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In this paper, two problems related to FitzHugh-Nagumo lattice systems are analyzed. The first one is

concerned with the asymptotic behavior of random delayed FitzHugh-Nagumo lattice systems driven

by nonlinear Wong-Zakai noise. We obtain a new result ensuring that such a system approximates

the corresponding deterministic system when the correlation time of Wong-Zakai noise goes to in-

finity rather than to zero. We first prove the existence of tempered random attractors for the random

delayed lattice systems with a nonlinear drift function and a nonlinear diffusion term. The pullback

asymptotic compactness of solutions is proved thanks to the Ascoli-Arzelà theorem and uniform tail-

estimates. We then show that the upper semi-continuous of attractors as the correlation time tends

to infinity. As for the second problem, we consider the corresponding deterministic version of the

previous model, and study the convergence of attractors when the delay approaches zero. Namely, the

upper semicontinuity of attractors for the delayed system to the non-delayed one is proved.

Keywords: Random delay lattice system; FitzHugh-Nagumo system; Nonlinear Wong-Zakai noise;

Pullback random attractor; Upper semicontinuity

I. INTRODUCTION

Some lattice dynamical systems can be derived from spatial discretization of continuum systems. They

have wide applications in our daily life, including physics, chemistry, biology, engineering and other fields

of science (see, e.g.,5,11,15–17). As far as the authors are aware, one of the most interesting lattice systems is

FitzHugh-Nagumo model, which simulates the process of signal transmission across axons. It is known that,

lattice dynamical systems with delay have been receiving much attention for many years (9,44,46).

The motivation of this paper is to study the long-time dynamics of pullback random attractors for the follow-

ing delayed FitzHugh-Nagumo lattice system driven by a nonlinear Wong-Zakai noise:




dui
dt

− (ui−1 − 2ui + ui+1) + λui + αvi = Fi(ui(t)) + fi(ui(t− ̺(ρ)(t))) + gi(t) +Gi(t, ui)Gδ(t, ω),

dvi
dt

+ ςvi − βui = hi(t) + fi(vi(t− ̺(ρ)(t))),

ui(τ + s) = φi(s), vi(τ + s) = υi(s), i ∈ Z, t > τ, τ ∈ R, s ∈ [−ρ, 0],
(1)

where λ, α, ς , β, γ and ρ are positive constants, ̺(ρ) is a variable delayed function with maximum delay ρ, Fi is

a nonlinear drift function with polynomial growth of arbitrary order, fi is an external force affected by memory

during the interval of delay time [−ρ, 0], the deterministic time-dependent forcings gi, hi ∈ L2
loc(R, L

2(Rn)),
φi, ψi are the initial data on the internal [−ρ, 0],Gi is a nonlinear diffusion, Gδ is the Wong-Zakai process with
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correlation time δ > 0, which is δ-difference of a two-side scalar Wiener process W on a probability space

(Ω,F ,P), given by

Gδ(t, ω) :=
1

δ
(W (t+ δ, ω)−W (t, ω)), ∀ δ > 0, t ∈ R, ω ∈ Ω. (2)

This type of Wong-Zakai noise was first introduced by40,41 in which the authors used deterministic differen-

tial equations to approximate stochastic ones for one-dimensional Brownian motions. Later, a growing number

of authors extended the idea of Wong-Zakai approximations to higher-dimensional Brownian motions, martin-

gales and semimartingales (see18,19,29–35 ). Recently, the convergence of solutions and attractors for random

equations with such a noise when δ → 0 has been extensively studied (see1,4,6,12,13,48). Note that Wong-Zakai

approximation systems in these references were only considered in the case of linear noise, that is, the se-

quence of diffusion functions G = (Gi)i∈Z in (1) is u = (ui)i∈Z or independent of u. Moreover, so were

all the results on the semicontinuity of random attractors, see3,22,37,43 for autonomous stochastic equations,

and4,7,20,21,23,26,39,42,45,47 for non-autonomous stochastic equations.

However, there exist very few works on studying the attractors of random delayed equations driven by the

nonlinear Wong-Zakai noise, even in autonomous version. To our knowledge, the only two papers for such

autonomous equations were published by Li et al. in24,25. In this paper, we investigate the dynamics of non-

autonomous random delayed FitzHugh-Nagumo lattice system with a nonlinear Wong-Zakai noise (1).

The present article is divided into two parts. In the first part, we prove the existence of a pullback random at-

tractor Aδ = {Aδ(t, ω)} for the random delayed system (1) with a nonlinear noise and its upper semicontinuity

when δ → +∞. This is different from the general situation δ → 0. To prove the existence of a pullback random

attractor Aδ in X ρ
σ = C([−ρ, 0],Xσ) with Xσ = ℓ2σ × ℓ2σ, where ℓ2σ is weighted space for each δ > 0, we must

verify the random dynamical system (or cocycle) Ψδ, induced by Eq. (1) driven by the Wong-Zakai nonlinear

noise, is pullback asymptotically compact in X ρ
σ . The ideas of uniform estimates and the Ascoli-Arzelà theo-

rem are the crucial tools to prove it. As for the upper semi-convergence of Aδ as δ → +∞, we need the help

of the logarithm law of the Wiener process, which establishes W (t, ω)/ log(log |t|) → 0 as t → ±∞, as well

as the result (11) in Lemma II.1 which ensures

lim
δ→+∞

sup
t∈[a,b]

Gδ(t, ω) = 0, P-a.s. ω ∈ Ω, a ≤ b.

Based on the previous arguments, we consider the limiting system of random delayed lattice model (1) when

δ → +∞ as the deterministic delayed lattice system:





dûi
dt

− (ûi−1 − 2ûi + ûi+1) + λûi + αv̂i = Fi(ûi(t)) + fi(ûi(t− ̺(ρ)(t))) + gi(t),

dv̂i
dt

+ ςv̂i − βûi = hi(t) + fi(v̂i(t− ̺(ρ)(t))),

ûi(τ + s) = φ̂i, v̂i(τ + s) = υ̂i, i ∈ Z, t > τ, τ ∈ R, s ∈ [−ρ, 0].

(3)

Under some appropriate conditions (see Hypotheses E, F1, F2, G1-G3 later), we find out that the system

(3) generates a pullback attractor denoted by A∞(t) whose existence has been established, see2,8,36. Then we

need to check that the random pullback attractor Aδ(t, ω) semi-converges to A∞(t) as δ → +∞ (see Theorem

IV.2), that is,

lim
δ→+∞

dX ρ
σ
(Aδ(t, ω),A∞(t)) = 0, ∀ t ∈ R, ω ∈ Ω, (4)

where the distance dX ρ
σ

is defined for all subsets A and B of X ρ
σ by

dX ρ
σ
(A,B) := sup

a∈A

inf
b∈B

sup
ν∈[−ρ,0]

‖a(ν)− b(ν)‖Xσ
.
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For this end, we prove the solutions to random system (1) converge to that of the corresponding deterministic

system (3) when δ → +∞. Note that the pullback attractor A∞(t) in (4) is written as Aρ(t) to indicate its

dependence on the delay ρ for later purpose.

In the second part of this article, our goal is to further establish the upper semicontinuity of the pullback

attractor Aρ(t) as ρ→ 0 (see Theorem V.4), that is,

lim
ρ→0

d∗X ρ
σ
(Aρ(t),A0(t)) = 0, ∀ t ∈ R, (5)

where A0(t) is a pullback attractor for the non-delayed version of Eq. (3), and the distance d∗X ρ
σ

is defined for

all subset A of X ρ
σ and B of Xσ by

d∗X ρ
σ
(A,B) := sup

a∈A

inf
b∈B

sup
ν∈[−ρ,0]

‖a(ν)− b‖Xσ
.

Due to the validity of all the estimates we obtained in Section III of the first part, especially in two cases of

the non-delayed case (ρ = 0) and the deterministic case (δ → +∞) for (1). Therefore, we immediately deduce

the existence of the pullback attractor A0(t). As for (5), the main task is to prove the convergence of solutions

to system (3) as ρ→ 0.

The article is organized as follows. In the next section, we introduce Wong-Zai process, weighted spaces

and some notations, impose some suitable assumptions, and define a family of continuous cocycles. In Section

III, we prove the existence of pullback random attractors for problem (1). In Section IV, we further establish

its upper semicontinuity as δ → +∞. The last section is devoted to the upper semicontinuity of pullback

attractors for problem (3) as ρ→ 0.

II. RANDOM DELAYED FITZHUGH-NAGUMO LATTICE SYSTEM DRIVEN BY WONG-ZAKAI NOISE

In this section, we first prove some useful results on Wong-Zakai processes and weighted spaces. We then de-

fine a continuous cocycle (non-autonomous random dynamical system) Ψδ associated with the random delayed

FitzHugh-Nagumo lattice system (1) for all δ > 0, and establish some suitable assumptions.

A. Wong-Zakai process

As usual, we identify the Wiener process W (t, ω) with the path ω(t) on the metric dynamical system

(Ω,F,P, θ}, i.e., W (t, ω) = ω(t), where Ω = {ω ∈ C(R,R) : ω(0) = 0} with the compact-open topol-

ogy, F is the Borel σ-algebra, P is the Wiener measure on (Ω,F), θ = {θt : t ∈ R} is a group on (Ω,F,P)
denoted by θtω(·) = ω(·+ t)− ω(t), and there is a θ-invariant full-measure set Ω0 ⊂ Ω satisfying

lim
t→±

ω(t)

t
= 0, ∀ ω ∈ Ω0. (6)

For convenience, we write Ω0 as Ω. For each δ > 0, define a random variable Gδ by

Gδ(ω) := Gδ(0, ω) =
ω(δ)

δ
, ∀ δ > 0, ω ∈ Ω, (7)

which implies that the Wong-Zakai process has another form:

Gδ(t, ω) =
1

δ
(W (t+ δ, ω)−W (t, ω)) = Gδ(θtω), ∀ δ > 0, t ∈ R, ω ∈ Ω. (8)

The following Lemma gives several conclusions on Gδ .
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Lemma II.1. For each (δ, ω) ∈ R
+ × Ω, we obtain the following results

(i) The mapping t→ Gδ(θtω) is continuous such that

lim
δ→0

sup
t∈[a,b]

∣∣∣
∫ t

0

Gδ(θsω)ds− ω(t)
∣∣∣ = 0; (9)

(ii) The mapping t→ Gδ(θtω) is of sublinear growth, i.e.,

lim
t→±∞

Gδ(θtω)

t
= 0; (10)

(iii) The mapping δ → Gδ(θtω) is continuous on (0,+∞) and uniformly continuous on [δ0,+∞) for all

δ0 > 0 such that

lim
δ→+∞

sup
t∈[a,b]

|Gδ(θtω)| = 0; (11)

(iv) For any ς1, ς2 > 0 and ω ∈ Ω such that for all δ > 0,

∫ 0

−∞

eς1t|Gδ(θtω)|ς2dt < +∞, and lim
δ→+∞

∫ 0

−∞

eς1t|Gδ(θtω)|ς2dt = 0. (12)

Proof. (i) It follows from28 (lemma 2.1) that (9) holds true.

(ii) According to (7), we obtain

lim
t→±∞

Gδ(θtω)

t
= lim

t→±∞

ω(t+ δ)− ω(t)

δt
= lim

t→±∞

ω(t+ δ)

t+ δ
· t+ δ

δt
− 1

δ
lim

t→±∞

ω(t)

t
= 0. (13)

(iii) Since t → ω(t) is continuous, one can imply that δ → Gδ(θtω) is continuous on (0,+∞). We now

prove that it is uniformly continuous on [δ0,+∞) for all δ0 > 0. And thus we need to imply that

lim
δ→+∞

sup
t∈[a,b]

Gδ(θtω) = lim
δ→+∞

sup
t∈[a,b]

ω(t+ δ)− ω(t)

δ

= lim
δ→+∞

sup
t∈[a,b]

ω(t+ δ)

δ
− lim

δ→+∞
inf

t∈[a,b]

ω(t)

δ
= 0. (14)

On the one hand, for given ǫ > 0 and ω ∈ Ω, note that
ω(t)
t

→ 0 as t→ +∞, so there exists T1 := T1(ǫ, ω) > 0
such that |ω(t)| ≤ ǫt for all t ≥ T1. For each a, b ∈ R and a ≤ b, then [a, b] is compact. Then, for all δ ≥ T1−a,

and so t+ δ ≥ T1 > 0 whenever t ∈ [a, b],

sup
t∈[a,b]

ω(t+ δ)

t+ δ
≤ sup

t∈[a,b]

|ω(t+ δ)|
t+ δ

≤ sup
t∈[a,b]

ǫ(t+ δ)

t+ δ
= ǫ. (15)

We then easily check that 0 ≤ t+δ
δ

≤ 2 for all δ ≥ max{|a|, |b|}. Let δ0 = max{T1 − a, |a|, |b|}, then for all

δ ≥ δ0 and t ∈ [a, b] such that

sup
t∈[a,b]

ω(t+ δ)

δ
= sup

t∈[a,b]

ω(t+ δ)

t+ δ
· t+ δ

δ
≤ 2ǫ,

which implies

lim
δ→+∞

sup
t∈[a,b]

ω(t+ δ)

δ
= 0. (16)
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On the other hand, since the minimum of ω(·) over [a, b] exists and is finite, we deduce

lim
δ→+∞

inf
t∈[a,b]

ω(t)

δ
= 0. (17)

Combining (16) and (17), we obtain we obtain (14). This implies (11), which together with the continuity of

δ → Gδ(θtω), yields the uniform continuity on [δ0,+∞).
(iv) By (ii), t→ Gδ(θtω) is of sublinear growth as t→ −∞, which along with the continuity of δ → Gδ(θtω)

shows that eς1t|Gδ(θtω)|ς2 is integrable with respect to t ∈ (−∞, 0] for any ς1, ς2 > 0. By
ω(t)
t

→ 0 as

t→ ±∞, there is a T := T (ω) > 0 such that
∣∣ω(t)

t

∣∣ ≤ 1 for all |t| ≥ T ,

|ω(t)| ≤ |t|+ C(ω), ∀ t ∈ R, (18)

where C(ω) = sup
t∈[−T,T ]

|ω(t)| < +∞.

For all δ ≥ 1, we then proves the following inequality holds true.

|Gδ(θtω)| ≤ 2C(ω)− 2t+ 1, ∀ t ≤ 0, ω ∈ Ω. (19)

Case A: If t ∈ [−δ, 0], then for all δ ≥ 1,

|Gδ(θtω)| =
1

δ
|ω(t+ δ)− ω(t)| ≤ 1

δ
(|ω(t+ δ)|+ |ω(t)|)

≤1

δ

(
(t+ δ + C(ω)) + (−t+ C(ω))

)
= 1 +

2

δ
C(ω) ≤ 2C(ω)− 2t+ 1. (20)

Case B: If t ∈ (−∞,−δ], then for all δ ≥ 1,

|Gδ(θtω)| =
1

δ
|ω(t+ δ)− ω(t)| ≤ 1

δ
(|ω(t+ δ)|+ |ω(t)|)

≤1

δ

(
(−t− δ + C(ω)) + (−t+ C(ω))

)
≤ 2C(ω)− 2t+ 1. (21)

Combining two cases A and B, we have (19) as desired. Thus, we easily show

∫ 0

−∞

eς1t|Gδ(θtω)|ς2dt ≤
∫ 0

−∞

eς1t(2C(ω)− 2t+ 1)ς2dt < +∞, ∀ ς1, ς2 > 0.

According to the Lebesgue control convergence theorem and (11), we deduce

lim
δ→+∞

∫ 0

−∞

eς1t|Gδ(θtω)|ς2dt =
∫ 0

−∞

eς1t lim
δ→+∞

|Gδ(θtω)|ς2dt = 0,

which proves (12) as desired. All proofs are complete.

B. Weighted spaces and continuous cocycles

Given p ≥ 1 and σ > 1
2 , we define the weighted p-times summation space by

ℓpσ =

{
u = {ui}i∈Z : ‖u‖σ,p = (

∑

i∈Z

ξi|ui|p)
1
p

}
, (22)
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where ξi = (1 + i2)−σ for i ∈ Z, and so ξ = (ξi)i∈Z ∈ ℓp for any p ≥ 1. Thanks to4,15, (ℓpσ, ‖ · ‖σ,p) is a

separable Banach space. In particular, ℓ2σ is a Hilbert space with inner product and norm, respectively:

(u, v)σ =
∑

i∈Z

ξiuivi, ‖u‖σ = (u, u)
1
2
σ , ∀ u, v ∈ ℓ2σ. (23)

By the Hölder inequality, for p > q ≥ 1, we have ‖̟‖qσ,q ≤ ‖ξ‖
p−q
p

ℓ1
‖̟‖qσ,p, ∀ ̟ ∈ ℓpσ. More precisely,

‖̟‖qσ,q =
∑

i∈Z

ξi|̟|q =
∑

i∈Z

ξ
p−q
p

i

(
ξ

q
p

i |̟|q
)

≤
(∑

i∈Z

(ξ
p−q
p

i )
p

p−q

) p−q
p
(∑

i∈Z

(
ξ

q
p

i |̟i|q
) p

q
) q

p

= ‖ξ‖
p−q
p

ℓ1
‖̟‖qσ,p. (24)

Taking into account the delay, let Xρ
σ = C([−ρ, 0], ℓ2σ), which is the space of all continuous functions from

[−ρ, 0] to ℓ2σ with the following norm

‖υ‖Xρ
σ
= sup

s∈[−ρ,0]

‖υ(s)‖σ = sup
s∈[−ρ,0]

(∑

i∈Z

ξi|υi(s)|2
) 1

2

, ∀ υ ∈ Xρ
σ. (25)

For convenience, the delay shift of ϕ = (u, v) : R× R → R
2 is defined by

ϕt = (ut, vt) : [−ρ, 0]× [−ρ, 0] → R
2, ϕt(s, x) = (u(t+ s), v(t+ s)) (26)

for all s ∈ [−ρ, 0].
Let Xσ = ℓ2σ × ℓ2σ and X ρ

σ = C([−ρ, 0],Xσ) be equipped by the norms

‖ϕ‖2Xσ
= β‖u‖2σ + α‖v‖2σ, ∀ϕ = (u, v), (27)

and

‖ϕt‖2X ρ
σ
= β‖ut‖2Xρ

σ
+ α‖vt‖2Xρ

σ
= β sup

s∈[−ρ,0]

‖ut(s)‖2σ + α‖vt(s)‖2σ, ∀ϕ = (u, v), (28)

where α and β are as in (1). Then, we introduce the discrete Laplace and gradient operators by

(Au)i = −ui−1 + 2ui − ui+1, (Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui, (29)

which shows thatA = BB∗ = B∗B, see14. Note that for all u, v ∈ l2 such that (Bu, v) = (u,B∗v), (Au, v) =
(Bu,Bv). It is simple to obtain that for all i ∈ Z,

0.4σ ≤ ξi+1

ξi
=

( 1 + i2

1 + (i+ 1)2

)σ

≤ 2.5σ, and 0.4σ ≤ ξi−1

ξi
=

(1 + (i− 1)2

1 + i2

)σ

≤ 2.5σ, (30)

which implies that

ξi±1 ≤ 2.5σξi, |(Bξ)i| = |ξi+1 − ξi| ≤ 2.5σξi, |(B∗ξ)i| ≤ 2.5σξi. (31)

Let F (x, u(t)) = (Fi(ui(t)))i∈Z, f(u(t−̺(ρ)(t))) = (fi(ui(t−̺(ρ)(t))))i∈Z, f(v(t−̺(ρ)(t))) = (fi(vi(t−
̺(ρ)(t))))i∈Z, g(x, t) = (gi(t))i∈Z, G(t, u) = (Gi(t, ui))i∈Z, and h(x, t) = (hi(t))i∈Z. Then system (1) can

be rewritten as





du

dt
+Au+ λu + αv = F (x, u(t)) + f(u(t− ̺(ρ)(t))) + g(x, t) +G(t, u)Gδ(θtω),

dv

dt
+ ςv − βu = h(x, t) + f(v(t− ̺(ρ)(t))),

u(τ + s) = φ(s), v(τ + s) = υ(s), t > τ, τ ∈ R, s ∈ [−ρ, 0], ρ > 0.

(32)



Dynamical stability of random delayed FitzHugh-Nagumo lattice systems 7

Hypothesis E. The delay function ̺(ρ)(·) is a positive continuously differentiable function satisfying

ρ := sup
t∈R

̺(ρ)(t) < +∞, ρ∗ := sup
ρ∈(0,ρ0]

sup
t∈R

d

dt
̺(ρ)(t) < 1. (33)

Therefore, the memory time ρ ∈ (0, ρ0] for some ρ0 > 0.

Hypothesis F1. For the nonlinear drift function Fi ∈ C1(R,R), we assume that for all s ∈ R and i ∈ Z,

Fi(s)s ≤ −α1|s|p + µ1,i, µ1 = (µ1,i)i∈Z ∈ ℓ
2p−2

p
σ , (34)

∣∣Fi(s)
∣∣ ≤ α2|s|p−1 + µ2,i, µ2 = (µ2,i)i∈Z ∈ ℓ2σ, (35)

∂Fi

∂s
(s) ≤ −α3|s|p−2 + µ3,i, µ3 = (µ3,i)i∈Z ∈ ℓ∞, (36)

where p ≥ 2, α1, α2 and α3 are positive constants.

Hypothesis F2. The nonlinear delayed term fi is continuous such that for all s1, s2 ∈ R,

fi(0) = 0, ∀ i ∈ Z,

sup
i∈Z

sup
s1,s2∈R

|fi(s1)− fi(s2)| ≤ Lf |s1 − s2|, (37)

where Lf > 0 is constant.

From now on, let κ = min{λ, ς} and σ0 := 4 × 2.52σ + 4
3 (2.5

3σ + 2‖µ3‖ℓ∞). Besides, we assume

σ0 +
4L2

f

κ(1−ρ∗)
< κ. In this case, there exists m0 > 0 small enough such that for all m ∈ (0,m0),

m+ σ0 − κ+
4L2

fe
mρ0

κ(1− ρ∗)
< 0. (38)

In particular, m− κ+
4L2

fe
mρ0

κ(1−ρ∗)
< 0.

Hypothesis G1. Let Gi(·, ·) be continuous from R
2 to R satisfying

|Gi(t, s)| ≤ α4|s|q−1 + µ4,i(t), µ4 = (µ4,i)i∈Z ∈ L∞(R, ℓpσ), (39)

where 2 ≤ q < p, α4 > 0.

We further impose the following assumptions.

Hypothesis G2. The forces g and h are backward tempered:

Υ(τ) := sup
r≤τ

∫ 0

−∞

emν(‖g(ν + r)‖2σ + ‖h(ν + r)‖2σ)dν < +∞, ∀ τ ∈ R. (40)

Hypothesis G3. The forces g and h are backward tail-small:

lim
k→∞

sup
r≤τ

∫ 0

−∞

emν
∑

|i|≥k

ξi(|gi(ν + r)|2 + |hi(ν + r)|2)dν = 0, ∀ τ ∈ R. (41)

Under the assumptions (33)-(41), similarly to the Galerkin method, we can show that for each δ > 0, τ ∈
R, ω ∈ Ω and ψτ = (uτ , vτ ) ∈ X ρ

σ = C([−ρ, 0], ℓ2σ × ℓ2σ), the random delayed FitzHugh-Nagumo lattice

system (32) possesses a unique solution ϕδ(·, τ, ω, ψτ ) = (uδ(·, τ, ω, uτ ), vδ(·, τ, ω, vτ )) such that

ϕδ ∈ C([τ − ρ,+∞), ℓ2σ × ℓ2σ). (42)
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Besides, the solution ϕδ is continuous with respect to the initial data ψτ in X ρ
σ . By the same method as in10,

one can prove that ϕδ(t, τ, ω, ψτ ) is (F,B(X ρ
σ ))-measurable in ω ∈ Ω. Then, for each δ > 0, we can define a

family of continuous cocycles Ψδ : R+ × R× Ω×X ρ
σ 7→ X ρ

σ given by

Ψδ(t, τ, ω)ψτ = ϕδ
t+τ (·, τ, θ−τω, ψτ ). (43)

Let D be the universe of all backward tempered bi-parametric sets in X ρ
σ , where a bi-parametric set D :=

{D(τ, ω) : (τ, ω) ∈ R× Ω} in X ρ
σ is called backward tempered, that is, D ∈ D if and only if

lim
t→+∞

e−γt sup
r≤τ

‖D(r − t, θ−tω)‖2X ρ
σ
= 0, ∀ (γ, τ, ω) ∈ R

+ × R× Ω. (44)

We easily check that D is backward-union closed in the sense of D̂ ∈ D whenever D ∈ D, where

D̂(τ, ω) =
⋃

r≤τ

D(r, ω), ∀ (τ, ω) ∈ R× Ω. (45)

However, the usual universe D̃ of all tempered bi-parametric sets is not backward-union closed, where D̃ ∈ D̃

if and only if

lim
t→+∞

e−γt‖D̃(τ − t, θ−tω)‖2X ρ
σ
= 0, ∀ (γ, τ, ω) ∈ R

+ × R× Ω. (46)

III. EXISTENCE OF PULLBACK RANDOM ATTRACTORS

This subsection is devoted to the existence of pullback random attractors for the random delayed FitzHugh-

Nagumo system (32). We first derive a variety of backward uniform estimates of solutions to Eq. (32), including

the backward uniform absorption and tail-estimates. We then prove the pullback asymptotic compactness of

the solutions via the Ascoli-Arzelà theorem in X ρ
σ = C([−ρ, 0],Xσ), where Xσ = ℓ2σ × ℓ2σ. Finally, we prove

the existence of tempered random attractors for Eq. (32).

A. Backward uniform absorption

Lemma III.1. Let the hypotheses E, F1, F2, G1, G2 and (38) be satisfied. Then, for each (τ, ω,D) ∈ R×Ω×D

and ψr−t = (φr−t, υr−t) ∈ D(r − t, θ−tω), there exists a T := T (τ, ω,D) ≥ 3ρ+ 1 such that for all t ≥ T ,

the solution ϕδ = (uδ, vδ) to (32) satisfies

sup
r≤τ

sup
s∈[−2ρ−1,0]

‖ϕδ(r + s, r − t, θ−rω, ψr−t)‖2Xσ
≤ cRδ(τ, ω), (47)

sup
r≤τ

∫ r

r−t

em(ν−r)‖ϕδ(ν)‖2Xσ
dν + sup

r≤τ

∫ r

r−t

em(ν−r)
(
‖ϕδ(ν)‖2Xσ

+ ‖uδ(ν)‖pσ,p
)
dν ≤ cRδ(τ, ω), (48)

where Rδ(τ, ω) = 1 + Υ(τ) + ηδ(ω) with

Υ(τ ) = sup
r≤τ

∫ 0

−∞

e
mν(‖g(ν + r)‖2σ + ‖h(ν + r)‖2σ)dν, ηδ(ω) =

∫ 0

−∞

e
mν |Gδ(θνω)|

p
p−q dν. (49)

Proof. Taking the inner product of (32) with (2βuδ, 2αvδ) := (2βuδ(ν, r − t, θ−rω, φr−t), 2αv
δ(ν, r −

t, θ−rω, υr−t)) in Xσ = ℓ2σ × ℓ2σ (when no ambiguity is possible, we delete the superscript δ below), we

obtain

d

dν
‖ϕ‖2Xσ

+ 2κ‖ϕ‖2Xσ
= −2β

∑

i∈Z

ξi(Au)iui + 2β(F (x, u), u)σ (50)
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+ 2β(f(u(ν − ̺(ρ)(ν))), u)σ + 2α(f(v(ν − ̺(ρ)(ν))), v)σ

+ 2β(g(x, ν), u)σ + 2α(h(x, ν), v)σ + 2βGδ(θν−rω)(G, u)σ,

where we recall that ‖ϕ‖2Xσ
= β‖u‖2σ+α‖v‖2σ, κ = min{λ, ς}. By (31) and (B(ξu))i = (Bξ)iui+1+ξi(Bu)i,

we have

− 2β
∑

i∈Z

ξi(Au)iui = −2β
∑

i∈Z

(Bu)i(B(ξu))i = −2β
∑

i∈Z

(Bξ)i(Bu)iui+1 − 2β
∑

i∈Z

ξi|(Bu)i|2

≤ 2β
∑

i∈Z

2.5σξi|(Bu)i||ui+1| − 2β
∑

i∈Z

ξi|(Bu)i|2 ≤ β
∑

i∈Z

ξi(2.5
2σ|ui+1|2 + |(Bu)i|2)− 2β

∑

i∈Z

ξi|(Bu)i|2

≤ 2.52σβ
∑

i∈Z

ξi|ui+1|2 ≤ 2.53σβ
∑

i∈Z

ξi+1|ui+1|2 = 2.53σβ‖u‖2σ. (51)

By (34) in the hypothesis F1, we imply

2β(F (x, u), u)σ = 2β
∑

i∈Z

ξiFi(ui)ui

≤ −2α1β
∑

i∈Z

ξi|ui|p + 2β
∑

i∈Z

ξiµ1,i ≤ −2α1β‖u‖pσ,p + 2β‖µ1‖σ,1. (52)

According to the Young inequality and (37) in the hypothesis F2, we deduce

2β(f(u(ν − ̺(ρ)(ν))), u)σ + 2α(f(v(ν − ̺(ρ)(ν))), v)σ

= 2β
∑

i∈Z

ξifi(ui(ν − ̺(ρ)(ν)))ui + 2α
∑

i∈Z

ξifi(vi(ν − ̺(ρ)(ν)))vi

≤
4L2

f

κ

∑

i∈Z

(
β|ui(ν − ̺(ρ)(ν))|2 + α|vi(ν − ̺(ρ)(ν))|2

)
+
κ

4
‖ϕ‖2Xσ

≤
4L2

f

κ
‖ϕ(ν − ̺(ρ)(ν))‖2Xσ

+
κ

4
‖ϕ‖2Xσ

. (53)

The Young inequality gives

2β(g(x, ν), u)σ + 2α(h(x, ν), v)σ ≤ κ

4
‖ϕ‖2Xσ

+ c1(‖g(ν)‖2σ + ‖h(ν)‖2σ), (54)

where c1 = c1(β, α, κ) > 0. By (39) in the hypothesis G1, we have

2βGδ(θν−rω)(G, u)σ ≤2β|Gδ(θν−rω)|
∑

i∈Z

ξi|Gi(ν, ui)||ui|

≤2βα4|Gδ(θν−rω)|
∑

i∈Z

ξi|ui|q + 2β|Gδ(θν−rω)|
∑

i∈Z

ξi|µ4,i(ν)||ui|

≤c2|Gδ(θν−rω)|‖u‖qσ,q +
2

q̂
β|Gδ(θν−rω)|‖µ4(ν)‖q̂σ,q̂, (55)

where c2 = 2βα4 +
2
q
β and 1

q̂
+ 1

q
= 1. Now, we estimate the last two terms in (55), respectively. On the one

hand, by (24), we obtain

c2|Gδ(θν−rω)|‖u‖qσ,q ≤ c2|Gδ(θν−rω)|‖ξ‖
p−q
p

ℓ1
‖u‖qσ,p ≤

1

2
α1β‖u‖pσ,p + c3|Gδ(θν−rω)|

p
p−q , (56)
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where c3 = c3(‖ξ‖ℓ1, α1, β, c2) > 0. On the other hand, note that q ≥ 2 and so q̂ ≤ 2 ≤ q < p, by (24) and

µ4 ∈ L∞(R, ℓpσ), we imply

2

q̂
β|Gδ(θν−rω)|‖µ4(ν)‖q̂σ,q̂ ≤

2

q̂
β|Gδ(θν−rω)|‖ξ‖

p−q̂
p

ℓ1
‖µ4(ν)‖q̂σ,p

≤ 2

q̂
β|Gδ(θν−rω)|‖ξ‖

p−q̂
p

ℓ1
‖µ4‖q̂L∞(R,ℓpσ)

≤ c4|Gδ(θν−rω)|
p

p−q + c5. (57)

Substituting (56)-(57) into (55),

2βGδ(θν−rω)(G, u)σ ≤1

2
α1β‖u‖pσ,p + c6|Gδ(θν−rω)|

p
p−q + c5, (58)

where c6 = c3 + c4. By (51)-(54) and (58), we can rewrite (50) as follows.

d

dν
‖ϕ‖2Xσ

+ κ‖ϕ‖2Xσ
+
κ

2
‖ϕ‖2Xσ

+
3

2
α1β‖u‖pσ,p

≤ 2.53σβ‖u‖2σ +
4L2

f

κ
‖ϕ(ν − ̺(ρ)(ν))‖2Xσ

+ c1(‖g(ν)‖2σ + ‖h(ν)‖2σ) + c6|Gδ(θν−rω)|
p

p−q + c7, (59)

where c7 = c5 + 2β‖µ1‖σ,1 < +∞ in view of µ1 ∈ ℓ
2p−2

p
σ . Taking into account (24), we obtain

2.53σβ‖u‖2σ ≤ 2.53σβ‖ξ‖
p−2
p

ℓ1
‖u‖2σ,p ≤ 1

2
α1β‖u‖pσ,p + c8, (60)

where c8 = c8(‖ξ‖ℓ1 , σ, β, α1) > 0. Combining (59) and (60), we have

d

dν
‖ϕ‖2Xσ

+ κ‖ϕ‖2Xσ
+
κ

2
‖ϕ‖2Xσ

+ α1β‖u‖pσ,p (61)

≤
4L2

f

κ
‖ϕ(ν − ̺(ρ)(ν))‖2Xσ

+ c9(1 + ‖g(ν)‖2σ + ‖h(ν)‖2σ) + c6|Gδ(θν−rω)|
p

p−q .

Multiplying (61) by emν and integrating it about ν ∈ [r−t, r+s], where r ≤ τ, t ≥ 3ρ+1 and s ∈ [−2ρ−1, 0],
we deduce

em(r+s)‖ϕ(r + s, r − t, θ−rω, ψr−t)‖2Xσ
+
κ

2

∫ r+s

r−t

emν‖ϕ(ν)‖2Xσ
dν + α1β

∫ r+s

r−t

emν‖u(ν)‖pσ,pdν

≤ em(r−t)‖ψr−t(0)‖2Xσ
+ (m− κ)

∫ r+s

r−t

emν‖ϕ(ν)‖2Xσ
dν +

4L2
f

κ

∫ r+s

r−t

emν‖ϕ(ν − ̺(ρ)(ν))‖2Xσ
dν

+ c9

∫ r+s

r−t

emν(1 + ‖g(ν)‖2σ + ‖h(ν)‖2σ)dν + c6

∫ r+s

r−t

emν|Gδ(θν−rω)|
p

p−q dν. (62)

Now, we compute the third term on the right-hand of (62):

4L2
f

κ

∫ r+s

r−t

emν‖ϕ(ν − ̺(ρ)(ν))‖2Xσ
dν

≤
4L2

f

κ(1− ρ∗)

∫ r+s

r−t−ρ

em(µ+̺(ρ)(ν))‖ϕ(µ)‖2Xσ
dµ



Dynamical stability of random delayed FitzHugh-Nagumo lattice systems 11

≤
4L2

fe
mρ0

κ(1− ρ∗)

∫ r−t

r−t−ρ

emµ‖ϕ(µ)‖2Xσ
dµ+

4L2
fe

mρ0

κ(1− ρ∗)

∫ r+s

r−t

emµ‖ϕ(µ)‖2Xσ
dµ

≤
4L2

fe
mρ0

mκ(1− ρ∗)
em(r−t)‖ψr−t‖2X ρ

σ
+

4L2
fe

mρ0

κ(1− ρ∗)

∫ r+s

r−t

emµ‖ϕ(µ)‖2Xσ
dµ. (63)

It follows from (38), (62) and (63) that

‖ϕ(r + s, r − t, θ−rω, ψr−t)‖2Xσ
+
κ

2

∫ r+s

r−t

em(ν−r−s)‖ϕ(ν)‖2Xσ
dν

+ α1β

∫ r+s

r−t

em(ν−r−s)‖u(ν)‖pσ,pdν

≤ c10e
m(−t−s)‖ψr−t‖2X ρ

σ
+ c9

∫ r+s

r−t

em(ν−r−s)(1 + ‖g(ν)‖2σ + ‖h(ν)‖2σ)dν

+ c6

∫ r+s

r−t

em(ν−r−s)|Gδ(θν−rω)|
p

p−q dν. (64)

By s ∈ [−2ρ− 1, 0] and ρ ∈ (0, ρ0] , we have

‖ϕ(r + s, r − t, θ−rω, ψr−t)‖2Xσ
+
κ

2

∫ r+s

r−t

em(ν−r)‖ϕ(ν)‖2Xσ
dν

+ α1β

∫ r+s

r−t

em(ν−r)‖u(ν)‖pσ,pdν

≤ c10e
m(2ρ0+1)e−mt‖ψr−t‖2X ρ

σ
+ c9e

m(2ρ0+1)

∫ r

r−t

em(ν−r)(1 + ‖g(ν)‖2σ + ‖h(ν)‖2σ)dν

+ c6e
m(2ρ0+1)

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|
p

p−q dν. (65)

Since ψr−t ∈ D(r − t, θ−tω) and D ∈ D, we obtain that there exists a T := T (τ, ω,D) ≥ 3ρ + 1 such that

for all t ≥ T ,

sup
r≤τ

e−mt‖ψr−t‖2X ρ
σ
≤ e−mt sup

r≤τ

‖D(r − t, θ−tω)‖2X ρ
σ
≤ 1,

which, together with (65), implies that for all t ≥ T

sup
r≤τ

sup
s∈[−2ρ−1,0]

‖ϕ(r + s, r − t, θ−rω, ψr−t)‖2Xσ
≤ c(1 + Υ(τ) + ηδ(ω)),

which yields (47). Letting s = 0 in (65) shows (48) as desired.

As an immediate consequence of Lemma III.1, we prove D-backward absorption, which means D-pullback

absorption is uniform with respect to the past time.

Proposition III.2. Let the hypotheses E, F1, F2, G1, G2 and (38) be satisfied. The cocycle Ψδ associated with

the random delayed FitzHugh-Nagumo lattice system (1) possesses a D-pullback random absorbing set Kδ ∈
D, given by

Kδ(τ, ω) = {ϕδ = (uδ, vδ) ∈ X ρ
σ : ‖ϕδ‖2X ρ

σ
≤ cRδ(τ, ω)}, (66)

where Rδ(τ, ω) is the same as in Lemma III.1. Moreover, Kδ is D-backward absorbing set, that is, for

each (τ, ω,D) ∈ R× Ω×D, there is a T := T (τ, ω,D) ≥ 3ρ+ 1 such that

Ψδ(t, r − t, θ−tω)D(r − t, θ−tω) ⊂ Kδ(τ, ω), ∀ r ≤ τ, t ≥ T. (67)
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Proof. It follows from (47) in Lemma III.1 that Kδ is D-backward absorbing set as in (67), which implies

the D-pullback absorbing when r = τ . By the hypothesis G2 and (12) in Lemma II.1, we easily obtain

Rδ(τ, ω) = 1 + Υ(τ) + ηδ(ω) < ∞. We then infer from the randomness of ηδ(·) that, for each τ ∈ R,

Rδ(τ, ω) is random in ω, and thus Kδ(τ, ·) is a random set in X ρ
σ .

It suffices to prove that Kδ ∈ D for all δ > 0. Since τ → Kδ(τ, ω) is increasing, it follows that

e−γt sup
r≤τ

‖Kδ(r − t, θ−tω)‖2X ρ
σ
= e−γt‖Kδ(τ − t, θ−tω)‖2X ρ

σ

≤ ce−γt(1 + Υ(τ − t) + ηδ(θ−tω)). (68)

Now, we estimate the last line of (68). On the one hand, by (40) in the hypothesis G2,

ce−γtΥ(τ − t) ≤ ce−γt sup
r≤τ−t

∫ 0

−∞

emν(‖g(ν + r)‖2σ + ‖h(ν + r)‖2σ)dν

≤ ce−γt sup
r≤τ

∫ 0

−∞

emν(‖g(ν + r)‖2σ + ‖h(ν + r)‖2σ)dν

= ce−γtΥ(τ) → 0, (69)

as t → +∞ in view of Υ(τ) < +∞. On the other hand, let γ̂ := min{γ,m}, then by (12) in Lemma II.1, we

deduce that

ce−γtηδ(θ−tω) = ce−γt

∫ 0

−∞

emν |Gδ(θν−tω)|
p

p−q dν ≤ ce−γt

∫ 0

−∞

eγ̂ν |Gδ(θν−tω)|
p

p−q dν

=ce−γt

∫ −t

−∞

eγ̂(ν+t)|Gδ(θνω)|
p

p−q dν ≤ ce−(γ−γ̂)t

∫ 0

−∞

eγ̂ν |Gδ(θνω)|
p

p−q dν → 0 (70)

as t→ +∞. Using (69) and (70) in (68), we imply

e−γt sup
r≤τ

‖Kδ(r − t, θ−tω)‖2X ρ
σ
→ 0, as t→ +∞. (71)

The desired result is proved.

Let us now obtain the uniform estimates of solutions in ℓpσ for later purpose.

Lemma III.3. Let the hypotheses E, F1, F2, G1, G2 and (38) be satisfied. Then, for each (τ, ω,D) ∈ R×Ω×D

and ψr−t = (φr−t, υr−t) ∈ D(r − t, θ−tω), there exists a T := T (τ, ω,D) ≥ 3ρ+ 1 such that for all t ≥ T ,

the solution ϕδ = (uδ, vδ) of (32) satisfies for all s ∈ [−ρ, 0],

sup
r≤τ

‖uδ(r + s, r − t, θ−rω, ψr−t)‖pσ,p + sup
r≤τ

∫ r

r−ρ

‖uδ(ν, r − t, θ−rω, ψr−t)‖2p−2
σ,2p−2dν ≤ cR̃δ(τ, ω), (72)

where R̃δ(τ, ω) = Rδ(τ, ω) + η̃δ(ω) with

η̃δ(ω) =

∫ 0

−∞

emν(|Gδ(θνω)|
2p−2
p−q + |Gδ(θνω)|p)dν, (73)

and Rδ(τ, ω) is the same as in Lemma III.1.

Proof. Taking the ℓ2σ-inner product of the first equation in (32) with |u|p−2u, whereu := u(ν, r−t, θ−rω, ψr−t),
we obtain

1

p

d

dν
‖u‖pσ,p + λ‖u‖pσ,p + (Au, |u|p−2

u)σ = −α(v, |u|p−2
u)σ + (F (x, u), |u|p−2

u)σ
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+ (f(u(ν − ̺
(ρ)(ν))), |u|p−2

u)σ + (g, |u|p−2
u)σ

+ Gδ(θν−rω)(G(ν, u), |u|p−2
u)σ. (74)

By (B(ξu))i = (Bξ)iui+1 + ξi(Bu)i, (31) and the fact that (s1 − s2)(|s1|p−2s1 − |s2|p−2s2) ≥ 0 for

s1, s2 ∈ R, we have

− (Au, |u|p−2u)σ = −
∑

i∈Z

ξi(Au)i(|u|p−2u)i = −
∑

i∈Z

(Bu)i(Bξ|u|p−2u)i

=−
∑

i∈Z

(Bu)i(Bξ)i|ui+1|p−2ui+1 −
∑

i∈Z

ξi(Bu)i(B|u|p−2u)i

≤2.5σ
∑

i∈Z

ξi|(Bu)i||ui+1|p−1 −
∑

i∈Z

ξi(Bu)i(B|u|p−2u)i

≤2.5σ
∑

i∈Z

ξi(|ui+1|+ |ui|)|ui+1|p−1 −
∑

i∈Z

ξi(ui+1 − ui)(|ui+1|p−2ui+1 − |ui|p−2ui)

≤2.5σ
∑

i∈Z

ξi|ui+1|p + 2.5σ
∑

i∈Z

ξi|ui||ui+1|p−1

≤2.52σ‖u‖pσ,p + 2.5σ
(1
p
+
p− 1

p
× 2.5σ

)
‖u‖pσ,p ≤ 2× 2.52σ‖u‖pσ,p. (75)

The Young inequality gives

− α(v, |u|p−2u)σ ≤ 1

16
α1‖u‖2p−2

σ,2p−2 + c1‖v‖2σ, (76)

where α1 is the number given by (34) in the hypothesis F1. Using (34) again, and by the Young inequality, we

imply

(F (x, u), |u|p−2u)σ =
∑

i∈Z

ξiFi(ui)|ui|p−2ui ≤
∑

i∈Z

ξi(−α1|ui|p + µ1,i)|ui|p−2

=− α1‖u‖2p−2
σ,2p−2 +

∑

i∈Z

ξi|ui|p−2µ1,i

≤− α1‖u‖2p−2
σ,2p−2 +

α1

2

∑

i∈Z

ξi|ui|2p−2 + c2
∑

i∈Z

ξi|µ1,i|
2p−2

p = −α1

2
‖u‖2p−2

σ,2p−2 + c3, (77)

where c3 = c2‖µ1‖
2p−2

p

σ, 2p−2
p

< +∞. Using (37) in the hypothesis F2 and the Young inequality again,

(f(u(ν − ̺(ρ)(ν))), |u|p−2u)σ + (g, |u|p−2u)σ

≤
∑

i∈Z

ξi|f(ui(ν − ̺(ρ)(ν)))||ui|p−1 +
∑

i∈Z

ξigi|ui|p−1 (78)

≤ 1

16
α1

∑

i∈Z

ξi|ui|2p−2 + c4
∑

i∈Z

ξi|f(ui(ν − ̺(ρ)(ν)))|2 + c5‖g‖2σ +
1

16
α1‖u‖2p−2

σ,2p−2

≤ 1

16
α1‖u‖2p−2

σ,2p−2 + c4L
2
f

∑

i∈Z

ξi|ui(ν − ̺(ρ)(ν))|2 + c5‖g‖2σ +
1

16
α1‖u‖2p−2

σ,2p−2.

According to (39) in the hypothesis G1, we have

Gδ(θν−rω)(G(ν, u), |u|p−2u)σ ≤ |Gδ(θν−rω)|
∑

i∈Z

ξi|Gi(ν, ui)||ui|p−1
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≤α4|Gδ(θν−rω)|‖u‖p+q−2
σ,p+q−2 + |Gδ(θν−rω)|

∑

i∈Z

ξi|ui|p−1|µ4,i(ν)|. (79)

By (24), the second line of (79) is bounded by

α4|Gδ(θν−rω)|‖u‖p+q−2
σ,p+q−2 ≤α4|Gδ(θν−rω)|‖ξ‖

p−q
2p−2

ℓ1
‖u‖p+q−2

σ,2p−2

≤c6|Gδ(θν−rω)|
2p−2
p−q +

1

16
α1‖u‖2p−2

σ,2p−2. (80)

And we can rewrite the last term in (79) by

|Gδ(θν−rω)|
∑

i∈Z

ξi|ui|p−1|µ4,i(ν)| ≤
λ

2
‖u‖pσ,p + c7|Gδ(θν−rω)|p‖µ4(ν)‖pσ,p

≤λ
2
‖u‖pσ,p + c7|Gδ(θν−rω)|p‖µ4‖pL∞(R,ℓpσ)

. (81)

Using (80) and (81) in (79), we obtain

Gδ(θν−rω)(G(ν, u), |u|p−2u)σ ≤ c6|Gδ(θνω)|
2p−2
p−q +

1

16
α1‖u‖2p−2

σ,2p−2 +
λ

2
‖u‖pσ,p + c8|Gδ(θν−rω)|p. (82)

It follows from (74)-(82) that

d

dν
‖u‖pσ,p +

p

2
λ̂‖u‖pσ,p +

α1p

4
‖u‖2p−2

σ,2p−2

≤ c1p‖v‖2σ + c4L
2
fp‖u(ν − ̺(ρ)(ν))‖2σ + c5p‖g(ν)‖2σ + c6p|Gδ(θνω)|

2p−2
p−q + c8p|Gδ(θν−rω)|p + c9, (83)

where λ̂ = λ − 4 × 2.52σ > κ − σ0 > 0 in view of (38). Let (r, ω) ∈ R × Ω, ξ ∈ (r + s − 1, r + s) for
s ∈ [−ρ, 0]. Integrating (83) over (ξ, r + s), we obtain

‖u(r + s)‖pσ,p ≤ ‖u(ξ)‖pσ,p + c1p

∫ r

r−ρ−1

‖v(ν)‖2σdν

+ c4L
2
fp

∫ r

r−ρ−1

‖u(ν − ̺
(ρ)(ν))‖2σdν + c5p

∫ r

r−ρ−1

‖g(ν)‖2σdν

+ c10

∫ r

r−ρ−1

(|Gδ(θν−rω)|
2p−2
p−q + |Gδ(θν−rω)|

p)dν + c11. (84)

Integrating (84) with respect to ξ on (r+ s− 1, r+ s), taking the supremum over r ∈ (−∞, τ ], we obtain for

all s ∈ [−ρ, 0],

sup
r≤τ

‖u(r + s)‖pσ,p ≤(1 + c1p) sup
r≤τ

∫ r

r−ρ−1

(‖u(ν)‖pσ,p + ‖v(ν)‖2σ)dν

+ c4L
2
fp sup

r≤τ

∫ r

r−ρ−1

‖u(ν − ̺(ρ)(ν))‖2σdν + c5p sup
r≤τ

∫ r

r−ρ−1

‖g(ν)‖2σdν

+ c10 sup
r≤τ

∫ r

r−ρ−1

(|Gδ(θν−rω)|
2p−2
p−q + |Gδ(θν−rω)|p)dν + c11. (85)

According to (48) in Lemma III.1, there exists a T := T (τ, ω,D) ≥ 3ρ+ 1 such that for all t ≥ T ,

e−m(3ρ+1) sup
r≤τ

∫ r

r−ρ−1

(‖u(ν)‖pσ,p + ‖v(ν)‖2σ)dν
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≤ sup
r≤τ

∫ r

r−3ρ−1

em(ν−r)(‖u(ν)‖pσ,p + ‖v(ν)‖2σ)dν

≤ sup
r≤τ

∫ r

r−t

em(ν−r)(‖u(ν)‖pσ,p + ‖v(ν)‖2σ)dν ≤ cRδ(τ, ω). (86)

By (47) in Lemma III.1, we imply for all t ≥ T ,

sup
r≤τ

∫ r

r−ρ−1

‖u(ν − ̺(ρ)(ν))‖2σdν ≤ (ρ+ 1) sup
r≤τ

sup
r−ρ−1≤ν≤r

‖u(ν − ̺(ρ)(ν))‖2σ

≤ c(ρ+ 1)Rδ(τ, ω). (87)

The hypothesis G2 gives

sup
r≤τ

∫ r

r−ρ−1

‖g(ν)‖2σdν = sup
r≤τ

∫ 0

−ρ−1

‖g(ν + r)‖2σdν

≤em(ρ+1) sup
r≤τ

∫ 0

−∞

emν‖g(ν + r)‖2σdν ≤ em(ρ0+1)Υ(τ) < +∞. (88)

Note that

sup
r≤τ

∫ r

r−ρ−1

(|Gδ(θν−rω)|
2p−2
p−q + |Gδ(θν−rω)|p)dν

≤ em(ρ+1) sup
r≤τ

∫ 0

−∞

emν(|Gδ(θνω)|
2p−2
p−q + |Gδ(θνω)|p)dν. (89)

It follows from (85)-(89) that for all t ≥ T and s ∈ [−ρ, 0],

sup
r≤τ

‖u(r + s)‖pσ,p ≤ c12Rδ(τ, ω) + c13

∫ 0

−∞

emν(|Gδ(θνω)|
2p−2
p−q + |Gδ(θνω)|p)dν. (90)

Then, integrating (83) over (r − ρ, r) and taking the supremum over r ∈ (−∞, τ ] such that for all t ≥ T ,

α1p

4
sup
r≤τ

∫ r

r−ρ

‖u(ν)‖2p−2
σ,2p−2dν

≤ sup
r≤τ

‖u(r − ρ, r − t, θ−rω, φr−t)‖pσ,p + c1p sup
r≤τ

∫ r

r−ρ

‖v(ν)‖2σdν

+ c4L
2
fp sup

r≤τ

∫ r

r−ρ

‖u(ν − ̺(ρ)(ν))‖2σdν + c5p sup
r≤τ

∫ r

r−ρ

‖g(ν)‖2σdν

+ c6p sup
r≤τ

∫ r

r−ρ

|Gδ(θνω)|
2p−2
p−q dν + c8p sup

r≤τ

∫ r

r−ρ

|Gδ(θν−r)|pdν + c9ρ, (91)

which, along with (86)-(90), yields (72) as desired.

Next, we derive uniform tail-estimates of solutions.

B. Backward uniform tail-estimates

Assume that ι : R+ → [0, 1] is a smooth function such that

ι(s) =

{
0, if 0 ≤ s ≤ 1,

1, if s ≥ 2.
(92)
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Let ιk,i := ι( |i|
k
) for each k ≥ 1 and i ∈ Z. It is not hard to check that ιk = (ιk,i)i∈Z ∈ ℓ∞ and for all

k ≥ 1, i ∈ Z,

|ιk,i+1 − ιk,i| ≤
c∗
k
. (93)

Lemma III.4. Let the hypotheses E, F1, F2, G1-G3 and (38) be satisfied. Then, for each (τ, ω,D) ∈ R×Ω×
D, then the solution ϕδ = (uδ, vδ) to (32) satisfies

lim
k,t→+∞

sup
r≤τ

sup
s∈[−ρ,0]

‖ϕδ(r + s, r − t, θ−rω, ψr−t)‖2Xσ(|x|≥k) = 0 (94)

uniformly in ψr−t = (φr−t, υr−t) ∈ D(r− t, θ−tω). Moreover, the convergence in (94) is uniform with respect

to large δ, that is, there exists a δ0 := δ0(ω) which is independent of τ,D such that

lim
k,t→+∞

sup
δ≥δ0

sup
r≤τ

sup
s∈[−ρ,0]

‖ϕδ(r + s, r − t, θ−rω, ψr−t)‖2Xσ(|x|≥k) = 0. (95)

Proof. Taking the inner product of (32) with (2βιk,iξiui(ν), 2αιk,iξivi(ν)) := (2βιk,iξiui(ν, r−t, θ−rω, ur−t),
2αιk,iξivi(ν, r − t, θ−rω, vr−t)) and summing up the product over i ∈ Z, it follows

d

dν

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2) + 2κ
∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2) + 2β
∑

i∈Z

ιk,iξi(Au)iui

= 2β
∑

i∈Z

ιk,iξiFi(ui)ui + 2β
∑

i∈Z

ιk,iξif(ui(ν − ̺(ρ)(ν)))ui

+ 2α
∑

i∈Z

ιk,iξif(vi(ν − ̺(ρ)(ν)))vi + 2β
∑

i∈Z

ιk,iξigi(ν)ui

+ 2α
∑

i∈Z

ιk,iξihi(ν)vi + 2βGδ(θν−rω)
∑

i∈Z

ιk,iξiGi(ν, ui)ui, (96)

where we recall that κ = min{λ, ς}. By (ιk,iξiui, (Au)i) = ((Bιkξu)i, (Bu)i) = (ιk,i+1ξi+1ui+1 −
ιk,iξiui, (Bu)i) and (B(ξu))i = (Bξ)iui+1 + ξi(Bu)i, we obtain

− 2β
∑

i∈Z

ιk,iξi(Au)iui = 2β
∑

i∈Z

(ιk,iξiui − ιk,i+1ξi+1ui+1)(Bu)i

= 2β
∑

i∈Z

(ιk,i − ιk,i+1)ξi+1ui+1(Bu)i − 2β
∑

i∈Z

ιk,i(ξi+1ui+1 − ξiui)(Bu)i

= 2β
∑

i∈Z

(ιk,i − ιk,i+1)ξi+1ui+1(Bu)i − 2β
∑

i∈Z

ιk,i(Bξ)iui+1(Bu)i − 2β
∑

i∈Z

ιk,iξi|(Bu)i|2. (97)

By (93) and ξi+1 ≤ 2.5σξi as in (31), we deduce

2β
∑

i∈Z

(ιk,i − ιk,i+1)ξi+1ui+1(Bu)i ≤
2βc∗
k

∑

i∈Z

ξi+1(|ui+1|2 + |ui+1||ui|)

≤ 2βc∗
k

∑

i∈Z

ξi+1

(3
2
|ui+1|2 +

1

2
|ui|2

)

≤ 3βc∗
k

‖u‖2σ + 2.5σ
βc∗
k

‖u‖2σ = (3 + 2.5σ)
βc∗
k

‖u‖2σ. (98)

By (93) and (31) again, we have

− 2β
∑

i∈Z

ιk,i(Bξ)iui+1(Bu)i − 2β
∑

i∈Z

ιk,iξi|(Bu)i|2
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≤ 2β
∑

i∈Z

ιk,i2.5
σξi|ui+1||(Bu)i| − 2β

∑

i∈Z

ιk,iξi|(Bu)i|2

≤ β
∑

i∈Z

ιk,iξi(2.5
2σ|ui+1|2 + |(Bu)i|2)− 2β

∑

i∈Z

ιk,iξi|(Bu)i|2

≤ 2.52σβ
∑

i∈Z

ιk,iξi|ui+1|2 ≤ 2.53σβ
∑

i∈Z

ιk,iξi+1|ui+1|2

= 2.53σβ
∑

i∈Z

ιk,i+1ξi+1|ui+1|2 + 2.53σβ
∑

i∈Z

(ιk,i − ιk,i+1)ξi+1|ui+1|2

≤ 2.53σβ
∑

i∈Z

ιk,iξi|ui|2 + 2.53σ
βc∗
k

‖u‖2σ. (99)

Using (98) and (99) in (97), we deduce

−2β
∑

i∈Z

ιk,iξi(Au)iui ≤ 2.53σβ
∑

i∈Z

ιk,iξi|ui|2 +
c1
k
‖u‖2σ, (100)

where c1 = β(3 + 2.5σ + 2.53σ)c∗. By (34) in the hypothesis F1, we imply

2β
∑

i∈Z

ιk,iξiFi(ui)ui ≤ −2α1β
∑

i∈Z

ιk,iξi|ui|p + 2β
∑

i∈Z

ιk,iξi|µ1,i|. (101)

Applying the Young inequality and using (37) in the hypothesis F2, we yield

2β
∑

i∈Z

ιk,iξif(ui(ν − ̺(ρ)(ν)))ui + 2α
∑

i∈Z

ιk,iξif(vi(ν − ̺(ρ)(ν)))vi

≤
4L2

f

κ

∑

i∈Z

ιk,iξi

(
β|ui(ν − ̺(ρ)(ν))|2 + α|vi(ν − ̺(ρ)(ν))|2

)
+
κ

4

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2). (102)

The Young inequality gives

2β
∑

i∈Z

ιk,iξigi(ν)ui + 2α
∑

i∈Z

ιk,iξihi(ν)vi

≤ c2
∑

i∈Z

ιk,iξi(|gi(ν)|2 + |hi(ν)|2) +
κ

4

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2). (103)

According to (39) in the hypothesis G1, the last term of (96) is bounded by

2βGδ(θν−rω)
∑

i∈Z

ιk,iξiGi(ν, ui)ui

≤ 2β|Gδ(θν−rω)|
∑

i∈Z

ιk,iξi|Gi(ν, ui)||ui|

≤ 2βα4|Gδ(θν−rω)|
∑

i∈Z

ιk,iξi|ui|q + 2β|Gδ(θν−rω)|
∑

i∈Z

ιk,iξi|µ4,i(ν)||ui|

≤ c3|Gδ(θν−rω)|
∑

i∈Z

ιk,iξi|ui|q +
2

q̂
β|Gδ(θν−rω)|

∑

i∈Z

ιk,iξi|µ4,i(ν)|q̂, (104)

where c3 = 2βα4 +
2
q
β, we recall that 1

q̂
+ 1

q
= 1. Now, we estimate the last two terms in (104), respectively.

On the one hand, by the Young inequality and the same method as in the proof of (24), we imply

c3|Gδ(θν−rω)|
∑

i∈Z

ιk,iξi|ui|q = c3
∑

i∈Z

(
ι
q
p

k,iξ
q
p

i |ui|q
)(
ι
p−q
p

k,i ξ
p−q
p

i |Gδ(θν−rω)|
)
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≤ 1

2
α1β

∑

i∈Z

(
ι
q
p

k,iξ
q
p

i |ui|q
) p

q

+ c4
∑

i∈Z

(
ι
p−q
p

k,i ξ
p−q
p

i |Gδ(θν−rω)|
) p

p−q

=
1

2
α1β

∑

i∈Z

ιk,iξi|ui|p + c4|Gδ(θν−rω)|
p

p−q

∑

i∈Z

ιk,iξi, (105)

where c4 = c4(p, q, c3, β, α1). On the other hand, note that q ≥ 2 and so q̂ ≤ 2 ≤ q < p, we have

2

q̂
β|Gδ(θν−rω)|

∑

i∈Z

ιk,iξi|µ4,i(ν)|q̂ ≤ 2

q̂
β|Gδ(θν−rω)|

∑

i∈Z

(
ι
q̂
p

k,iξ
q̂
p

i |µ4,i(ν)|q̂
)(
ι
p−q̂
p

k,i ξ
p−q̂
p

i

)

≤2

q̂
β|Gδ(θν−rω)|

∑

i∈Z

(
ιk,iξi|µ4,i(ν)|p

) q̂
p
(∑

i∈Z

ιk,iξi

) p−q̂
p

≤2

q̂
β|Gδ(θν−rω)|‖µ4(ν)‖q̂σ,p

(∑

i∈Z

ιk,iξi

) p−q̂
p ≤ c5|Gδ(θν−rω)|

(∑

i∈Z

ιk,iξi

) p−q̂
p

, (106)

where c5 = 2
q̂
β‖µ4‖q̂L∞(R,ℓpσ)

< +∞. Using (105) and (106) in (104), we obtain

2βGδ(θν−rω)
∑

i∈Z

ιk,iξiGi(ν, ui)ui ≤
1

2
α1β

∑

i∈Z

ιk,iξi|ui|p + c4|Gδ(θν−rω)|
p

p−q

∑

i∈Z

ιk,iξi

+ c5|Gδ(θν−rω)|
(∑

i∈Z

ιk,iξi

) p−q̂
p

. (107)

From the above estimates, (96) can be rewritten:

d

dν

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2) + κ
∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2)

+
κ

2

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2) +
3

2
α1β

∑

i∈Z

ιk,iξi|ui|p

≤ 2.53σβ
∑

i∈Z

ιk,iξi|ui|2 +
c1
k
‖u‖2σ +

4L2
f

κ

∑

i∈Z

ιk,iξi

(
β|ui(ν − ̺(ρ)(ν))|2 + α|vi(ν − ̺(ρ)(ν))|2

)

+ c6
∑

i∈Z

ιk,iξi(|µ1,i(ν)| + |gi(ν)|2 + |hi(ν)|2)

+ c4|Gδ(θν−rω)|
p

p−q

∑

i∈Z

ιk,iξi + c5|Gδ(θν−rω)|
(∑

i∈Z

ιk,iξi

) p−q̂
p

, (108)

where c6 = 2β + c2. Note that

2.53σβ
∑

i∈Z

ιk,iξi|ui|2 = 2.53σβ
∑

i∈Z

(ι
p−2
p

k,i ξ
p−2
p

i )(ι
2
p

k,iξ
2
p

i |ui|2)

≤ 1

2
α1β

∑

i∈Z

ιk,iξi|ui|p + c7
∑

i∈Z

ιk,iξi. (109)

Thus,

d

dν

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2) + κ
∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2)
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+
κ

2

∑

i∈Z

ιk,iξi(β|ui|2 + α|vi|2) + α1β
∑

i∈Z

ιk,iξi|ui|p

≤ c1
k
‖u‖2σ +

4L2
f

κ

∑

i∈Z

ιk,iξi

(
β|ui(ν − ̺(ρ)(ν))|2 + α|vi(ν − ̺(ρ)(ν))|2

)

+ c8
∑

i∈Z

ιk,iξi(1 + |µ1,i(ν)|+ |gi(ν)|2 + |hi(ν)|2)

+ c4|Gδ(θν−rω)|
p

p−q

∑

i∈Z

ιk,iξi + c5|Gδ(θν−rω)|
(∑

i∈Z

ιk,iξi

) p−q̂
p

. (110)

Multiplying (110) by emν and integrating it about ν ∈ [r − t, r + s], where r ≤ τ and s ∈ [−ρ, 0], we deduce

em(r+s)
∑

i∈Z

ιk,iξi(β|ui(r + s)|2 + α|vi(r + s)|2) + κ

2

∫ r+s

r−t

emν
∑

i∈Z

ιk,iξi(β|ui(ν)|2 + α|vi(ν)|2)dν

+ α1β

∫ r+s

r−t

emν
∑

i∈Z

ιk,iξi|ui(ν)|pdν

≤ em(r−t)
(
β
∑

i∈Z

ιk,iξi|ur−t,i|2 + α
∑

i∈Z

ιk,iξi|vr−t,i|2
)

+ (m− κ)

∫ r+s

r−t

emν
(∑

i∈Z

ιk,iξi(β|ui(ν)|2 + α|vi(ν)|2)
)
dν

+
4L2

f

κ

∫ r+s

r−t

emν
∑

i∈Z

ιk,iξi

(
β|ui(ν − ̺(ρ)(ν))|2 + α|vi(ν − ̺(ρ)(ν))|2

)
dν

+
c1
k

∫ r+s

r−t

emν‖u(ν)‖2σdν + c8

∫ r+s

r−t

emν
∑

i∈Z

ιk,iξi(1 + |µ1,i(ν)|+ |gi(ν)|2 + |hi(ν)|2)dν

+ c4

∫ r+s

r−t

emν |Gδ(θν−rω)|
p

p−q dν
∑

i∈Z

ιk,iξi + c5

∫ r+s

r−t

emν |Gδ(θν−rω)|dν
(∑

i∈Z

ιk,iξi

) p−q̂
p

. (111)

For the third line of (111), we easily deduce

em(r−t)
(
β
∑

i∈Z

ιk,iξi|ur−t,i|2 + α
∑

i∈Z

ιk,iξi|vr−t,i|2
)
≤ em(r−t)‖ψr−t(0)‖2Xσ

. (112)

The fifth line of (111) is bounded by

4L2
f

κ

∫ r+s

r−t

emν
∑

i∈Z

ιk,iξi

(
β|ui(ν − ̺(ρ)(ν))|2 + α|vi(ν − ̺(ρ)(ν))|2

)
dν

≤
4L2

f

κ(1− ρ∗)

∫ r+s

r−t−ρ

em(µ+̺(ρ)(ν))
∑

i∈Z

ιk,iξi

(
β|ui(µ)|2 + α|vi(µ)|2

)
dµ

≤
4L2

fe
mρ0

κ(1− ρ∗)

∫ r−t

r−t−ρ

emµ
∑

i∈Z

ιk,iξi

(
β|ui(µ)|2 + α|vi(µ)|2

)
dµ

+
4L2

fe
mρ0

κ(1− ρ∗)

∫ r+s

r−t

emµ
∑

i∈Z

ιk,iξi

(
β|ui(µ)|2 + α|vi(µ)|2

)
dµ
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≤
4L2

fe
mρ0

mκ(1− ρ∗)
em(r−t)‖ψr−t‖2X ρ

σ

+
4L2

fe
mρ0

κ(1− ρ∗)

∫ r+s

r−t

emµ
∑

i∈Z

ιk,iξi

(
β|ui(µ)|2 + α|vi(µ)|2

)
dµ. (113)

By (38) and (113), we can rewrite (111) by

∑

i∈Z

ιk,iξi(β|ui(r + s)|2 + α|vi(r + s)|2) + κ

2

∫ r+s

r−t

em(ν−r−s)
∑

i∈Z

ιk,iξi(β|ui(ν)|2 + α|vi(ν)|2)dν

+ α1β

∫ r+s

r−t

em(ν−r−s)
∑

i∈Z

ιk,iξi|ui(ν)|pdν

≤ c9e
m(−t−s)‖ψr−t‖2X ρ

σ
+
c1
k

∫ r+s

r−t

em(ν−r−s)‖u(ν)‖2σdν

+ c8

∫ r+s

r−t

em(ν−r−s)
∑

i∈Z

ιk,iξi(1 + |µ1,i(ν)|+ |gi(ν)|2 + |hi(ν)|2)dν (114)

+ c4

∫ r+s

r−t

em(ν−r−s)|Gδ(θν−rω)|
p

p−q dν
∑

i∈Z

ιk,iξi

+ c5

∫ r+s

r−t

em(ν−r−s)|Gδ(θν−rω)|dν
(∑

i∈Z

ιk,iξi

) p−q̂
p

.

By s ∈ [−ρ, 0] and ρ ∈ (0, ρ0] , we have

∑

i∈Z

ιk,iξi(β|ui(r + s)|2 + α|vi(r + s)|2) + κ

2

∫ r+s

r−t

em(ν−r)
∑

i∈Z

ιk,iξi(β|ui(ν)|2 + α|vi(ν)|2)dν

+ α1β

∫ r+s

r−t

em(ν−r)
∑

i∈Z

ιk,iξi|ui(ν)|pdν

≤ c9e
mρ0e−mt‖ψr−t‖2X ρ

σ
+ c1e

mρ0
1

k

∫ r

r−t

em(ν−r)‖u(ν)‖2σdν

+ c8e
mρ0

∫ r

r−t

em(ν−r)
∑

i∈Z

ιk,iξi(1 + |µ1,i(ν)|+ |gi(ν)|2 + |hi(ν)|2)dν

+ c4e
mρ0

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|
p

p−q dν
∑

i∈Z

ιk,iξi

+ c5e
mρ0

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|dν
(∑

i∈Z

ιk,iξi

) p−q̂
p

. (115)

Since ψr−t = (φr−t, υr−t) ∈ D(r − t, θ−tω), we imply

e−mt‖ψr−t‖2X ρ
σ
≤ e−mt sup

r≤τ

‖D(r − t, θ−tω)‖2X ρ
σ
→ 0, as t→ ∞. (116)

By (47) in Lemma III.1, since Υ(τ), ηδ(ω) < +∞ such that for each δ > 0,

1

k
sup
r≤τ

∫ r

r−t

em(ν−r)‖u(ν)‖2σdν ≤ c

k
Rδ(τ, ω) → 0, as k, t→ +∞. (117)
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According to (41) in the hypothesis G3, we obtain

sup
r≤τ

∫ r

r−t

em(ν−r)
∑

i∈Z

ιk,iξi(1 + |µ1,i(ν)|+ |gi(ν)|2 + |hi(ν)|2)dν (118)

≤ sup
r≤τ

∫ 0

−∞

emν
∑

|i|≥k

ξi(1 + |µ1,i(ν + r)| + |gi(ν + r)|2 + |hi(ν + r)|2)dν → 0,

as k, t→ +∞. It follows from (12) in Lemma II.1 and ξ ∈ ℓ1 that for all δ > 0,

sup
r≤τ

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|
p

p−q dν
∑

i∈Z

ιk,iξi ≤
∫ 0

−∞

emν |Gδ(θνω)|
p

p−q dν
∑

|i|≥k

ξi → 0, (119)

as k, t → +∞. In fact, the convergence of (119) is uniform convergence for large δ. By (12) in Lemma II.1,

there exists a δ1 = δ1(ω) > 0 such that

ηδ(ω) =

∫ 0

−∞

emν |Gδ(θνω)|
p

p−q dν ≤ 1, ∀ δ ≥ δ1, (120)

which implies that

sup
δ≥δ1

sup
r≤τ

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|
p

p−q dν
∑

i∈Z

ιk,iξi ≤
∑

|i|≥k

ξi → 0, as k, t→ +∞. (121)

Using the same method, we obtain for all δ > 0,

sup
r≤τ

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|dν
(∑

i∈Z

ιk,iξi

) p−q̂
p ≤ sup

r≤τ

∫ 0

−∞

emν |Gδ(θνω)|dν
( ∑

|i|≥k

ξi

) p−q̂
p → 0, (122)

as k, t→ +∞. And the above convergence is also uniform convergence for large δ. More precisely, by (12) in

Lemma II.1 again,
∫ 0

−∞ emr|Gδ(θrω)|dr → 0 as δ → +∞, hence, there exists a δ2 = δ2(ω) > 0 such that

sup
δ≥δ2

sup
r≤τ

∫ r

r−t

em(ν−r)|Gδ(θν−rω)|dν
(∑

i∈Z

ιk,iξi

) p−q̂
p ≤

( ∑

|i|≥k

ξi

) p−q̂
p → 0, (123)

as k, t→ +∞. It follows from (115)-(123) that

sup
r≤τ

sup
s∈[−ρ,0]

∑

|i|≥2k

ξi(β|uδi (r + s)|2 + α|vδi (r + s)|2) (124)

≤ sup
r≤τ

sup
s∈[−ρ,0]

∑

i∈Z

ιk,iξi(β|uδi (r + s)|2 + α|vδi (r + s)|2) → 0, as k, t→ +∞,

for all δ > 0 and uniformly in large δ. This completes the proof.

C. Backward asymptotic compactness of solutions and existence of pullback random attractors

The following lemma is useful for verifying the asymptotic compactness of solutions.
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Lemma III.5. Let the hypotheses E, F1, F2, G1, G2 and (38) be satisfied. Then, for each (τ, ω,D) ∈ R×Ω×D
and ψr−t = (φr−t, υr−t) ∈ D(r − t, θ−tω), there exists a T := T (τ, ω,D) ≥ 3ρ+ 1 such that for all t ≥ T ,

the solution ϕδ = (uδ, vδ) to (32) satisfies

sup
r≤τ

∫ r

r−ρ

∥∥∥ d

dν
u
δ(ν, r − t, θ−rω, ψr−t)

∥∥∥
2

σ
dν + sup

r≤τ

∫ r

r−ρ

∥∥∥ d

dν
v
δ(ν, r − t, θ−rω,ψr−t)

∥∥∥
2

σ
dν ≤ cR̃δ(τ, ω), (125)

where R̃δ(τ, ω) is given by Lemma III.3.

Proof. Multiplying the first equation in (32) with du/dν, where u(ν) := u(ν, r − t, θ−rω, ψr−t), we obtain

∥∥∥
du

dν

∥∥∥
2

σ
≤c‖Au‖2σ + c‖u‖2σ + c‖v‖2σ + c‖F (u(ν))‖2σ + c‖f(u(ν − ̺(ρ)(ν)))‖2σ
+ c‖g(ν)‖2σ + c|Gδ(θν−rω)|2‖G(ν, u)‖2σ

≤c‖u‖2σ + c‖v‖2σ + c‖F (u(ν))‖2σ + c‖f(u(ν − ̺(ρ)(ν)))‖2σ
+ c‖g(ν)‖2σ + c|Gδ(θν−rω)|2‖G(ν, u)‖2σ. (126)

Integrating from r − ρ to r and taking the supremum over r ∈ (−∞, τ ], we deduce

sup
r≤τ

∫ r

r−ρ

∥∥∥
d

dν
u(ν, r − t, θ−rω, ψr−t)

∥∥∥
2

σ
dν

≤ c sup
r≤τ

∫ r

r−ρ

(‖u(ν)‖2σ + ‖v(ν)‖2σ)dν + c sup
r≤τ

∫ r

r−ρ

‖F (u(ν))‖2σdν

+ c sup
r≤τ

∫ r

r−ρ

‖f(u(ν − ̺(ρ)(ν)))‖2σdν + c sup
r≤τ

∫ r

r−ρ

‖g(ν)‖2σdν

+ c sup
r≤τ

∫ r

r−ρ

|Gδ(θν−rω)|2‖G(ν, u)‖2σdν. (127)

By (48) in Lemma III.1, there exists T := T (τ, ω,D) ≥ 3ρ + 1 such that for all t ≥ T , the first term on the

right-hand side of (127) is bounded by

sup
r≤τ

∫ r

r−ρ

(‖u(ν)‖2σ + ‖v(ν)‖2σ)dν ≤ cem(3ρ+1) sup
r≤τ

∫ r

r−3ρ−1

em(ν−r)‖ϕ(ν)‖2σdν

≤ cem(3ρ0+1)Rδ(τ, ω). (128)

By (35) in the hypothesis F1 and (72) in Lemma III.3, we have

sup
r≤τ

∫ r

r−ρ

‖F (u(ν))‖2σdν ≤ sup
r≤τ

∫ r

r−ρ

(2α2
2‖u‖2p−2

σ,2p−2 + 2‖µ2‖2σ)dν

≤2α2
2 sup
r≤τ

∫ r

r−ρ

‖u‖2p−2
σ,2p−2dν + c ≤ 2α2

2cR̃δ(τ, ω) + c, (129)

where we used µ2 ∈ ℓ2σ. According to (37) in the hypothesis F2 and (87), we obtain

sup
r≤τ

∫ r

r−ρ

‖f(u(ν − ̺(ρ)(ν)))‖2σdν ≤ L2
f sup
r≤τ

∫ r

r−ρ

‖u(ν − ̺(ρ)(ν))‖2σdν ≤ cL2
f(ρ+ 1)Rδ(τ, ω). (130)

As done in (88), we have

sup
r≤τ

∫ r

r−ρ

‖g(ν)‖2σdν ≤ em(ρ+1) sup
r≤τ

∫ 0

−∞

emν‖g(ν + r)‖2σdν ≤ em(ρ0+1)Υ(τ) < +∞. (131)
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It follows from Lemma II.1 (i) that t→ Gδ(θtω) is continuous. Thus, there exists an L0 > 0 such that

sup
ν∈[−ρ,0]

|Gδ(θνω)|2 ≤ L0. (132)

According to (39) in the hypothesis G1, we obtain

sup
r≤τ

∫ r

r−ρ

|Gδ(θν−rω)|2‖G(ν, u)‖2σdν ≤ L0 sup
r≤τ

∫ r

r−ρ

∑

i∈Z

ξi|Gi(ν, ui)|2dν

≤L0 sup
r≤τ

∫ r

r−ρ

∑

i∈Z

ξi(2α
2
4|ui(ν)|2q−2 + 2|µ4,i(ν)|2)dν

=2α2
4L0 sup

r≤τ

∫ r

r−ρ

∑

i∈Z

ξi|ui(ν)|2q−2dν + 2L0 sup
r≤τ

∫ r

r−ρ

‖µ4(ν)‖2σdν. (133)

Now, we estimate the last two lines of (133) separately. On the one hand, by 2 ≤ q < p, and so 2q − 2 >
0, 2p−2

2q−2 > 1, and by (72) in Lemma III.3, we deduce

sup
r≤τ

∫ r

r−ρ

∑

i∈Z

ξi|ui(ν)|2q−2dν ≤ c sup
r≤τ

∫ r

r−ρ

∑

i∈Z

ξi(|ui(ν)|2p−2 + 1)dν

=c sup
r≤τ

∫ r

r−ρ

‖u(ν)‖2p−2
σ,2p−2dν + c sup

r≤τ

∫ r

r−ρ

‖ξ‖ℓ1dν ≤ cR̃δ(τ, ω). (134)

On the other hand, by (24), ξ ∈ ℓ1 and µ4 ∈ L∞(R, ℓpσ),

sup
r≤τ

∫ r

r−ρ

‖µ4(ν)‖2σdν ≤ sup
r≤τ

∫ r

r−ρ

‖ξ‖
p−2
p

ℓ1
‖µ4(ν)‖2σ,pdν

≤ρ‖ξ‖
p−2
p

ℓ1
‖µ4‖2L∞(R,ℓpσ)

< +∞. (135)

Using (134) and (135) in (133), we imply

sup
r≤τ

∫ r

r−ρ

|Gδ(θν−rω)|2‖G(ν, u)‖2σdν ≤ cR̃δ(τ, ω). (136)

By (127)-(136), we deduce

sup
r≤τ

∫ r

r−ρ

∥∥∥
d

dν
uδ(ν, r − t, θ−rω, ψr−t)

∥∥∥
2

σ
dν ≤ cR̃δ(τ, ω). (137)

One can similarly prove that

sup
r≤τ

∫ r

r−ρ

∥∥∥
d

dν
vδ(ν, r − t, θ−rω, ψr−t)

∥∥∥
2

σ
dν ≤ cR̃δ(τ, ω). (138)

This together with (137) yields (125) as desired.

Proposition III.6. Let the hypotheses E, F1, F2, G1-G3 and (38) be satisfied. For each δ > 0, the cocycle

Ψδ associated with the random delayed FitzHugh-Nagumo lattice system (1) is D-backward asymptotically

compact in Xσ = ℓ2σ × ℓ2σ. More precisely, for all s ∈ [−ρ, 0],

(Ψδ(tn, rn − tn, θ−tnω)ψn)(s) = ϕδ(rn + s, rn − tn, θ−rnω, ψn)

has a convergent subsequence in Xσ whenever rn ≤ τ, tn ↑ +∞ and ψn = (φn, υn) ∈ D(rn − tn, θ−tnω).
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Proof. Let (τ, ω,D) ∈ R× Ω×D be fixed and suppose that rn ≤ τ, tn ↑ +∞ and ψn ∈ D(rn − tn, θ−tnω).
For each s ∈ [−ρ, 0], we define Y n(s) :=

(
Ψδ(tn, rn−tn, θ−tnω)ψn

)
(s). It suffices to prove that the sequence

{Y n(s)}∞n=1 has a convergent subsequence in Xσ . Besides, we write Y n(s) = (Y n
i (s))i∈Z for each n ∈ N.

Given ǫ > 0, by Lemma III.4, there exist k1, n1 ∈ N such that

sup
r≤τ

sup
s∈[−ρ,0]

‖Y n(s)‖2Xσ(|x|≥k1)
≤ ǫ2, ∀ n ≥ n1, k ≥ k1. (139)

According to (47) in Lemma III.1, there exists n2 ≥ n1 such that for all n ≥ n2,

‖Y n(s)‖2Xσ
≤ cRδ(τ, ω) < +∞,

which implies that the sequence {Y n(s)}∞n=1 is bounded in Xσ . In particular, the sequence {(Y n
i (s))|i|<k1

}∞n=1

is bounded and pre-compact in the finite-dimensional space R
2k1−1. In this case, there is a subsequence

{(Y n∗

i (s))|i|<k1
}∞n=1 such that it is a Cauchy sequence in R

2k1−1. Hence, there exists n3 ≥ n2 such that for

all n∗,m∗ ≥ n3,

∑

|i|<k1

ξi|Y n∗

i (s)− Y m∗

i (s)|2 ≤
∑

|i|<k1

|Y n∗

i (s)− Y m∗

i (s)|2 ≤ ǫ2, (140)

where we recall that ξi = (1 + i2)−σ ≤ 1 for all i ∈ Z and σ > 1
2 . By (139) and (140), we show that for all

n∗,m∗ ≥ n3,

‖Y n∗

(s)− Y m∗

(s)‖2Xσ
=

∑

|i|<k1

ξi|Y n∗

i (s)− Y m∗

i (s)|2 +
∑

|i|≥k1

ξi|Y n∗

i (s)− Y m∗

i (s)|2

≤ǫ2 + 2
∑

|i|≥k1

ξi|Y n∗

i (s)|2 + 2
∑

|i|≥k1

ξi|Y m∗

i (s)|2 ≤ 5ǫ2,

which shows ‖Y n∗

(s) − Y m∗

(s)‖Xσ
≤

√
5ǫ. Therefore, {Y n∗

(s)} is a Cauchy subsequence of {Y n(s)} and

convergent in Xσ .

We are now in a position to show the existence of D-pullback random attractors for the cocycle Ψδ.

Theorem III.7. Suppose all hypotheses E, F1, F2, G1-G3 and (38) are satisfied. For each δ > 0 and s ∈
[−ρ, 0], the cocycle Ψδ associated with the random delayed FitzHugh-Nagumo lattice system (1) has a D-

pullback random attractor Aδ ∈ D and a D̃-pullback random attractor Ãδ ∈ D̃ in X ρ
σ = C([−ρ, 0],Xσ),

respectively. Moreover, Aδ = Ãδ .

Proof. We mainly proof that Ψδ is D-backward asymptotically compact in X ρ
σ . That is, for any sequences

rn ≤ τ, tn ↑ +∞ and ψn = (φn, υn) ∈ D(rn − tn, θ−tnω), the sequence

Ψδ(tn, rn − tn, θ−tnω)ψn = ϕδ
rn
(·, rn − tn, θ−rnω, ψn)

has a convergent subsequence in X ρ
σ . For this end, we need to check the following three steps.

Step 1. For each s ∈ [−ρ, 0], we prove {(Ψδ(tn, rn−tn, θ−tnω)ψn)(s)}n∈N is pre-compact inXσ = ℓ2σ×ℓ2σ.

The conclusion holds true on account of Proposition III.6.

Step 2. We show the sequence {Ψδ(tn, rn − tn, θ−tnω)ψn}n∈N in X ρ
σ is equi-continuous from [−ρ, 0] to

Xσ . Let s1, s2 ∈ [−ρ, 0] with s2 > s1. By Lemma III.5, there exists an N ∈ N such that tN ≥ T and thus, for

all n ≥ N ,

‖(Ψδ(tn, rn − tn, θ−tnω)ψn)(s1)− (Ψδ(tn, rn − tn, θ−tnω)ψn)(s2)‖Xσ

= ‖ϕδ(rn + s1, rn − tn, θ−rnω, ψn)− ϕδ(rn + s2, rn − tn, θ−rnω, ψn)‖Xσ
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≤ c

∫ rn+s2

rn+s1

∥∥∥
d

dν
uδ(ν, rn − tn, θ−rnω, φn)

∥∥∥
σ
dν + c

∫ rn+s2

rn+s1

∥∥∥
d

dν
vδ(ν, rn − tn, θ−rnω, υn)

∥∥∥
σ
dν

≤ c
(∫ rn

rn−ρ

∥∥∥
d

dν
uδ(ν, rn − tn, θ−rnω, φn)

∥∥∥
2

σ
dν

) 1
2 |s2 − s1|

1
2

+ c
( ∫ rn

rn−ρ

∥∥∥
d

dν
vδ(ν, rn − tn, θ−rnω, υn)

∥∥∥
2

σ
dν

) 1
2 |s2 − s1|

1
2

≤ cR̃δ(τ, ω)|s2 − s1|
1
2 .

Hence, the sequence {Ψδ(tn, rn − tn, θ−tnω)ψn}n≥N in X ρ
σ is equi-continuous from [−ρ, 0] to Xσ . Note

that it is obvious that the finite set {Ψδ(tn, rn − tn, θ−tnω)ψn}n<N in X ρ
σ is equi-continuous, and so is the

whole sequence {Ψδ(tn, rn − tn, θ−tnω)ψn}n∈N.

Step 3. We prove the existence and equality of two pullback random attractors. By Steps 1-2, it follows from

the Ascoli-Arzelà theorem that the sequence {Ψδ(tn, rn − tn, θ−tnω)ψn}n∈N is pre-compact in X ρ
σ . Thanks

to Proposition III.2, Ψδ has a D-pullback random absorbing set Kδ = {Kδ(τ, ω)} ∈ D. Using the abstract

results established in38 (Theorem 2.23), we derive that Ψδ has a D-pullback random attractor Aδ ∈ D in X ρ
σ ,

which is the omega-limit set of Kδ .

By D ⊂ D̃, we imply that Kδ is also a D̃-pullback random absorbing set and Kδ ∈ D̃. By the same argument

of Proposition III.6 and the above Steps 1-2, we derive that Ψδ is D̃-pullback asymptotically compact in X ρ
σ .

It follows from27 that the existence and uniqueness of a D̃-pullback random attractor Ãδ ∈ D̃ are obtained,

where Ãδ is the omega-limit set of Kδ. Therefore, Ãδ = Aδ ∈ D.

IV. UPPER SEMICONTINUITY OF ATTRACTORS AS CORRELATION TIME TENDS TO INFINITY

In this section, we mainly discuss the upper semicontinuity of the pullback random attractor Aδ for problem

(1) as δ → +∞. For this end, we need to verify convergence of solutions.

Lemma IV.1. Suppose the hypotheses E, F1, F2, G1, G2 and (38) hold. Let ϕδ = (uδ, vδ) and ϕ̂ = (û, v̂) be

the solutions to (1) and (3) with initial value ψδ = (φδ, υδ) and ψ̂ = (φ̂, υ̂), respectively. If ‖ψδ − ψ̂‖X ρ
σ
→ 0

as δ → +∞, more precisely,

dX ρ
σ
(ψδ, ψ̂) = sup

ν∈[−ρ,0]

‖(φδ, υδ)(ν)− (φ̂, υ̂)(ν)‖Xσ
→ 0, as δ → +∞, (141)

then ϕδ converges to ϕ̂ in the following sense:

lim
δ→+∞

sup
s∈[−ρ,0]

‖ϕδ(t+ s, τ, ω, ψδ)− ϕ̂(t+ s, τ, ψ̂)‖2Xσ
= 0, ∀ t ≥ τ, ω ∈ Ω. (142)

Proof. Let U δ(ν) = uδ(ν, τ, ω, φδ) − û(ν, τ, φ̂), V δ(ν) = vδ(ν, τ, ω, υδ) − v̂(ν, τ, υ̂) and W δ(ν) =

ϕδ(ν, τ, ω, ψδ)−ϕ̂(ν, τ, ψ̂) = (U δ(ν), V δ(ν)), which is equipped by the norm ‖W δ‖2Xσ
= β‖U δ‖2σ+α‖V δ‖2σ.

We subtract (3) from (1) to obtain W δ = (U δ, V δ) satisfies that for ν ≥ τ ,




dUδ
i

dν
+ (AUδ)i + λU

δ
i + αV

δ
i = Fi(u

δ
i (ν))− Fi(ûi(ν)) + fi(u

δ
i (ν − ̺

(ρ)(ν)))

− fi(ûi(ν − ̺
(ρ)(ν))) +Gi(ν, u

δ
i )Gδ(θνω),

dV δ
i

dν
+ ςV

δ
i − βU

δ
i = fi(v

δ
i (ν − ̺

(ρ)(ν)))− fi(v̂i(ν − ̺
(ρ)(ν))),

(143)

where U δ = (U δ
i )i∈Z and V δ = (V δ

i )i∈Z. Taking the inner product of (143) with (2βξiU
δ
i , 2αξiV

δ
i ) and

summing up the product over i ∈ Z, it follows that

d

dν
(β‖Uδ‖2σ + α‖V δ‖2σ) + 2κ(β‖Uδ‖2σ + α‖V δ‖2σ)
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= −2β
∑

i∈Z

ξiU
δ
i (AU

δ)i + 2β
∑

i∈Z

ξiU
δ
i (Fi(u

δ
i )− Fi(ûi)) + 2βGδ(θνω)

∑

i∈Z

ξiU
δ
i Gi(ν, u

δ
i )

+ 2β
∑

i∈Z

ξiU
δ
i

(
fi(u

δ
i (ν − ̺

(ρ)(ν)))− fi(ûi(ν − ̺
(ρ)(ν)))

)

+ 2α
∑

i∈Z

ξiV
δ
i

(
fi(v

δ
i (ν − ̺

(ρ)(ν)))− fi(v̂i(ν − ̺
(ρ)(ν)))

)
, (144)

where we recall that κ = min{λ, ς}. As done in (51), we have

− 2β
∑

i∈Z

ξiU
δ
i (AU

δ)i ≤ 2.53σβ‖U δ‖2σ. (145)

According to the mean valued theorem and (36) in the hypothesis F1, there exists a := a(uδi , ûi) ∈ (0, 1) such

that

2β
∑

i∈Z

ξiU
δ
i (Fi(u

δ
i )− Fi(ûi)) ≤ 2β

∑

i∈Z

ξi|U δ
i |2

∂Fi

∂s
(auδi + (1− a)ûi)

≤ − 2βα3

∑

i∈Z

ξi|U δ
i |2|auδi + (1− a)ûi|p−2 + 2β

∑

i∈Z

ξi|U δ
i |2µ3,i ≤ 2β‖µ3‖ℓ∞‖U δ‖2σ. (146)

Note that q̂ ≤ 2 ≤ q < p, by the Young inequality and (39) in the hypothesis G1, we imply

2βGδ(θνω)
∑

i∈Z

ξiU
δ
i Gi(ν, u

δ
i ) ≤ 2β|Gδ(θνω)|

∑

i∈Z

ξi|U δ
i |(α4|uδi |q−1 + µ4,i(ν))

≤c1|Gδ(θνω)|
∑

i∈Z

ξi(|uδi |q + |ûi|q) + c2|Gδ(θνω)|
∑

i∈Z

ξi(|uδi |2 + |ûi|2 + |µ4,i(ν)|2)

≤c3|Gδ(θνω)|(‖uδ‖pσ,p + ‖û‖pσ,p + ‖µ4(ν)‖pσ,p + 1)

≤c4|Gδ(θνω)|(‖uδ‖pσ,p + ‖û‖pσ,p + 1), (147)

where we recall that µ4 ∈ L∞(R, ℓpσ). By (37) in the hypothesis F2, we obtain

2β
∑

i∈Z

ξiU
δ
i

(
fi(u

δ
i (ν − ̺(ρ)(ν))) − fi(ûi(ν − ̺(ρ)(ν)))

)

+ 2α
∑

i∈Z

ξiV
δ
i

(
fi(v

δ
i (ν − ̺(ρ)(ν))) − fi(v̂i(ν − ̺(ρ)(ν)))

)

≤ 2βLf

∑

i∈Z

ξi|U δ
i ||uδi (ν − ̺(ρ)(ν))− ûi(ν − ̺(ρ)(ν))|

+ 2αLf

∑

i∈Z

ξi|V δ
i ||vδi (ν − ̺(ρ)(ν)) − v̂i(ν − ̺(ρ)(ν))| (148)

≤
4L2

f

κ
(β‖U δ(ν − ̺(ρ)(ν))‖2σ + α‖V δ(ν − ̺(ρ)(ν))‖2σ) +

κ

4
(β‖U δ‖2σ + α‖V δ‖2σ).

We substitute (145)-(148) into (144) that

d

dν
‖W δ‖2Xσ

+ κ‖W δ‖2Xσ
+
(3κ
4

− 2.53σ − 2‖µ3‖ℓ∞
)
‖W δ‖2Xσ

≤
4L2

f

κ
‖W δ(ν − ̺(ρ)(ν))‖2Xσ

+ c4|Gδ(θνω)|(‖uδ‖pσ,p + ‖û‖pσ,p + 1), (149)

where 3κ
4 − 2.53σ − 2‖µ3‖ℓ∞ > 0 in view of (38), and we recall that ‖W δ‖2Xσ

= β‖U δ‖2σ + α‖V δ‖2σ.
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Integrating (149) over [τ, t+ s], where t > τ and s ∈ [−ρ, 0], we deduce

‖W δ(t+ s)‖2Xσ
≤ ‖W δ(τ)‖2Xσ

− κ

∫ t+s

τ

‖W δ(ν)‖2Xσ
dν

+
4L2

f

κ

∫ t+s

τ

‖W δ(ν − ̺(ρ)(ν))‖2Xσ
dν

+ c4

∫ t+s

τ

|Gδ(θνω)|(‖uδ(ν)‖pσ,p + ‖û(ν)‖pσ,p + 1)dν, (150)

where ‖W δ(τ)‖2Xσ
= β‖φδ(0)− φ̂(0)‖2σ + α‖υδ(0) − υ̂(0)‖2σ ≤ d2X ρ

σ
(ψδ, ψ̂) → 0 as δ → +∞. The second

line of (150) satisfies

4L2
f

κ

∫ t+s

τ

‖W δ(ν − ̺(ρ)(ν))‖2Xσ
dν ≤

4L2
f

κ(1− ρ∗)

∫ τ

τ−ρ

‖W δ(µ)‖2Xσ
dµ+

4L2
f

κ(1 − ρ∗)

∫ t+s

τ

‖W δ(ν)‖2Xσ
dν

≤
4L2

fρ0

κ(1− ρ∗)
d2X ρ

σ
(ψδ, ψ̂) +

4L2
f

κ(1− ρ∗)

∫ t+s

τ

‖W δ(ν)‖2Xσ
dν,

which, together with
4L2

f

κ(1−ρ∗)
< κ, yields

‖W δ(t+ s)‖2Xσ
≤ d2X ρ

σ
(ψδ, ψ̂)

(
1 +

4L2
fρ0

κ(1− ρ∗)

)

+ c4

∫ t+s

τ

|Gδ(θνω)|(‖uδ(ν)‖pσ,p + ‖û(ν)‖pσ,p + 1)dν. (151)

Similar to the argument as in Lemma III.3, we imply û ∈ Lp
loc((τ,+∞), ℓpσ), which yields

∫ t

τ
‖û(ν)‖pσ,pdν <

+∞. Finally, we only need to prove

lim sup
δ→+∞

∫ t

τ

‖uδ(ν)‖pσ,pdν < +∞. (152)

Replacing θ−rω by ω in the energy inequality (61), by (11) in Lemma II.1, there exists a δ0 := δ0(ω) > 0 such

that for all δ ≥ δ0, ν ∈ [τ, t],

d

dν
‖ϕδ‖2Xσ

+ κ‖ϕδ‖2Xσ
+
κ

2
‖ϕδ‖2Xσ

+ α1β‖uδ‖pσ,p

≤
4L2

f

κ
‖ϕδ(ν − ̺(ρ)(ν))‖2Xσ

+ c5(1 + ‖g(ν)‖2σ + ‖h(ν)‖2σ) + c6|Gδ(θνω)|
p

p−q . (153)

Using (11) in Lemma II.1, there exists a δ1 ≥ δ0 such that for all δ ≥ δ1,

sup
δ≥δ1

sup
ν∈[τ,t]

|Gδ(θνω)|
p

p−q ≤ 1.

Then we can rewrite (153) as follows.

d

dν
‖ϕδ‖2Xσ

+ κ‖ϕδ‖2Xσ
+
κ

2
‖ϕδ‖2Xσ

+ α1β‖uδ‖pσ,p

≤
4L2

f

κ
‖ϕδ(ν − ̺(ρ)(ν))‖2Xσ

+ c5(1 + ‖g(ν)‖2σ + ‖h(ν)‖2σ) + c6,
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which, together with the Gronwall inequality, ϕδ(·, τ, ω, ψδ) ∈ C([τ −ρ,∞),Xσ), g, h ∈ L2
loc(R, ℓ

2
σ), implies

that

sup
δ≥δ0

∫ t

τ

‖uδ(ν, τ, ω, φδ)‖pσ,pdν ≤ c7 sup
δ≥δ0

‖ψδ‖2X ρ
σ
+ c8.

Since ‖ψδ − ψ̂‖X ρ
σ
→ 0 as δ → +∞, we obtain that ‖ψδ‖2X ρ

σ
is bounded when δ → +∞. Therefore, (152)

holds true. It follows from (151) and (11) in Lemma II.1 that

‖W δ(t+ s)‖2Xσ
≤ c9d

2
X ρ

σ
(ψδ, ψ̂) + c10 sup

ν∈[τ,t]

|Gδ(θνω)| → 0,

as δ → +∞. Therefore, we obtain (142) as desired.

We assume that Ψ∞ : R+×R×X ρ
σ 7→ X ρ

σ is the corresponding deterministic dynamical system (or process),

given by

Ψ∞(t, τ)ψ̂ = ϕ̂t+τ (·, τ, ψ̂), t ≥ 0, (τ, ψ̂) ∈ R×X ρ
σ , (154)

where ϕ̂ = (û, v̂) is the unique solution to system (3). One can prove that Ψ∞ has a D∞-pullback attractor

A∞ by using the same method as in Theorem III.7, where D∞ is the universe of all backward tempered sets in

X ρ
σ , that is, D∞ ∈ D∞ if and only if

lim
t→+∞

e−γt sup
r≤τ

‖D∞(r − t)‖2X ρ
σ
= 0, ∀ γ > 0, τ ∈ R. (155)

Theorem IV.2. Let the hypotheses E, F1, F2, G1-G3 and (38) be satisfied. Suppose Aδ is the D-pullback

random attractor of random delayed lattice system (1) with the size δ > 0 and A∞ is the D∞-pullback

attractor of deterministic delayed lattice system (3). Then Aδ converges to A∞, i.e.

lim
δ→+∞

dX ρ
σ
(Aδ(τ, ω),A∞(τ)) = 0, ∀ τ ∈ R, ω ∈ Ω. (156)

Proof. We split the proof into the following three steps.

Step 1. We prove the cocycle Ψδ is uniformly absorbing in X ρ
σ with respect to the large-size δ. Indeed, by

Proposition III.2, each cocycle Ψδ has a D-pullback random absorbing ball Kδ(·, ·) ∈ D with the radius

c
1
2R

1
2

δ (τ, ω) = c
1
2 (1 + Υ(τ) + ηδ(ω))

1
2 , ∀ (τ, ω) ∈ R× Ω.

By (12) in Lemma II.1, we have

lim
δ→+∞

ηδ(ω) = lim
δ→+∞

∫ 0

−∞

emν |Gδ(θνω)|
p

p−q dν = 0, ∀ ω ∈ Ω.

Since all estimates in section 3 are valid when δ → +∞, one can show that the determinstic system Ψ∞ has a

D∞-pullback absorbing set K∞ given by

K∞(τ) = {w ∈ X ρ
σ : ‖w‖2X ρ

σ
≤ c(2 + Υ(τ))}, ∀ τ ∈ R.

Using the same method as in Proposition III.2, one can show K∞ ∈ D∞. Thus, we imply

lim sup
δ→+∞

‖Kδ(τ, ω)‖2X ρ
σ
≤ ‖K∞(τ)‖2X ρ

σ
, ∀ (τ, ω) ∈ R× Ω.

Step 2. We verify the large-size uniformness of the D-pullback asymptotic compactness for the cocycle Ψδ

in X ρ
σ . By the proof of Theorem III.7, we prove the conclusion as desired.

Step 3. We prove the upper semicontinuity in (156). In fact, the convergence of systems (Ψδ → Ψ∞ as δ →
+∞) has been obtained in Lemma IV.1. And for all large enough δ, the uniform absorbing has been proved in

Step 1. Moreover, the uniform asymptotic compactness has been derived in Step 2. Using the abstract result

of upper semicontinuity for random attractors as in22 (Theorem 4.1), we prove (156) as desired.
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V. UPPER SEMICONTINUITY OF ATTRACTORS AS DELAY GOES TO ZERO

The last section is devoted to the upper semicontinuity of the pullback attractor Aρ for problem (3) as ρ→ 0.

Hereafter, we write the solution and deterministic dynamical system (or process) of system (3) as ϕ̂ρ = (ûρ, v̂ρ)
and Ψρ, respectively. In addition, we use Dρ = {Dρ(τ) : τ ∈ R} to replace the notation D∞ defined by (155).

As proved in Section IV, Ψρ has a Dρ-pullback attractor Aρ in X ρ
σ and a Dρ-pullback absorbing set Kρ

given by

Kρ(τ) = {w ∈ X ρ
σ : ‖w‖2X ρ

σ
≤ cR̃(τ)}, ∀ τ ∈ R, (157)

where R̃(τ) = 2 + Υ(τ) and Υ(τ) is given by (49).

Let ρ = 0 in (3), we obtain





dû0i
dt

+Aû0i + λû0i + αv̂0i = Fi(û
0
i (t)) + fi(û

0
i (t)) + gi(t),

dv̂0i
dt

+ ςv̂0i − βû0i = hi(t) + fi(v̂
0
i (t)),

û0i (τ) = φ̂0i , v̂
0
i (τ) = υ̂0i , t > τ, τ ∈ R.

(158)

From now on, we denote by ϕ̂0 = (û0, v̂0) the solution to Eq. (158). Assume that D0 is the universe of all

backward tempered sets in Xσ , that is, D0 ∈ D0 if and only if

lim
t→+∞

e−γt sup
r≤τ

‖D0(r − t)‖2Xσ
= 0, ∀ γ > 0, τ ∈ R. (159)

Since all estimates in Section III are valid when in both cases ρ = 0 and δ → +∞ for problem (1). We deduce

that the deterministic dynamical system Ψ0(·, ·) induced by Eq. (158), possesses a D0-pullback attractor

A0 = {A0(t) : t ∈ R} ∈ D0 and a D0-pullback absorbing set K0 given by

K0(τ) = {w ∈ Xσ : ‖w‖2Xσ
≤ cR̃(τ)}, ∀ τ ∈ R, (160)

where R̃(τ) is the same as in (157). Combining (157) and (160), we infer

lim sup
ρ→0

‖Kρ(τ)‖X ρ
σ
= ‖K0(τ)‖Xσ

. (161)

Thanks to Theorem III.7, the following Lemma is immediate.

Lemma V.1. Suppose all hypotheses E, F1, F2, G1-G3, (38) are satisfied. Then the process Ψρ associated

with the deterministic delayed FitzHugh-Nagumo lattice system (3) is Dρ-backward asymptotically compact

in X ρ
σ = C([−ρ, 0],Xσ), that is, for each (t,Dρ) ∈ R × Dρ, for all ψn ∈ Dρ(τn), and for each sequence

{τn} ≤ t with τn → −∞ as n→ ∞, the sequence {Ψρ(t, τn)ψn}n∈N is pre-compact in X ρ
σ .

Proof. One can prove the proof by using the same method as in Theorem III.7, which is based on the Ascoli-

Arzelà theorem. More precisely, we can complete this proof by the following two steps.

Step 1. For each s ∈ [−ρ, 0], we prove {(Ψρ(t, τn)ψn)(s)}n∈N is pre-compact in Xσ = ℓ2σ × ℓ2σ.

Step 2. We show the sequence {Ψρ(t, τn)ψn}n∈N in X ρ
σ is equi-continuity from [−ρ, 0] to Xσ . Let s1, s2 ∈

[−ρ, 0] with s2 > s1.

‖(Ψρ(t, τn)ψn)(s1)− (Ψρ(t, τn)ψn)(s2)‖Xσ
≤ cR̃(τ)|s2 − s1|

1
2 .

Let us first prove the convergence of solutions as ρ→ 0.



30 Dynamical stability of random delayed FitzHugh-Nagumo lattice systems

Lemma V.2. Suppose the hypotheses E, F1, F2, G1, G2 hold. Let ϕ̂ρ = (ûρ, v̂ρ) and ϕ̂0 = (û0, v̂0) be the

solutions to (3) and (158) with initial value ψ̂ρ = (φ̂ρ, υ̂ρ) and ψ̂0 = (φ̂0, υ̂0), respectively. If ψ̂ρ converges to

ψ̂0, i.e.,

d∗X ρ
σ
(ψ̂ρ, ψ̂0) = sup

s∈[−ρ,0]

‖(φ̂ρ, υ̂ρ)(s)− (φ̂0, υ̂0)‖Xσ
→ 0, as ρ→ 0, (162)

then ϕ̂ρ converges to ϕ̂0 in the following sense:

lim
ρ→0

sup
s∈[−ρ,0]

‖ϕ̂ρ(t+ s, τ, ψ̂ρ)− ϕ̂0(t, τ, ψ̂0)‖2Xσ
= 0, ∀ t ≥ τ. (163)

Proof. Let Uρ(ν) = ûρ(ν + s, τ, φ̂ρ) − û0(ν, τ, φ̂0), V ρ(ν) = v̂ρ(ν + s, τ, υ̂ρ) − v̂0(ν, τ, υ̂0) and W ρ(ν) =

ϕ̂ρ(ν + s, τ, ψ̂ρ) − ϕ̂0(ν, τ, ψ̂0) = (Uρ(ν), V ρ(ν)), which is equipped by the norm ‖W ρ‖2Xσ
= β‖Uρ‖2σ +

α‖V ρ‖2σ. We subtract (158) from (3) to obtain W ρ = (Uρ, V ρ) satisfies that for ν ≥ τ ,






dU
ρ
i

dν
+ (AUρ)i + λU

ρ
i + αV

ρ
i = Fi(û

ρ
i (ν + s))− Fi(û

0
i (ν)) + fi(û

ρ
i (ν + s− ̺

(ρ)(ν + s)))

− fi(û
0
i (ν)) + gi(ν + s)− gi(ν),

dV
ρ
i

dν
+ ςV

ρ
i − βU

ρ
i = fi(v̂

ρ
i (ν + s− ̺

(ρ)(ν + s)))− fi(v̂
0
i (ν)) + hi(ν + s)− hi(ν).

Taking the inner product of (164) with (2βξiU
ρ
i , 2αξiV

ρ
i ) and summing up the product over i ∈ Z, it follows

that

d

dν
(β‖Uρ‖2σ + α‖V ρ‖2σ) + 2κ(β‖Uρ‖2σ + α‖V ρ‖2σ)

= −2β
∑

i∈Z

ξiU
ρ
i (AU

ρ)i + 2β
∑

i∈Z

ξiU
ρ
i (Fi(û

ρ
i (ν + s))− Fi(û

0
i (ν)))

+ 2β
∑

i∈Z

ξiU
ρ
i (gi(ν + s)− gi(ν)) + 2α

∑

i∈Z

ξiV
ρ
i (hi(ν + s)− hi(ν))

+ 2β
∑

i∈Z

ξiU
ρ
i

(
fi(û

ρ
i (ν + s− ̺(ρ)(ν + s)))− fi(û

0
i (ν))

)

+ 2α
∑

i∈Z

ξiV
ρ
i

(
fi(v

ρ
i (ν + s− ̺(ρ)(ν + s)))− fi(v̂

0
i (ν))

)
, (164)

where we recall that κ = min{λ, ς}. Using the same arguments as in (51) and (146), we deduce

− 2β
∑

i∈Z

ξiU
ρ
i (AU

ρ)i + 2β
∑

i∈Z

ξiU
ρ
i (Fi(û

ρ
i (ν + s))− Fi(û

0
i (ν)))

≤ 2.53σβ‖Uρ‖2σ + 2β‖µ3‖ℓ∞‖Uρ‖2σ. (165)

The Young inequality gives

2β
∑

i∈Z

ξiU
ρ
i (gi(ν + s)− gi(ν)) + 2α

∑

i∈Z

ξiV
ρ
i (hi(ν + s)− hi(ν)) (166)

≤ c1(‖g(ν + s)− g(ν)‖2σ + ‖h(ν + s)− h(ν)‖2σ) +
κ

4
(β‖Uρ‖2σ + α‖V ρ‖2σ).

According to (37) in the hypothesis F2, we imply

2β
∑

i∈Z

ξiU
ρ
i

(
fi(û

ρ
i (ν + s− ̺(ρ)(ν + s)))− fi(û

0
i (ν))

)
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+ 2α
∑

i∈Z

ξiV
ρ
i

(
fi(v

ρ
i (ν + s− ̺(ρ)(ν + s)))− fi(v̂

0
i (ν))

)

≤
4L2

f

κ

(
‖ûρ(ν + s− ̺(ρ)(ν + s))− û0(ν)‖2σ

+ ‖v̂ρ(ν + s− ̺(ρ)(ν + s))− v̂0(ν)‖2σ
)
+
κ

4
(β‖Uρ‖2σ + α‖V ρ‖2σ). (167)

Substituting (165)-(167) into (164), we obtain for ν > τ − s and s ∈ [−ρ, 0],
d

dν
‖W ρ(ν)‖2Xσ

+
3

2
κ‖W ρ(ν)‖2Xσ

≤ (2.53σ + 2‖µ3‖ℓ∞)‖W ρ(ν)‖2Xσ
+ c1(‖g(ν + s)− g(ν)‖2σ + ‖h(ν + s)− h(ν)‖2σ)

+
4L2

f

κ

(
‖ûρ(ν + s− ̺(ρ)(ν + s))− û0(ν)‖2σ + ‖v̂ρ(ν + s− ̺(ρ)(ν + s))− v̂0(ν)‖2σ

)
. (168)

Integrating (168) over [τ − s, ν] with ν ∈ [τ − s, τ + T ] and T > ρ,

‖W ρ(ν)‖2Xσ
≤ ‖W ρ(τ − s)‖2Xσ

+ (2.53σ + 2‖µ3‖ℓ∞)

∫ ν

τ−s

‖W ρ(r)‖2Xσ
dr

+ c1

∫ ν

τ−s

(‖g(r + s)− g(r)‖2σ + ‖h(r + s)− h(r)‖2σ)dr (169)

+
4L2

f

κ

∫ ν

τ−s

(
‖ûρ(r + s− ̺(ρ)(r + s))− û0(r)‖2σ

+ ‖v̂ρ(r + s− ̺(ρ)(r + s))− v̂0(r)‖2σ
)
dr.

Note that

‖W ρ(τ − s)‖2Xσ
= β‖φ̂ρ(0)− û0(τ − s, τ, φ̂0)‖2σ + α‖υ̂ρ(0)− v̂0(τ − s, τ, υ̂0)‖2σ
≤ 2

(
d∗X ρ

σ
(ψ̂ρ, ψ̂0)

)2
+ 2β‖φ̂0 − û0(τ − s, τ, φ̂0)‖2σ + 2α‖υ̂0 − v̂0(τ − s, τ, υ̂0)‖2σ. (170)

For all r ∈ R, s ∈ [−ρ, 0], let ζ = y(r) = r + s− ̺(ρ)(r + s), then y′(r) ≥ 1− ρ∗ > 0, and thus there exists

an inverse function such that r = y−1(ζ) for all ζ ∈ R. If let r̂ = r − ̺(ρ)(r + s), then r = y−1(r̂ + s) and

∫ ν

τ−s

‖ûρ(r + s− ̺(ρ)(r + s))− û0(r)‖2σdr

=

∫ y−1(τ)

τ−s

‖ûρ(r + s− ̺(ρ)(r + s))− û0(r)‖2σdr +
∫ ν

y−1(τ)

‖ûρ(r + s− ̺(ρ)(r + s))− û0(r)‖2σdr

≤ 2

∫ y−1(τ)

τ−s

‖ûρ(r + s− ̺(ρ)(r + s))− φ̂0‖2σdr + 2

∫ y−1(τ)

τ−s

‖û0(r) − φ̂0‖2σdr

+
1

1− ρ∗

∫ ν

τ−s

‖ûρ(r̂ + s)− û0(y−1(r̂ + s))‖2σdr̂

≤ 2

1− ρ∗

∫ τ

τ−̺(ρ)(τ)

‖ûρ(r) − φ̂0‖2σdr + 2

∫ τ+2ρ

τ

‖û0(r) − φ̂0‖2σdr

+
2

1− ρ∗

∫ ν

τ−s

‖ûρ(r + s)− û0(r)‖2σdr +
2

1− ρ∗

∫ ν

τ−s

‖û0(h−1(r + s))− û0(r)‖2σdr

≤ 2ρ0
1− ρ∗

sup
s∈[−ρ,0]

‖φ̂ρ(s)− φ̂0‖2σ + 2

∫ τ+2ρ

τ

‖û0(r) − φ̂0‖2σdr (171)
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+
2

1− ρ∗

∫ ν

τ−s

‖Uρ(r)‖2σdr +
2

1− ρ∗

∫ τ+T

τ

‖û0(h−1(r + s))− û0(r)‖2σdr.

Similarly, we deduce

∫ ν

τ−s

‖v̂ρ(r + s− ̺(ρ)(r + s))− v̂0(r)‖2σdr

≤ 2ρ0
1− ρ∗

sup
s∈[−ρ,0]

‖υ̂ρ(s)− υ̂0‖2σ + 2

∫ τ+2ρ

τ

‖v̂0(r) − υ̂0‖2σdr (172)

+
2

1− ρ∗

∫ ν

τ−s

‖V ρ(r)‖2σdr +
2

1− ρ∗

∫ τ+T

τ

‖v̂0(h−1(r + s))− v̂0(r)‖2σdr.

It follows from (169)-(172) that

‖W ρ(ν)‖2Xσ
≤ c2

∫ ν

τ−s

‖W ρ(r)‖2Xσ
dr + c3

(
d∗
X

ρ
σ
(ψ̂ρ

, ψ̂
0)
)2

+ 2β‖φ̂0 − û
0(τ − s, τ, φ̂

0)‖2σ + 2α‖υ̂0 − v̂
0(τ − s, τ, υ̂

0)‖2σ

+ c4

∫ τ+2ρ

τ

(‖û0(r)− φ̂
0‖2σ + ‖v̂0(r)− υ̂

0‖2σ)dr

+ c5

∫ τ+T

τ

(
‖û0(h−1(r + s))− û

0(r)‖2σ + ‖v̂0(h−1(r + s))− v̂
0(r)‖2σ

)
dr

+ c1

∫ τ+T

τ

(‖g(r + s)− g(r)‖2σ + ‖h(r + s)− h(r)‖2σ)dr. (173)

Applying the Gronwall lemma to (173), we deduce, for all ν ∈ [τ − s, τ + T ],

‖W ρ(ν)‖2Xσ
≤ c3e

c2T
(
d∗X ρ

σ
(ψ̂ρ, ψ̂0)

)2
+ 2βec2T ‖φ̂0 − û0(τ − s, τ, φ̂0)‖2σ + 2αec2T ‖υ̂0 − v̂0(τ − s, τ, υ̂0)‖2σ

+ c4e
c2T

∫ τ+2ρ

τ

(‖û0(r) − φ̂0‖2σ + ‖v̂0(r) − υ̂0‖2σ)dr

+ c5e
c2T

∫ τ+T

τ

(
‖û0(h−1(r + s))− û0(r)‖2σ + ‖v̂0(h−1(r + s))− v̂0(r)‖2σ

)
dr

+ c1e
c2T

∫ τ+T

τ

(‖g(r + s)− g(r)‖2σ + ‖h(r + s)− h(r)‖2σ)dr. (174)

By (162), we imply the first term on the right-hand side of (174) tends to zero as ρ → 0. Then we infer from

the continuity of û0(·, τ, φ̂0), v̂0(·, τ, υ̂0) at τ and s ∈ [−ρ, 0] that

2βec2T ‖φ̂0 − û0(τ − s, τ, φ̂0)‖2σ + 2αec2T ‖υ̂0 − v̂0(τ − s, τ, υ̂0)‖2σ

+ c4e
c2T

∫ τ+2ρ

τ

(‖û0(r) − φ̂0‖2σ + ‖v̂0(r)− υ̂0‖2σ)dr → 0, as ρ→ 0.

Since û0, v̂0 are uniformly continuous over [τ, τ + T + ρ], then the third line of (174) is bounded by

c5e
c2T

∫ τ+T

τ

(
‖û0(h−1(r + s))− û0(r)‖2σ + ‖v̂0(h−1(r + s))− v̂0(r)‖2σ

)
dr → 0,

as ρ→ 0. Thanks to g, h ∈ L2
loc(R, ℓ

2
σ) and s ∈ [−ρ, 0], the last line of (174) satisfies

c1e
c2T

∫ τ+T

τ

(‖g(r + s)− g(r)‖2σ + ‖h(r + s)− h(r)‖2σ)dr → 0, as ρ→ 0.
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Collecting the above estimations, we deduce that for all ν ∈ [τ − s, τ + T ] and s ∈ [−ρ, 0],

‖W ρ(ν)‖2Xσ
→ 0, as ρ→ 0. (175)

We now consider the other case ν ∈ [τ, τ − s]. Let µ = ν − τ . Then we obtain ν = µ + τ and 0 ≤ µ ≤ ρ.
Therefore,

‖W ρ(ν)‖2Xσ
= ‖ϕ̂ρ(ν + s, τ, ψ̂ρ)− ϕ̂0(ν, τ, ψ̂0)‖2Xσ

≤ 2‖ϕ̂ρ(ν + s, τ, ψ̂ρ)− ψ̂0‖2Xσ
+ 2‖ϕ̂0(ν, τ, ψ̂0)− ψ̂0‖2Xσ

≤ 2 sup
s∈[−ρ,0]

‖ψ̂ρ(s)− ψ̂0‖2Xσ
+ 2‖ϕ̂0(µ+ τ, τ, ψ̂0)− ψ̂0‖2Xσ

.

By the continuity of ϕ̂0 = (φ̂0, υ̂0) at τ , µ ∈ [0,−s] and the condition (162), we imply the above inequality

goes to zero as ρ→ 0, which together with (175), yields that for all ν ∈ [τ, τ +T ] and s ∈ [−ρ, 0], (163) holds

true.

Lemma V.3. Let the hypotheses E, F1, F2, G1-G3 and (38) be satisfied. If ρn → 0, t ∈ R and ψn =

(φn, υn) ∈ Aρn
(t) ⊂ X ρn

σ , then there exist ψ̂0 = (φ̂0, υ̂0) ∈ Xσ and an index subsequence {n∗} of {n} such

that

d∗
X

ρn∗

σ
(ψn∗ , ψ̂0) = sup

s∈[−ρn∗ ,0]

‖ψn∗(s)− ψ̂0‖Xσ
→ 0, as n∗ → ∞. (176)

Proof. Take a sequence τn → −∞. By the invariance of Aρn
(·), there exists a ψ̂n := (φ̂n, υ̂n) ∈ Aρn

(τn)
such that

ψn = Ψρn
(t, τn)ψ̂n. (177)

By Aρn
∈ Dρn

, and using the same method as in Step 1 of Lemma V.1, we deduce that {(Ψρn
(t, τn)ψ̂n)(0)}n∈N

is pre-compact in Xσ = ℓ2σ × ℓ2σ, and thus there exist a ψ̂0 := (φ̂0, υ̂0) ∈ Xσ and an index subsequence {n∗}
of {n} such that

‖(Ψρn∗
(t, τn∗)ψ̂n∗)(0)− ψ̂0‖Xσ

→ 0, as n∗ → +∞,

which implies that for given any ǫ > 0, there exists N1 ≥ 1 such that for all n∗ ≥ N1,

‖(Ψρn∗
(t, τn∗)ψ̂n∗)(0)− ψ̂0‖Xσ

≤ ǫ. (178)

By the arguments as in Step 2 of Lemma V.1, we imply that there exists ι > 0 with |s1 − s2| < ι such that for

all ǫ > 0,

‖(Ψρn∗
(t, τn∗)ψ̂n∗)(s1)− (Ψρn∗

(t, τn∗)ψ̂n∗)(s2)‖Xσ
≤ ǫ.

Since ρn∗ → 0 as n∗ → +∞, there exists N2 ≥ N1 such that ρn∗ < ι for all n∗ ≥ N2, then

‖(Ψρn∗
(t, τn∗)ψ̂n∗)(s)− (Ψρn∗

(t, τn∗)ψ̂n∗)(0)‖Xσ
≤ ǫ, (179)

for all s ∈ [−ρn∗ , 0]. It follows from (177)-(179) that there exists N3 ≥ N2 such that

‖ψn∗(s)− ψ̂0‖Xσ
= ‖(Ψρn∗

(t, τn∗)ψ̂n∗)(s)− ψ̂0‖Xσ

≤ ‖(Ψρn∗
(t, τn∗)ψ̂n∗)(s)− (Ψρn∗

(t, τn∗)ψ̂n∗)(0)‖Xσ

+ ‖(Ψρn∗
(t, τn∗)ψ̂n∗)(0)− ψ̂0‖Xσ

≤ 2ǫ,

for all n∗ ≥ N3 and s ∈ [−ρn∗ , 0], which yields (176) as desired.
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Theorem V.4. Let the hypotheses E, F1, F2, G1-G3, (38) be satisfied. SupposeAρ is the Dρ-pullback attractor

of deterministic delayed lattice system (3) and A0 is the D0-pullback attractor of deterministic non-delayed

lattice system (158). Then Aρ converges to A0, i.e.

lim
ρ→0

d∗X ρ
σ
(Aρ(t),A0(t)) = 0, ∀ t ∈ R. (180)

Proof. If (180) does not hold true, then there exist ǫ > 0, ρn → 0 and ψn := (φn, υn) ∈ Aρn
(t) such that

d∗X ρn
σ

(ψn,A0(t)) ≥ ǫ, ∀ n ∈ N. (181)

Thanks to (176) in Lemma V.3, there exist a subsequence ψn (relabeled the same) and an element ψ̂0 :=

(φ̂0, υ̂0) ∈ Xσ such that

lim
n→∞

sup
s∈[−ρn,0]

‖ψn(s)− ψ̂0‖Xσ
= 0. (182)

We now prove that ψ̂ ∈ A0(t). By the invariance of Aρn
, there exists ψ̂k

n := (φ̂kn, υ̂
k
n) ∈ Aρn

(τk) such that

ψn = Ψρn
(t, τk)ψ̂

k
n, ∀ n, k ∈ N, (183)

where τk → −∞ as k → +∞. By (176) in Lemma V.3, there exist a subsequence of ψ̂k
n and an element

ψ̂k ∈ Xσ such that

d∗
X

ρn∗

σ
(ψ̂k

n∗ , ψ̂k) → 0, as n∗ → +∞.

It follows from a diagonal process that there exists an index subsequence (relabeled the same) of {n∗} such

that

lim
n∗→+∞

sup
s∈[−ρn∗ ,0]

‖ψ̂k
n∗(s)− ψ̂k‖Xσ

→ 0, ∀ k ∈ N. (184)

By (163) in Lemma V.2, we have

lim
n∗→+∞

sup
s∈[−ρn∗ ,0]

‖Ψρn∗
(t, τk)ψ̂

k
n∗(s)−Ψ0(t, τk)ψ̂

k‖2Xσ
= 0, ∀ k ∈ N,

which, together with (182) and (183), implies

ψ̂0 = Ψ0(t, τk)ψ̂
k, ∀ k ∈ N. (185)

Since Kρn
is a pullback Dρn

-absorbing set, and by the invariance of Aρn
, there exist a τ̂k := τ̂k(τk,Aρn

) ≤ τk
such that

Aρn
(τk) = Ψρn

(τk, τ̂k)Aρn
(τ̂k) ⊂ Kρn

(τk),

which shows ψ̂k
n ∈ Kρn

(τk). Combining (161) and (184), we obtain, for all k ∈ N,

‖ψ̂k‖2Xσ
= lim

n→+∞
‖ψ̂k

n(0)‖2Xσ
≤ lim sup

n→+∞
‖ψ̂k

n‖2X ρ
σ
≤ ‖K0(τk)‖2Xσ

.

As A0(·) is a pullback D0-attracting set, and by (185) and K0 ∈ D0, we deduce

d∗Xσ
(ψ̂0,A0(t)) ≤ d∗Xσ

(Ψ0(t, τk)ψ̂
k,A0(t)) ≤ d∗Xσ

(Ψ0(t, τk)K0(τk),A0(t)) → 0,

as k → ∞, which implies ψ̂0 ∈ A0(t). We then infer from (182) that

d∗
X

ρn∗

σ
(ψn,A0(t)) ≤ sup

s∈[−ρn,0]

‖ψn(s)− ψ̂0‖Xσ
+ d∗Xσ

(ψ̂0,A0(t)) → 0

as n→ ∞. This contradicts with (181).
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