previously, and with Q N 

∈ R 

n x N ×n x N and R N 

∈ R 

n u N ×n u N being
ositive semi-definite and definite weighting matrices. 

Since the choice regarding the state of each link can be modeled as a binary decision-
ariable and the input vectors are continuous, the minimization of Eq. (4) is a mixed-integer
P-complete problem [27] . In general, these problems cannot be minimized in an straightfor-
ard manner. Next, a heuristic suboptimal solution for the optimization problem is presented,
ased on finding an upper-bound of cost function (4) . To this end, some simplifications are
onsidered by the following assumptions: 

ssumption 1. Pair (A N 

, B N 

) is stabilizable by means of a feedback matrix K � ∈ R 

n u N ×n x N 

or each � ∈ T , i.e., the overall control law for this topology becomes 

 N 

(k) = K �x N 

(k) . (5)

ikewise, there exists a positive definite matrix P � ∈ R 

n x N ×n x N that defines a Lyapunov func-
ion f (x N 

(k)) = x 

T 
N 

(k) P �x N 

(k) , which in turn provides us with a bound on the cost-to-go
9840 
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b  
f the closed-loop system, i.e., 

 

T 
N 

(k) P �x N 

(k) ≥ J s (k) . (6)

ssumption 2. The decentralized topology �0 is reached by the controller in a finite number
f time instants. Therefore, it can be found a bound δ ∈ N 

+ on this number of instants, which
n turn provides a bound on the cooperation costs 

ˆ  δ| �| ≥ J c (k) . (7)

As a result, an upper-bound of cost function (4) is obtained by Maestre et al. [7] , Muros
t al. [12,13] 

 

v (�, x N 

(k)) = x 

T 
N 

(k) P �x N 

(k) + c| �| , (8)

here c = ˆ c δ. Equation (8) can be minimized with respect to � to find the most suitable
opology in a given time step. 

emark 1. Assumptions 1 and 2 are introduced to focus on the randomized method. Nev-
rtheless, it can be proven that Assumption 1 holds iff the overall system can be controlled
sing a decentralized controller [14] . Assumption 2 follows from there and is proven in [7] . 

.3. Linear matrix inequalities 

With the aim of computing Eq. (8) , matrices K � and P � need to be calculated ∀ � ∈ T .
o this end, we impose 

≥J s (k+1) 
 ︸︸ ︷ 
 

T 
N 

(k + 1) P �x N 

(k + 1) + 

stage cost ︷ ︸︸ ︷ 
x 

T 
N 

(k) Q N 

x N 

(k) + x 

T 
N 

(k) K 

T 
�R N 

K �x N 

(k) ≤
≥J s (k) ︷ ︸︸ ︷ 

x 

T 
N 

(k) P �x N 

(k) . (9)

Then, as done in [7] , matrices K � and P � can be computed by the following LMI, which
s derived from Eq. (9) by applying recursively the Schur complement [28] : 
 

 

 

 

W � W �A 

T 
N 

+ Y 

T 
�B 

T 
N 

W �Q 

1 / 2 
N 

Y 

T 
�R 

1 / 2 
N 

A N 

W � + B N 

Y � W � 0 0 

Q 

1 / 2 
N 

W � 0 I 0 

R 

1 / 2 
N 

Y � 0 0 I 

⎤ 

⎥ ⎥ ⎦ 

> 0, (10a)

 

�
� j 
⇒ 

{ 

Y 

i j 
� = Y 

ji 
� = 0, 

W 

i j 
� = W 

ji 
� = 0, 

(10b)

here W � = P 

−1 
� and Y � = K �P 

−1 
� are ancillary decision variables, and with i 

�
� j symbol-

zing that agents i and j are not connected by topology �. Notice that constraints (10b) impose
 sparsity pattern in the controller directly related to the communication constraints of the
etwork topology. Finally, from now on, the dependence on time step k will be omitted for
he sake of clarity. 

. The set of semivalues 

Following [7,12,13] , pair (E, r v ) can be interpreted as a coalitional link-game , with E
eing the set of players and Eq. (8) the characteristic function. Once the game is defined, we
9841 
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ntroduce in this work the set of semivalues [9] as a tool to allocate the cost of each topology
mong the links. The set of semivalues comprises a collection of payoff rules from cooperative
ame theory that assign to each player a weighted average of its marginal contribution to any
oalition it belongs to. In a coalitional setting, the vector of semivalues ψ (E, r v ) is defined
 l ∈ E as 

 l (E, r v ) = 

∑ 

�⊆E : l / ∈ �
ζ (| �| )[ r v (� ∪ { l} ) − r v (�)] , (11a)

ith 

|E |−1 ∑ 

| �| =0 

(|E | − 1 

| �| 
)

ζ (| �| ) = 1 , (11b)

here ζ (| �| ) is the specific weight considered by each semivalue to average the marginal
ontribution [ r v (� ∪ { l} ) − r v (�)] . 

he set of semivalues is formally characterized by three properties detailed below [9] : 

• Null player : If the presence of a link l ∈ E has no influence in the cost of every coalition
inside the network, then its payoff is zero, i.e., 

If r v (� ∪ { l} ) = r v (�) , ∀ � ⊂ E, l / ∈ � −→ ψ l (E, r v ) = 0. (12)

• Symmetry : If two links l p , l q ∈ E contribute equally to every coalition that does not include
them, then they have the same payoffs, i.e., 

If r v (� ∪ { l p } ) = r v (� ∪ { l q } ) , ∀ � ⊂ E, l p , l q / ∈ � −→ ψ l p (E, r v ) = ψ l q (E, r v ) . (13)

• Additivity : Let (E, r v ) , (E, r w ) be two different games. The payoffs of the sum-game co-
incide with the addition of the individual game payoffs, i.e., 

ψ l (E, r v + r w ) = ψ l (E, r v ) + ψ l (E, r w ) . (14)

ther interesting properties satisfied by these values can be consulted in [29–32] . Also,
ome applications of semivalues to political, economic, and sociological problems are de-
ailed in [33] . 

The two most well-known and studied semivalues are the Shapley [10] and
anzhaf [11] values, which are present in very heterogeneous fields as social networks [34] ,
ine ranking [35] , electricity [36,37] , biology [38] , water systems [15] , voting [39] , fi-
ance [40] , and pollution reduction [41,42] . They are commonly denoted by φ(E, r v )
nd β(E, r v ) , respectively, verifying ∀| �| ∈ [0, |E | − 1] 

(| �| ) | φ = 

| �| !(|E | − | �| − 1)! 

|E | ! , ζ ( | �| ) | β = ζ | β = 

1 

2 

|E |−1 
, (15)

hich, as can be checked, satisfy condition (11b) . Likewise, it can also be seen that both
alues coincide for simple games with one or two players, i.e., ζ (| �| ) | φ = ζ (| �| ) | β, with
E | = 1 , 2. 

Besides the Shapley and Banzhaf values, other semivalues have been studied in the liter-
ture. For instance, if ζ (| �| ) > 0, ∀ � ⊆ E , we speak of regular semivalues [43] . Also, the
o-called binomial semivalues [44] , denoted by ψ 

q (E, r v ) , are characterized by 

(| �| ) = q 

| �| (1 − q) |E |−| �|−1 , 0 ≤ q ≤ 1 , (16)
9842 
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here, by convention 0 

0 = 1 . For q = 0 and q = 1 , we obtain respectively the only two
inomial nonregular semivalues, namely the dictatorial index ψ 

0 and the marginal index ψ 

1 ,
efined respectively by Owen [45] 

 

0 (E, r v ) = r v ({ l} ) − r v (∅ ) , 

 

1 (E, r v ) = r v (E ) − r v (E\{ l} ) . (17)

ote that the Banzhaf value corresponds with the binomial semivalue for q = 0. 5 , i.e.,
 

0. 5 (E, r v ) = β(E, r v ) , and that the Shapley value does not belong to this subgroup. 

inally, for convenience, we consider the following matrix notation [26] : 

efinition 3. Consider matrix � ∈ R 

|E |×2 |E | 
, denoted as semivalues standard matrix , where

ows refer to links l ∈ E and columns to topologies � ∈ T . Element s l� of � is given by 

 l� = 

{ 

ζ (| �| − 1) , l ∈ �, 

−ζ (| �| ) , l / ∈ �, 
(18)

ith terms ζ (| �| ) in s l� satisfying Eq. (11b) . 

Matrix �, with its elements s l� defined by Eq. (18) , is unique for any link-game with |E |
inks, and verifies [26] 

 (E, r v ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ψ I 

ψ II 
. . . 

ψ |E | 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= �

⎡ 

⎢ ⎢ ⎢ ⎣ 

r v (�0 , x N 

) 

r v (�1 , x N 

) 
. . . 

r v (�2 |E | −1 , x N 

) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= �r v . (19)

xploring Eq. (19) , it follows that topologies corresponding to a null column in matrix �

ave no impact on the semivalue. 

.1. Promoting/penalizing the control network links by semivalues 

The semivalue of a link provides us with a measure of its relevance inside the control
etwork. Then, considering constraints on semivalues, some communication paths between
ontrollers, and consequently some network topologies, can be promoted/penalized. To this
nd, we present an interesting property satisfied by elements s l� of matrix � to obtain a
losed expression for the semivalue of a link, which in turn will be used afterwards to derive
MI conditions on the semivalues. 

roperty 1. Let (N , E ) and (E, r v ) be a control network and a coalitional link-game, re-
pectively. Consider also s l� as the elements of matrix �, defined by Eq. (18) . The following
xpressions are satisfied, ∀ l, �: ∑ 

⊆E 
s l� = 0, (20a)

∑ 

⊆E 
s l�| �| = 1 . (20b)

he proof of Property 1 is presented in Appendices A and B . 
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Also, it is necessary to provide the following redefinition of Eq. (8) , given that the char-
cteristic function of a game has to be zero for empty set �0 : 

 

v ′ (�, x N 

) = r v (�, x N 

) − r v (�0 , x N 

) = x 

T 
N 

(
P � − P �0 

)
x N 

+ c| �| , ∀ � ⊆ E . (21)

At this point, using the aforementioned additivity property of the semivalues, it is possible
o represent the semivalue of any link in E for the redefined game (21) as 

 l (E, r v ′ ) = ψ l (E, r v ) − ψ l (E, r v ) | �=�0 = 

∑ 

�⊆E 
s l�r v (�, x N 

) −
∑ 

�⊆E 
s l�r v (�0 , x N 

) 

= 

∑ 

�⊆E 
s l�

[
x 

T 
N 

P �x N 

] + c 
∑ 

�⊆E 
s l�| �| −

constant ︷ ︸︸ ︷ [
x 

T 
N 

P �0 x N 

] ∑ 

�⊆E 
s l� + 

������ 

0 

c 
∑ 

�⊆E 
s l�0. (22)

inally, by applying Property 1 , we get 

 l (E, r v ′ ) = ψ l (E, r v ) = c + 

∑ 

�⊆E 
s l�

[
x 

T 
N 

P �x N 

]
, (23)

hich coincides for the original (8) and the redefined (21) games. This result is simply
educed to 

 

ss 
l (E, r v ) = c, (24)

hen the system reaches the origin in steady state. Notice that, from a control viewpoint,
xpression (24) represents an a priori value for the links, related to communication costs.
hen, the semivalue (23) can be interpreted as an a posteriori value providing the payoff of

he links that captures their effect on the performance of the overall system. 
Equations (19) and (23) provide closed expressions for the set of semivalues, which gen-

ralize those given in [12,13] for the Shapley and Banzhaf values, respectively. 

xample 2. By using Eq. (18) we can easily calculate matrix �. For instance, its expression
or any 4-link network is given by matrix (25) , with ζ (| �| ) verifying Eq. (11b) . As can be
hecked, Property 1 is trivially satisfied. 

4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−ζ (0) ζ (0) −ζ (1) −ζ (1) −ζ (1) ζ (1) ζ (1) ζ (1) −ζ (2) −ζ (2) −ζ (2) ζ (2) ζ (2) ζ (2) −ζ (3) ζ (3) 

−ζ (0) −ζ (1) ζ (0) −ζ (1) −ζ (1) ζ (1) −ζ (2) −ζ (2) ζ (1) ζ (1) −ζ (2) ζ (2) ζ (2) −ζ (3) ζ (2) ζ (3) 

−ζ (0) −ζ (1) −ζ (1) ζ (0) −ζ (1) −ζ (2) ζ (1) −ζ (2) ζ (1) −ζ (2) ζ (1) ζ (2) −ζ (3) ζ (2) ζ (2) ζ (3) 

−ζ (0) −ζ (1) −ζ (1) −ζ (1) ζ (0) −ζ (2) −ζ (2) ζ (1) −ζ (2) ζ (1) ζ (1) −ζ (3) ζ (2) ζ (2) ζ (2) ζ (3) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(25)

emark 2. An analysis by agents from the link-game can be performed by considering a
eneralization of the original position value [8] , focused on the Shapley value, to allocate the
emivalue of the links among the agents involved in the control network, by 

ψ 

i (N , v , E ) = 

1 

2 

∑ 

l∈E i 
ψ l (E, r v ) , ∀ i ∈ N , (26)

ith E being the subset of links connected to agent i. 
i 
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. A controller with constraints on the set of semivalues 

As shown in the previous section, semivalues evaluate the links’ relevance inside the net-
ork from a cooperation viewpoint, allowing to assess its average influence on the con-

rol performance in the different topologies. Therefore, constraints on semivalues can pro-
ote/discourage the use of the corresponding connections in the communication network. In

his section, a design method for the characteristic function (21) of coalitional game (E, r v ) ,
hich guarantees the fulfillment of linear constraints on the semivalues, is provided. 
Two different types of constraints were utilized in [12,13,26] , namely, absolute constraints ,

f the value of a player was set lower/higher than a constant threshold, and relative constraints ,
f the value of a player was set lower/higher than that of another player. Both types of
emivalues constraints can be generalized by: 

 

l∈E c 
κl ψ l (E, r v ) ≥ γ , (27)

here E c ⊆ E is the set of links whose semivalues are constrained, κl ∈ R , l ∈ E c , and
ith γ ∈ R being a constant threshold. In the LMI framework, constraint (27) is translated

s 

 ≥ 0, with S = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 
∑ 

l∈E c 
κl − γ 0 

0 

∑ 

�⊆E 

∑ 

l∈E c 
κl s l�P �

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (28)

otice that the LMI setting requires the first principal minor of (28) to be nonnegative, i.e.,

≤ c 
∑ 

l∈E c 
κl , (29)

hich when the equality holds, is simply reduced to 

 0 > 0, with S 0 = 

∑ 

�⊆E 

∑ 

l∈E c 
κl s l�P �. (30)

efinition 4. The semivalues constraint set , denoted by S , comprises the collection of dif-
erent LMI conditions (28) imposed in the controller design. 

.1. Design algorithm and control scheme 

As commented previously, control matrices K � and P � need to be computed for each
opology �. This process is performed offline and must include the desired constraints on
emivalues by set S . With this purpose, an iterative design method similar to that of [12] ,
hich is composed of the next steps, will be considered in this work: 

1. First, an initial value for the control matrices is obtained by solving an optimization prob-
lem subject to LMI (10) , ∀ � ∈ T , which assures stability and a bound on the cost-to-go
(recall Assumption 1 ). 

2. LMI (10) is defined in space (Y �, W �) , unlike set S , which is defined in (K �, P �) . To
consider all LMIs in the same optimization problem, new LMIs analogous to (10) but
9845 
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Fig. 3. Flowchart of the design algorithm, where symbol ‘ ∼’ means “analogous to”. The specific LMIs can be 
consulted in [12] . 
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in space (K �, P �) are considered (see [12] ). This way, the optimization is performed
sequentially with respect to either K � or P �, keeping the other fixed until convergence (or
a certain number of iterations h) is attained. The convergence is measured by [12] 

η(h) = 

∑ 

�⊆E 
tr (P 

(h) 
� ) 

2 

|E | tr (P LQR 

) 
, (31)

where P LQR 

corresponds to the LQR solution for the centralized case, i.e., that with full
cooperation. 

 schematic overview of the design algorithm is depicted in Fig. 3 . More details can be
ound in [12] . 

Once the design stage is completed, K � and P � are obtained for each topology � ∈ T .
hen, the hierarchical-coalitional control architecture detailed at the top of the next page,
hose asymptotical stability is proven in [7] , is implemented. Notice that, the control system

s run during the simulation time T sim 

. At each time instant k < T sim 

, the lower control layer
efers to the computation of local actions by agents, which must communicate according to
he current topology. Every k s instants, the upper control layer receives information from
ll the agents and updates the overall feedback and its structure by optimizing the network
opology in cost function (21) . Finally, the cumulated cost due to the control scheme can be

easured by 

 cum 

= 

T sim ∑ 

k=0 

(
x 

T 
N 

(k) Q N 

x N 

(k) + u 

T 
N 

(k) R N 

u N 

(k) + ˆ c | �(k) | ). (32)

. A random sampling method for computational burden mitigation 

The coalitional control scheme proposed requires to calculate the control matrices
or each topology � ∈ T , which are coupled through LMI conditions (28) , and where
ardinality |T | grows exponentially with the number of players by 2 

|E | . To mitigate this issue,
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Control Scheme 1 

1: Specifications 
2: k ∈ N 

+ ← lower control layer sampling time 
3: k s ∈ N 

+ ← upper control layer sampling time 
4: x N (0) = x 0 N ← overall initial state 
5: while k < T sim 

do 
6: Upper control layer 
7: if k is multiple of k s then 
8: Cost function (21) is optimized to obtain �∗ ∈ T 
9: �∗ is enabled the current and next k s − 1 steps 

10: end if 
11: Lower control layer 
12: Each agent i measures and broadcasts its state 
13: Only cooperation with neighbors by �∗ is allowed 
14: Each agent i uses data received to update its action 
15: Globally, linear feedback u N = K �x N is applied 
16: end while 

a  

p  

p  

t  

b  

d  

s  

o
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T

c  

T  

m  

t

x  

w

P  
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t

 random sampling method that belongs to the family of Monte Carlo approaches [46] is pro-
osed in this work. Indeed, randomized methods to estimate payoff rules have been already
roposed in the literature, see [47–50] . However, these methods assume that the characteris-
ic function of the game is known . Conversely, our randomized design method is based on
ounds on the characteristic function (21) of the game for the nonsampled topologies, thereby
ecreasing the design computational complexity because a reduced collection of topologies,
ymbolized here by 
 ⊆ T , can be employed to compute a slightly more conservative version
f the constraints. 

.1. Conservative semivalues constraints 

To evaluate semivalues constraints (27) , we need information regarding all topologies � ∈
 , as can be seen when rewriting these constraints by Eq. (23) 

 

∑ 

l∈E c 
κl + 

∑ 

�⊆E 

∑ 

l∈E c 
κl s l�

[
x 

T 
N 

P �x N 

] ≥ γ . (33)

he key idea related to find more conservative constraints is to reduce the number of opti-
ization variables and the computation time. To this end, note that the cost-to-go of every

opology can be bounded by 

 

T 
N 

P LQR 

x N 

≤ x 

T 
N 

P �x N 

≤ x 

T 
N 

P �0 x N 

, ∀ � ∈ T , (34)

hich leads to 

 � ≥ P LQR 

, (35a)

 �0 ≥ P �, (35b)

ith Eq. (35a) being always verified because P LQR 

represents a theoretical minimum. Also,
ssuming matrix P �0 as the most expensive one in terms of control is a mild requirement
hat can be guaranteed by simply adding to the design procedure an LMI condition equivalent
o Eq. (35b) . 
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Bearing this fact in mind and coming back to Eq. (33) , it can be seen that a more con-
ervative semivalue constraint can be derived by bounding matrix P � of every topology by
ither P LQR 

or P �0 depending on the sign of κl s l�: 

l s l� > 0 ⇒ P � ← P LQR 

in Eq. (33) , 

l s l� < 0 ⇒ P � ← P �0 in Eq. (33) . 
(36)

inally, by rewriting the resulting semivalues constraints into LMI conditions (28) , we get a
ew constraint set, symbolized by S 

con . If there is a feasible solution for the control matrices
n the design algorithm when replacing S by S 

con , then the corresponding semivalues satisfy
oth the conservative constraints and also the original ones, for they are less restrictive. 

emark 3. The less topologies used in the conservative constraints, the less the computational
urden, but the more difficult will be to find a feasible solution for the control matrices. Hence,
o relax the conservativeness it could be possible to exploit the parents-children relations in
he line of Fig. 2 to select better bounds for every topology in T \ 
, again at the expense of
ncreasing the computational cost. 

.2. Sampling set configuration and control scheme execution 

Matrix � ∈ R 

|E |×2 |E | 
has a different structure depending on the semivalue, which defines

he representative topologies with a direct impact in the semivalues formation. Let us il-
ustrate this fact showing the explicit value of 4-link matrix (25) particularized in (37) for
everal semivalues. Notice that, for the Shapley and Banzhaf values, the semivalue data is
hared among the 2 

|E | topologies. Conversely, for the dictatorial and marginal indices, only
ew topologies, more specifically the |E | + 1 first and last ones, respectively, collect all the
emivalue information as the rest are associated with null columns in �. The rationale is
hat both indices represent degenerate cases of the binomial semivalues (16) . Therefore, to
uarantee their feasible computation, any sampling should include most of those topologies,
ymbolized here by T cri . Also, it is immediate that set 
 must always contain both decen-
ralized �0 and centralized �2 |E | −1 topologies, since they are the key to define the bounds
hat lead to the semivalues constraints. 

 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 
4 

1 
4 − 1 

12 − 1 
12 − 1 

12 
1 

12 
1 

12 
1 

12 − 1 
12 − 1 

12 − 1 
12 

1 
12 

1 
12 

1 
12 − 1 

4 
1 
4 

− 1 
4 − 1 

12 
1 
4 − 1 

12 − 1 
12 

1 
12 − 1 

12 − 1 
12 

1 
12 

1 
12 − 1 

12 
1 

12 
1 

12 − 1 
4 

1 
12 

1 
4 

− 1 
4 − 1 

12 − 1 
12 

1 
4 − 1 

12 − 1 
12 

1 
12 − 1 

12 
1 

12 − 1 
12 

1 
12 

1 
12 − 1 

4 
1 

12 
1 

12 
1 
4 

− 1 
4 − 1 

12 − 1 
12 − 1 

12 
1 
4 − 1 

12 − 1 
12 

1 
12 − 1 

12 
1 

12 
1 

12 − 1 
4 

1 
12 

1 
12 

1 
12 

1 
4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

B 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 
8 

1 
8 − 1 

8 − 1 
8 − 1 

8 
1 
8 

1 
8 

1 
8 − 1 

8 − 1 
8 − 1 

8 
1 
8 

1 
8 

1 
8 − 1 

8 
1 
8 

− 1 
8 − 1 

8 
1 
8 − 1 

8 − 1 
8 

1 
8 − 1 

8 − 1 
8 

1 
8 

1 
8 − 1 

8 
1 
8 

1 
8 − 1 

8 
1 
8 

1 
8 

− 1 
8 − 1 

8 − 1 
8 

1 
8 − 1 

8 − 1 
8 

1 
8 − 1 

8 
1 
8 − 1 

8 
1 
8 

1 
8 − 1 

8 
1 
8 

1 
8 

1 
8 

− 1 
8 − 1 

8 − 1 
8 − 1 

8 
1 
8 − 1 

8 − 1 
8 

1 
8 − 1 

8 
1 
8 

1 
8 − 1 

8 
1 
8 

1 
8 

1 
8 

1 
8 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

�0 
4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (37)

Once sampling set 
 ⊆ T is established, control matrices K � and P � for topologies
∈ 
 are computed in the design algorithm commented in Section 4.1 , and then Control

cheme 1 is executed optimizing Eq. (21) to find �∗ ∈ 
 at each time instant. Finally, to
epresent the semivalues trajectory, an approximation of the semivalues computed as a function
f topologies � ∈ 
 is presented below, based on the following lemma: 

emma 1. If there is a feasible solution for the control matrices in a given topology �,
his topology also represents a feasible solution for the control matrices of all its ascendant
opologies (recall Definition 2 ), since the ascendants impose less communication constraints.

Taking into account Lemma 1 , notice that the decentralized topology �0 represents a
easible solution for the control matrices of any topology. Therefore, an approximation of the
riginal cost function (8) can be calculated by 

 

v 
app (�, x N 

) = 

{ 

r v (�, x N 

) , � ∈ 
, 

r v (�0 , x N 

) , � / ∈ 
. 
(38)

perating with Eqs. (22) and (38) , and considering Property 1 , it is possible to derive the
ollowing expression: 

 

app 
l (E, r v ) = c + 

∑ 

�∈ 

s l�

[
x 

T 
N 

P �x N 

]
. (39)

The full random sampling method introduced in this work is illustrated at the top of the
ext page. Trivially, the more samples are chosen, symbolized here by p = | 
| , the more
omputationally costly the method will be. Nevertheless, reducing excessively the size of 

ould imply infeasibility issues in the controller design. Therefore, the number of samples
s left to the designer’s choice. In any case, depending on the selected semivalue, a set 
fix

f necessary topologies has to be included, containing i) the centralized and decentralized
onfigurations, and ii) topologies � ∈ T cri . Note that the only necessary topologies in the
ampling are those of i) if we are just interested in a design problem involving any nonde-
enerate semivalue, e.g., the Shapley and Banzhaf values. The rest of topologies in 
 are
ssumed to be chosen randomly from the remaining set T \ 
fix . 

The proposed method reduces the number of variables involved in the full LMI problem
ntroduced in Section 4.1 by limiting the set of topologies and considering more conserva-
ive and lighter constraints. Therefore, by solving an LMI for � ∈ 
 subject to the mild
equirement of Eq. (34) , it is possible to include constraints in a game based on the full
et T . Consequently, the control matrices calculated for � ∈ 
 must guarantee the satisfac-
ion of the constraints on the semivalues. In any case, once the design algorithm is solved,
t is possible to include additional topologies in the problem design by computing an LMI
roblem (10) per topology, simply assuming (35b) . The remaining topologies take the decen-
ralized configuration, following Lemma 1 . 

Note that reducing the set of topologies from T to 
 reduces in turn the computational
urden at the cost of a performance decrease, which is measured here by the following index,
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Random Sampling Method 1 

1: Offline design 
2: Define LMI set S con with constraints computed by (36) 
3: Define the cardinality of set 
 ⊆ T 
⇒ p = | 
| 
4: if ψ == ψ 

0 or ψ == ψ 

1 then 
5: 
fix = { �0 , �2|E | −1 } ∪ T cri 

6: else 
7: 
fix = { �0 , �2|E | −1 } 
8: end if 
9: Compute set 
 = { 
fix , rand (p, T \ 
fix ) } 

10: Compute matrices K �, P �, ∀ � ∈ 
, by the design algorithm in Section 4.1 
11: Online implementation 
12: Execute Control Scheme 1 , with �∗ ∈ 


13: Compute ψ 

app 
l (E, r v ) by (39) 

∀

α  

w  

m

6

 

o  

l  

m

A  

B  

w  

c  

I  

a  
 � ∈ 
: 

= 

x 

T 
N 

(
P 

r 
� − P 

o 
�

)
x N 

x 

T 
N 

P 

o 
�x N 

, (40)

here P 

o 
� and P 

r 
� are, respectively, the resulting control matrices for the original design

ethod presented in Section 4.1 and the Random Sampling Method 1 introduced above. 

. Simulation results 

In this section, we consider the academic network drawn in Fig. 1 , composed of sets
f six agents N = { 1 , 2, 3 , 4, 5 , 6 } and eight links E = { I , II , III , IV , V , VI , VII , VIII } , which
eads to 2 

8 = 256 network topologies. The dynamics are described by the following overall
atrices: 

 N 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0. 0314 0 0 0 0 

0. 0271 1 0. 1055 0 0 0 

0 0. 0599 1 0. 3948 0 0 

0 0 0. 4076 1 0. 3298 0 

0 0 0 0. 1527 1 0. 4321 

0 0 0 0 0. 1527 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (41a)

 N 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0. 15 0. 15 0. 15 0. 15 0. 15 

0. 15 1 0. 15 0. 15 0. 15 0. 15 

0. 15 0. 15 1 0. 15 0. 15 0. 15 

0. 15 0. 15 0. 15 1 0. 15 0. 15 

0. 15 0. 15 0. 15 0. 15 1 0. 15 

0. 15 0. 15 0. 15 0. 15 0. 15 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (41b)

ith x i , u i ∈ R being, respectively, the state and input of each subsystem i ∈ N . The stage
ost is defined by matrices Q = I ∈ R 

6 ×6 and R = 50 I ∈ R 

6 ×6 . Likewise, we assume c = 1 . 5 .
n this example, the four semivalues commented previously will be studied: the Shapley
nd Banzhaf values, defined in Eq. (15) , and the dictatorial and marginal indices described
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Fig. 4. Efficiency index η(h) for the different semivalues analyzed. The convergence is obtained with h = 9 for the 
Banzhaf value, with h = 10 for the Shapley value and dictatorial index, and with h = 11 for the marginal index. 
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y Eq. (17) . The following semivalues constraints are considered: 

 III (E, r v ) < 2 ψ V 

(E, r v ) , 

 ψ IV 

(E, r v ) − 1 

2 

ψ VI (E, r v ) > 

1 

3 

, 

 + ψ V 

(E, r v ) < 4 ψ VII (E, r v ) − ψ II (E, r v ) , (42a)

 VII (E, r v ) ≥ ψ II (E, r v ) ≥ ψ VIII (E, r v ) ≥ ψ I (E, r v ) , (42b)

hich can be rewritten as in Eq. (27) , and satisfy Eq. (29) . Set S has been calculated by
sing Eqs. (28) and (30) for constraints (42a) and (42b) , respectively. Then, considering (36) ,
et S 

con has been derived by matrices P LQR 

and P �0 . 
In this example, we selected a set 
fix compatible with the four semivalues analyzed in

his work to provide a qualitative comparison using similar constraints. Therefore, sets T cri

elated to degenerate semivalues were included in 
fix , for a full number of p = 50 samples,
.e., 

fix = { �0 , �1 , . . . , �|E | , �2 |E | −|E |−1 , . . . , �2 |E | −2 , �2 |E | −1 } , 

 = { 
fix , rand (50, T \ 
fix ) } . (43)

The design algorithm proposed in Section 4.1 has been implemented using Matlab® tools
MI Control Toolbox [51] and the class for coalitional control NetV0 [52] , in a 2.2 GHz
uad-core Intel® Core TM i7/16 GB RAM computer. As stopping criteria, we have considered
hichever comes first from: a maximum number of iterations h max = 20, and η(h) − η(h −
) < 0. 005 , with η(t ) given by Eq. (31) , and where only topologies � ∈ 
 were considered.
he evolution of η(h) with the number of iterations h is shown in Fig. 4 . As a result of the
lgorithm considered, a feasible solution for matrices K �, P � ∈ R 

6 ×6 , ∀ � ∈ 
, is obtained. 
Once the design problem is solved, Control Scheme 1 is executed taking k s = 3 and

onsidering the randomly generated initial state 

 

0 
N 

= [ 1 . 4455 5 . 8405 − 1 . 6053 0. 6507 8 . 5141 − 2. 8324 ] . (44)
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Fig. 5. Network topology evolution for the unconstrained and the four constrained scenarios. 
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The evolution of the topologies for the unconstrained scenario and also when
onstraints (42) on the four semivalues are considered is represented in Fig. 5 . Further-
ore, the specific change in the semivalues before and after considering constraints is detailed

n Fig. 6 , where Eq. (39) has been used for the representation, and coincides with Eq. (23) for
he dictatorial and marginal indices so as all their topologies that lead to nonnull columns in

belong to 
. It is interesting to observe the degenerate evolution of the marginal index be-
ore applying constraints, which occurs because their representative topologies imply at most
ne disconnecting link, leading to the same solution for LMI (10) , and therefore to the same
 � and P � matrices for the grand coalition of agents (recall Fig. 1 ). Once the semivalues

onstraints come into play, they modify the control matrices and the semivalues vary. 
Notice that each semivalue evolves in its own way to satisfy the specifications, which, in

urn, may lead to a different network topology evolution depending on the semivalue. In any
ase, despite the fact that eligible topologies are limited to those in set 
, in general the most
xpensive/economic links are deactivated/enabled according to specifications (42) . Indeed,
inks V and IV, the most expensive ones for the Shapley and Banzhaf values, respectively, are
isconnected in the respective full topology trajectories. Conversely, links I, VI and VIII, the
ost economical ones for these semivalues, are normally activated. Regarding dictatorial and
arginal indices, although they share the evolution of topologies, they permanently disable

inks III and VI, respectively the first and third most costly ones. Similarly, both indices
romote links IV and I, respectively their most economical ones. Note also that all semivalues
end to c = 1 . 5 , as expected from Eq. (24) , until reaching decentralized topology �0 in
teady state. Finally, the cumulated cost (32) is given by J φcum 

= 1233 . 1 , J βcum 

= 1251 . 7 , J ψ 

0 

cum 

=
56 . 4, J ψ 

1 

cum 

= 657 . 9 . As can be seen, the two degenerate semivalues, with few representative
opologies (recall (37) ), generate the lowest cumulated costs. 

The simulation lasted only 11.2 min for the chosen size of 
, while with the full topology
et T the overall time increases to 41.6 h. The performance loss was computed by aver-
ging index α (recall Eq. (40) ) by each � ∈ 
 and also by the four semivalues, obtaining
aver = 14. 2% , where a set of 10 

5 random states was considered. This strong computational
9852 
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Fig. 6. Semivalues evolution with and without considering constraints. 
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Fig. 7. Tradeoff between performance degradation (in %) and computation time (in s) as a function of the size of 
the set of sampled topologies. 
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urden reduction of 99.6% together with the reasonable performance loss, illustrates the appli-
ability of the random sampling method presented here. In any case, beyond the experiments
erformed in this section, a few additional simulations were run, using different random sets 

nd initial states. In any case, we achieve: i) a feasible solution for the control matrices and
symptotical stability for the system; ii) the satisfaction of all the constraints (42) imposed;
nd iii) the disabling (enabling) of the most expensive (economic) links in the evolution of
he topologies. 

Finally, we investigate the sensitivity of the design method regarding the size of 
. Figure 7
hows, for the case of the Shapley value, how the tradeoff between the performance index α

nd the average computation time per iteration of the design method varies with the cardinality
f 
, with 
fix = { �0 , �2 |E | −1 } . As can be seen, the larger the sampling set, the less the
egradation in performance, but the greater the computation time. This result suggests that the
roblem can be solved for an increasingly larger sampling size to obtain better performance.
ventually, the computation time will become unaffordable, but since marginal performance

mprovements tend to decrease, the size of 
 does not need to be too large. 

. Conclusions 

This article presents a method for designing coalitional controllers based on linear matrix
nequalities (LMIs). Our approach substantially reduces the computational burden of previous
ethods [12–14,26] at the expense of increasing their conservativeness, making the coalitional

trategy suitable for larger systems. The key idea is to simplify the LMI problem by selecting
 collection of topologies from the full set and using more conservative and lighter constraints
n the payoff rules. Furthermore, the complete set of semivalues has been considered here,
eneralizing previous contributions. To this end, a closed semivalues expression as a function
f the game has been derived. 

The proposed method has been applied to an academic example, where the communication
inks were promoted/penalized according to semivalues constraints in four scenarios, where
he optimal network topology in terms of cooperation costs and control performance was
9854 
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Table 2 
Combinatorial results for different cardinalities and number of topologies. 

Number of topologies Sum for all cardinalities 

Cardinality | �| ( |E | 
| �| ) , | �|∈ [0, |E | ] ∑ |E | 

| �| =0 ( 
|E | 
| �| ) =2 |E | 

Cardinality | �| , l / ∈ � ( |E |−1 
| �| ) , | �|∈ [0, |E |−1] 

∑ |E |−1 
| �| =0 ( 

|E |−1 
| �| ) =2 |E |−1 

Cardinality | �| + 1 , l ∈ � ( |E | 
| �| +1 ) , | �| +1 ∈ [1 , |E | ] ∑ |E | 

| �| =1 ( 
|E |−1 
| �|−1 ) =2 |E |−1 

i  

i  

s  

t
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c  

m

D

 

r
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g  

R

A

 

T

�

 

w  

u  

i  

c  

a

�

mplemented at each time step. The size of the example allows us to compare the results
n terms of computational burden with respect to previous approaches, revealing a strong
aving in computation time with low performance losses, which highlights the suitability of
he presented approach. 

Future work should include algorithms based on designing control matrices in a distributed
ashion following [53] . Also, alternative samplings that allow for a partitioning of the semi-
alues constraints computation and nonrandom ways of pre-selecting the samples could be
onsidered. Finally, the replacement of conservative constraints by chance ones in the design
ethod will be object of further research. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper. 

cknowledgments 

This work has been supported by the European Research Council (ERC) under the Eu-
opean Union’s Horizon 2020 research and innovation funding programme (OCONTSOLAR,
rant agreement No. 789051), and the Spanish Ministry of Science and Innovation (C3PO-
2D2 , reference No. PID2020-119476RB-I00 ). 

ppendix A. Proof of Property 1 .1 

Consider a network (N , E ) , which contains 2 

|E | topologies according to Definition 1 .
aking into account Eq. (18) , it is possible to rewrite the left side of Eq. (20a) as ∑ 

⊆E 
s l� = 

∑ 

�⊆E : l∈ �
ζ (| �| − 1) −

∑ 

�⊆E : l / ∈ �
ζ (| �| ) , (45)

here topologies that include and do not include a given link l are separated. Note that by
sing combinatorial analysis, it can be checked that the number of topologies with cardinal-
ty | �| that do not contain a specific link l coincides with the number of topologies with
ardinality | �| + 1 that contain this link, which is shown in Table 2 . Taking these results into
ccount, it is deduced that the terms contained in Eq. (45) are canceled in pairs, obtaining ∑ 

⊆E : l∈ �
ζ (| �| − 1) −

∑ 

�⊆E : l / ∈ �
ζ (| �| ) 
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= −
1 ︷ ︸︸ ︷ 

ζ (0) + 

⎛ 

⎝ 

1 ︷ ︸︸ ︷ 
ζ (0) −

2 ︷ ︸︸ ︷ 
(|E | − 1) ζ (1) 

⎞ 

⎠ + 

⎛ 

⎜ ⎜ ⎝ 

2 ︷ ︸︸ ︷ 
(|E | − 1) ζ (1) −

3 ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) 

2 

ζ (2) 

⎞ 

⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎝ 

3 ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) 

2 

ζ (2) −

4 ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2)(|E | − 3) 

6 

ζ (3) 

⎞ 

⎟ ⎟ ⎠ 

+ · · ·

+ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

|E |−2 ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) . . . 3 

(|E | − 3)! 
ζ (|E | − 3) −

|E |−1 ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) . . . 2 

(|E | − 2)! 
ζ (|E | − 2) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

|E |−1 ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) . . . 2 

(|E | − 2)! 
ζ (|E | − 2) −

|E | ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) . . . 1 

(|E | − 1)! 
ζ (|E | − 1) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

|E | ︷ ︸︸ ︷ 
(|E | − 1)(|E | − 2) . . . 1 

(|E | − 1)! 
ζ (|E | − 1) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 0. (46)

�

ppendix B. Proof of Property 1 .2 

Let (N , E ) be a network, with � ∈ T being their corresponding topologies. Analogously
o what is done in Eq. (45) , it is possible to use Eq. (18) to rewrite the left side of Eq. (20b) as∑ 

⊆E 
s l�| �| = 

∑ 

�⊆E : l∈ �
ζ (| �| − 1) | �| −

∑ 

�⊆E : l / ∈ �
ζ (| �| ) | �| . (47)

hen, using a similar reasoning that in the proof of Property 1 .1, we have ∑ 

⊆E : l∈ �
ζ (| �| − 1) | �| −

∑ 

�⊆E : l / ∈ �
ζ (| �| ) | �| 

= 0 

(
− ζ (0) 

)
+ 1 

(
ζ (0) − (|E | − 1) ζ (1) 

)
+ 2 

(
(|E | − 1) ζ (1) − (|E | − 1)(|E | − 2) 

2 

ζ (2) 

)

+ 3 

(
(|E | − 1)(|E | − 2) 

2 

ζ (2) − (|E | − 1)(|E | − 2)(|E | − 3) 

6 

ζ (3) 

)
+ · · ·

+ (|E | − 2) 

(
(|E | − 1)(|E | − 2) . . . 3 

(|E | − 3)! 
ζ (|E | − 3) − (|E | − 1)(|E | − 2) . . . 2 

(|E | − 2)! 
ζ (|E | − 2) 

)
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+ (|E | − 1) 

(
(|E | − 1)(|E | − 2) . . . 2 

(|E | − 2)! 
ζ (|E | − 2) − (|E | − 1)(|E | − 2) . . . 1 

(|E | − 1)! 
ζ (|E | − 1) 

)

+ |E | 
(

(|E | − 1)(|E | − 2) . . . 1 

(|E | − 1)! 
ζ (|E | − 1) 

)
. (48)

Finally, notice that most of the terms in Eq. (48) are recursively canceled in pairs by the
ule 

(
(| �| + 1) − | �| )ζ (| �| ) = ζ (| �| ) , achieving the following simplified expression: ∑ 

⊆E : l∈ �
ζ (| �| − 1) | �| −

∑ 

�⊆E : l / ∈ �
ζ (| �| ) | �| 

= ζ (0) + (|E | − 1) ζ (1) + 

(|E | − 1)(|E | − 2) 

2 

ζ (2) + 

(|E | − 1)(|E | − 2)(|E | − 3) 

6 

ζ (3) 

+ · · ·
+ 

(|E | − 1)(|E | − 2) . . . 3 

(|E | − 3)! 
ζ (|E | − 3) + 

(|E | − 1)(|E | − 2) . . . 2 

(|E | − 2)! 
ζ (|E | − 2) 

+ 

(|E | − 1)(|E | − 2) . . . 1 

(|E | − 1)! 
ζ (|E | − 1) 

= 

|E |−1 ∑ 

| �| =0 

(|E | − 1)(|E | − 2)(|E | − 3) . . . (|E | − | �| ) 
| �| ! ζ (| �| ) 

= 

|E |−1 ∑ 

| �| =0 

(|E | − 1)! 

(|E | − (| �| + 1))! | �| ! ζ (| �| ) = 

|E |−1 ∑ 

| �| =0 

(|E | − 1 

| �| 
)

ζ (| �| ) , (49)

hich is trivially equal to 1, considering condition Eq. (11b) . �
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