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Abstract 
  Address-Event-Representation (AER) is an emergent 
neuromorphic interchip communication protocol that allows 
for real-time virtual massive connectivity between huge 
number neurons located on different chips. By exploiting 
high speed digital communication circuits (with nano-
seconds timings), synaptic neural connections can be time 
multiplexed, while neural activity signals (with mili-seconds 
timings) are sampled at low frequencies. When building 
multi-chip muti-layered AER systems it is absolutely 
necessary to have a computer interface that allows (a) to 
read AER interchip traffic into the computer and visualize it 
on screen, and (b) convert conventional frame-based video 
stream in the computer into AER and inject it at some point 
of the AER structure. This is necessary for test and 
debugging of complex AER systems. 
  This paper describes a set of PC interfaces to neuro-
inspired systems, analyses the performance and power 
consumption. The interfaces use PCI or USB bus 
connections that have been developed under an EU project, 
where they have been tested in a stressed situation.  

Keywords: AER, Neuro-Inspired, USB, PCI, FPGA, 
VHDL, Codesign. 

INTRODUCTION  
  Computers have evolved in a vertiginous way in the last 
years, increasing the parallelism, increasing the clock 
frequency, increasing the performance, reducing the power 
consumption, reducing the volume, … But today, there isn’t 
any hardware comparable to the most powerful ‘computer’ 
in biology, the human brain, with millions of relative slow 
components (neurons) working together in parallel, with a 
total power consumption of 20W per day in average [1]. For 
vision processing, the human brain is much more powerful, 
smaller and with very low power consumption, compared 
with any computer. 

  Primate brains are structured in layers of neurons, in which 
the neurons in a layer connect to a very large number (~104)
of neurons in the following layer [2]. Many times the 
connectivity includes paths between non-consecutive layers, 
and even feedback connections are present. Artificial bio-
inspired software models based on such connectivity models 
have overwhelmed the specialized literature presenting 

many ways of performing bio-inspired processing systems 
that outperform more conventionally engineered machines 
[3][4]. Since these models are software based, they operate 
at extremely low speeds, because of the massive 
connectivity they emulate. For real-time solutions direct 
hardware implementations are required. However, hardware 
engineers face a very strong barrier when trying to mimic 
the bio-inspired hierarchically layered structure: the massive 
connectivity. In present day state-of-the-art very large scale 
integrated (VLSI) circuit technologies it is plausible to 
fabricate on a single chip many thousands (even millions) of 
artificial neurons or simple processing cells. However, it is 
not viable to connect physically each of them to even a few 
hundreds of other neurons. The problem is greater for multi-
chip multi-layer hierarchically structured bio-inspired 
systems. AER is an incipient bio-inspired spike-based 
technique capable of providing a hardware solution to the 
inter-chip massive connectivity problem. 

  AER was proposed in 1991 by Sivilotti [5] for transferring 
the state of an array of analog time dependent values from 
one chip to another. It uses mixed analog and digital 
principles and exploits pulse density modulation for coding 
information. Fig. 1 explains the principle behind the AER 
basics. The Emitter chip contains an array of cells (like, for 
example, a camera or artificial retina chip) where each pixel 
shows a continuously varying time dependent state that 
changes with a slow time constant (in the order of ms). Each 
cell or pixel includes a local oscillator (VCO) that generates 
digital pulses of minimum width (a few nano-secconds). 
The density of pulses is proportional to the state of the pixel 
(or pixel intensity). Each time a pixel generates a pulse 
(which is called “Event”), it communicates to the array 
periphery and a digital word representing a code or address 
for that pixel is placed on the external inter-chip digital bus 
(the AER bus). Additional handshaking lines (Acknowledge 
and Request) are also used for completing the asynchronous 
communication. The inter-chip AER bus operates at the 
maximum possible speed because of its asynchronous 
nature. In the receiver chip the pulses are directed to the 
pixels whose code or address was on the bus. Thus, pixels 
with the same code or address in the emitter and receiver 
chips will “see” the same pulse stream. The receiver pixel 
integrates the pulses and reconstructs the original low 



frequency continuous-time waveform. Pixels that are more 
active access the bus more frequently than those less active.  

Fig. 1: Illustration of AER inter-chip communication scheme. 

  Transmitting the pixel addresses allows performing extra 
operations on the images while they travel from one chip to 
another. For example, inserting properly coded EEPROMs 
allows shifting and rotation of images. Also, the image 
transmitted by one chip can be received by many receiver 
chips in parallel, by properly handling the asynchronous 
communication protocol. The peculiar nature of the AER 
protocol also allows for very efficient convolution 
operations within a receiver chip [6]. 

  There is a growing community of AER protocol users for 
bio-inspired applications in vision and audition systems, as 
demonstrated by the success in the last years of the AER 
group at the Neuromorphic Engineering Workshop series 
[7]. The goal of this community is to build large multi-chip 
and multi-layer hierarchically structured systems capable of 
performing complicated array data processing in real time. 
The success of such systems will strongly depend on the 
availability of robust and efficient development and 
debugging AER-tools. One such tool is a computer interface 
that allows not only reading an AER stream into a computer 
and displaying it on its screen in real-time, but also the 
opposite: from images available in the computer’s memory, 
generate a synthetic AER stream in a similar manner as 
would do a dedicated VLSI AER emitter chip [8][9][10]. 

  The CAVIAR EU project had the objective to demonstrate 
this technology by targeting and following a moving ball. 
The planned AER system under CAVIAR used the 
following AER chips: one Retina, four Convolutions, one 
Winner-Take-All (Object) and one Learning chip. To make 
possible the right communication of these chips and for 
debugging purposes it is essential to have a set of 
instruments that would allow to: 

Sequence: Produce synthetic AER event streams that can 
be used as controlled inputs while testing and adjusting a 
chip or set of chips. 
Monitor: Observe the output of any element in the 
system. 
Map: Alter the stream produced by an emitter and send 
the modified stream to a receiver 

Fig. 2: AER tools usage scenario 

  For these purposes we have designed and implemented two 
different instruments: a PCI board capable of sequencing 
and monitoring events at a peak rate of 15Mevents/s, an 
equivalent USB2.0 (high speed) board with a peak rate of 
5Mevents/s, and a versatile USB2.0 (full speed) board that 
can be used for sequencing, monitoring and mapping. This 
last board can be used either in a stand alone mode or 
connected to an external computer (through a USB bus). A 
possible scenario for these tools is shown in Fig. 2 where a 
computer with a PCI-AER board produces output for AER 
chip1 input. The output from this chip is remapped by a 
USB-AER board and fetched to AER chip 2. The output 
stream produced by chip 2 is monitored by another USB-
AER board which can send its output directly to a VGA 
monitor or to a computer through USB bus. 

  To be useful for debugging an AER tool should be able to 
receive and also send a long sequence of events interfering 
as little as possible with the system under test.  

  As neurons have the information coded in the frequency 
(or timing) of their spikes, the pixels that transmit their 
address through an AER bus also have their information 
coded in the frequency of appearance of those addresses in 
the bus. Therefore, inter-spike-intervals (ISIs) are critical for 
this communication mechanism. Thus, a well designed tool 
shouldn’t modify the ISIs of the AER. 

AER TOOLS 

1. PCI-AER Interface
 Before the development of our tools the only available

PCI-AER interface board was developed by Dante at ISS-
Rome (See [7]-2001). This board is very interesting as it
embeds all the requirements mentioned above: AER
generation, remapping and monitoring. Anyhow its
performance is limited to 1Mevent/s approximately. In
realistic experiments software overheads reduce this value
even further. In many cases these values are acceptable but,
currently many address event chips can produce (or accept)
much higher spike rates.



  As the Computer interfacing elements are mainly a 
monitoring and testing feature in many address event 
systems, the instruments used for these purposes should not 
delay the neuromorphic chips in the system. Thus, speed 
requirements are at least 10 times higher than those of the 
original PCI-AER board. Several alternatives are possible to 
meet these goals: extended PCI buses, bus mastering or 
hardware based Frame to AER and AER to Frame 
conversion. 

  The previously available PCI-AER board uses polled I/O 
to transfer data to and from the board. This is possibly the 
main limiting factor on its performance. To improve the 
performance PCI bus mastering is the only alternative. The 
hardware and driver architecture of a bus mastering capable 
board is significantly different, and more complex, than a 
polling or interrupt based implementation. 

  The theoretical maximum PCI32/33 bandwidth is around 
133Mbytes/s. This would allow for approximately 
44Mevent/s considering 2 bytes per address and two bytes 
for timing information. Realistic figures in practice are 
closer to 20Mbyte/s. Thus, in those cases where the required 
throughput is higher a possible solution is to transmit the 
received information by hardware based conversion to/from 
a frame based representation. Although this solution is 
adequate in many cases, there are circumstances where the 
developers want to know precisely the timing of each event, 
thus both alternatives should be preserved. 

  The physical implementation of all the steps is equal. They 
differ in the VHDL FPGA code and in the operating system 
dependent driver. The design is a SPARTAN-II based 
board. The Spartan Version of the board is shown in Fig. 3. 
All the functionality supported by the interface is 
implemented in the FPGA. Thus the VHDL implements the 
PCI-bridge, the AER interface and all the states-machines 
and FIFOs used to adapt both buses. These state machines 
were designed to guarantee the time between events (ISI). 

  Currently a Windows driver that implements bus mastering 
is working and the performance is shown in this paper. The 
Linux version with bus mastering is still under 
development. An API that is compatible, as much as 
permitted by the different functionality, with that used in the 
current PCI-AER board has been implemented. MEX files 
to control the board from MATLAB have also been 
developed. 

  Current performance of PCI-AER board is around 15 
Mevents/second using PCI mastering capabilities. 

Fig. 3: CAVIAR PCI-AER board 

2. USB2AER
As PCI bus is almost obsolete, and this kind of interface

requires the use of a host computer instead of laptops, a
USB version was developed during the project.

This board is a high-speed bus-powered USB co-design
platform based on Cypress USB2.0 microcontroller and
Xilinx CPLD 95xx family. The interface is able to monitor
synchronous AER traffic and the opposite, sequence AER
traffic. For our CAVIAR project [11], [14] we assembled a
heterogeneous mixture of AER chips into a visual system,
and we needed a device that could record from all parts of
the system simultaneously, was simple to operate and use,
was easy and cheap to build, and could be reused in other
contexts. We also wanted a convenient device that could
sequence recorded or synthesized events into AER chips to
allow their characterization.

 The functionality of the USB2AER board was evolved
from the monitoring capability which was developed for
[12] to include sequencing, passing through of monitored
events to a receiving AER chip and the synchronisation of
several devices. The number of jumpers is minimized by
auto detection of connected devices. Using the device is
very simple. For example, a user connects a sending AER
device to the monitor port and plugs the board into a USB
port on a computer. Then they are ready to capture and
time-stamp AER traffic from the AER device.

3. USB-AER
The CAVIAR PCI-AER interface and the USB2AER can

perform Address Event sequencing and monitoring
functions but has no hardware mapping capabilities.
Although software based mapping is feasible a specific
device for this purpose is needed if we want to build AER
systems that can operate without requiring any standard
computer. This standalone operating mode requires to be
able to load the FPGA and the mapping RAM from some
type of non volatile storage that can be easily modified by
the users. MMC/SD cards used in digital cameras are a very
attractive possibility. However in the development stage the
users prefer to load the board directly from a computer and,
for this purpose USB seems the most suitable solution.



  Many AER researchers would like to demonstrate their 
systems using instruments that could be easily interfaced to 
a laptop computer. This requirement can also be supported 
with the USB-AER board as it includes a relatively large 
FPGA that can be loaded from MMC/SD or USB, a large 
SRAM bank and two AER ports. Thus the board can be 
used also as a sequencer or a monitor. Due to the bandwidth 
limitations of full speed USB (12Mbit/s) hardware based 
event to frame conversion is essential in this board for high, 
or even moderate, event rates. 

  The USB-AER board is based around a Spartan-II 200 
Xilinx FPGA, with a 512K*32 12ns SRAM memory bank. 
The board uses a Silicon Laboratories C8051F320 
microcontroller to implement the USB and the MMC/SD 
interface. A simple VGA display interface is also provided 
to allow the board to act as a monitor (frame grabber).  

  The board will act as a different device according to the 
module that is loaded in the FPGA either through a 
MMC/SD card or from the USB bus. Currently the 
following modes are implemented: 

Mapper: 1 event to N events, where N can be from 0 to 8 
and each possible output event can be transmitted or not 
depending on a probabilistic function. 
Monitor (frame-grabber): using either USB or VGA as 
output. For the VGA output there are two possibilities: 
B/W VGA, using the VGA connector of the board. And 
Gray VGA, using a VGA-DAC board connected to the 
out-AER connector of the board. In any case, a set of 
events are integrated in the FPGA into a frame and this 
frame is represented. The integration time can be 
configured through USB commands. 
Sequencer: based on hardware frame to AER conversion 
using the Random or Exhaustive methods [15], [16]. Can 
produce up to 25 Mevents/second. (40 ns per event). 
Datalogger: allows capturing sequences of up to 512K 
events with timestamps and sending them to the PC 
through USB bus. No real-time is supported. 
Player (under development): to play up to 512Kevents 
with their timestamps. No real-time is supported. 

  These two last modules are very interesting when a 
researcher wants to use the output stream produced by a 
chip from another researcher (probably in other country) as 
input to his or her chip. 

   These interfaces has been connected to many AER chips, 
like in Telluride 2004 [7] to CAVIAR retina and to an 
imager developed at JHU; in Telluride 2006, with an AER 
cochlea; during CAVIAR project with a retina, four 
convolution chips, a WTA filter chip, a learning chip. The 
USB-AER board is shown in Fig. 4. 

Fig. 4: USB-AER Board. 

  A visual interface to control this board is available under 
Windows XP. It allows loading modules into the FPGA, 
uploading or downloading data to the FPGA, and showing 
the received images when the board acts as a monitor. There 
is also available a MATLAB interface that support the same 
functionality. A Linux driver for the USB-AER has been 
developed at INI. With this driver the USB-AER board can 
be easily integrated with several MATLAB applications 
developed at INI [22]. 

4. SWITCH-AER
A 4 to 1 AER bus Merger and a 1 to 4 AER Splitter was a

fundamental tool in order to configure the AER vision
chain. These two functionalities are integrated in the same
interface, the Switch-AER. This board allows:

- The connection of more complex AER systems.
- An easier debugging by inserting PCI-AER or USB-

AER board without modifying the structure of the
global system to be tested.

  A CPLD acts as a communication centre, which manages 
the different modes and controls asynchronously the 
protocol lines. It can work in two modes: 4 inputs - 1 output 
or 1 input - 4 outputs, both in unicast mode (selecting one 
output) or broadcast mode. This functionality should be 
configured by jumpers. There are 5 different AER ports, 
where one of them works always as an output, and another 
as an input. The other three are bidirectional. Fig. 5 shows 
the current version of this board. 

  This interface doesn’t need a PC link to be managed. Once 
the CPLD is programmed, the configuration is managed 
only by jumpers. The clock is integrated in the board, but it 
is not used by the CPLD, which VHDL is completely 
asynchronous. 



Fig. 5: AER-Switch Board. 

CAVIAR SYSTEM SCENARIO 
  Complex systems developed by Neuromorphic Engineers 
require interfaces to interconnect them and to connect them 

to PCs for debugging and/or other purposes. This milestone 
was the start point for the development of a set of AER 
Tools under the European Project CAVIAR. We were four 
different partners working together in the design of a 
neuromorphic vision system totally based on AER. 
CAVIAR has connected the biggest AER chain at the 
moment [14]. This chain is composed by a 128x128 retina 
that spikes with temporal and contrast changes [17], four 
32x32 convolution chips joined to detect a ball in a 64x64 
space [18], a 32x32 object chip to filter the convolution 
activity [19] and a learning stage composed by two chips: 
delay line and learning to catalogue the different trajectories 
[20]. To make all this vision system possible, a set of AER-
Tools for debugging and interconnection [13] purposes are 
not only useful, but also necessary. 

  Fig. 6 shows the AER system mounted under the CAVIAR 
project. In this chain the blue box are the AER-tools: 

- USB-AER Mapper to implement transformations of
the events during the transmission time, what allows
simple operations like translations, rotations, address
map shifting, compressing the image space (from
128x128 to 64x64 joining the AER traffic of 4
neighbour pixels into one of the new address space),
increasing the AER traffic (from convolution to
WTA to make the filter faster). This interface is
based on the USB-AER tool. A special VHDL for
mapping purposes is downloaded in the FPGA. This
board implies a delay in the AER chain from input to
output of 80ns, and a USB data transfer of 150Kbps
for mapping tables uploading.

- USB-AER Framegrabber for transforming the events
traffic into a sequence of frames. The USB-AER
FPGA is configured with a different VHDL that
integrates events into an internal 64x64 block-RAM
and transfers the bitmaps to the PC through the
USB2.0 full-speed interface. This tool allows

Fig. 6: CAVIAR Scenario. Blue boxes are the AER-Tools and white boxes are the AER chips. 



monitoring the behaviour of the chain without 
interfering in the performance or the AER bus traffic 
of the chain, thanks to the pass-through AER port. 
The PC or laptop used to monitor is provided with a 
dedicated XP driver and C++ application that can 
configure the interface to set up the hardware 
integration time. The performance of the interface is 
25Mevps at the input and at the output. The software 
application uses around 10MIPS to monitor a frame 
every 100 ms with a 100 ms hardware integration 
time or lower. The maximum speed is 10 ms of 
hardware integration. But the software application 
depends on the USB speed to reach the maximum 
speed (around 50 ms per frame). 

- AER Merger & Splitter. This board has been used to
send the same stimulus to several convolution chips
in parallel for implementing several filters at the
same time (for example for detecting several ball
radius), and to merge all the outputs of the
convolution chips into one AER bus.

- PCI-AER Monitor. This interface allows capturing
the AER traffic directly to the PC RAM memory
using PCI mastering at a maximum sustained rate of
10Mevps.

PERFORMANCE 
Several performance criteria have been analyzed: 

- AER bus throughput: table 1 shows the maximum
and the averaged throughput of each interface. The
PCI-AER interface bandwidth depends on the PCI
bridge throughput. The maximum is obtained while
the events FIFOs of the FPGA are not saturated.
The USB2AER bandwidth also depends on the PC
USB bandwidth.
These results have been obtained using only one
interface board with an Intel PIV 3GHz PC.
For the USB-AER and for Switch-AER interfaces,
the PC bandwidth does not interfere to the AER
bandwidth.

AER-Tool.  Peak Sustained 
PCI-AER. 
Sequencer 

25 Mev/s 8 Mev/s 

PCI-AER. 
Monitor 

25 Mev/s 10 Mev/s 

USB-AER. 
Generator 

25 Mev/s 25 Mev/s 

USB-AER. 
Mapper 

12 Mev/s 12 Mev/s 

USB-AER. 
FrameGrabber 

25 Mev/s 25 Mev/s 

USB-AER. 
Datalogger 

12 Mev/s 12 Mev/s 

USB2AER.
Monitor 

5 Mev/s 4’5 Mev/s 

USB2AER.
Sequencer 

3,75 Mev/s 2,5 Mev/s 

USB2AER. 
Passthrough 

10 Mev/s 10 Mev/s 

Switch-AER. 
Merger 

100 Mev/s 
(1 to 1) 

25 Mev/s  
(4 inputs) 

Switch-AER 
Splitter 

100 Mev/s 
(1 to 1) 

25 Mev/s  
(4 outputs) 

Table 1: AER bus bandwidth supported by interfaces. 

- PC interface throughput
Table 2 shows the AER-Tools bandwidth regarding
to the PC connection. Each interface is limited to the
maximum bandwidth of the bus used. The peak and
average bandwidth differs thanks to the internal
FIFOs of each interface that allows small burst
transfers at high speed.
The Switch board has no PC bandwidth since no PC
connection is provided by the Switch-AER.

AER-Tool.  Max. Peak Sustained 
PCI-AER. 
Sequencer 

132Mb/s 40 Mb/s 32 Mb/s 

PCI-AER. 
Monitor

132Mb/s 48 Mb/s 40 Mb/s 

USB-AER. 1,5Mb/s 750 
Kb/s 

750 Kb/s 

USB2AER. 
Monitor

50Mb/s 20 Mb/s 16 Mb/s 

USB2AER. 
Sequencer 

50Mb/s 15 Mb/s 10 Mb/s 

USB2AER. 
Passthrough 

50Mb/s 0 b/s 0 b/s 

Switch-AER. 
Merger 

0 b/s 0 b/s 0 b/s  

Switch-AER 
Splitter 

0 b/s 0 b/s 0 b/s 

Table 2: PC to AER-interface bandwidth 

- Power consumption. In normal working operations,
the power consumption of the boards is shown in
table 3.
PCI and USB boards have higher power 
consumption because they are based on FPGA, 
whose power is higher than for CPLD. 

AER-Tool.  Board 
consumption 

PCI-AER. ~100 mA
USB-AER. 220 mA 
USB2AER. 60 mA 
Switch-AER. 40 mA 

Table 3: Power consumption of AER-Tools 

- Software performance.
Using an Intel PIV 3GHz PC with 1 Gb RAM, the
software C++ and JAVA applications consume a



percentage of CPU time, an amount of RAM 
memory and they need an I/O bandwidth when the 
interfaces are working in a stress situation. Table 4 
shows these results.  

AER-Tool 
Sw.

% CPU Memory 
Usage 

E/S access 
rate

PCI-AER. 5 ~5 Mb ~40 Mbps 
USB-AER. 2 ~10 Mb ~40 Kbps 
USB2AER. 25 ~ 85 Mb ~18 Mbps 
Switch-AER. N/A N/A N/A 

Table 4: PC performance of the AER-Tools. 

  Table 4 has been obtained reading the 
corresponding columns of the Task Manager of the 
Microsoft XP OS while each interface is working in 
a stress mode: 
o The PCI-AER working as a timestamped event

monitor through the C++ application which
integrates the received events to represent a
bitmap in the PC screen.

o The USB-AER working as an AER monitor,
integrating the events in the FPGA and
transmitting the bitmaps through USB to the C++
application, which simply represents it on the PC
screen.

o The USB2AER working also as a timestamped
event monitor through high-speed USB. The
JAVA application represents the reconstructed
bitmap on the PC screen.

  The JAVA software is used only by the USB2AER 
interface. This interface, as commented before, 
transmits to the PC address-events with timestamp 
information and it gets a bandwidth that allows up to 
18 Mbps (~4.5 Mevps), as demonstrated the ‘task 
manager’ I/O bytes transmission column. The PCI-
AER interface transmits the same data format with a 
higher bandwidth of 40 Mbps (~10 Meps). In 
contrast, the USB-AER interface transmits to the PC 
a hardware processed bitmap collecting events for a 
period of time. The 40 Kbps transmitted allows 
maintaining a transmission of 10 fps (4 Kb per 
64x64 8 bit pixels frame). 
Regarding to PC resources consumption, the C++ 
applications are clearly more efficient than the 
JAVA application, but they are dependent of the OS. 
C++ consume less %CPU and less RAM, but JAVA 
application needs x5 more %CPU and x8 more RAM 
respect to the worst case of each C++ specific 
application. 

CONCLUSIONS 
 Several AER to PC interfaces have been presented and 
analyzed regarding to AER communication and PC 
performance. With these results we can conclude that the 

tool to be used depends on the requirements of each 
scenario and the purpose of the interface.  
  These interfaces allow stimulating and monitoring an AER 
system under development or testing in order to debug it 
properly, but they also allow capturing long sequences of 
events to process them off-line in order to characterize the 
behavior of the tested AER system. 

FUTURE IMPROVEMENTS 
  The maximum PC to interface bandwidth is obtained 
through the PCI bus. Since the PCI-Express is the new serial 
version of the PCI that allows faster transfers and reduced 
interfaces, the solution seems to be to transform parallel 
buses into serial ones.  

  In this way, some advances have been done by authors, 
implementing parallel to serial converters for AER buses 
and a new prototype interface for LVDS based serial AER 
buses [21]. The first experiments, using commercial LVDS 
transceivers, have reached a peak rate of 1.66 Gbps, with 
16bits transceivers, what implies an event rate of 100Mev/s.  
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