
Neuro-Inspired Real-Time USB & PCI to AER Interfaces for Vision Processing

A. Linares-Barranco, R. Paz, A. Jiménez-Fernandez, C.D. Luján, M. Rivas, J.L. Sevillano, G. Jiménez, A. Civit.
ETSI Informática. Dpto. ATC. University of Seville.

http://www.atc.us.es

Abstract
 Address-Event-Representation (AER) is an emergent
neuromorphic interchip communication protocol that allows
for real-time virtual massive connectivity between huge
number neurons located on different chips. By exploiting
high speed digital communication circuits (with nano-
seconds timings), synaptic neural connections can be time
multiplexed, while neural activity signals (with mili-seconds
timings) are sampled at low frequencies. When building
multi-chip muti-layered AER systems it is absolutely
necessary to have a computer interface that allows (a) to
read AER interchip traffic into the computer and visualize it
on screen, and (b) convert conventional frame-based video
stream in the computer into AER and inject it at some point
of the AER structure. This is necessary for test and
debugging of complex AER systems.
 This paper describes a set of PC interfaces to neuro-
inspired systems, analyses the performance and power
consumption. The interfaces use PCI or USB bus
connections that have been developed under an EU project,
where they have been tested in a stressed situation.

Keywords: AER, Neuro-Inspired, USB, PCI, FPGA,
VHDL, Codesign.

INTRODUCTION
 Computers have evolved in a vertiginous way in the last
years, increasing the parallelism, increasing the clock
frequency, increasing the performance, reducing the power
consumption, reducing the volume, … But today, there isn’t
any hardware comparable to the most powerful ‘computer’
in biology, the human brain, with millions of relative slow
components (neurons) working together in parallel, with a
total power consumption of 20W per day in average [1]. For
vision processing, the human brain is much more powerful,
smaller and with very low power consumption, compared
with any computer.

 Primate brains are structured in layers of neurons, in which
the neurons in a layer connect to a very large number (~104)
of neurons in the following layer [2]. Many times the
connectivity includes paths between non-consecutive layers,
and even feedback connections are present. Artificial bio-
inspired software models based on such connectivity models
have overwhelmed the specialized literature presenting

many ways of performing bio-inspired processing systems
that outperform more conventionally engineered machines
[3][4]. Since these models are software based, they operate
at extremely low speeds, because of the massive
connectivity they emulate. For real-time solutions direct
hardware implementations are required. However, hardware
engineers face a very strong barrier when trying to mimic
the bio-inspired hierarchically layered structure: the massive
connectivity. In present day state-of-the-art very large scale
integrated (VLSI) circuit technologies it is plausible to
fabricate on a single chip many thousands (even millions) of
artificial neurons or simple processing cells. However, it is
not viable to connect physically each of them to even a few
hundreds of other neurons. The problem is greater for multi-
chip multi-layer hierarchically structured bio-inspired
systems. AER is an incipient bio-inspired spike-based
technique capable of providing a hardware solution to the
inter-chip massive connectivity problem.

 AER was proposed in 1991 by Sivilotti [5] for transferring
the state of an array of analog time dependent values from
one chip to another. It uses mixed analog and digital
principles and exploits pulse density modulation for coding
information. Fig. 1 explains the principle behind the AER
basics. The Emitter chip contains an array of cells (like, for
example, a camera or artificial retina chip) where each pixel
shows a continuously varying time dependent state that
changes with a slow time constant (in the order of ms). Each
cell or pixel includes a local oscillator (VCO) that generates
digital pulses of minimum width (a few nano-secconds).
The density of pulses is proportional to the state of the pixel
(or pixel intensity). Each time a pixel generates a pulse
(which is called “Event”), it communicates to the array
periphery and a digital word representing a code or address
for that pixel is placed on the external inter-chip digital bus
(the AER bus). Additional handshaking lines (Acknowledge
and Request) are also used for completing the asynchronous
communication. The inter-chip AER bus operates at the
maximum possible speed because of its asynchronous
nature. In the receiver chip the pulses are directed to the
pixels whose code or address was on the bus. Thus, pixels
with the same code or address in the emitter and receiver
chips will “see” the same pulse stream. The receiver pixel
integrates the pulses and reconstructs the original low

frequency continuous-time waveform. Pixels that are more
active access the bus more frequently than those less active.

Fig. 1: Illustration of AER inter-chip communication scheme.

 Transmitting the pixel addresses allows performing extra
operations on the images while they travel from one chip to
another. For example, inserting properly coded EEPROMs
allows shifting and rotation of images. Also, the image
transmitted by one chip can be received by many receiver
chips in parallel, by properly handling the asynchronous
communication protocol. The peculiar nature of the AER
protocol also allows for very efficient convolution
operations within a receiver chip [6].

 There is a growing community of AER protocol users for
bio-inspired applications in vision and audition systems, as
demonstrated by the success in the last years of the AER
group at the Neuromorphic Engineering Workshop series
[7]. The goal of this community is to build large multi-chip
and multi-layer hierarchically structured systems capable of
performing complicated array data processing in real time.
The success of such systems will strongly depend on the
availability of robust and efficient development and
debugging AER-tools. One such tool is a computer interface
that allows not only reading an AER stream into a computer
and displaying it on its screen in real-time, but also the
opposite: from images available in the computer’s memory,
generate a synthetic AER stream in a similar manner as
would do a dedicated VLSI AER emitter chip [8][9][10].

 The CAVIAR EU project had the objective to demonstrate
this technology by targeting and following a moving ball.
The planned AER system under CAVIAR used the
following AER chips: one Retina, four Convolutions, one
Winner-Take-All (Object) and one Learning chip. To make
possible the right communication of these chips and for
debugging purposes it is essential to have a set of
instruments that would allow to:

Sequence: Produce synthetic AER event streams that can
be used as controlled inputs while testing and adjusting a
chip or set of chips.
Monitor: Observe the output of any element in the
system.
Map: Alter the stream produced by an emitter and send
the modified stream to a receiver

Fig. 2: AER tools usage scenario

 For these purposes we have designed and implemented two
different instruments: a PCI board capable of sequencing
and monitoring events at a peak rate of 15Mevents/s, an
equivalent USB2.0 (high speed) board with a peak rate of
5Mevents/s, and a versatile USB2.0 (full speed) board that
can be used for sequencing, monitoring and mapping. This
last board can be used either in a stand alone mode or
connected to an external computer (through a USB bus). A
possible scenario for these tools is shown in Fig. 2 where a
computer with a PCI-AER board produces output for AER
chip1 input. The output from this chip is remapped by a
USB-AER board and fetched to AER chip 2. The output
stream produced by chip 2 is monitored by another USB-
AER board which can send its output directly to a VGA
monitor or to a computer through USB bus.

 To be useful for debugging an AER tool should be able to
receive and also send a long sequence of events interfering
as little as possible with the system under test.

 As neurons have the information coded in the frequency
(or timing) of their spikes, the pixels that transmit their
address through an AER bus also have their information
coded in the frequency of appearance of those addresses in
the bus. Therefore, inter-spike-intervals (ISIs) are critical for
this communication mechanism. Thus, a well designed tool
shouldn’t modify the ISIs of the AER.

AER TOOLS

1. PCI-AER Interface
 Before the development of our tools the only available

PCI-AER interface board was developed by Dante at ISS-
Rome (See [7]-2001). This board is very interesting as it
embeds all the requirements mentioned above: AER
generation, remapping and monitoring. Anyhow its
performance is limited to 1Mevent/s approximately. In
realistic experiments software overheads reduce this value
even further. In many cases these values are acceptable but,
currently many address event chips can produce (or accept)
much higher spike rates.

 As the Computer interfacing elements are mainly a
monitoring and testing feature in many address event
systems, the instruments used for these purposes should not
delay the neuromorphic chips in the system. Thus, speed
requirements are at least 10 times higher than those of the
original PCI-AER board. Several alternatives are possible to
meet these goals: extended PCI buses, bus mastering or
hardware based Frame to AER and AER to Frame
conversion.

 The previously available PCI-AER board uses polled I/O
to transfer data to and from the board. This is possibly the
main limiting factor on its performance. To improve the
performance PCI bus mastering is the only alternative. The
hardware and driver architecture of a bus mastering capable
board is significantly different, and more complex, than a
polling or interrupt based implementation.

 The theoretical maximum PCI32/33 bandwidth is around
133Mbytes/s. This would allow for approximately
44Mevent/s considering 2 bytes per address and two bytes
for timing information. Realistic figures in practice are
closer to 20Mbyte/s. Thus, in those cases where the required
throughput is higher a possible solution is to transmit the
received information by hardware based conversion to/from
a frame based representation. Although this solution is
adequate in many cases, there are circumstances where the
developers want to know precisely the timing of each event,
thus both alternatives should be preserved.

 The physical implementation of all the steps is equal. They
differ in the VHDL FPGA code and in the operating system
dependent driver. The design is a SPARTAN-II based
board. The Spartan Version of the board is shown in Fig. 3.
All the functionality supported by the interface is
implemented in the FPGA. Thus the VHDL implements the
PCI-bridge, the AER interface and all the states-machines
and FIFOs used to adapt both buses. These state machines
were designed to guarantee the time between events (ISI).

 Currently a Windows driver that implements bus mastering
is working and the performance is shown in this paper. The
Linux version with bus mastering is still under
development. An API that is compatible, as much as
permitted by the different functionality, with that used in the
current PCI-AER board has been implemented. MEX files
to control the board from MATLAB have also been
developed.

 Current performance of PCI-AER board is around 15
Mevents/second using PCI mastering capabilities.

Fig. 3: CAVIAR PCI-AER board

2. USB2AER
As PCI bus is almost obsolete, and this kind of interface

requires the use of a host computer instead of laptops, a
USB version was developed during the project.

This board is a high-speed bus-powered USB co-design
platform based on Cypress USB2.0 microcontroller and
Xilinx CPLD 95xx family. The interface is able to monitor
synchronous AER traffic and the opposite, sequence AER
traffic. For our CAVIAR project [11], [14] we assembled a
heterogeneous mixture of AER chips into a visual system,
and we needed a device that could record from all parts of
the system simultaneously, was simple to operate and use,
was easy and cheap to build, and could be reused in other
contexts. We also wanted a convenient device that could
sequence recorded or synthesized events into AER chips to
allow their characterization.

 The functionality of the USB2AER board was evolved
from the monitoring capability which was developed for
[12] to include sequencing, passing through of monitored
events to a receiving AER chip and the synchronisation of
several devices. The number of jumpers is minimized by
auto detection of connected devices. Using the device is
very simple. For example, a user connects a sending AER
device to the monitor port and plugs the board into a USB
port on a computer. Then they are ready to capture and
time-stamp AER traffic from the AER device.

3. USB-AER
The CAVIAR PCI-AER interface and the USB2AER can

perform Address Event sequencing and monitoring
functions but has no hardware mapping capabilities.
Although software based mapping is feasible a specific
device for this purpose is needed if we want to build AER
systems that can operate without requiring any standard
computer. This standalone operating mode requires to be
able to load the FPGA and the mapping RAM from some
type of non volatile storage that can be easily modified by
the users. MMC/SD cards used in digital cameras are a very
attractive possibility. However in the development stage the
users prefer to load the board directly from a computer and,
for this purpose USB seems the most suitable solution.

 Many AER researchers would like to demonstrate their
systems using instruments that could be easily interfaced to
a laptop computer. This requirement can also be supported
with the USB-AER board as it includes a relatively large
FPGA that can be loaded from MMC/SD or USB, a large
SRAM bank and two AER ports. Thus the board can be
used also as a sequencer or a monitor. Due to the bandwidth
limitations of full speed USB (12Mbit/s) hardware based
event to frame conversion is essential in this board for high,
or even moderate, event rates.

 The USB-AER board is based around a Spartan-II 200
Xilinx FPGA, with a 512K*32 12ns SRAM memory bank.
The board uses a Silicon Laboratories C8051F320
microcontroller to implement the USB and the MMC/SD
interface. A simple VGA display interface is also provided
to allow the board to act as a monitor (frame grabber).

 The board will act as a different device according to the
module that is loaded in the FPGA either through a
MMC/SD card or from the USB bus. Currently the
following modes are implemented:

Mapper: 1 event to N events, where N can be from 0 to 8
and each possible output event can be transmitted or not
depending on a probabilistic function.
Monitor (frame-grabber): using either USB or VGA as
output. For the VGA output there are two possibilities:
B/W VGA, using the VGA connector of the board. And
Gray VGA, using a VGA-DAC board connected to the
out-AER connector of the board. In any case, a set of
events are integrated in the FPGA into a frame and this
frame is represented. The integration time can be
configured through USB commands.
Sequencer: based on hardware frame to AER conversion
using the Random or Exhaustive methods [15], [16]. Can
produce up to 25 Mevents/second. (40 ns per event).
Datalogger: allows capturing sequences of up to 512K
events with timestamps and sending them to the PC
through USB bus. No real-time is supported.
Player (under development): to play up to 512Kevents
with their timestamps. No real-time is supported.

 These two last modules are very interesting when a
researcher wants to use the output stream produced by a
chip from another researcher (probably in other country) as
input to his or her chip.

 These interfaces has been connected to many AER chips,
like in Telluride 2004 [7] to CAVIAR retina and to an
imager developed at JHU; in Telluride 2006, with an AER
cochlea; during CAVIAR project with a retina, four
convolution chips, a WTA filter chip, a learning chip. The
USB-AER board is shown in Fig. 4.

Fig. 4: USB-AER Board.

 A visual interface to control this board is available under
Windows XP. It allows loading modules into the FPGA,
uploading or downloading data to the FPGA, and showing
the received images when the board acts as a monitor. There
is also available a MATLAB interface that support the same
functionality. A Linux driver for the USB-AER has been
developed at INI. With this driver the USB-AER board can
be easily integrated with several MATLAB applications
developed at INI [22].

4. SWITCH-AER
A 4 to 1 AER bus Merger and a 1 to 4 AER Splitter was a

fundamental tool in order to configure the AER vision
chain. These two functionalities are integrated in the same
interface, the Switch-AER. This board allows:

- The connection of more complex AER systems.
- An easier debugging by inserting PCI-AER or USB-

AER board without modifying the structure of the
global system to be tested.

 A CPLD acts as a communication centre, which manages
the different modes and controls asynchronously the
protocol lines. It can work in two modes: 4 inputs - 1 output
or 1 input - 4 outputs, both in unicast mode (selecting one
output) or broadcast mode. This functionality should be
configured by jumpers. There are 5 different AER ports,
where one of them works always as an output, and another
as an input. The other three are bidirectional. Fig. 5 shows
the current version of this board.

 This interface doesn’t need a PC link to be managed. Once
the CPLD is programmed, the configuration is managed
only by jumpers. The clock is integrated in the board, but it
is not used by the CPLD, which VHDL is completely
asynchronous.

Fig. 5: AER-Switch Board.

CAVIAR SYSTEM SCENARIO
 Complex systems developed by Neuromorphic Engineers
require interfaces to interconnect them and to connect them

to PCs for debugging and/or other purposes. This milestone
was the start point for the development of a set of AER
Tools under the European Project CAVIAR. We were four
different partners working together in the design of a
neuromorphic vision system totally based on AER.
CAVIAR has connected the biggest AER chain at the
moment [14]. This chain is composed by a 128x128 retina
that spikes with temporal and contrast changes [17], four
32x32 convolution chips joined to detect a ball in a 64x64
space [18], a 32x32 object chip to filter the convolution
activity [19] and a learning stage composed by two chips:
delay line and learning to catalogue the different trajectories
[20]. To make all this vision system possible, a set of AER-
Tools for debugging and interconnection [13] purposes are
not only useful, but also necessary.

 Fig. 6 shows the AER system mounted under the CAVIAR
project. In this chain the blue box are the AER-tools:

- USB-AER Mapper to implement transformations of
the events during the transmission time, what allows
simple operations like translations, rotations, address
map shifting, compressing the image space (from
128x128 to 64x64 joining the AER traffic of 4
neighbour pixels into one of the new address space),
increasing the AER traffic (from convolution to
WTA to make the filter faster). This interface is
based on the USB-AER tool. A special VHDL for
mapping purposes is downloaded in the FPGA. This
board implies a delay in the AER chain from input to
output of 80ns, and a USB data transfer of 150Kbps
for mapping tables uploading.

- USB-AER Framegrabber for transforming the events
traffic into a sequence of frames. The USB-AER
FPGA is configured with a different VHDL that
integrates events into an internal 64x64 block-RAM
and transfers the bitmaps to the PC through the
USB2.0 full-speed interface. This tool allows

Fig. 6: CAVIAR Scenario. Blue boxes are the AER-Tools and white boxes are the AER chips.

monitoring the behaviour of the chain without
interfering in the performance or the AER bus traffic
of the chain, thanks to the pass-through AER port.
The PC or laptop used to monitor is provided with a
dedicated XP driver and C++ application that can
configure the interface to set up the hardware
integration time. The performance of the interface is
25Mevps at the input and at the output. The software
application uses around 10MIPS to monitor a frame
every 100 ms with a 100 ms hardware integration
time or lower. The maximum speed is 10 ms of
hardware integration. But the software application
depends on the USB speed to reach the maximum
speed (around 50 ms per frame).

- AER Merger & Splitter. This board has been used to
send the same stimulus to several convolution chips
in parallel for implementing several filters at the
same time (for example for detecting several ball
radius), and to merge all the outputs of the
convolution chips into one AER bus.

- PCI-AER Monitor. This interface allows capturing
the AER traffic directly to the PC RAM memory
using PCI mastering at a maximum sustained rate of
10Mevps.

PERFORMANCE
Several performance criteria have been analyzed:

- AER bus throughput: table 1 shows the maximum
and the averaged throughput of each interface. The
PCI-AER interface bandwidth depends on the PCI
bridge throughput. The maximum is obtained while
the events FIFOs of the FPGA are not saturated.
The USB2AER bandwidth also depends on the PC
USB bandwidth.
These results have been obtained using only one
interface board with an Intel PIV 3GHz PC.
For the USB-AER and for Switch-AER interfaces,
the PC bandwidth does not interfere to the AER
bandwidth.

AER-Tool. Peak Sustained
PCI-AER.
Sequencer

25 Mev/s 8 Mev/s

PCI-AER.
Monitor

25 Mev/s 10 Mev/s

USB-AER.
Generator

25 Mev/s 25 Mev/s

USB-AER.
Mapper

12 Mev/s 12 Mev/s

USB-AER.
FrameGrabber

25 Mev/s 25 Mev/s

USB-AER.
Datalogger

12 Mev/s 12 Mev/s

USB2AER.
Monitor

5 Mev/s 4’5 Mev/s

USB2AER.
Sequencer

3,75 Mev/s 2,5 Mev/s

USB2AER.
Passthrough

10 Mev/s 10 Mev/s

Switch-AER.
Merger

100 Mev/s
(1 to 1)

25 Mev/s
(4 inputs)

Switch-AER
Splitter

100 Mev/s
(1 to 1)

25 Mev/s
(4 outputs)

Table 1: AER bus bandwidth supported by interfaces.

- PC interface throughput
Table 2 shows the AER-Tools bandwidth regarding
to the PC connection. Each interface is limited to the
maximum bandwidth of the bus used. The peak and
average bandwidth differs thanks to the internal
FIFOs of each interface that allows small burst
transfers at high speed.
The Switch board has no PC bandwidth since no PC
connection is provided by the Switch-AER.

AER-Tool. Max. Peak Sustained
PCI-AER.
Sequencer

132Mb/s 40 Mb/s 32 Mb/s

PCI-AER.
Monitor

132Mb/s 48 Mb/s 40 Mb/s

USB-AER. 1,5Mb/s 750
Kb/s

750 Kb/s

USB2AER.
Monitor

50Mb/s 20 Mb/s 16 Mb/s

USB2AER.
Sequencer

50Mb/s 15 Mb/s 10 Mb/s

USB2AER.
Passthrough

50Mb/s 0 b/s 0 b/s

Switch-AER.
Merger

0 b/s 0 b/s 0 b/s

Switch-AER
Splitter

0 b/s 0 b/s 0 b/s

Table 2: PC to AER-interface bandwidth

- Power consumption. In normal working operations,
the power consumption of the boards is shown in
table 3.
PCI and USB boards have higher power
consumption because they are based on FPGA,
whose power is higher than for CPLD.

AER-Tool. Board
consumption

PCI-AER. ~100 mA
USB-AER. 220 mA
USB2AER. 60 mA
Switch-AER. 40 mA

Table 3: Power consumption of AER-Tools

- Software performance.
Using an Intel PIV 3GHz PC with 1 Gb RAM, the
software C++ and JAVA applications consume a

percentage of CPU time, an amount of RAM
memory and they need an I/O bandwidth when the
interfaces are working in a stress situation. Table 4
shows these results.

AER-Tool
Sw.

% CPU Memory
Usage

E/S access
rate

PCI-AER. 5 ~5 Mb ~40 Mbps
USB-AER. 2 ~10 Mb ~40 Kbps
USB2AER. 25 ~ 85 Mb ~18 Mbps
Switch-AER. N/A N/A N/A

Table 4: PC performance of the AER-Tools.

 Table 4 has been obtained reading the
corresponding columns of the Task Manager of the
Microsoft XP OS while each interface is working in
a stress mode:
o The PCI-AER working as a timestamped event

monitor through the C++ application which
integrates the received events to represent a
bitmap in the PC screen.

o The USB-AER working as an AER monitor,
integrating the events in the FPGA and
transmitting the bitmaps through USB to the C++
application, which simply represents it on the PC
screen.

o The USB2AER working also as a timestamped
event monitor through high-speed USB. The
JAVA application represents the reconstructed
bitmap on the PC screen.

 The JAVA software is used only by the USB2AER
interface. This interface, as commented before,
transmits to the PC address-events with timestamp
information and it gets a bandwidth that allows up to
18 Mbps (~4.5 Mevps), as demonstrated the ‘task
manager’ I/O bytes transmission column. The PCI-
AER interface transmits the same data format with a
higher bandwidth of 40 Mbps (~10 Meps). In
contrast, the USB-AER interface transmits to the PC
a hardware processed bitmap collecting events for a
period of time. The 40 Kbps transmitted allows
maintaining a transmission of 10 fps (4 Kb per
64x64 8 bit pixels frame).
Regarding to PC resources consumption, the C++
applications are clearly more efficient than the
JAVA application, but they are dependent of the OS.
C++ consume less %CPU and less RAM, but JAVA
application needs x5 more %CPU and x8 more RAM
respect to the worst case of each C++ specific
application.

CONCLUSIONS
 Several AER to PC interfaces have been presented and
analyzed regarding to AER communication and PC
performance. With these results we can conclude that the

tool to be used depends on the requirements of each
scenario and the purpose of the interface.
 These interfaces allow stimulating and monitoring an AER
system under development or testing in order to debug it
properly, but they also allow capturing long sequences of
events to process them off-line in order to characterize the
behavior of the tested AER system.

FUTURE IMPROVEMENTS
 The maximum PC to interface bandwidth is obtained
through the PCI bus. Since the PCI-Express is the new serial
version of the PCI that allows faster transfers and reduced
interfaces, the solution seems to be to transform parallel
buses into serial ones.

 In this way, some advances have been done by authors,
implementing parallel to serial converters for AER buses
and a new prototype interface for LVDS based serial AER
buses [21]. The first experiments, using commercial LVDS
transceivers, have reached a peak rate of 1.66 Gbps, with
16bits transceivers, what implies an event rate of 100Mev/s.

ACKNOWLEDGMENTS
 This work has been supported by the following projects:
Spanish Science And Education Ministry Research Projects
TEC2006-11730-C03-02 (SAMANTA 2) and TIN2006-
15617-C03-03 (AmbienNet), Andalussian Council grant
P06-TIC-01417 (BrainSystem) and EU grant IST-2001-
34124 (CAVIAR).

Reference List
[1] Drubach, Daniel. The Brain Explained. New Jersey: Prentice-Hall,
2000.
[2] G. M. Shepherd, The Synaptic Organization of the Brain, Oxford
University Press, 3rd Edition, 1990.
[3] J. Lee, “A Simple Speckle Smoothing Algorithm for Synthetic
Aperture Radar Images,” IEEE Trans. Systems, Man and Cybernetics, vol.
SMC-13, pp. 85-89, 1983.
[4] T. Crimmins, “Geometric Filter for Speckle Reduction,” Applied
Optics, vol. 24, pp. 1438-1443, 1985.
[5] M. Sivilotti, Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks, Ph.D. Thesis, California
Institute of Technology, Pasadena CA, 1991.
[6] Teresa Serrano-Gotarredona, Andreas G. Andreou, Bernabé Linares-
Barranco. AER Image Filtering Architecture for Vision-Processing
Systems. IEEE Transactions on Circuits and Systems. Fundamental Theory
and Applications, Vol. 46, N0. 9, September 1999.
[7] A. Cohen, R. Douglas, C. Koch, T. Sejnowski, S. Shamma, T.
Horiuchi, and G. Indiveri, Report to the National Science Foundation:
Workshop on Neuromorphic Engineering, Telluride, Colorado, USA,
2001,2004, 2006. [http://www.ini.unizh.ch/telluride] [http://www.ine-
web.org]
[8] Kwabena A. Boahen. Communicating Neuronal Ensembles between
Neuromorphic Chips. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.
[9] A. Mortara, E.A. Vittoz and P. Venier. A Communication Scheme for
Analog VLSI Perceptive Systems, IEEE Journal of Solid-State Circuits.
Vol. 30, No. 6, pp. 660-669, 1995.
[10]Misha Mahowald. VLSI Analogs of Neuronal Visual Processing: A
Synthesis of Form and Function. PhD. Thesis, California Institute of
Technology Pasadena, California, 1992.
[11] CAVIAR project. [Online]. Available: http://www.imse.cnm.es/caviar

[12]P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120dB 30mW
Asynchronous Vision Sensor that Responds to Relative Intensity Change,”
2006 IEEE ISSCC Digest of Technical Papers, pp. 508–509, 2006.
[13]R. Paz, F. Gomez-Rodriguez, M. A. Rodriguez, A. Linares-Barranco,
G. Jimenez, A. Civit. Test Infrastructure for Address-Event-Representation
Communications. IWANN 2005. LNCS 3512. pp 518-526. Springer
Verlag.
[14]R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-
Barranco, R. Paz-Vicente, F. Gómez-Rodríguez, H. Kolle Riis, T.
Delbrück, S. C. Liu, P. Häfliger, G. Jimenez-Moreno, A. Civit, T. Serrano-
Gotarredona, A. Acosta-Jiménez, B. Linares-Barranco, AER Building
Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems,
NIPS’05, Vancouver, December-2005.
[15]A. Linares-Barranco, G. Jimenez-Moreno, A. Civit-Ballcels, and B.
Linares-Barranco. “On Algorithmic Rate-Coded AER Generation”. IEEE
Transaction on Neural Networks. May-2006.
[16]A. Linares-Barranco, M. Oster, D. Cascado, G. Jimenez, A. Civit, B.
Linares-Barranco. “Inter-spike-intervals analysis of AER Poisson-like
generator hardware”. Neurocomputing. Vol. 70, Nos 16-18. pps 2692-
2700.
[17]P. Lichtsteiner, T. Delbruck, 64x64 Event-Driven Logarithmic
Temporal Derivative Silicon Retina, 2005 IEEEWorkshop on Charge
Coupled Devices and Advanced Image Sensors, Nagano, Japan, June-2005.
[18]Rafael Serrano, Teresa Serrano, Antonio José Acosta, Bernabé
Linares-Barranco, An Arbitrary Kernel Convolution Aer- Transceiver,
ISCAS’06, Kos, Greece, May-2006.
[19]Oster, M., Liu, S.C., A Winner-take-all Spiking Network with Spiking
Inputs, ICECS 2004, Tel Aviv, 2004.
[20]H. Kolle Riis, P. Haefliger, Spike based learning with weak multi-level
static memory, ISCAS’04, vol. 5, pp. 393-395, Vancouver, Canada, May-
2004.
[21]A. Jiménez-Fernández, C.D. Luján, A. Linares-Barranco, F. Gómez-
Rodríguez, M. Rivas, G. Jiménez, A. Civit. “Address-Event based Platform
for Bio-inspired Spiking Systems”. Proceedings of the SPIE Conference of
Microelectronis for the New Millenium. Maspalomas, Gran Canaria, May-
2007.
[22]M. Oster, Serverbased Software Architecture for AER systems.
[http://www.ini.unizh.ch/~mao/AerSoftware/SoftwareOverview.pdf]

