
ROM-Based Finite State Machine Implementation
in Low Cost FPGAs

I. García-Vargas, R. Senhadji-Navarro,
G. Jiménez-Moreno and A. Civit-Balcells

Departamento de Arquitectura y Tecnología de

Computadores
Universidad de Sevilla

 Sevilla, Spain
 Email: {ignacio,raouf,gaji,civit}@atc.us.es

P. Guerra-Gutiérrez

Departamento de Ingeniería Electrónica
Universidad Politécnica de Madrid

Madrid, Spain
 Email: pguerra@die.upm.es

Abstract—This work presents a technique for the resource
optimization of input multiplexed ROM-based Finite State
Machines. This technique exploits the don’t care value of the
inputs to reduce the memory size as well as multiplexer
complexity. This technique has been applied to a publicly
available FSM benchmarks and implemented in a low-cost FPGA.
Results have been compared with tools supported ROM and
standard logic cells implementations. In a significant number of
test cases, the proposed technique is the best design alternative,
both in resource requirements and speed.

I. INTRODUCTION

The concept of the Finite State Machine (FSM) is at the very
centre of control and computing theories and provides an
excellent abstraction framework for the definition of complex
control-dominated automata. Depending on the application and
system complexity, FSMs are implemented with
microcontrollers, signal processors (DSP) or programmable
logic. This work deals with the efficient implementation of
FSMs on programmable logic making use of the embedded
memory.

In the last decade Field Programmable Gate Array (FPGA)
have evolved from a replacement of glue-logic to a serious
competitor of complex application specific integrated circuits
(ASIC). This has been possible through the mass production of
submicrometer technologies, which have enabled the
integration of thousands of elementary cells in a single device.
Among the elements nowadays integrated in these devices,
embedded synchronous memory blocks (RAM) have shown to
be a significant breakthrough in many digital signal processing
and networking applications. However, RAM blocks may also
be used for other tasks, such as the implementation of
sequential circuits. This fact has motivated a growing interest
on the implementation of ROM-based Finite State Machines
(FSM) [1,2,3,4,5]. In fact, the latest versions of Xilinx ISE
Foundation include the option of limited mapping of sequential
logic and FSMs into on-chip memory [6].

Whenever an FPGA is considered for the implementation of
a complex FSM, circuit optimization must be addressed in
order to cope with the limited number of available resources.
The availability of new on-chip modules such as memories
provides new alternatives to controller synthesis. FSM
implementation with embedded ROM blocks provides some
benefits compared to synthesis on logic cells. The maximum
clock frequency of a FSM implemented in a ROM block is
independent of its complexity. Moreover memory blocks
provide control signals that allow for module deactivation
when the FSM is inactive, providing an efficient mechanism
for power saving. In any case, it has been proved that complex
FSMs consume less power when implemented as memory
blocks [4].

However, the ROM implementation of FSMs poses a
significant problem: If no optimization is considered, memory
size grows exponentially with the number of inputs and the
number of state encoding bits. This is a critical aspect, as
memory requirements may easily exceed the available on-chip
RAM even with a simple FSM. In order to cope with memory
size, additional resources are introduced to trade ROM size
with logic [2,3,4,7].

Some of the previously referred techniques reduce the ROM
address bitwidth by multiplexing FSM inputs. This approach is
useful with those FSMs where the current state is only function
of a subset of the inputs. Multiplexers select for each state only
those inputs that are of relevance, thus reducing the number of
addresses in the ROM. With this scheme, memory size is
exchanged for multiplexers, modules that are efficiently
implemented with modern FPGAs [8,9]. As an example, a 32:1
multiplexer takes only two Configurable Logic Blocks (CLB)
of a Xilinx Spartan-3 [10]. Moreover, some FPGA families
provide tristate buffers, allowing the implementation of wired
multiplexers that take no additional logic [10,11].

This works presents a technique based on input multiplexing
with the aim of reducing resource needs, not only in memory
size but in the number of multiplexers as well. Unlike previous
state-of-the-art techniques, which only reduce the number of

23421-4244-0755-9/07/$20.00 '2007 IEEE

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 08:34:20 UTC from IEEE Xplore. Restrictions apply.

inputs, the proposed approach exploits multiplexing to reduce
both the number of inputs and the number of bits required to
code the machine states. Additionally, in order to simplify
multiplexer complexity, an optimization algorithm is applied to
reduce the number of inputs of each multiplexer. As it is shown
in the results section, this step will also have an impact on
memory size, as multiplexer control bits of each state are also
stored in the memory.

This paper is structured as follows, the second section details
the proposed technique, whose results with MCNC benchmark
[12] are analyzed in the third section. The work closes with
conclusions and future work.

II. TECHNIQUE DESCRIPTION

The FSM is abstracted as a 5-tuple (X, Y, S, f, g) where X, Y
and S are finite collections of the input, output and state
variables; f:X×S→S is the transition function that provides the
next state sj for the given inputs and the current state si and
g:X×S→Y is the output function that computes the machine
output for the given inputs and current state.

FSMs are usually represented as State Transition Diagrams
(STD). These diagrams are treated as directed graphs, where
each vertex is a machine state and each arc (si, sj) represents a
transition between current state si and next state sj.
Additionally, each arc is labelled as ‘x/y’ with sj=f(x,si) and
y=g(x,si). These concepts are summarized in Fig. 1a, which
shows a STD for a simple FSM.

The STD representation is a commonly used to summarize
any FSM behaviour; however for a proper description of the
proposed technique it is more convenient to represent the FSM
in the form of a State Transition Table (STT). The STT, as
shown in Fig. 1b, is table whose rows represent transitions
which are expressed as the 4-tuple (in, ps, ns, out), which
correspond to the inputs, present state, next state and output
variables.

It is obvious that the STT highlights the ROM-ability of the
FSM. Fig. 2 shows the reference architecture for the hardware
synthesis, which may be seen as a direct implementation of the
STT. Each word of the memory will store the outputs and the
next state, while address is determined by the inputs and the
current state, under this assumption the size of the required
memory is:

 2

m+p х (n + p) (1)

where m is the number of inputs, p the bitwidth of the coded
state and n is the number of outputs. Equation (1) shows that
the memory needs are exponential with the number of inputs
and state codeword size. For this reason, if no additional
measure is taken, even a simple FSM may easily take up an
unacceptable amount of memory.

In those FSMs where the next state and output are function
of a subset of the inputs, ROM size is reduced by the input
multiplexing technique, whose reference architecture is shown

in Fig. 3. The multiplexer bank selects for each state the subset
of inputs that are of interest, thus reducing the number of
signals that contribute to the memory address word.

Two alternative strategies are possible for the multiplexer
control, either the state codeword is used (Fig. 3a) or additional
control bits are stored in the memory (Fig. 3b). The first option

in
a b c ps ns out

1 - - s
0

s
1

0
0 - - s

0
s
0

0
- 1 0 s

1
s
2

0
- 0 0 s

1
s
1

0
- - 1 s

1
s
0

0
- - 1 s

2
s
0

1
- - 0 s

2
s
2

0

pis in nis
in

1
in

2
in

1
in

2

ps
in

1
 in

2

ns out

- a - 1 s
0
 c b s

1
 0

- a - 0 s
0
 - a s

0
 0

c b 0 1 s
1
 - c s

2
 0

c b 0 0 s
1
 c b s

1
0

c b 1 - s
1
 - a s

0
 0

- c - 1 s
2
 - a s

0
 1

- c - 0 s
2
 - c s

2
 0

(c)

(a) (b)

pis in nis
in

1
in

2
in

1
in

2

ps
in

1
 in

2

ns out

0 a 0 1 s
02
 c b s

1
 0

0 a 0 0 s
02
 0 a s

02
 0

c b 0 1 s
1
 1 c s

02
 0

c b 0 0 s
1

c b s
1

0
c b 1 - s

1
 0 a s

02
 0

1 c 1 1 s
02
 0 a s

02
 1

1 c 1 0 s
02
 1 c s

02
 0

(d)

S
0

S
2

S
1

1--/0

0--/0 --1/0

-10/0

--1/1

--0/0

-00/0

Fig. 1. FSM example: (a) STD, (b) STT, (c) ESTT, (d) ESTT representation
after state encoding bit reduction.

ROM

X

Y

m p

n

g f

REGISTER

n p

)(2 pnpm +×+

Fig. 2. ROM-based FSM implementation.

2343

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 08:34:20 UTC from IEEE Xplore. Restrictions apply.

has the advantage of preserving memory size; however
including new control bits in the memory may allow
multiplexer complexity reduction and provide an overall FSM
simplification. Therefore the proposed technique selects the
second alternative. In this case, ROM size is given by the
following expression:

 2

m′+p х (n + p + r) (2)

where m’ is maximum number of selected inputs, n is the
number of outputs, p the state codeword bitwidth and r the
number of bits devoted to multiplexer control. In the particular
case where the multiplexer is controlled by the state code, r is
equal to zero. The ability of the technique to reduce memory
size is based on the fact that m’ is equal or smaller than m.
However, the actual value is determined by the state that is
sensitive to the highest number of inputs. Therefore, such
technique will yield bad results in FSMs where only a reduced
fraction of states are sensitive to a high number of inputs. In
the worst case, a single state which is sensitive to all inputs
will prevent any ROM simplification.

The technique herein described solves this problem with a
twofold approach: on one hand input multiplexing is used in
order to reduce both the number of inputs (m) and the state
bitwidth (p), on the other an optimization algorithm is applied
in order to reduce the number of bits used in the multiplexer
control (r). This way overall complexity of the FSM is
minimized.

We will define those inputs which influence on a particular
state as state effective inputs (SEI). The SEI number is
different for each state, but the number of inputs selected by a
multiplexer is fixed, therefore in each state the control
multiplexer selects not only the SEI but also some inputs that

have no influence on the current state, these inputs will be
denominated as don’t care selected inputs (DCSI). In order to
reduce state codeword bitwidth, the proposed technique will
partially use the DCSI for the state codification.

In order to properly represent the input multiplexed FSM
(FSMIM), it is mandatory to extend the information stored in
the STT. Each row of the Extended State Transition Table
(ESTT) will store a 6-tuple (in, pis, ps, nis, ns, out), where the
new items are the present (pis) and next (nis) input selection.
For each state, pis stores information about the selected inputs
and in contains the actual value of these inputs. The
information about which subset of inputs will be selected for
the next state ns is stored in nis. Unlike FSMs, whose states are
only identified by the ps word, FSMIMs are identified by the
2-tuple (ps, pis). Fig. 1c shows the ESTT of the FSM
corresponding to the STD in Fig. 1a. It is observed that the first
two rows of the ESTT the input selection for state s0 is “-a”.
That means that the first input is a DCSI and the second input
is the a input of the original FSM.

It is said that two states share a DCSI if it selected by both
states and with the same multiplexer. With this convention,
two states sharing a DCSI may be coded setting the DCSI
value to ‘0’ in one state and ‘1’ in the other. In formal notation,
let A and B to be two states sharing at least one DCSI, with
(PSj, PISj) as the 2-tuple that univocally identifies state A and
(PSk, PISk) identifies the state B. Both states may be coded
with the same PS if they differ in the PIS having a different
code at the shared DCSI. Fig. 1d shows the states (s0, -a) and
(s2, -c), which have been coded using the same code s02 for the
state and considering a different value for the shared DCSI
(“0” is chose for s0 and “1” for s2). The final states are (s02, 0a)
and (s02, 1c).

Multiplexer complexity, and also the number of the required
control bits, depends on the way inputs are assigned to each
multiplexer. As an example, Fig. 4 shows two possible
assignments related to the example FSM of Fig. 1. In order to
find an optimum partitioning, it has been decided to assign
each input to a single multiplexer. For example, in the Fig. 4a,
where the input c is linked to two multiplexers, the resulting
logic turns out to be more complex than Fig 4b. This is
accomplished by guaranteeing that two inputs acting upon a
given state do not share the same multiplexer (dependent
inputs). In the Fig. 4b, inputs b and c are dependent inputs and
are assigned to different multiplexer.

In this case, the optimization problem consists on
maximizing the number of independent inputs for each
multiplexer. This problem may be modelled as a Maximum
Independent Set Problem (MISP) [13]. In case a solution is not
found, constraints will be relaxed by allowing the assignment
of dependent inputs to the same multiplexer.

ROM

REGISTER

X

Y

MULTIPLEXERS

p

n

g f

m

m′

h
p n r

r

ROM

Y

n

g f

REGISTER

n p

)(2 pnpm +×+′

X

MULTIPLEXERS

m

m′

p

(a) (b)

)(2 pnrpm ++×+′

Fig. 3. FSM implementation with input multiplexing: (a) multiplexers
controled by the state codeword, (b) control bits stored in ROM.

2344

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 08:34:20 UTC from IEEE Xplore. Restrictions apply.

III. EXPERIMENTAL RESULTS

The proposed technique has been applied to the MCNC
benchmark [12]. On one hand, the technique ability to optimize
ROM size and multiplexer bank complexity is shown. On the
other, in order to assess the quality of the optimized
implementation in terms of actual resource use and maximum
clock frequency, several implementations with a commercially
available FPGA have been carried out.

FSMs have been synthesized on a Xilinx Spartan-3
xc3s5000 with the device vendor’s reference tool ISE
Foundation 7.1i (Xilinx Inc. San Jose, CA, USA).
Implementation results obtained with the FSMIM have been
compared against alternative FSM implementations where
either (a) ROM synthesis without optimization, (b) a standard
implementation on logic cells or (c) tool supported ROM
synthesis are considered. The four alternative implementations
will be referred as FSMIM, ROM, ISE-LUT and ISE-RAM
respectively.

The optimization process consists of two steps. The first step
is the Multiplexer Bank Complexity Simplification (MBCS)
and the second is the State Encoding Bit Reduction (SEBR).
Table I shows the results after both steps, where ROM size is
compared to the case where optimization is performed and
finally the overall reduction factor is summarized.

These results show that the use of a non-complex
multiplexer bank provides a significant theoretical memory
reduction (87% on average). The highest memory reductions
are achieved for the s510, s820, s832 y scf FSM. For the
considered benchmark, only 19% of the FSMs require
multiplexers with more than 4 inputs.

In order to evaluate the usefulness of the SEBR step, results
are also compared against input multiplexing alone. Fig. 5
shows the ROM size reduction after the MBCS and the SEBR
steps. Dark gray bars show memory reduction after the MBCS
step, while light gray bars reflect the additionaly size
improvement provided by the SEBR step. It is observed that,
although multiplexing provides a significant improvement, the
SEBR yields an additional 67% average reduction that in half
the cases is as high as 70%.

TABLE I
OPTIMIZATION RESULTS

FSM FSMIM
Name ROM ROM MUX Bank

 Size Size Reduction
 (Kbits) (Kbits) (%) (Input Number)

bbsse 22.00 3.75 83.0 4,2
cse 22.00 7.50 65.9 2,2,2
ex1 384.00 16.50 95.7 2,4,4,2,2,2
ex4 13.00 1.00 92.3 4,2
keyb 28.00 9.00 67.9 2,2
mark1 10.00 1.50 85.0 4,2,2
opus 5.00 0.94 81.3 2,2,2,2
planet 200.00 8.00 96.0 2,2,2,4,4
pma 104.00 11.00 89.4 4,2,2,2,2
s1 88.00 18.00 79.5 2,2,2,2,2
s1488 400.00 15.00 96.3 4,4,2,2
s1494 400.00 15.00 96.3 4,4,2,2
s27 0.50 0.31 37.5 2
s386 22.00 3.50 84.1 3,2
s510 425984.00 2.38 ≈100 14,7
s820 196608.00 38.00 ≈100 7,6,4,4,2,2,2
s832 196608.00 66.00 ≈100 5,6,4,4
sand 896.00 13.00 98.5 4,4,4,4,2,4,2
scf ≈109 156.00 ≈100 13,3,4,4,2,2,2,2
sse 22.00 3.75 83.0 4,2
styr 240.00 21.00 91.3 4,4,2,2

In four cases (keyb, opus, s21 and s27) the SEBR step has a

dramatic impact on memory reduction. It is important to
highlight that in the particular case of the keyb, opus, s21 and
s27 test FSMs, the MBCS by itself yielded no memory
reduction and it is only due to the SEBR.

Table II shows the average resource requirements of
different implementations. The FSMIM technique requires an
average of 1.76 BRAMs, the ISE_BRAM 16.31 and the ROM
technique 13.06. Thanks to the reductions provided by the
proposed technique, the number of benchmark FSMs that can
be synthesized into the smallest member of the Xilinx Spartan-

e
1

e
2

in
1
 in

2

a -
a -
c b
c b
c b
c -
c -

a

c
b e

1

e
2 c

s
1

s
2

in
1
 in

2

a -
a -
b c
b c
b c
c -
c -

(a) (b)

a
c
s
1

b

Fig. 4. Example of multiplexer bank: (a) without simplification, (b) with
simplification

Fig. 5: Impact of each optimization step on the final design

2345

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 08:34:20 UTC from IEEE Xplore. Restrictions apply.

3 family (with 4 BRAMs) is doubled (86% in FSMIM vs. 43%
in the best case of other ROM-based implementations). This
significant improvement is at the cost of small number of look-
up tables (LUT). The average number of LUTs of the FSMIM
implementation is as low as 5, while up to 220 LUTs are
required in a standard logic synthesis of the FSM (ISE-LUT).

In tests sl488 and sl494, BRAM reduction is higher than
97% with the extra cost of only 5 LUT. Some of the FSMs in
the testbench (s510, s820, s832 and scf) could not be
implemented into the FPGA with ISE-BRAM and ROM
implementation, due to the high memory requirements, despite
the fact that the selected model is the biggest of the family with
104 RAM blocks. In four cases (ex4, mark1, opus and s27) the
traditional approach only requires a single RAM block and
therefore there is no apparent benefit in using the proposed
technique and this situation may be common due to the
relatively high size of the individual RAM block (18Kb).
However, as the on-chip RAMs are double-port memories, it is
feasible to implement two FSMs in the same block, making use
of the second address/data ports to access the available space
[5] and in this case there is still motivation to reduce memory
size.

Fig. 6 shows the FSM maximum operating clock frequency
after placement and routing with the different techniques under
consideration. In 81% of the test cases, the FSMIM frequency
is higher that the LUT-based implementation, being the
improvement higher than 57% in a fourth of the test cases.
These results show that the FSMIM is a valid alternative to
standard cell based FSM implementation.

 Compared to the BRAM approaches, the FSMIM allows for
higher operating frequency in 59% of the considered scenarios
in the ROM case and 81% in the ISE-BRAM case. This is

mostly due to the distribution of the RAM blocks within the
device. Overall, the FSMIM approach provides better results
both in area and frequency in 29% of the test cases.

IV. CONCLUSION AND FUTURE WORK

This work has presented a technique that achieves a
significant reduction in the number of required on-chip
memory blocks for the implementation of a FSM in an FPGA,
making use of a reduced number of extra logic resources, such
as look-up tables. This block reduction has a positive impact
on the maximum clock frequency of the FSM.

The proposed technique has been compared against other
alternatives, making used of a standard FSM benchmark.
Results show that in a significant number of test cases the
proposed technique is the best design alternative, both in
resource requirements and speed, even when comparing
against traditional cell based FSM implementations.

The proposed implementation is not limited to low cost
FPGAs, but can be used by any FPGA device that includes
RAM blocks. As future work, it seems interesting to study the
performance of the technique with the latest Xilinx architecture
based on 6-input LUTs (Virtex-5) that allows for a more
efficient multiplexor implementation.

REFERENCES
[1] R. Senhadji-Navarro, I. García-Vargas, G. Jimenez-Moreno and A. Civit-

Ballcels ‘ROM-based FSM implementation using input multiplexing’,
Electronics Letters, Vol. 40, N. 20, September 2004

[2] Rawski M., Selvaraj H., and Łuba, T.: ‘An Application of Functional
Decomposition in ROM-Based FSM Implementation in FPGA Devices’,
Proc. Euromicro Symposium on Digital System Design, 2003,
Belek-Antalya (Turkey), pp. 104-110

TABLE II
RESOURCE USE SUMMARY

FSM ISE-LUT ISE-BRAM ROM FSMIM
 LUT LUT BRAM BRAM LUT BRAM

bbsse 53 33 3 2 3 1
cse 140 79 3 2 3 1
ex1 296 213 25 35 6 2
ex4 38 29 2 1 3 1
keyb 85 45 6 2 3 1
mark1 45 28 1 1 3 1
opus 19 0 1 1 2 1
planet 370 363 35 13 5 1
pma 167 120 15 7 3 1
s1 103 0 6 6 5 2
s1488 639 601 68 38 5 1
s1494 665 576 54 38 5 1
s27 11 1 1 1 2 1
s386 63 37 3 2 3 1
s510 118 -- -- -- 12 1
s820 197 -- -- -- 9 5
s832 187 -- -- -- 8 5
sand 515 -- -- 56 7 2
scf 466 -- -- -- 19 5
sse 53 33 3 2 3 1
styr 395 317 35 15 4 2

Fig. 6. Maximum Operation Frequency

2346

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 08:34:20 UTC from IEEE Xplore. Restrictions apply.

[3] Valery Sklyarov, ‘Synthesis and Implementation of RAM-Based Finite
State Machines in FPGAs’, Proc. Field Programmable Logic and its
applications (FPL), 2000, pp. 718-727

[4] Anurag Tiwari and Karen a. Tomko, ‘Saving Power by Mapping Finite-
State Machines into Embedded Memory Blocks in FPGAs’, Design,
Automation and Test in Europe Conference and Exhibition Volume II
(DATE'04), Feb. 2004

[5] Garcia, E.: ‘Xilinx: Creating Finite State Machines’, Xcell Journal, 2000,
38

[6] Xilinx, Inc: ‘ISE Foundation’ (www.xilinx.com)
[7] Katz, R. H.: ‘Contemporary Logic Design’ (The Benjamin/Cummings

Publishing Company, Inc., California, 1994)

[8] Altera, Corp.: ‘Stratix II Device Handbook’, 2004, Ver. 1.0, Chapter 2
[9] Krueger, R.: ‘Xilinx Virtex Devices: Variable Input LUT Architecture’,

The Syndicated, 2004, Vol. 4, Issue I
[10] Xilinx, Inc.: ‘Using Dedicated Multiplexers in Spartan-3 Generation

FPGAs’, XAPP466 (v1.1) May 20, 2005
[11] Xilinx, Inc.: ‘XST User Guide’, 2005
[12] McElvain, K.: ‘IWLS'93 Benchmark Set: Version 4.0’, 1993
[13] Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: W. H. Freeman, 1983.

2347

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on March 30,2022 at 08:34:20 UTC from IEEE Xplore. Restrictions apply.

