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In this paper, two problems related to FitzHugh-Nagumo lattice systems are analyzed. The first one is
concerned with the asymptotic behavior of random delayed FitzHugh-Nagumo lattice systems driven
by nonlinear Wong-Zakai noise. We obtain a new result ensuring that such a system approximates
the corresponding deterministic system when the correlation time of Wong-Zakai noise goes to in-
finity rather than to zero. We first prove the existence of tempered random attractors for the random
delayed lattice systems with a nonlinear drift function and a nonlinear diffusion term. The pullback
asymptotic compactness of solutions is proved thanks to the Ascoli-Arzela theorem and uniform tail-
estimates. We then show that the upper semi-continuous of attractors as the correlation time tends
to infinity. As for the second problem, we consider the corresponding deterministic version of the
previous model, and study the convergence of attractors when the delay approaches zero. Namely, the
upper semicontinuity of attractors for the delayed system to the non-delayed one is proved.

Keywords: Random delay lattice system; FitzHugh-Nagumo system; Nonlinear Wong-Zakai noise;
Pullback random attractor; Upper semicontinuity

. INTRODUCTION

Some lattice dynamical systems can be derived from spatial discretization of continuum systems. They
have wide applications in our daily life, including physics, chemistry, biology, engineering and other fields
of science (see, e.g.>1113717) A far as the authors are aware, one of the most interesting lattice systems is
FitzHugh-Nagumo model, which simulates the process of signal transmission across axons. It is known that,
lattice dynamical systems with delay have been receiving much attention for many years (2:4+4¢).

The motivation of this paper is to study the long-time dynamics of pullback random attractors for the follow-
ing delayed FitzHugh-Nagumo lattice system driven by a nonlinear Wong-Zakai noise:

dCZi — (Ui—1 — 2u; + uip1) + Mg + av; = Fi(ui(t)) + filui(t — Q(p) ®))) + gi(t) + Gy (t,u:)Gs (¢, w),
CZ; + qui — Bug = hi(t) + fi(vi(t — 0P (1)),

ui(T + S) = ¢i(8)a vi(T + S) = Ui(s)a (&S Za t> T, TE Rv s € [_pao]a
(1)
where \, a, ¢, 3, v and p are positive constants, Q(P) is a variable delayed function with maximum delay p, F; is
a nonlinear drift function with polynomial growth of arbitrary order, f; is an external force affected by memory
during the interval of delay time [—p, 0], the deterministic time-dependent forcings g;, h; € L? (R, L*(R™)),
¢;,1; are the initial data on the internal [—p, 0], G; is a nonlinear diffusion, Gs is the Wong-Zakai process with
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correlation time 6 > 0, which is J-difference of a two-side scalar Wiener process W on a probability space
(Q, F,P), given by

Gs(t,w) :==-W(t+dw) —W(tw),Vi>0,teR, we ()

| =

This type of Wong-Zakai noise was first introduced by#®#! in which the authors used deterministic differen-

tial equations to approximate stochastic ones for one-dimensional Brownian motions. Later, a growing number
of authors extended the idea of Wong-Zakai approximations to higher-dimensional Brownian motions, martin-
gales and semimartingales (see!31222-33 ) Recently, the convergence of solutions and attractors for random
equations with such a noise when § — 0 has been extensively studied (see!12:1348) Note that Wong-Zakai
approximation systems in these references were only considered in the case of linear noise, that is, the se-
quence of diffusion functions G = (G;);ez in is u = (u;);ez or independent of u. Moreover, so were
all the results on the semicontinuity of random attractors, see®223743 for autonomous stochastic equations,
and*7:20:2123.26.3942.85.47 for non-autonomous stochastic equations.

However, there exist very few works on studying the attractors of random delayed equations driven by the
nonlinear Wong-Zakai noise, even in autonomous version. To our knowledge, the only two papers for such
autonomous equations were published by Li et al. in?*23. In this paper, we investigate the dynamics of non-
autonomous random delayed FitzHugh-Nagumo lattice system with a nonlinear Wong-Zakai noise ().

The present article is divided into two parts. In the first part, we prove the existence of a pullback random at-
tractor A% = {A°(t,w)} for the random delayed system () with a nonlinear noise and its upper semicontinuity
when § — +o00. This is different from the general situation 6 — 0. To prove the existence of a pullback random
attractor A% in X = C([—p, 0], X,) with X, = (2 x 2, where (2 is weighted space for each § > 0, we must
verify the random dynamical system (or cocycle) ¥°, induced by Eq. (D) driven by the Wong-Zakai nonlinear
noise, is pullback asymptotically compact in X£. The ideas of uniform estimates and the Ascoli-Arzela theo-
rem are the crucial tools to prove it. As for the upper semi-convergence of A’ as § — +o0, we need the help
of the logarithm law of the Wiener process, which establishes W (¢,w)/ log(log|t|) — 0 as t — %00, as well
as the result (IT) in Lemmal[L.1] which ensures

lim sup Gs(t,w) =0, P-as.weQ, a<b.
d—+o0 t€la,b]

Based on the previous arguments, we consider the limiting system of random delayed lattice model (I) when
0 — 400 as the deterministic delayed lattice system:

dCZl _ (’ai—l — 2’&1 + ﬁi+1) + /\’&l + CY’[A}i = Fz(ﬁ/z(t)) + fz(ﬁ/z(t _ Q(P) (t))) + gz(t),
CZ + 0 = Bl = hit) + fu(®ilt = o (1)), (3)

Gi(T48) = ¢i, Gi(T+8)=0;, i€Z, t>T, TER, s€[—p,0].

Under some appropriate conditions (see Hypotheses E, F1, F2, G1-G3 later), we find out that the system
(B generates a pullback attractor denoted by A (#) whose existence has been established, see?#3¢. Then we
need to check that the random pullback attractor .A° (¢, w) semi-converges to A (t) as § — +oo (see Theorem

[V2), that is,

lim dye(A(t,w), A®(t)) =0, VtER, we Q, 4)

d—+oo
where the distance d y» is defined for all subsets A and B of X by

dxe (A, B) :=sup inf sup |la(v)—b(v)| «,.
acAbPEB ,e[—p,0]
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For this end, we prove the solutions to random system (I)) converge to that of the corresponding deterministic
system (3) when 6 — +o0. Note that the pullback attractor .A°°(¢) in @) is written as .4,(¢) to indicate its
dependence on the delay p for later purpose.

In the second part of this article, our goal is to further establish the upper semicontinuity of the pullback
attractor A, (t) as p — 0 (see Theorem[V.4), that is,

lim dY, (4,(t), Ao(t)) =0, Vit €R, 6))
p— 7

where A (¢) is a pullback attractor for the non-delayed version of Eq. (3), and the distance d}g is defined for
all subset A of X and B of &, by

Ye(A,B) :=supinf sup |la(v)—0b|x,.
7 acAbEB ,e[—p,0]

Due to the validity of all the estimates we obtained in Section [Tl of the first part, especially in two cases of
the non-delayed case (p = 0) and the deterministic case (6§ — +oo) for (I). Therefore, we immediately deduce
the existence of the pullback attractor A4y (¢). As for (3)), the main task is to prove the convergence of solutions
to system (3)) as p — 0.

The article is organized as follows. In the next section, we introduce Wong-Zai process, weighted spaces
and some notations, impose some suitable assumptions, and define a family of continuous cocycles. In Section
we prove the existence of pullback random attractors for problem (). In Section we further establish
its upper semicontinuity as § — +o0o. The last section is devoted to the upper semicontinuity of pullback
attractors for problem (@) as p — 0.

Il. RANDOM DELAYED FITZHUGH-NAGUMO LATTICE SYSTEM DRIVEN BY WONG-ZAKAI NOISE

In this section, we first prove some useful results on Wong-Zakai processes and weighted spaces. We then de-
fine a continuous cocycle (non-autonomous random dynamical system) W° associated with the random delayed
FitzHugh-Nagumo lattice system (I)) for all § > 0, and establish some suitable assumptions.

A. Wong-Zakai process

As usual, we identify the Wiener process W (t,w) with the path w(¢) on the metric dynamical system
(Q,5,P,0}, ie., W(t,w) = w(t), where @ = {w € C(R,R) : w(0) = 0} with the compact-open topol-
ogy, § is the Borel o-algebra, P is the Wiener measure on (2, F), 6 = {6, : t € R} is a group on ({2, F,P)
denoted by 6,w(-) = w(- +t) — w(t), and there is a f-invariant full-measure set Q¢ C €2 satisfying

_w(t)
th_?i — = 0, Vw € Q. 6)

For convenience, we write {2 as 2. For each 6 > 0, define a random variable G5 by

Gs(w) := Q(;(O,w):@, Vo>0,we8§, @)

which implies that the Wong-Zakai process has another form:

Gs(t,w) = %(W(t +0,w)—W(tw)) =Gs(biw), V6 >0, teR, we . (8)

The following Lemma gives several conclusions on Gs.
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Lemma IL1. For each (6,w) € R" x Q, we obtain the following results
(i) The mapping t — Gs5(0,w) is continuous such that

t
lim sup }/ Gs(Osw)ds — w(t)| = 0; )
0

6—0 t€la,b]
(ii) The mapping t — Gs(0,w) is of sublinear growth, i.e.,
Gs(Orw)
t

lim

t—too

=0; (10)

(iii) The mapping 6 — Gs(0:w) is continuous on (0, +00) and uniformly continuous on [y, +00) for all
0o > 0 such that

lim  sup |Gs(0hw)| = 0; )
d—+o0 t€la,b]

(iv) For any 1,52 > 0 and w € ) such that for all 6 > 0,

0 0
/ e Gs(0yw)|2dt < 400, and 6lim / et Gs (Bw)[2dt = 0. (12)
—+o0 J_ o

— 00

Proof. (i) It follows from?® (lemma 2.1) that (9) holds true.
(ii) According to (), we obtain
Gs(Orw) wt+0)—w(t) i wt+d) t+6 1 . w(t)

JAm = lm 5 = Am =T e sm. 5 =0 13

(iii) Since t — w(t) is continuous, one can imply that § — G5(6w) is continuous on (0, +00). We now
prove that it is uniformly continuous on [§g, +00) for all dp > 0. And thus we need to imply that

lim sup Gs(fw)= lim sup wit+9) = w(t)

0—=+00 te(a,b] 0400 te[a,b] d
t+ 46 t
— lim sup wlt+0) o 90y, (14)
5_)+°Ot€[a,b] 1) d—4o00 t€[a,b]

On the one hand, for given ¢ > 0 and w € €2, note that @ — 0ast — +00, so there exists T} := Ty (e,w) >0

such that |w(t)| < et forall¢ > T. Foreacha,b € R and a < b, then [a, b] is compact. Then, forall § > T} —a,
andso ¢+ 0 > T7 > 0 whenever ¢ € [a, b],

sup wt+9) < sup M < sup €(t+9) =c. (15)
tefap) t+0 Tty t+O telap] L0

We then easily check that 0 < -2 < 2 for all § > max{|al, |b|}. Let 6 = max{T} — a, |al, |b|}, then for all
0 > dp and t € [a, b] such that

tejap] O telap) t+O 4
which implies
t+ 06
lim  sup wit+9) _ g (16)

d—r+o0 te(a,b] J
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On the other hand, since the minimum of w(-) over [a, b] exists and is finite, we deduce

. _oow(t)
1 f —2=0. 17
aiToo telﬁz,b] ) 0 {17

Combining (16) and (17), we obtain we obtain (I4). This implies (1)), which together with the continuity of
0 — Gs(0iw), yields the uniform continuity on [dg, +00).

(iv) By (ii), t — Gs(6iw) is of sublinear growth as ¢ — —oo, which along with the continuity of 6 — Gs(6:w)
shows that e**|Gys(6;w)|*2 is integrable with respect to ¢ € (—o0,0] for any ¢1,52 > 0. By = (t) — 0 as
t — +oo, thereis a T := T'(w) > 0 such that ]@} < lforall t| > T,

W] < It + Cw), VR, ()
where C'(w) = sup |w(t)| < +o0.

te[—T,T)
For all 6 > 1, we then proves the following inequality holds true.

G5 (0:w)| < 20 (w) —2t+1, V<0, w € Q. (19)

Case A: If t € [—4,0], then forall 6 > 1,

|Gs (Ouw)| = IW(t+5) —w(t) < (Iw(t+5)l +lw(®))

<1
5
S%((t—i—é—i—C(w)) —t+Cw)) =1 W) < 20(w) — 2t + 1. (20)

Case B: If t € (—o0, —¢], then forall 6 > 1,

|Gs(0uw)| = %IW(H(S)—W(t)I (lw(t + )] + [w(®)])

1
5
< (=54 Cw) + (4 0w)) < 20() ~ 2+ 1. o

Combining two cases A and B, we have (I9) as desired. Thus, we easily show
0 0
/ e G5 (0yw)|2dt < / e (20 (w) — 2t + 1)%2dt < 400, V61,52 > 0.
According to the Lebesgue control convergence theorem and (I1)), we deduce

0 0
lim e G5 (Oyw)| 2 dt :/ et lim |Gs(Oyw)|2dt = 0,
d——+oco

d—+oo oo o

which proves (I2)) as desired. All proofs are complete.

B. Weighted spaces and continuous cocycles

Givenp > land o > %, we define the weighted p-times summation space by

"= {u— {uikicz : Jullop = (Zmumi}, 22)

€L
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where & = (1 +42)77 fori € Z, and so & = (&;)icz € (P for any p > 1. Thanks to*2, (2| - ||,,) is a
separable Banach space. In particular, 2 is a Hilbert space with inner product and norm, respectively:

(1, 0)e = 3 Guivs, ulloe = (w,w)z, Vu,ve . (23)
i€EZ

By the Holder inequality, for p > ¢ > 1, we have || || , < H§Héf = ,, ¥ o € ¢4. More precisely,

1= lwl =37 (¢ |=l7)

I=|
i€EZ i€Z
(™) (S (=) ) = 1607 1=, e
1E€EZ 1€EZ

Taking into account the delay, let X? = C([—p, 0], £%), which is the space of all continuous functions from
[—p, 0] to £2 with the following norm

1
lvllxe = sup [[v(s)]le = sup (Zfzm )2, VoveXP. (25)
s€[—p,0] €[—p,0] icZ
For convenience, the delay shift of ¢ = (u,v) : R x R — R? is defined by
o1 = (ug,v¢) : [=p,0] X [=p,0] = R?, (s, 2) = (u(t + s),v(t + 5)) (26)

forall s € [—p,0].
Let X, = (2 x (2 and X? = C([—p, 0], X,) be equipped by the norms

lollZ, = Bllullz + alvl|Z, Yo = (u,v), 27)
and
el = Bllulie + allvell5e = B s[up ] ue(s) |2 + allve(s)]|Z, Voo = (u,v), (28)
s€[—p,0

where « and f3 are as in (). Then, we introduce the discrete Laplace and gradient operators by
(Au)i = —ui—1 +2u; — uip1, (Bu)i = w1 —ui, (B u)i = i1 — g, (29)

which shows that A = BB* = B* B, see'*. Note that for all u, v € {2 such that (Bu,v) = (u, B*v), (Au,v) =
(Bu, Bv). It is simple to obtain that for all i € Z,

i+l 1+i% N §i—1 1+ (i —1)*\°
0.4° < = < 2.57 d0.4° < = <257 30
=7 (1+(i+1)2) =205l =7 ( 1+ ) =25% G0
which implies that
Gix1 <257, [(BE)il = [€iv1 — &l <257, [(B™)i| < 2.57¢;. 31

Let F(z,u(t)) = (Fi(ui(t))icz, f(u(t—0® (1)) = (fi(ui(t— 0" (1))))iez, f((t—0 (1)) = (filvi(t—
oW ()))iez, 9(x,t) = (9:(t))icz, G(t,u) = (Gi(t,us))icz, and h(z,t) = (hi(t))icz. Then system (I) can
be rewritten as

‘Cll_” + Au+ M+ av = Fz,ult)) + Flult — o2 () + g(@, £) + Gt u)Gs (i),

dv

=+ v = Bu= h(z, 1)+ f(u(t = 0P (1)),

u(t+38)=¢(s), vi(r+s)=v(s), t>71, 7T€ER, s€[-p,0], p>0.

(32)
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Hypothesis E. The delay function o(#)(-) is a positive continuously differentiable function satisfying

d
p:=sup o (t) < 400, ps:= sup sup —o (t) < 1. (33)

-0
teR p€(0,p0] tER dt

Therefore, the memory time p € (0, po] for some py > 0.
Hypothesis F1. For the nonlinear drift function F; € C* (R,R), we assume that forall s € Rand i € Z,

2p—2
Fi(s)s < —aq|s]? + p1,4, 1= (p,i)iez € b ¥, (34)
’Fz(S)’ < agls|P 4 pio, p2 = (p2,i)icz € £2, (35)
oF; _ s
95 (s) < —asls|P2 + psi,  ps = (us,)icz € £, (36)

where p > 2, a1, ag and g are positive constants.
Hypothesis F2. The nonlinear delayed term f; is continuous such that for all s1, s3 € R,

fi(0) =0, VieZ,

sup sup [fi(s1) = fi(s2)| < Lyls1 — sal, G7
1€Z s1,52€R
where Ly > 0 is constant.
From now on, let £ = min{\,c} and 0¢ := 4 x 2,527 + 2(2.5°7 + 2||us||¢=). Besides, we assume

2
oo + % < k. In this case, there exists mg > 0 small enough such that for all m € (0, my),

4Lfcemp°

m-+ o9 — K+

4L2e™P0
i
K(lfp*) < O.

Hypothesis G1. Let G; (-, -) be continuous from R? to R satisfying

In particular, m — x +

1Gi(t,s)| < ouls|9 + pait),  pa = (pa,i)icz € L(R, 2), (39)

where 2 < g < p, ag > 0.
We further impose the following assumptions.
Hypothesis G2. The forces g and & are backward tempered:

0
Y(7r):= sup/ e™ (lg(v +7)||% + |h(v +7)||2)dv < 400, VT € R. (40)
r<7J—0c0
Hypothesis G3. The forces g and h are backward tail-small:
0
lim sup/ e™ > &g +1)* + [hi(v +1)|*)dv =0, V7 € R. (41)

k—oo r<rJ—oo \i|>k

Under the assumptions (33)-(@1), similarly to the Galerkin method, we can show that for each § > 0, 7 €
R, w € Qand ¥, = (ur,v;) € X2 = C([—p,0],% x (2), the random delayed FitzHugh-Nagumo lattice
system (32) possesses a unique solution ¢’ (-, 7, w, V) = (u® (-, 7,w, u,),v° (-, 7,w, v, )) such that

@ € C([r — p,400), 62 x £%). (42)
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Besides, the solution ° is continuous with respect to the initial data t, in X2. By the same method as in!?,

one can prove that ©° (¢, 7,w, 1, ) is (&, B(X?))-measurable in w € Q. Then, for each § > 0, we can define a
family of continuous cocycles W0 : Rt x R x  x X? — X? given by

Wa(tv T, w)"/’r = SD?JFT(H T,0_rw, 1#7) (43)

Let © be the universe of all backward tempered bi-parametric sets in X2, where a bi-parametric set D :=
{D(r,w) : (1,w) € R x 2} in X2 is called backward tempered, that is, D € © if and only if

lim e " sup | D(r —t, 9_1:0-2)”%(5 =0,V (y,7,w) ERT xR x Q. (44)

t—+oo r<r
We easily check that © is backward-union closed in the sense of D € D whenever D € 9, where

D(r,w) = | D(r,w), ¥ (r,w) € R x Q. (45)

r<r

However, the usual universe D of all tempered bi-parametric sets is not backward-union closed, where Ded
if and only if

lim e | D(r —t,0_w)|% =0, ¥ (y,7,w) € RT x R x Q. (46)

t——+oo

lll. EXISTENCE OF PULLBACK RANDOM ATTRACTORS

This subsection is devoted to the existence of pullback random attractors for the random delayed FitzHugh-
Nagumo system (32). We first derive a variety of backward uniform estimates of solutions to Eq. (32), including
the backward uniform absorption and tail-estimates. We then prove the pullback asymptotic compactness of
the solutions via the Ascoli-Arzela theorem in X? = C([—p, 0], X,), where X, = ¢2 x (2. Finally, we prove
the existence of tempered random attractors for Eq. (32).

A. Backward uniform absorption

Lemma IIL1. Let the hypotheses E, F1,F2, G1, G2 and (38) be satisfied. Then, for each (1,w, D) € RxQxD
and Pr_y = (pr—t,Vr—t) € D(r — t,0_4w), there exists a T := T(1,w, D) > 3p + 1 such that for all t > T,
the solution ¢° = (u’,v°) to satisfies

sup  sup  [l@?(r+s,7 —t,0_,w,9_) |3, < cRs(T,w), (47)
r<7 s€[—2p—1,0]

w [ DB R s [ DGR, + W) < eRatr), @9
where Rs(T,w) = 1+ Y(7) 4+ ns(w) with

0] 0 »
T(r) = sup / ™ (llg(v + )2 + R+ r)II2)dv, m5(w) = / €™ |G (O0) | 727 dv. (49)

r<7J—00 —o00

Proof. Taking the inner product of (32) with (28u°,200%) = (2Bu’(v,r — t,0_,w, ¢r_y), 200° (v, 7 —
t,0_,w,v,—¢)) in X, = £2 x (%2 (when no ambiguity is possible, we delete the superscript § below), we
obtain

d
—llelx, +26llelk, = —26 ) &(Aw)iui + 26(F (x,u),u), (50)
€L
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+28(f (u(v — 0 (1)), u)s + 2a(f(v(v — o' (1)), v)s
+28(g(z,v),u)e + 2a(h(z,v),v) s + 28G5 (0, —rw) (G, 1)y,

where we recall that ||¢||3, = Bllull2+allv[|2, k = min{\,<}. By GI) and (B(&u)); = (BE)iuir1+Ei(Bu)i,
we have

—28)  &Gi(Au)u; = =28 (Bu)i(B(§w))i = =28 (BE)i(Bu)iuirr =28 &l(Bu)il*

=y i€Z i€Z i€Z
<28 256 |(Bu)illuisa] — 28 ) &l(Bu)il® < B> &(25% |uia [P + [(Bu)il®) — 28 &l (Bu)i
1E€EL 1€EZ 1€EZL 1E€EL
< 2-520ﬁ25i|uz‘+1|2 < 2-530525i+1|ui+1|2 = 2.5%|ul|. (51
i€z i€l

By (@4) in the hypothesis F1, we imply
28(F(x,u),u)y =20 Z{ZE(U u
i€z

< =208 &lwil? + 28> &pri < =200 B([ul?, + 28] 11 [lo.1- (52)

i€L =Y/
According to the Young inequality and (37) in the hypothesis F2, we deduce

26(f (u(v — o' (1)), u)y + 2a(f(v(v = 0¥ (1)), 0)s
=28 &ifilwi(v — 0 ())us +2a Y & filvi(v — oV ()))us

€L i€EZ
AL2 o
—L3 (Bl = 6@ @) +alvilv = 8V 0)2) + Tl
i€Z
4L2 K
< — e = P W), + Fllel%,- (53)

The Young inequality gives
K
26(g(x,v),u)s + 2a(h(z,v),0)s < <@l +clla@)5 +[[R@)]2), (54)
where ¢; = ¢1(8, @, x) > 0. By (39) in the hypothesis G1, we have

28G5 (0 rw)(G, 1)y <2B|Gs (0, —rw)| > &l Gi(v, ui)|[uil

€7
<2ﬂa4|g6 v—rWw |Z§1|uz|q+2ﬂ|g6 v—rW |Z§1|,U41 ||uz|
iE€EZL €7
2
<ca|Gs (Oy—rw)|[ullg 4 + gﬁlga(%—rw)ﬂ\m( V)4 (55)

where co = 28y + %B and % + % = 1. Now, we estimate the last two terms in (33), respectively. On the one
hand, by (24), we obtain

c2|Gs (Oy—rw)|[[ullg 4 < c2lFs (0, ) lEN? ullg, < 2a15|\UH +¢3|Gs(0h—rw)| 77, (56)
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where c3 = c3(||€]| 1, @1, 8, c2) > 0. On the other hand, note that ¢ > 2 and so § < 2 < ¢ < p, by 24) and
pa € L= (R, ¢2), we imply

2 .2 p=d 3
gﬁlga(%—rml||u4(V)||3,q < gmgé(eu—r“’””f”glp na@)l2

2 p—d X
< 2165 Cor T 1]

< ¢4|Gs (0 —pw)| 77 + 5. (57)

Substituting (36)-(37) into (33),

2Bg5(9u—rw)(Gu u)a' S O‘lﬁ”u”g@ + 06|g5(91/—7‘w)|p_gq + Cs, (58)

1
2
where cg = c3 + c4. By (GI)-(34) and (38D, we can rewrite (30) as follows.
d K 3
Lllel, +sllel, + Slell, + Saaplul,

412
<257 8ul2 + =Ll = D VI,

+er(lg)2 + [h@))12) + ¢6|Gs (0y—rw)| 77 + 7, (59)

2p—2
where c7 = ¢5 + 20||p1]|o,1 < +oo in view of 1 € ¢, 7 . Taking into account (24), we obtain

P2 1
2.5 Bllullz < 2.5%B|Ell, 7 Nullz, < gaBllullz, + s, (60)

where cg = cs(||€]|g1, 0, 3, 1) > 0. Combining (59) and (60), we have
d, o 2 AR P 61
Lol + sllol, + Sl +oaplulz,, )

2
4L%

< e = oW, + ot + 912 + 1A0)|2) + cols(6,—rw)| 757

Multiplying (1) by ¢™” and integrating it about v € [r—t,r+s|, wherer < 7, t > 3p+1lands € [-2p—1,0],
we deduce

r+s r+s
K
L A A 01 Xl e O
r—t r—t

2
2 e 2 4L§c e 2
<O O, + m =) [ e+ =2 [ e o - 8 @) v
r+s r+s »
. / ™ (14 g2 + 50 |12)dv + o / V(G (B i) |77 v (62)
r—t r—t

Now, we compute the third term on the right-hand of (62):

4L2 r4s
i / o — o) ()3, dv

K —t
2
4L%

r+s
m(p+e? (1)) 2
< e 1 dp
=/ (i),

—t—p
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4L?emp° r—t ) 4Lfcemp° r+s )
< e / ) |2 dpt + T / e o1 |,
T T

~ R =) S K(1=ps) Sy
4L2'6mp0 4L2 emPo r+s
T om(r—t) 2 o f miL 2 d 63
< Oy + s [ el (63)

It follows from (@8), (62) and (63) that

K r+s o
lp(r + 5,7 = t,0_pw, v )||%, + 5/ e lp(v) 1%, dv
r—t

r+s
vars [ e ) v
r—t

r+s
< 0™ [y llzp + 09/ ™I L+ g5 + ()13 dv
r—t
r+s »
+ 06/ em=r=3)1G5(0,_yw)| 7 dy. (64)
r—t
By s € [-2p—1,0] and p € (0, po] , we have
2 R A m(v—r) 2
lo(r 45,7 =t 0-rw, ¥r-o)lx, + 5 e leW)l%, dv
r—t

r+s
+ / ) () 2 dv
r—t

< eroe™ PP g,y |15, + 096’"(2””*1)/ ™1+ g + 1h(v)[17)dv

r—t
+ cgeM(2Pot1) / ™G5 (0, —yw)| 757 du. (65)
r—t

Since ¢,_; € D(r — t,0_4w) and D € D, we obtain that there exists a T := T'(1,w, D) > 3p + 1 such that
forallt > T,

sup efthd)T,tHQX(,: <e ™sup || D(r—t, H,tw)HQX(,: <1,
r<rt

r<rt
which, together with (63), implies that for all ¢t > T

sup  sup  lo(r 45,7 — 0w, o) |I3, < e(1+T(7) + ns(w)),
r<7 s€[—2p—1,0]

which yields 7). Letting s = 0 in (63) shows ([@8)) as desired. O

As an immediate consequence of Lemmal[llL1] we prove ®-backward absorption, which means D-pullback
absorption is uniform with respect to the past time.

Proposition IIL.2. Let the hypotheses E, F1,F2, G1, G2 and B38) be satisfied. The cocycle V0 associated with
the random delayed FitzHugh-Nagumo lattice system (1) possesses a D-pullback random absorbing set Ks €
D, given by

IC5(T= w) = {906 = (uévvé) S i HQPJH?Y;’ < CR5(va)}7 (66)

where Rs(T,w) is the same as in Lemma Il Moreover, Ks is ®-backward absorbing set, that is, for
each (T,w,D) e R x Q x D, thereisa T :=T(1,w,D) > 3p+ 1 such that

WO (t,r —t,0_,w)D(r —t,0_,w) C Ks(r,w), Vr <7, t>T. (67)
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Proof. 1t follows from (#7) in Lemma [[IL1] that KCs is D-backward absorbing set as in (6Z), which implies
the ®-pullback absorbing when r = 7. By the hypothesis G2 and (I2) in Lemma [[L1] we easily obtain
Rs(t,w) = 1+ T(7) + ns(w) < oo. We then infer from the randomness of 7;(-) that, for each 7 € R,
Rs(7,w) is random in w, and thus Ks(7, -) is a random set in X’%.

It suffices to prove that K5 € D for all § > 0. Since 7 — K;5(7,w) is increasing, it follows that

e Vsup [ KCs(r —t,0-w) |5 = e IKs(T — 1, 0_w)[|%s
r<rt

<ce M1+ (1 —t) +ns(0_w)). (68)

Now, we estimate the last line of (68). On the one hand, by (40) in the hypothesis G2,

0
ce (-t e s [ e (lglo+ )+ G+ 2

r<r—tJ—co

0
<cetsup [ (gl 4 )+ G+ )2

r<t.J—0c
=ce "'Y(1) = 0, (69)
as t — —+oo in view of T(7) < +oc. On the other hand, let 4 := min{~, m}, then by (I2) in Lemma[LI] we
deduce that

0 0

ce s (0_w) = ce‘”t/ €"™|Gs (0 —yw)|7-a d < ce_"*t/ 7G5 (6, —yw)|7-d dv
-t P S 0 S P
:ce—vt/ G5 (0,w) | 7T dy < ce—ﬁ—v)t/ e”|Gs(0,w)|7=adv — 0 (70)
as t — +oo. Using (69) and (7Q) in (68), we imply
e "sup || Ks(r —t, G,tw)Hg(; — 0, ast — +o0. (71)
r<r
The desired result is proved. O

Let us now obtain the uniform estimates of solutions in #2 for later purpose.

Lemma IIL3. Let the hypotheses E,F1,F2, G1, G2 and (38)) be satisfied. Then, for each (T,w, D) € RxQxD
and Pr_y = (pr—t,vr—t) € D(r — t,0_4w), there exists a T := T(1,w, D) > 3p + 1 such that for all t > T,
the solution ©° = (u’,v°) of B2) satisfies for all s € [—p, 0],

sup ”ué(r + S, — ta e—rwa wr—t)”g,p + Sup/ ”ué(yv T — ta e—rwu wr—t)||<27{)2_;)2—2dy S Cﬁi(;(Tu W), (72)

r<Tt r<tJr—p

where Rs(7,w) = Rs(7,w) + 7js (w) with

~ R 2p-2

i) = [ G005 + (G0, 73)
and Rs(1,w) is the same as in LemmallIL])

Proof. Taking the ¢2-inner product of the first equation in (32) with |u|P~2u, where u := u(v, r—t, 0_,w, ¥ _¢),
we obtain

1d _ _ _
EEHUII% + A[ullfp + (Au, [ul""*u)e = —a(v, [l ~*u)e + (F(z,u), [ul ~*u),
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+ (v = o (), [ul"u)o + (g, lul" )
+ G500 —rw)(G (v, u), Jul"*u)o. (74)

y (B({u))z = (B{)luhq + {Z(Bu)l, m and the fact that (81 — 82)(|51|p7281 — |82|p7252) > 0 for
s1,S2 € R, we have

— (Au, [uP )y = = 37 & (Au)i(jul2u); = — 37 (Bu)y(Be[ulP~u);

iez iez
== (Bu)i(BE)ilui1 [P Puip1 — Y &(Bu)i(Blu~?u);
iez icZ
<2.57 ) " &l(Bu)illuipa [P = &(Bu)i(BlulP?u);
€L 1€EZ
<257 &lluipa| + [uaDluiga P70 = &l — wa) (s [P~ > — JusP ;)
€L iE€EL
<257 &Gilui|” +2.57 Y &luiljus P!
€L i€Z
20 p o 1 p—1 o 2 20 p
<25 ull, + 257 (5 + P x 257 full, < 2 x 25%7ully, (75)
The Young inequality gives
p-2,) < 1 Zp-2 2 76
—a(v, [’ u)o < Tranlullg,—a +allvl, (76)

where o is the number given by (34)) in the hypothesis F1. Using (34) again, and by the Young inequality, we
imply

(F(a:,u), |u|p72 Z& uz |uz|p Quz < Zgz 041|uz|p + i, 1)|uz|p ?

€L i1€Z
—_ 2p—2 p—2
= —anl|ul 52 + ) GlwilP P

i€z
— p—2 —

<—afulyle+ S Y Gl b e Y Gl = =Gl e (D)

icz iez

2p—2
where c3 = ca|pal| 5, > < +00. Using @D in the hypothesis F2 and the Young inequality again,

(f (v = ), [ulPu)o + (g, lul"~u)s

<Y &l uily = 0P )P+ GigilualP (78)
€L 1E€EZL
1 _ 1 -
< 7o Y&l e Y&l (wilv = oW @) + eslgl + pranlul s,
€L €L
1 2p—2 1 2p—2
< sponllullZate + el 3 Giluslv — 8V W) + esllgll} + gpon lull 2z

1€EZL

According to (39) in the hypothesis G1, we have

g5(9V_TW)(G(V7 U)u |u|p_2u)o < |g5(6‘u—rw)| Z§z|Gl(V7 ui)'luilp_l

€7
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<au|Gs (b —rw)lllully s 1G5 (Bu—r)| D Eilus P paa(v)]. 79
i€

By (@4)), the second line of (Z9) is bounded by

-2 ) -2
a|Gs (0, —rw)[|ullh Hi 2y <aalGs(Bn—r)|1€1177 7 [lully 555

2p—2 1 _
<c|Gs (0, —yw)| 77 + 1_6a1||u||?;jzpz_2. (80)

And we can rewrite the last term in (Z9) by
_ A
1Gs (0 —r)| > &luil P pai (V)] <5 lullgp + e7lGs (00 —rw) [ a5,
i€L
A p p p
<2 ull + r1G o) a2 1 o
Using (8Q) and (81) in (79), we obtain

_ 2p-2 1 _ A
Gs (O (G, [ulP2u)y < 6l05 (O 5 + ot [ul 25,25 + Slull, + eslGs (O r) P (82)

It follows from (74)-(82) that

d

V2R a1p
Slulls, + SAllulls, +

4
2p—2
< erpllo)l + ealjpllu(v — o W))|2 + cspllg(@)|5 + coplGs (Buw)| 7=7 + csplGs(Bs—rw) [P + co, (83)

2p—2

||u||a',2p72

where A = A — 4 x 2.5% > k — 5o > 0 in view of (38). Let (r,w) e Rx Q, £ € (r+s—1,r + s) for
s € [—p, 0]. Integrating (83) over (&, r + s), we obtain

[u(r + $)llop < [[u(@)llo,p + Clp/ ) lo() 15 dv
r—p—

valip [ u— o)l +ep [ o)y
r—p— r—p—

P

T 2p—2
+ 610/ (1Gs (0 —rw)| Pa |Gs (0 —rw)|P)dv + c11. (84)
r—p—1

Integrating (84) with respect to £ on (r + s — 1, r + s), taking the supremum over r € (—o0, 7|, we obtain for
all s € [—p, 0],

sup [[u(r + s)[[5 , <(1 + c1p) Sup/ (a5, + lo@)I7)dv

r<rt r<rt r—p—1
+ cal2psup / lu(v — o ()1 2dv + cspsup / lg(w)[2dv
r<tJr—p-1 r<tJr—p—1
r 2p—2
+erosup / (1G5 (B i) 252 + G (B —ri)|[P)db + c11. (85)
r<TJr—p—1

According to (@8) in Lemmal[[IL1] there exists a T := T'(7,w, D) > 3p + 1 such that forall ¢t > T,

e Nsup [ (s, + o))

r<7Jr—p—1
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<swp [ eI, + )2y
r<tJr—3p—1

< sup / D) (u@)|IE, + [)|I2)dy < cRs(rw). (86)

r<tJr—t

By @) in Lemma[[Il.1] we imply forall t > T,

sup/ lu(v = P (@))zdv < (p+1)sup  sup  Ju(v — o ))|3

r<tJr—p—1 r<tr—p—1<v<r
c(p+ 1)Rs(T,w). (87)
The hypothesis G2 gives
r 0
swp [ gy =sup [ gl -+ ) 2a
r<rt r—p—1 r<rt p—1
0
<emrtl) sup/ e |lg(v + )| 2dv < e™PFIUY (1) < 4o0. (88)
r<7tJ—cc

Note that

sup / (1G5 (By—r0)| 5% + Go (B, ?)do

r<tJr—p—1

0 2p—2
<emetsup [ em(1Gs(6,0)[ ¥ + 1Gs(6,)) v (89)

r<r

It follows from (83)-(89) that for all ¢ > T and s € [—p, 0],

0 2p—2
sup [[u(r + )|, < cr2Rs(T,w) + 613/ e (1G5 (0,w)| 7=7 +1Gs(0,w)[P)dw. (90)

r<rt — 00

Then, integrating (83) over (r — p, r) and taking the supremum over r € (—oo, 7] such that for all t > T,

aqp " 2p—2
TSUP/ ||U(V)||gp2p odv

r—p
< sup ur = por = 18- 00y + epsup [ ()2
r< STJr—p
valipsw [ Jut - @2 W)l + cpswp [ o)l
r<tJr—p r<tJr—p
teapsup [ 103(0,) FF v+ cspsup [ [05(6-)lPd + cap o
r<rtJr—p r<tJr—p

which, along with ([86)-([@0), yields (Z2) as desired. O

Next, we derive uniform tail-estimates of solutions.

B. Backward uniform tail-estimates

Assume that ¢ : R — [0, 1] is a smooth function such that

0, if 0<s<1,
L(S)—{ ml=s=

92
1, if s> 2. ©2)
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Let vg; = L(Iik‘) foreach k¥ > 1 and ¢ € Z. It is not hard to check that ¢, = (i,)icz € £°° and for all
k>1,1€7Z,

Cx
[thit1 — thil < T (93)

Lemma IIL4. Let the hypotheses E, F1, F2, G1-G3 and @8) be satisfied. Then, for each (T,w, D) € R x Q x
D, then the solution ©° = (u®,v°) to (B2) satisfies

lim sup su Sr+ 8,7 —t,0_rw, ¥r_y)|3 =0 (94)
kt%+oor<¥r)s€[ Eo] I Vr=Ollx aizp

uniformly in ¥y = (¢r_¢, Ur_¢) € D(r—1t,0_4w). Moreover, the convergence in (94) is uniform with respect
to large 6, that is, there exists a 0y := 0g(w) which is independent of T, D such that

lim supsup sup ||’ (r+s,7—t,0 w0, )% (ja|zk) = O- 95)
kt—=400 §>5, r<t s€[—p,0] -

Proof. Taking the inner product of (32) with (28t ;&iu; (v), 2auk,:&vi(V)) := (2Buk,i&iui (v, r—1, 0_pw, ur_y),
20y, i &vi (v, — t,0_rw,vy_)) and summing up the product over ¢ € Z, it follows

% D wi&i(Bluil® + afvil?) + 26 & (Bluil® + alvil?) + 28 ki (Au)iug

iE€EZ €7 €7
—252Lk W&y uz u1+2ﬂZLk 151 uZ(V_Q( )( )))
€L €7
+ 202 uibif (vi(v — 0 (v))v; + 28 Z tk,i&igi(V)u
i€Z i€Z
+ 2« Z Lk, 151 z Uz + 2Bg5 v— TW Z Lk, zgz I/ uz)uza (96)
€L i€Z

where we recall that k = min{/\,g}. By (Lkﬁzflu“(A’U,)l) = ((BLkgu)Z,(BU)Z) = (Lk1i+1§i+1ui+1 —
Lkﬂfiui, (Bu)l) and (B({u))l = (B{)Zuhq + {1(Bu)z, we obtain

-2 Z & (Au)u; = 2 Z(Lkzﬁzuz — i it1&ir1tiv) (Bu);

i€z ez
=20 Z(Lk,i — thit1)&it1Uiv1 (Bu); — 252 Ui (iprtipr — &ug)(Bu);
i€Z ez

=20 Z(Lk,i — thyit1)&ir1Uigr1 (Bu); — 2ﬁz th,i(BE)iuip1(Bu); — 2 Z ue,i&il (Bu)i|?. o7

€L €L i€

By @3) and &; 11 < 2.59¢; as in (BI)), we deduce

2[30*
28 (ki = thyie1) i1 i (Bu)s > G (e [ + g )

i€Z i€L
28¢. 3 1
p §i+1(§|uz‘+1|2 + §|Uz‘|2)
€L
3ﬂc* o BCs o BCs
< = lullg + 257 ==z = (3 +2.57) ==l (98)
By (@3) and (Z1) again, we have

— 28w i(BE)itig1 (Bu); — 28> kil (Bu)i|®

€L 1E€EZL

<
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<28 Z 1,i2.57&; [ui1 || (Bu)i| — 28 Z vl (Bu)i]?

i€Z ez
<BY iki(25% Juia ] + [(Bu)il?) = 28wl (Bu)il?
1EZL 1EZL
<2.5%p Z tei&iluia|* < 2.5%8 Z Uei&it [wig 2
i€Z icZ

=2.5%8 Z Uyi1 &g [uipa |” +2.5%8 Z(bk,i — teyit1) i1 | Uit |2

=/ icZ
Cx
<2583 il + 2577 ul2
i€EZ

Using (98) and (99) in (97), we deduce
c
—252 vk i (Au)iu; < 2.5°78 Z vk ailuil® + ?1||U||(27,
1E€EZL i€Z
where ¢; = (3 + 2.5 + 2.5%7)c,.. By (34) in the hypothesis F1, we imply
28 ukibiFi(ui)ui < =208 Y ukibiluil? + 28wk iilpail-
‘€T i€L =
Applying the Young inequality and using (37) in the hypothesis F2, we yield
28wk i&if (wi(v — o (W)ui + 20t ibi f (0i(v — 0 (v)))vi

€L €L

< —fZLk & (Blui(y = e W) + alui(v = 0@ WD) + 5 Y e (Bluil® + afuif?).

€L €L
The Young inequality gives
23 Z ,i&ig:i(V)u; + 2 Z tki&ihi(V)v
i€l i€Z
<C2ZLIH§1 g (v | + |hi(v) 42%1& ﬂ|ul|2+0‘|v1| )-
€L €L
According to (39) in the hypothesis G1, the last term of ([©@6)) is bounded by
28G5 (00 —rw) > tri&iGi(v, ui)ui
i€L

< 28(Gs (0 —rw)| Y &l G (v, 1) s

i€Z

< 2B04lGs (00 —0)| Y thiiluil* + 28G5 (O —r)| Y thiilpras (v)| [l

€L i€EZ
<03|g5 v— TW ZLkz§z|u1|q+ B|g6 v— rw Zbkzgzhﬂlz( )| )
€L <Y/

17

99)

(100)

(101)

(102)

(103)

(104)

where c3 = 280y + % B3, we recall that % + % = 1. Now, we estimate the last two terms in (I04), respectively.

On the one hand, by the Young inequality and the same method as in the proof of 24), we imply

31G5(0,1)| 3 th il il —032(;“5 il?) (1 €7 1G5(6,-1)])

1E€EZL
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D

<30 Y (L ) +a X (w7 € G0,
€L 1€EZ

= 2B Y ibilual + esls (67T Y 0, (105)
i€Z 1€ZL

where ¢4 = ¢4(p, ¢, c3, 5, 1). On the other hand, note that ¢ > 2 and so § < 2 < ¢ < p, we have

2 6103(0,-0)| Y- enaslias ()17 < 26105(6,-0) Z (.67 aa sl (s &)
1€EZ i
Sgﬁlgé v—rW |Z (Lk z§z|ﬂ4z ) (ZU@ l§z>
_%Blgé( 0, _rw |||M4 ||a’p(ZLl€ z€z> p <C5|g6 v— TW (ZU@ z€z> s (106)
q i€ €7

where c5 = %ﬁ”WH%w(R,E{;) < +oo0. Using (T03) and (T06) in (I04), we obtain

28G5 (0)—rw) Yt i&iGi(v, wi)u; a1ﬂZLk i&iluil” + ca|Gs (0, —rw)| 777 D> 1ri&i

1E€EZL 1E€EZL iE€EZL

+aalGa0—r) (D wsts) " (107)

i€Z
From the above estimates, (96) can be rewritten:
d
o % uhi&i (Bluil® + evil®) + & % uei& (Blui* + afvi?)
1 1

3
+ g D il (Blusl® + alvi?) + §a1ﬁz ti&iluq ]

= ieZ
<2573 it + s+ Z (B — W) + alusly — P )P)
+es > wabillpni() + lgi() P + [h:(v)?)
i€l
+ ¢|Gs (0, —pw)| 777 Z k& + ¢5]Gs (0 —rw)| ( Z Lk,i&') T, (108)
i€l iel

where cg = 28 + co. Note that

p=2 p=2 2 2
2-53052Lk7i§i|ui|2 =25%4 Z(Lkpz & " )(ng,igip Jui?)

i€Z 1€ZL
1
< jmp ; Uil + 7 % i ibi. (109)

Thus,

Z% zfz B|Uz|2 +O‘|Uz +"$Zbk i&i( ﬁ|u1|2 +a|U1| )

zEZ €7
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+ 5 2 tai(Blusl® + aful®) + 1B tatiluil”

€L €L
vy oo 407 P ()2 P ()2
< Ll + =23 it (Blusty — 8P @) + alui(r — 09 () )
1E€EZ
2 2
+es Y ka&i(1+ i) + g0 + [hi(w) )
i€EZ
» p—q
+ alGs (8 —) |77 3 v + eslGs (O (S wrii) 7 (110)
€L i€Z

Multiplying (IT0) by €™ and integrating it about v € [r — ¢, 7 + 5], where r < 7 and s € [—p, 0], we deduce

r+s
DS aBlutr ) ol ) 4 [ e S kBl + ol P

; 2 )y ;
i€Z €L
r+s
+ €™y il (v)[Pdv
r—t i€Z
<emrt) (ﬁ Z Lk,i§i|ur7t,i|2 + Z Lk,¢§i|vr7t,i|2>
€7 €L

T R T T )
/

-t i€Z

ALZ rts
b= [ e S s (Bl - 89 0D + alusty - ¢ W) )
K Jr—t i€z
a1 e mv 2 [ mv 2 2
+o e™ u(v)]|5dv + cs €™ ua&i(1+ [pi )| + 1g: (@) * + |hi(v)?)dv
r—t r—t icZ
r+s » r+s P%ff
+ca / "G5 (0, —rw)|P-adv Z tki& + o5 / e |Gs (Gy,rwﬂdy( Z L;“Q) . (111
r—t iz r—t iz
For the third line of (I11)), we easily deduce
emtr=1) (ﬂ Z Lk,i€i|ur7t,i|2 +a Z Lk,i€i|vr7t,i|2) < em(r=t) ||7/1r7t(0)||gcd- (112)

1€ i€EZ

The fifth line of (I11)) is bounded by

4L2 r+s
=f emv Z tk,i&i (B|ui(u — 0P W)+ alv (v — Q(p)(u))|2)du
R Jr—t i€z
4L2 r+s "
< [ e S s (s + alos ) ) d
’{(1 - p*) r—t—p icZ
4L26mp0 r—t
f / mys (Bl ()2 )12
< [ e (Blui) P + alvi ()2 ) dp
’{(1 - p*) r—t—p zEZZ
4L26mp0 r+s
+ / ey ki (BIW(M)IQ + 0<|Ui(u)|2)du
’%(1 - p*) r—t

i€Z
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4L2empo
< iyt Wil
4L2€mp0 r+s
f mp N ) 2 . 2)d 113
s [ e St (Al + ol (0 ) (113)

i€Z

By (@8) and (I13), we can rewrite (I11) by

P r+s
Y ii(Blus(r + 9)° + afui(r +5)°) + 5 / e N & (Blw () + alvi(v)*)dv

icZ 2 Jr—t icZ
r+s
+ 041[3/ e r—r=s) Z tei&ilui (V) |Pdy
r—t i€z
m(—t—s) 2 a e m(v—r—s) 2
< cge lbr—ell5e + N € [u()||5dv
r—t
[ m(v—r—s) . . . 2 . 2
e [ e S (L + i a(0)] + a0 ? -+ ha(w) ) (114)
r—t i€z
r+s »
+ey / emr=9)|G5(0,_pw)| 7 dy Z tk,i&i
r—t 1€EL
r+s p—q
—|—C5/ em(”*T*5)|gé(9U7Tw)|du(ZLkﬂ'&) "
r—t i€Z

By s € [—p,0] and p € (0, po] , we have

r+s
> i (Blui(r + )12 + alvi(r + 5)) + = / "IN & (Blus()]? + alvi(v)?)dv

i€Z i€EZL

\]

r+s
+ alﬁ/ ™IS " il (v) [Py
r—t

i€Z

1 T
< o e il +ene™ g [ )
r—t

desemn [ om0+ sl + 5P + i)
r—t i€z

+WW#,WMWMHMﬁ@Z%@
r—t

i€Z
+ 5™ / em(”*r)|g5(9,,,rw)|dy( 3 L,m-gi) v (115)
r—t i€Z
Since ¥y —y = (Pr—t,Vr—t) € D(r — t,0_,w), we imply
efmt||1/),o,t||§(5 <e ™ sup|D(r —t, H,tw)HQXC,; — 0, ast — oo. (116)

r<r

By @7) in Lemma[IL1] since Y(7), ns(w) < +o0 such that for each 6 > 0,

— sup/ e |lu(v)||2dv < %R(;(T, w) =0, as k, t = +o0. (117)
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According to (4I) in the hypothesis G3, we obtain

sup / ™ & (1+ s ()] + 19 ()7 + [ha(v)])dw (118)
r—t

r<T i€l

0
Ssup/ €™ > &L+ |pra(v + 1)+ 1gi (v + )P + [hi(v + 7)[*)dv — 0,
r<tJ_—-0co A

- [i| >k

as k,t — +oo. It follows from (I2) in Lemma[TTland ¢ € ¢! that for all § > 0,

T 0
sup/ em(””)|g5(9,,_rw)|ﬁduzL;w{i < / €™ (G5 (B,w)|7 7 dv Z & — 0, (119)

rST Jr—t icZ i[>k

as k,t — +oo. In fact, the convergence of (119) is uniform convergence for large §. By (12) in Lemma[L1l
there exists a 1 = d1(w) > 0 such that

0
mw) = [ 1050, T <1, V6 2 6, (120
which implies that
" m(v—r) o £ i
sup Sup/ € |g6(9u—rw)|p ady Lk,zgz S gz — 07 as k7t — +00. (121)
6261 r<t Jr—t lEZZ |1Z>k

Using the same method, we obtain for all § > 0,

r—4q

r 0
sup/ em(”7T)|gg(9y,Tw)|du(ZL;@’Z—&) "< sup/ em”|g5(91,w)|du( Z {1) -0, (122)
r—t — 00

r<T = r<T li|>k

r—4q
P

as k,t — +oo. And the above convergence is also uniform convergence for large §. More precisely, by (I2) in
Lemmal[l 1] again, LOOO e™|Gs(0rw)|dr — 0 as § — +o0, hence, there exists a 02 = da(w) > 0 such that

sup sup/ e IGs (0, lav (Y was) T < (X&) T =0, (123)
020y r<T Jr—t i€L || >k
as k,t — +oo. It follows from (I13)-(123) that
swp swp 3 GBS0+ 5) +aled(r 4+ 5)) (124)

r<71 s€[—p,0] |i|>2k

<sup sup Z Uil (Blul(r + 8) > + alvl(r + 8)[?) = 0, as k,t — +oo,
r<7 s€[—p,0] icZ

for all 6 > 0 and uniformly in large ¢. This completes the proof. |

C. Backward asymptotic compactness of solutions and existence of pullback random attractors

The following lemma is useful for verifying the asymptotic compactness of solutions.
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Lemma IILS. Let the hypotheses E,F1,F2, G1, G2 and (38)) be satisfied. Then, for each (1,w, D) € RxQxD
and Y, _; = ((br by Up_ t) € D(r —t,0_4w), there exists aT := T(1,w, D) > 3p + 1 such that forall t > T,
the solution ©° = (u’,v°) to (32) satisfies

sup/ Hd (v,r —t,0_rw,Yr_¢)
r<tJr—p

where Rs(7,w) is given by LemmallIL3)

2 -
dv < cRs(T,w), (125)

du—l—sup/ H—v (vyr —t,0_rw, Yr_y)
r—p

r<T

Proof. Multiplying the first equation in (32)) with du/dv, where u(v) := u(v,r — t,0_,w, 1, _;), we obtain

1540 <l Aul? + el + el + el P2 + el f (ulw — o ()2
+ ellgW)I2 + elGs O—r) PG, w12
<cllull2 + clloll2 + el F()|2 + cllf(ulv = 0 @))]12
+ ellg@)I2 + els (6, ) PG, w2 (126)

Integrating from r — p to r and taking the supremum over r € (—oo, 7], we deduce

2
sup/ Hd T—f,9—rw,¢r—t)H dv
r<tJr— p o

< csup/r (lu@)I5 + IIU(V)Ili)dVﬂLcsup/T 17 (u(v))l[5dv

TST r—p rsTJr—p

~HW/HNWwWMWWHm/HWWM
r—p

r<r r<tJr—p

+mw/|wwWmewmu (127)

r<tJr—p

By @8) in Lemmal[lLl there exists T' := T'(1,w, D) > 3p + 1 such that for all ¢ > T, the first term on the
right-hand side of (127)) is bounded by

wp [ (@)l + o)y < @ sup [ o) 2ar
r—3p—

r<rt r—p r<rt

< ce™BrotD) R (1, w). (128)
By (@3) in the hypothesis F1 and (72) in Lemma[[IL3] we have

Sup/ |7 (u(w)) |5 dv < Sup/ (205 |||y o + 2 2[5 v

r<r

r—p TSTJr—p
T
<203 81<1p/ [ul| 25,2 dv + ¢ < 203¢Rs(7,w) +c, (129)
rsTJr—p

where we used y2 € ¢2. According to (37) in the hypothesis F2 and (87), we obtain

wp [l = @) < L [ uty = 6 )2y < e+ DRs(r). (130)
TST r—p TST r—p
As done in (88), we have
r 0
sup / lg()l[5dv < ™ sup / e™ lg(v +r)[5dy < e™PTIY(7) < oo (131)

r<tJr—p r<7J—00
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It follows from Lemmal[[L1] (i) that ¢ — Gs(6;w) is continuous. Thus, there exists an Lo > 0 such that

sup |Gs(0,w)> < Lo. (132)
VE[—p,O]

According to (39) in the hypothesis G1, we obtain

sup / 1G5(6— ) PG (v, )] 2dv < Losup / S 61Gi (v, up)Pdv

r<tJr—p TSTIr—p ey,

<Loswp [ 30 6(2adfus()P + 20
r—p

T<T 1E€EZL

:2aiLosup/ Z{Auz V2 2dv + 2Lg sup/ |l a(w)|%dv. (133)
r—p

r<rt icZ r<tJr— p

Now, we estimate the last two lines of (I33)) separately. On the one hand, by 2 < g < p, and so 2q — 2 >
0 2p- 2 > 1, and by (72) in Lemma[[Il.3, we deduce

b) 2q
sup/ Z{Au (V)29 2dy < csup Z& lus (V) [*P72 + 1)dv

TSTIT=P ez, TP ez
:csgp/ Hu(u)Hi’f{f_zdu—i— csup/ [€]lndv < cRs(T,w). (134)
r<tJr—p r<tJr—p

On the other hand, by 24), ¢ € ¢! and puqy € L (R, (2),

sup/ pa ()5 SSHD/ H&Hgf” ()7 pdv

r<r

r—p r<rJr—p
<PlENT a2 e ) < +o- (135)
Using (134) and (133) in (I33), we imply
sup / ' 1G5 (0 —rw) PG (v, u)||2dv < cRs(7,w). (136)
r<rJr—p
By (1I27)-({136), we deduce
S1<lp/ H—u (v,r —t,0_rw, r_t H dv < CR5(T w). (137)
r<rJr—p

One can similarly prove that

2 ~
sup/ H—v“( 10w, )| dv < eRs(r, ). (138)
r—p g

r<rt

This together with (I137) yields (123) as desired. O

Proposition I1L.6. Let the hypotheses E, F1, F2, G1-G3 and (38) be satisfied. For each § > 0, the cocycle
U associated with the random delayed FitzHugh-Nagumo lattice system (@) is ©-backward asymptotically
compact in X, = (2 x (2. More precisely, for all s € [—p, 0],

(\Ilé(tn,rn —tn, 0, W) (s) = gp‘;(rn + 8,7 —tn, 0w, )

has a convergent subsequence in X, whenever r, < 7, t, 1T +00 and ¥y, = (¢n, V) € D(ry, — tn, 0_¢, w).
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Proof. Let (1,w,D) € R x Q x D be fixed and suppose that r,, < 7,t, T +oo and ¥, € D(ry, — tp, 0, w).
Foreach s € [—p, 0], wedefine Y™ (s) := (W°(tn, y—tn, 0—¢, w)1hy ) (s). It suffices to prove that the sequence
{Y™(s)}22, has a convergent subsequence in X,,. Besides, we write Y"(s) = (Y;"(s))iecz for each n € N.
Given € > 0, by Lemma[[I[4] there exist k1,11 € N such that

sup sup ||Y”(S)H§(U(‘w‘2k1) < Vn>ng, k> k. (139)
r<7 s€[—p,0]

According to (@7) in Lemmal[[IL] there exists ny > ny such that for all n > no,
||Y"(s)||%(g < cRs(1,w) < 400,

which implies that the sequence {Y™(s)}52, is bounded in X, In particular, the sequence { (Y;"(5)) i<k, } =1
is bounded and pre-compact in the finite-dimensional space R?*1~!_ In this case, there is a subsequence
{(Y;"" (5))ji|<k, }52; such that it is a Cauchy sequence in R?*1~1. Hence, there exists 3 > ns such that for
all n*, m* > ng,

DG () =Y (P < Y Y (s) =Y (s))F < € (140)

li| <k: lil <k

where we recall that & = (1 +4%)7° < 1foralli € Z and o > %. By (I39) and (I40), we show that for all

n*vm* Z ns,

Y™ () = Y™ ()%, = D &Y (s )P+ D & () =¥ (s)?
| ‘<7€1 ‘>/€1
<42y G ()P+2 Y0 G ()P <5e
li|>k1 li|>k1

which shows ||[Y"™" (s) — Y™ (s)|lx, < v/Be. Therefore, {Y™ (s)} is a Cauchy subsequence of {Y"(s)} and
convergentin X. O

We are now in a position to show the existence of D-pullback random attractors for the cocycle W°.

Theorem IIL7. Suppose all hypotheses E, F1, ¥2, G1-G3 and (38) are satisfied. For each § > 0 and s €
[—p,0], the cocycle U’ associated with the random delayed FitzHugh- Nagumo lattice system () has a D-

pullback random attractor A° € D and a D-pullback random attractor A’ € D in XL = C([—p,0], X,),
respectively. Moreover, A° = Al

Proof. We mainly proof that W9 is D-backward asymptotically compact in X?. That is, for any sequences
rn < T, tn T 400 and ¢y, = (Pn, V) € D(ry — tn, 8¢, w), the sequence

\Ijé(tnv Tn — tn, oftnw)d)n = </7§~n('7 T —tn,0_r,w, 1/171)

has a convergent subsequence in X?. For this end, we need to check the following three steps.

Step 1. Foreach s € [—p, 0], we prove { (U° (t,,, 7, —tn, 01, w)1by ) () hnen is pre-compactin X, = £2 x (2.
The conclusion holds true on account of Proposition [IL6l

Step 2. We show the sequence {U°(t,,, 7 — tn,0_t, W)Yy fnen in X2 is equi-continuous from [—p, 0] to
X,. Let s1, 59 € [—p,0] with so > s1. By Lemmal[lIL3l there exists an N € N such that ¢,y > T and thus, for
alln > N,

(9 (s 7 = oy 01, 0) 00 ) (51) = (W0 (b, P — iy O—p, )00 ) (52) |,
= H‘Pts(rn + 81,70 — tn, Q,anﬂ/)n) - ‘Pé(rn + 82,7 — iy, efrnwywn)HXU
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Tr+S2 Tn+S2
< c/ dv + c/
rnts1 g Tnts1

n d 2 3 1
< c(/ H—u‘s(u, Tr — tn, 0_r, w, dn) dl/) [s2 — $1]2
Tn—pP dV g

Tn d 2 1
c(/ H—U‘s(u, Tr — tn, 0_p, w,vp)|| dv
Tn—pP dV g

d
Eu‘s(y, rn — tn, G,an, (bn)

d
_vé(Va rn — tn, efrnwv Un)

d
dv v

o

3 1
) |52 — 512
< cRs(1,w)|s2 — 31|%.

Hence, the sequence {U°(t,,, 7, — t,, 0_¢, W)ty >N in X2 is equi-continuous from [—p, 0] to X,,. Note
that it is obvious that the finite set {W%(¢,,, 7, — tn,0_¢, W)Pn tnen in X? is equi-continuous, and so is the
whole sequence {U°(t,,, 7 — tn, 0_¢, w)n Inen.

Step 3. We prove the existence and equality of two pullback random attractors. By Steps 1-2, it follows from
the Ascoli-Arzela theorem that the sequence {W°(t,,, 7, — t,,0_t, W)Yy bnen is pre-compact in X?. Thanks
to Proposition W9 has a D-pullback random absorbing set K5 = {Ks(7,w)} € D. Using the abstract
results established in®® (Theorem 2.23), we derive that U9 has a ©-pullback random attractor A eDinX L,
which is the omega-limit set of /Cs.

By® C 5 we imply that /Cs is also a D- -pullback random absorbing set and Ks € D. By the same argument
of Proposition [[IL.6 and the above Steps 1-2, we derive that ¥° is D- -pullback asymptotically compact in X7.
It follows from?’ that the existence and uniqueness of a D- -pullback random attractor A% € D are obtained,
where A° is the omega-limit set of /Cs. Therefore, AP = A% €D, O

IV. UPPER SEMICONTINUITY OF ATTRACTORS AS CORRELATION TIME TENDS TO INFINITY

In this section, we mainly discuss the upper semicontinuity of the pullback random attractor .A° for problem
(@ as & — +oo0. For this end, we need to verify convergence of solutions.
Lemma IV.1. Suppose the hypotheses E, F1,F2, G1, G2 and (38) hold. Let ©° = (u’®,v°) and $ = (i, 1) be
the solutions to (I) and () with initial value 1° = (¢°,v°) and 1 = (¢, D), respectively. If |1° — || xe — 0
as 6 — 400, more precisely,

dﬁw%M=7waMﬂw—@wwm%%&w6+ﬂm (141)
ve€[-p,

then ©° converges to ( in the following sense:

lim  sup ||@°(t+s,7,w,0°) — (t+s7'1/))|\x =0,Vt>r1, wel (142)
d——+oc0 s€[—p,0]
Proof. Let U’(v) = u5(u rw, ¢ — a(v, 7, ¢), Vi) = (v, 1,w,0%) — 6(v,7,0) and Wo(v) =
P (v, w,9°) = p(v, 7 ) = (U (), V(v )),WhiChiseqmppedbythenorm||W5H3ca = BTl +al V212
We subtract (3) from (T) to obtain W? = (U%, V?) satisfies that for v > T,

5
dgyi + (AU + AUP + oV = Fi(ul (v)) — Fi(ai(v) + fi(ul (v — 0% (v)))

— fili(v — 0 (1)) + Gi(v,u))Gs (Bw), (143)
avy 5 §_ 408 () N »
LV = UL = Sl (v = 0P ) — Filtilv — 0P ),

where U° = (U?)icz and V° = (V%);cz. Taking the inner product of (I43) with (28&U?,2a&;V;?) and

K3 K3
summing up the product over ¢ € Z, it follows that

d
- BIU° N2+l VOI2) + 26(BIU° 15 + ol|V°[12)
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=28 &GUJ(AU)i +28) &U; (Fi(w) — Filiw)) + 26Gs(0uw) Y &U7 Gi(v,u))

1EZL 1E€EL 1EZL

+28 36U (fiul (v — 0P (1)) — filta(v — 0 (1))))
1E€EL

+20 3 &V (fivl (v — 0P () — filvi(v — 0¥ (1)), (144)
1E€EL

where we recall that £ = min{\, ¢}. As done in (31)), we have
— 28 &UM(AU®); < 2.5°8|1U°| 2. (145)
i€z

According to the mean valued theorem and (36) in the hypothesis F1, there exists a := a(u?, ;) € (0,1) such
that

28 &GUY(F; Fi(a;)) <28 &|UPP F(au + (1 —a)iy;)

€L i€Z

< =285y _&[U7 Plau] + (1= a)i|"~* +28 ) &0 Pps.i < 2Bl|uslle= [U°]5. (146)
€L S/

Note that § < 2 < g < p, by the Young inequality and (39) in the hypothesis G1, we imply
26G5(0,w) Y &UGilv,uf) < 281G5(0,w)] Y &[U7 (eualuf|"™" + pai(v))
i€Z i€z

<c1[Gs(Buw)| Y &iluf|? + [2al") + e21Ga(Byw)| Y &illud P + [aal® + |nai(v)[*)

1€EZL 1€EZL
<es|Gs (Ouw)|([[u’ |12, + Nl , + lpa@)|B, + 1)
<ca|Gs (Ouw)| (U2, + a5, + 1), (147)

where we recall that s € L*°(R, ¢2). By (37) in the hypothesis F2, we obtain

26 &U7 (filul(v — 0¥ (1)) = filti(v — 0¥ (1))

iE€EL
+20 ) &GV (fiv] (v — P (1)) = filti(v — 0 ())))
1E€EL
< 28L&l (v — o (v)) — (v — o ()]
i€Z
+2aLp Y &GV (v — o) (1) — Bi(v — o) (v))] (148)
1€EZ

4172
< LI = oD W) + ol — 0D )I2) + 5 (B0 2 + ol V).

We substitute (I43)-(148) into (I44) that

d 3K -
ZIWIE, + RIWIE, + (5 - 255 = 2llulles) W0,
4L? 0 (p) 2 S||p ~ 1P
WO (v — 0" (W)|lx, + calGs(Buw)|([[u’ |5, + [lal5, + 1), (149)

where 3£ — 253 — 2||413/[¢ > 0 in view of (38), and we recall that |[W°[|3, = B||U°||Z + af|V?||2.
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Integrating (I49) over [7,t + s], where t > 7 and s € [—p, 0], we deduce
5 5 e s
Wt +s)l1%, <IW ()%, - fﬁ/ W ()%, dv

4L s
+ =L [ W - )
t+Ts
+ 04/ 1G5 (Bu)|([[u® W[5, + [[a(w)][5, + 1)dv, (150)
where |[W0(7)]|%. = B[¢°(0) — ¢(0)||2 + a[|[v®(0) — (0)]|2 < d2,,(4°, ) — 0as § — +o0. The second
line of (130) satisfies ’

4L2 2

ALG e s 0 2 f T S0N12 ALY s
We (v — o' (v dv < / W ()| du + / W (W)||5. dv
P /7— || ( ( ))HXU Ii(l _ p*) o || ( )HXU H(l _ p*) i || ( )”Xc,

AL%po ' AL%

2 (8 s s )
= ﬁ(1—p*)d2‘5(w ’¢)+m/7 W (w)ll%, dv,

2
which, together with % < K, yields
W5+ 93, < By )1+ )
Yo = AT k(1= ps)
t+s
e [ 1000 @z, + o) 15, + Vv (1sn

Similar to the argument as in Lemmal[IL3] we imply @ € L} ((7,400),¢%), which yields f: la()|} ,dv <
+o0. Finally, we only need to prove

t
lim su / ||u5(u)||§7pdu<+oo. (152)
=400 Jr

Replacing 6_,.w by w in the energy inequality (61D, by (IT) in Lemmal[L1l there exists a § := dp(w) > 0 such
that for all & > dg, v € [r, 1],

d K
—°1%, + sl %, + 5 1° 1%, +arslu’lls,
dv 2
4L? s () 9 9 9 _»_
< — e’ (v = ” W)z, + s+ lg@)lls + [h@)]5) + esGs (Buw)| 7. (153)

Using (1)) in Lemma[[L1l there exists a 61 > &g such that for all § > &1,

sup sup |Gs(B,w)|7o7 < 1.
0>61 veE(T,t]

Then we can rewrite (I33) as follows.

d . s 5 Ky s 5
e 1%, + sl + Slle %, +a1Bllu’|?,

4L2
<l v = P W, + e+ lg@Z + [R@)3) + s,
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which, together with the Gronwall inequality, ©° (-, 7, w, 1) € C([T — p,0), X,), g, h € L? (R, (%), implies
that
¢
sup [ [|u’ (v, 7w, ¢°)|5 dv < e7 sup [[9°[|% + cs.
5250 T 6250

Since |[¢/% — || x» — 0as § — +oo, we obtain that ||¢°||2,, is bounded when § — +oco. Therefore, (I52)
holds true. It follows from (I31) and (I1)) in Lemma[II 1l that

WOt + )%, < codip (°,9) + c10 he |Gs(0uw)| — 0,
ve(T,t

as 0 — +oo. Therefore, we obtain (142) as desired. O

We assume that U™ : RT xR x X? +— X is the corresponding deterministic dynamical system (or process),
given by

T (t, )9 = Pur (T, 0), £ >0, (1,0) € R x AP, (154)

where ¢ = (4, ©) is the unique solution to system (3). One can prove that ¥°° has a ®°°-pullback attractor
A by using the same method as in Theorem[IIL7, where D°° is the universe of all backward tempered sets in
X2, thatis, D> € D if and only if

lim e " sup || D®(r — t)”?\/j,’ =0,Vy>0, 7R (155)

t——+oo r<

Theorem IV.2. Let the hypotheses E, F1, F2, G1-G3 and B38) be satisfied. Suppose A’ is the ®-pullback
random attractor of random delayed lattice system (1) with the size 6 > 0 and A™ is the D> -pullback
attractor of deterministic delayed lattice system @). Then A° converges to A%, i.e.

Jim dyy (A°(1,w), A®(1)) =0, VT ER, we Q. (156)
—+o0
Proof. We split the proof into the following three steps.

Step 1. We prove the cocycle W° is uniformly absorbing in X? with respect to the large-size . Indeed, by
Proposition[IL2] each cocycle ¥ has a ©-pullback random absorbing ball KCs(-, ) € © with the radius

C%Ré(T,w) = c%(l +Y(7) —i—ng(w))%, V(r,w) ER x Q.

By (12) in Lemma[IL1l we have
0
A ) = M [ ™GOl =0,V €0

Since all estimates in section 3 are valid when § — 400, one can show that the determinstic system W has a
©°-pullback absorbing set K, given by

Koo(T) ={w e X2 : ||w|\§(§ <c(24+7Y(1)}, VT eR.
Using the same method as in Proposition[[IL.2] one can show K, € ©°°. Thus, we imply

limsup [[K5(r, )% < [Knelml3g ¥ (7.0) € B x
d——+oco

Step 2. We verify the large-size uniformness of the D-pullback asymptotic compactness for the cocycle ¥?
in X?. By the proof of Theorem[IIL7] we prove the conclusion as desired.

Step 3. We prove the upper semicontinuity in (I36). In fact, the convergence of systems (U° — ¥ as § —
+00) has been obtained in Lemmal[[V.Il And for all large enough &, the uniform absorbing has been proved in
Step 1. Moreover, the uniform asymptotic compactness has been derived in Step 2. Using the abstract result
of upper semicontinuity for random attractors as in?? (Theorem 4.1), we prove (I36)) as desired. O
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V. UPPER SEMICONTINUITY OF ATTRACTORS AS DELAY GOES TO ZERO

The last section is devoted to the upper semicontinuity of the pullback attractor A, for problem (3)) as p — 0.
Hereafter, we write the solution and deterministic dynamical system (or process) of system (@) as $? = (4”, 0°)
and ¥, respectively. In addition, we use ©, = {D,(7) : 7 € R} to replace the notation D> defined by (I53).

As proved in Section VU, has a D ,-pullback attractor A, in X and a D ,-pullback absorbing set X,
given by

Ko(r) = {w € X2 : |Jw|%y < cR(T)}, VT ER, (157)

where R(7) = 2+ Y(7) and Y(7) is given by @9).
Let p = 0 in (@), we obtain

da?

=+ A X+ ad) = Fi(ad(1) + fi(@0(0) + gi(0),

dod . ) 158
o — Bl = hi(t) + Fi(50 (1), (9
a(r) =4, o(r)=9), t>7 TR

From now on, we denote by ¢° = (a°,9°) the solution to Eq. (I38). Assume that Dy is the universe of all
backward tempered sets in X, that is, Dy € Dy if and only if

ligrn e " sup | Do(r —t)|[%, =0, Vy>0,7 €R. (159)

t——+4o00 r<r

Since all estimates in Section[[Ill are valid when in both cases p = 0 and § — +oo for problem (). We deduce
that the deterministic dynamical system W(-,-) induced by Eq. (I38), possesses a Do-pullback attractor
Ag = {Ao(t) : t € R} € D and a Dy-pullback absorbing set K given by

Ko(r) = {w € &, : |w|%, <cR(r)}, V7R, (160)
where R(T) is the same as in (I37). Combining (I37) and (I6Q), we infer

lim sup [, (7) [z = [[KCo(7)]] x,,- (161)
p—0

Thanks to Theorem[[IL7] the following Lemma is immediate.

Lemma V.1. Suppose all hypotheses E, F1, F2, G1-G3, (38) are satisfied. Then the process ¥, associated
with the deterministic delayed FitzHugh-Nagumo lattice system @) is D ,-backward asymptotically compact
in Xf = C([—p,0], X,), that is, for each (t,D,) € R x D, for all 1,, € D,(7,), and for each sequence
{mn} < twith 1, - —00 as n — oo, the sequence {¥ ,(t, T,)n, tnen is pre-compact in X2.

Proof. One can prove the proof by using the same method as in Theorem[[IL7] which is based on the Ascoli-
Arzela theorem. More precisely, we can complete this proof by the following two steps.

Step 1. For each s € [—p, 0], we prove { (U ,(t, 7,)¢, ) (8) }nen is pre-compactin X, = (2 x (2.

Step 2. We show the sequence { W, (¢, 7, )¢ } new in X2 is equi-continuity from [—p, 0] to X,. Let 51, s2 €
[—p, 0] with 53 > s7.

1 (£ 7)) (51) = (2, (E, 7)n) (5) | 2, < CR(T)[55 = 17

Let us first prove the convergence of solutions as p — 0.
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Lemma V.2. Suppose the hypotheses E, F1, F2, G1, G2 hold. Let $* = (0”,9") and $° = ( ©9) be the
solutions to (3) and (I38) with initial value * = (¢°,0°) and ° = (¢°,0°), respectively. Ipr converges to

1/;0, ie.,

her (V°,10) = s (67, 07)(s) — (¢°, )| x, = 0, as p — O, (162)
s€[—p,

then $P converges to @° in the following sense:

lim sup [@°(t+s,7,0°) — GOt 7,1 NE, =0, Vt>r (163)
P20 sel=p,0]
Proof. Let U?(v) = @ (v + s, T, ¢°) — @O(v,7,¢0), VP(v) = 0P(v 4 s,7,0°) — 0°(v, 7,0°) and WP () =
@ (v + s, 7,9°) — (v, T, wo) = (U*(v),V*(v)), which is equipped by the norm [|W?||3, = B||U*|]2 +
a||V?||2. We subtract (I38) from (@) to obtain W* = (U*, V*) satisfies that for v > 7,

dgf+(AUP)+AU”+aVP Fi(af (v +s)) — Fu(ad () + fi(@ (v + s — 0 (v + 5)))

— fi@} () + gi(v + 5) — gi(v),

B Ve~ BU? = R0+ s — 0w+ )~ HEI0) Bl 4 5) — halv).

Taking the inner product of (I64) with (28¢,Uf, 2a&; V") and summing up the product over i € Z, it follows
that

d
- BIT?IIZ +aV2I15) + 26BIT7NIG + o V7II7)

= =28 &GU/(AU?) + 28y &U!(F, (@) (v + ) — Fi(af(v)))

€L i€Z
+2ﬁZ§l (gi(v+s) — —|—20¢Z§ZV” (v +s)—hi(v))
€L i€
+28) &GUL(f@ (v + s — 0¥ (v +5)) — ful@(v)))
€L
+2a > &VI(fi(ol (v +5— 0P (v +9)) - £i(0) (1)), (164)
€L

where we recall that & = min{\, ¢}. Using the same arguments as in (31) and (I46), we deduce

— 28 &GUL(AUP); + 28 &GUL(Fi(0f (v + s)) — Fi(f (1))
1€EZ 1€EL
<2557 8||UP|12 4 28| sl e= 1U? 2. (165)

The Young inequality gives

28 " &UL(gi(v + ) — g:(v) + 20 Y &V (hi(v + 5) — ha(v)) (166)

€L 1EZ
K
<alllg +5) = 9@z + Ih( + 5) = h(@)5) +  BIT?IIZ + | V7IIZ).

According to (37) in the hypothesis F2, we imply
28 &GUL(fi(al (v + 5 — 0 (v +9))) — fi(@)(v)))

€L
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+20) &V (fiw! (v +5 = 0w +5)) - fil0] (v))
i€l
4172
< —L(j@w+s— o+ ) — W2
+ 57 + 5= 0 (v +5) = ") 2) + ZBIT)Z + all V7). (167)
Substituting (163)-(167) into (164), we obtain for v > 7 — s and s € [—p, 0],
d 3
Liwew)l, + S0,

< (25%7 4 2llpslle= ) WP )1, +crllg(v +5) = gz + (v + 5) = h(©)]7)
2

4L%
+ =L (@45 — 0P + ) = )R + 07w+ 5 — 0P +5) W), (168)

o

Integrating (I68) over [r — s,v] withv € [T — s, 7+ T| and T > p,

v

WP W%, < IWP(r —s)l%, +(25% + 2||u3||ew)/ W ()|, dr

o [ (lgtr+9) = g2 + G+ 5) = h(r) ) (169)
4L2% v
=L [ (I +s— o +5) — a2

00+ 5 = o (r + ) = ()2 ).

Note that
[We(r =), = 81 (0) — i
2(dfp (97, 4"

Forallr € R, s € [—p,0],let ¢ = y(r) = + 5 — o) (r + ), then y/ () > 1 — p, > 0, and thus there exists
an inverse function such that = y=1(¢) forall ¢ € R. If let # = 7 — o{?)(r + 5), then r = y~ (7 + s) and

7= 5,7,0°)I7 + al|07(0) — (7 — 5,7, )17

(
))2 + 2[3H(50 - ’&O(T - 5,7, éO)Hg + 20”{)0 - {)O(T - 5,7, {)O)Hg (170)

/ [@(r + s — o0 (r + ) — ()| 2dr

v

yH(7)
— [ s = ) -l [ s = o0 s) = a0 2
. yi(r)
1 —1

y~(T) R y~ (1) R
<2 / 1020 + 5 — P (r + 5)) — &%) 2dr +2 / 18%(r) — 6°|12dr

[ ) =+ o)

2 T b 20012 T2 ~0 2012
< [47(r) — ¢°||5dr + 2 [a°(r) = ¢"|[5dr

T l=pe S r
1% 2 1%
o [0 ) =0+ = [0 e+ ) = 0
2po p 202 T o 7012
<P sw [ -z [ a0 - 8 am
— Px se[—p,0] T
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2 v T+T
T / [UP(r)17dr + / [@°(h~ (r + s)) — a°(r)|[5dr.

1 — ps

Similarly, we deduce

[ 1+ s = o 9) - 0l

2po N 402 e -0 L0112
< sup [0 (s) — 0|2 + 2 / [°(r) — 6°|2dr (172)
1—ps s€[—p,0] T

S ez + —2— / O+ ) — () 2dr
1_p* T—8 7 1_p* T o

It follows from (169)-(T72) that
WP, < e [ W) dr + e (dip (5, 5%)
+28|1¢° — @’ (7 — 5,7, °)||2 + 2a)|0° — ° (7 — s, 7, 0°)||2
T+2p .
o [0 = B+ 10°0) - o2 )ar
TT+T
e [ (18070 9) = @I+ 10 0+ 9) — )5 )
TT+T
e [T (gt 5) = g2 + G+ 5) = b)) 173)
Applying the Gronwall lemma to (I73), we deduce, forall v € [r — s, 7 + T1,

WP @I, < e (A3 (17, 6°))" + 28627 @0 — (7 — 5,7, 6°)||2 + 20T |00 — 0 (7 = 5,7, 0°)|2

T+2p .
+C4662T/ (1a°(r) = ¢°115 + [[0°(r) — 2°||3)dr
T‘r—i—T
+ cgeT / (I 4+ ) = @02 + 10 (h () = ()12 ) dr

T+T
+61662T/ (lg(r +s) = g1 + h(r + s) = h(r)[[5)dr. (174)

By (162), we imply the first term on the right-hand side of (174) tends to zero as p — 0. Then we infer from
the continuity of 4°(-, 7, ¢"), 9°(-, 7,0°) at 7 and s € [—p, 0] that

28eT g0 — a°(r — 5,7, ) ||2 + 2ae®T |60 — 00(7 — 5,7, 0%)| 2
T+2p .
e [ (a0 = 81+ 60— °12)dr > 0, a5 p > 0.

0

Since @°, 9° are uniformly continuous over [, 7 + T + p], then the third line of (I74) is bounded by

T+T
s [ ([0 ) = @)+ [+ 9) = 0] ) >0,

as p — 0. Thanks to g, h € L? (R, ¢2) and s € [—p, 0], the last line of (I74) satisfies

loc

T+T
Clem:r/ (lg(r + 5) — g()||> + ||h(r + s) — h(r)]|2)dr — 0, as p — 0.
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Collecting the above estimations, we deduce that for all v € [T — s,7 4+ T and s € [—p, 0],
[WPW)||%, — 0, as p — 0. (175)

We now consider the other case v € [r,7 — s]. Let u = v — 7. Thenwe obtain v = p+7and 0 < pu < p.
Therefore,

IWPW)1%, = 18 (v + s,7,0°) = ¢°(v, 7,4°) |3,
S 2”@/7(1/ + S, T, 1/)’)) - 1/}0”360 + 2||¢0(V5 T, 1/}0) - 1/}0”360

<2 w [9°(s) — 90)1%, + 2% (e + 7,7, °) — 40|13,
s€l—p,

By the continuity of ¢° = (¢°,3°) at 7, i € [0, —s] and the condition ([&2), we imply the above inequality
goes to zero as p — 0, which together with (T73), yields that for all v € [7, 7+ T] and s € [—p, 0], (I63) holds
true. O

Lemma V.3. Let the hypotheses E, F1, F2, G1-G3 and (38) be satisfied. If p, — 0, t € R and ¢, =
(bn,vn) € A, (t) C XPn, then there exist 0 = (¢°,0°) € X, and an index subsequence {n*} of {n} such
that

A’y (=, )°) = [sup ] [¢hns (8) — 0|2, = 0, as n* — oco. (176)
SE[—pp*,0

Proof. Take a sequence 7, — —oo. By the invariance of A, (-), there exists a ¢, := (¢, 0n) € A, (Th)
such that

Un =T, (L, ) thn. (177)

By A,, €D, ,and using the same method as in Step 1 of LemmalVIl we deduce that { (¥ ,, (t,7,)1n)(0) }nen

is pre-compact in X, = ¢2 x ¢2, and thus there exist a PO = ((;30, ©%) € X, and an index subsequence {n*}
of {n} such that

(¥, (t, T ) )(0) — 4|2, — 0, as n* — +oo,
which implies that for given any € > 0, there exists V; > 1 such that for all n* > Ny,
(. (£ s o= )(0) = ¥°||x, <€ (178)

By the arguments as in Step 2 of Lemmal[V.I] we imply that there exists ¢ > 0 with |s; — s2| < ¢ such that for
alle > 0,

1(Wp,. (b T Yo ) (51) = (U, (E, Toe Yo ) (52) | 2, < e
Since p,+ — 0 as n* — +o00, there exists No > Nj such that p,,« < ¢ forall n* > N, then
1(Wp,. (b T ) )(8) = (P (£, Te ) ) ()2, < 6, (179
for all s € [—pp~,0]. It follows from (I77)-(T79) that there exists N3 > No such that

= (5) = 90l e, = 1(Tp,00 (t T Jobar ) (5) = 4| x,
<N (Wp,o (b e ) )(5) = (Lo (t T ) ) (0) | x,

(W, (£, 7)) (0) = 40 2, < 2,
for all n* > N3 and s € [—py+, 0], which yields (T76) as desired. O
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Theorem V.4. Let the hypotheses E,F1,F2, G1-G3, (38) be satisfied. Suppose A, is the D ,-pullback attractor
of deterministic delayed lattice system (B) and Ay is the Dg-pullback attractor of deterministic non-delayed
lattice system (I38). Then A, converges to Ay, i.e.

lim dY, (Ap(1), Ao(t)) =0, Vit €R. (180)
p— 7

Proof. If (I80) does not hold true, then there exist € > 0, p, — 0 and ¢, := (¢y,, v) € A, () such that
xon (Un, Ao(t)) > €, Vn €N, (181)

Thanks to (I76) in Lemma [V3] there exist a subsequence v, (relabeled the same) and an element PO =
(¢°,0°) € X, such that

lim  sup [[¢n(s) — ¥°||x, = 0. (182)

N0 s€[—pn,0]
We now prove that 1 € Ag(t). By the invariance of A, , there exists ¢ := (¢, 0F) € A, (73,) such that

Y =V, (t, 1)k, Vo keN, (183)

where 7, — —oco as k — +oo. By (I76) in Lemma V3l there exist a subsequence of ¢* and an element

1/;’“ € X, such that
d%prns ( PR R =0, as n* — +o0.

n*»

It follows from a diagonal process that there exists an index subsequence (relabeled the same) of {n*} such
that

lim sup  [lPF. (s) — 0¥y, = 0, Vk €N. (184)

=00 se[p,,x 0]
By (163) in Lemma[V2] we have
lim sup ||\I/Pn* (tv Tk)ijﬁ* (S) - \Ifo(t, Tk)J)kH.%(U = Oa Vke Nv

nrtoo SE[—pp*,0]
which, together with (I82) and (183)), implies
00 = Wo(t, 7)0", ¥k € N. (185)

Since K, is a pullback ® ,, -absorbing set, and by the invariance of A, , there exist a 7, := 7 (7%, Ay, ) < Tk
such that

Ap (k) = W, (Th, k) Ap,, (T1) C Kp, (71,
which shows ¥ € K, (73). Combining (I&1) and (I84), we obtain, for all k € N,
1915, = Jim_I05O), < timsup [513; < Kot
As Ap(-) is a pullback Dy-attracting set, and by (I83) and Ky € Dy, we deduce
dy, (8, Ao (1)) < di, (Wo(t, 9", Ao (1)) < di, (Po(t, 7)o (1), Ao (1)) = 0,
as k — oo, which implies {0 € Ag(t). We then infer from (I82) that

e (Yn; Ao (1)) < sw [n(s) = 00lla, + d, (97, Ao(t)) = 0
SE[—pPn,

as n — oo. This contradicts with (I81)). O
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