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Abstract. In this paper, we investigate the asymptotic behaviour of stochastic pantograph delay5
evolution equations driven by a tempered fractional Brownian motion (tfBm) with Hurst parameter6
H > 1/2. First of all, the global existence, uniqueness and mean square stability with general7
decay rate of mild solutions are established. In particular, we would like to point out that our8
analysis is not necessary to construct Lyapunov functions, but we deal directly with stability via9
the Banach fixed point theorem, the fractional power of operators and the semigroup theory. It is10
worth emphasizing that a novel estimate of stochastic integrals with respect to tfBm is presented,11
which greatly contributes to the stability analyses. Then after extending the factorization formula12
to the tfBm case, we construct the nontrivial equilibrium solution, defined for t ∈ R, by means of13
an approximation technique and a convergence analysis. Moreover, we analyze the Hölder regularity14
in time and general stability (including both polynomial and logarithmic stability) of the nontrivial15
equilibrium solution in the sense of mean square. As an example of application, the reaction diffusion16
neural network system with pantograph delay is considered, and the nontrivial equilibrium solution17
and general stability of the system are proved under the Lipschitz assumption.18

Key words. pantograph delay, stochastic evolution equation, moment general stability, additive19
tempered fractional noise, nontrivial equilibrium solution, Hölder regularity20
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1. Introduction. A tempered fractional Brownian motion (tfBm) {Bρ,H(t)},22

first introduced by Meerschaert and Sabzikar [23], is a stochastic process defined by23

exponentially tempering the power law kernel in the moving average representation24

of a fractional Brownian motion (fBm), i.e.,25

Bρ,H(t) =

∫ +∞

−∞

[
e−ρ(t−s)+(t− s)H−

1
2

+ − e−ρ(−s)+(−s)H−
1
2

+

]
B(ds),(1.1)26

27

where tempered parameter ρ > 0, Hurst index H ∈ (0, 1), (s)+ = sI{s>0}, 00 = 028

and B(t) is a real-valued Brownian motion on the real line. In particular, when ρ = 029

and H ∈ (0, 1), tfBm reduces to a fBm, which is a Gaussian, stationary-increment,30

self-similar stochastic process (see, e.g., [10]). If 1/2 < H < 1, the increments of31

fBm exhibit long range dependence, i.e., their autocorrelation function decays as a32

power law. However, the increments of tfBm with 1/2 < H < 1 exhibit semi-long33

range dependence, i.e., their autocorrelation function decays like a power law over34

fine/moderate scales, but quasi-exponentially over large scales. Since the tempered35

parameter ρ > 0 controls the deviation from power law spectrum at low frequencies,36
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the spectral density of tempered fractional Gaussian noise (tfGn) follows the same37

power law with fGn at moderate frequencies, but remains bounded at low frequencies.38

Due to the semi-long range dependence of tfBm, tempered fractional processes have39

recently played an increasingly important role in many fields of application such as40

in the physics, modeling of transient anomalous diffusions, geophysical flows and41

finance. However, to the best of our knowledge, there has been little mention of42

stochastic differential equations driven by tfBm even in the nondelay case. Very43

recently, we have established the existence, uniqueness, Hölder regularity, exponential44

and polynomial stability of mild solutions for stochastic delay evolution equations45

driven by tfBm [20, 31].46

In this paper, in addition to the global existence, uniqueness and mean square47

stability with general decay rate of mild solutions, we mainly focus on the construction48

and general stability analyses of nontrivial equilibrium solutions for the following49

stochastic evolution equation with pantograph delay:50

(1.2)

{
du(t) = −Au(t)dt+ f(t, u(ηt))dt+ g(t)dBρ,HQ (t), t ≥ 0, η ∈ (0, 1),

u(0) = u0.
51

Here Bρ,HQ (t) is a Q-cylindrical tempered fractional Brownian motion with respect to52

filtered probability space (Ω,F , P, (Ft)t≥0) in some Hilbert space K, −A is a closed,53

densely defined linear operator generating an analytic semigroup S(t), t ≥ 0, on a54

separable Hilbert space H with inner product (·, ·) and norm ‖ · ‖, f is a Lipschitz55

continuous function and g : [0,∞) × Ω 7→ L 0
Q(K,H) where L 0

Q(K,H) is the space of56

all Q-Hilbert-Schmidt operators from K into H.57

The stochastic pantograph delay differential equation is a particular kind of sto-58

chastic differential equations with unbounded variable delays. The proportional delay59

is indeed one of the many objective-existent delay types. The pantograph is a device60

used in electric locomotive to collect electric current from the overload lines. There-61

upon then the pantograph-delay was first used to model electrodynamics [27]. The62

proportional delay is also required in web quality of service routing decision, since it63

is convenient to control the networks running time according to the network allowed64

delays [19, 33]. Now the proportional delay arises naturally in a wide variety of appli-65

cations such as cell growth, medicine, astrophysics and quantum mechanics [17]. It is66

important to emphasize that our results hold not only for the proportional delay case,67

but for the unbounded variable or distributed delay and even for the case of without68

delay. Many researchers have studied the stability theory for stochastic delay differ-69

ential equations based on the Lyapunov method or Razumikhin’s approach; see for70

example [29, 32]. The Razumikhin-Lyapunov technique has been used in [12, 14, 22]71

to considered the moment stability for stochastic pantograph differential equations.72

The exponential stability has been investigated in [5] for stochastic pantograph dif-73

ferential equations by constructing Lyapunov functions. The polynomial asymptotic74

behaviour has been studied in [1] for stochastic pantograph equations. However most75

results are related to stochastic ordinary differential equations driven by Brownian76

motion with pantograph delays.77

For the fractional Brownian motion case, the existence and uniqueness results78

have been established in [3, 7] for stochastic differential equations driven by fBm.79

Hölder continuous paths approach has been used in [2, 6] to study the exponential80

stability of the trivial solution for evolution equations and lattice systems driven by81

fBm with Hurst parameter H > 1/2. The exponential asymptotic behavior of mild82

solutions has been considered in [4] for stochastic bounded delay evolution equations83
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driven by fBm with H > 1/2. Up to date, we do not know any published work on84

the construction and general stability of nontrivial equilibrium solutions for stochastic85

evolution equations even in the fBm case and without delay.86

This work consists of two major parts. The first part is devoted to the glob-87

al existence, uniqueness and mean square stability with general decay rate of mild88

solutions for problem (1.2) by using the Banach fixed point theorem, the fractional89

power of operators and the semigroup theory. It has been pointed out in [31] that the90

stochastic integral with respect to tfBm is bounded by91

E
∥∥∥ ∫ t

0

g(s)dBρ,HQ (s)
∥∥∥2

≤
(

(2H − 1)t2H−1β(2− 2H,H − 1

2
)92

+ 4ρ2t2H+1 β(2− 2H,H + 1
2 )

2H − 1

)∫ t

0

E‖g(s)‖2Qds,(1.3)93
94

where ‖ · ‖2Q is given in (2.1) below. For the case of unbounded delay, to overcome the95

difficulty caused by the dependence on t of the right hand side of the inequality (1.3),96

we have established the exponential stability of mild solutions to stochastic evolution97

equations with unbounded delay and tfBm by considering the abstract phase space98 {
u ∈ C(−∞; 0;L2(Ω;Hλ)) : lim

θ→−∞
e~θE‖u(θ)‖2λ exists

}
(1.4)99

100

where the parameter ~ > 0 [31]. In this paper, because of the presence of pantograph101

delay and tfBm, we first introduce a novel estimate of stochastic integrals with respect102

to tfBm (see Lemma 2.6 for more details). Since the right hand side of (2.9) in Lemma103

2.6 is irrelevant to time t, this will greatly contributes to the stability analyses for104

the unbounded delay case including pantograph delay. It is also worth mentioning105

here that our stability analysis is not expected to construct Lyapunov functions or106

use Razumikhin’s approach as in [5, 12, 14, 22] for stochastic ordinary differential107

equations with pantograph delays, but deal with stability with general decay rate108

by using the Banach fixed point theorem, the fractional power of operators and the109

semigroup theory.110

The second part focuses on the construction of the nontrivial equilibrium solution,111

defined for t ∈ R, to stochastic evolution equations with pantograph delay and tem-112

pered fractional noise. Further, we prove that the nontrivial equilibrium solution is113

Hölder continuous in time and mean square stable with general decay rate (including114

both polynomial and logarithmic stability), namely, any other solution converges to115

the nontrivial equilibrium solution in L2(Ω;Hλ) with general decay rate, provided that116

the corresponding data belongs to L2(Ω;Hλ). To construct the nontrivial equilibrium117

solution u∗ for problem (1.2), we first extend the factorization formula to the tfBm118

case, and then the existence and uniqueness of u∗ follow from constructing a Cauchy119

convergent sequence of linear versions and using the convergence analysis. Because of120

the difficulty caused by pantograph delay, we remark that we can not apply Gronwal-121

l’s inequality to analyze the stability of the nontrivial equilibrium solution as in [25]122

for stochastic reaction-diffusion equations driven by Brownian motion. Therefore, the123

general stability of the nontrivial equilibrium solution in the sense of mean square is124

established by using the Banach fixed point theorem. Finally, the Hölder regularity125

of the nontrivial equilibrium is given for stochastic partial differential equations with126

tfBm and pantograph delay.127

The paper is organized as follows. In Section 2, we extend the factorization128

formula to the tfBm case, and some necessary preliminaries on stochastic integrals129
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with respect to tfBm are given which are crucial in our analysis. In Section 3, the130

global existence, uniqueness and general stability of mild solutions are established131

for problem (1.2). In Section 4, we first construct the nontrivial equilibrium solution132

for stochastic evolution equations with pantograph delay and tempered fractional133

noise, and then the Hölder regularity in time and general stability of the nontrivial134

equilibrium solution are presented. In Section 5, the reaction diffusion neural network135

system with pantograph delay and tfBm is investigated as an example. In the end a136

summary of this work is provided in Section 6.137

2. Preliminaries. Consider a separable Hilbert space K endowed with a com-138

plete orthonormal basis {ei}i∈N. Let H be another Hilbert space with norm ‖ · ‖139

and inner product (·, ·). We denote by L (K,H) the space of all bounded linear140

operators from K into H. For convenience, we use the same notation ‖ · ‖ for the141

norms of K and L (K,H), and use the same notation (·, ·) to denote the inner prod-142

uct of K. Let Q ∈ L (K,K) be an operator defined by Qei = λiei with finite trace143

trQ =
∑∞
i=1 λi <∞. Let φ ∈ L (K,H) and define144

(2.1) ‖φ‖2Q := Tr(φQφ∗) =

∞∑
i=1

∥∥√λiφei∥∥2
,145

where φ∗ is the adjoint of the operator φ. If ‖φ‖2Q < ∞, then φ is called a Q-146

Hilbert-Schmidt operator. Here L 0
Q(K,H) denotes the space of all Q-Hilbert-Schmidt147

operators from K into H.148

Let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0 satisfying149

the usual conditions (i.e. it is increasing and right continuous while F0 contains all150

P -null sets). Here {Ft}t≥0 denotes the filtration generated by Bρ,Hi , i.e.,151

(2.2) Ft := σ{Bρ,Hi (s) : 0 ≤ s ≤ t; i ≥ 1},152

where Hurst parameter H ∈ (0, 1) and {Bρ,Hi (t); t ≥ 0}i≥1 is a sequence of one-153

dimensional tfBms mutually independent over (Ω,F , P ). Let Bρ,HQ be the tempered154

fractional Brownian motion defined on the probability space. We suppose that155

Bρ,HQ (t) =

∞∑
i=1

√
λiB

ρ,H
i (t)ei, t ≥ 0.156

Denote by Hλ = D(Aλ) the Banach space, where D(Aλ) denotes the domain of157

the fractional power operator Aλ : H→ H. For any v ∈ Hλ define its norm by158

‖v‖λ := ‖Aλv‖.159

Denote by L2(Ω;Hλ) = L2(Ω,F , P ;Hλ) the space of all strongly-measurable, L2160

integrable Hλ-valued random variable. For any v ∈ L2(Ω;Hλ), we consider the norm161

‖v‖L2(Ω;Hλ) =
(
E‖v(·)‖2λ

) 1
2 .162

The notation C
(
c, d;L2(Ω;Hλ)

)
denotes the Banach space of all continuous functions163

from (c, d) into L2(Ω;Hλ). As usual the space C
(
c, d;L2(Ω;Hλ)

)
is considered with164

the supremum norm. Let C(X) denote the constant depending on X.165

Now we recall the definitions of left and right-sided Riemann-Liouville tempered166

fractional integrals, the stochastic integrals with respect to fBm and tfBm; see [21]167

and [24] for more details.168
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Definition 2.1. For any interval (a, b) with a, b ∈ R (a = −∞, b =∞), the left169

and right-sided Riemann-Liouville fractional integrals on (a, b) (resp. R) of order γ170

(γ > 0) are defined by171

(2.3) Iγa t u =
1

Γ(γ)

∫ t

a

(t− y)γ−1u(y)dy,172

and173

(2.4) Iγt bu =
1

Γ(γ)

∫ b

t

(y − t)γ−1u(y)dy,174

respectively. The Fourier transforms of Iγ−∞ t u and Iγt ∞u are175

(2.5) F
(

Iγ−∞ t u
)
(z) = (iz)−γF (u)(z), F

(
Iγt ∞u

)
(z) = (−iz)−γF (u)(z).176

Definition 2.2. Let γ, ρ > 0. For any a, b ∈ R with b > a (a = −∞, b =∞), the177

left and right tempered fractional integral on (a, b) (resp. R) are defined by178

aI
γ,ρ
t u := e−ρtaI

γ
t [eρtu(t)] =

1

Γ(γ)

∫ t

a

(t− s)γ−1e−ρ(t−s)u(s)ds,179

and180

tI
γ,ρ
b u := eρttI

γ
b [e−ρtu(t)] =

1

Γ(γ)

∫ b

t

(s− t)γ−1e−ρ(s−t)u(s)ds,181

respectively. The Fourier transforms of Iγ,ρ−∞ t u and Iγ,ρt ∞ u are182

F
(

Iγ,ρ−∞ t u
)
(z) = (ρ+ iz)−γF (u)(z),183

F
(
Iγ,ρt ∞ u

)
(z) = (ρ− iz)−γF (u)(z).(2.6)184185

Definition 2.3. For any H ∈ ( 1
2 , 1) and a, b ∈ R with b > a, we define186 ∫ b

a

u(t)dBH(t) := Γ(H +
1

2
)

∫ b

a
tI
H− 1

2

b u(t)dB(t),187

for any u ∈ A0 :=
{
u ∈ L2(a, b) :

∫ b
a
|tI

H− 1
2

b u(t)|2dt <∞
}

. Here A0 is a linear space188

with inner product 〈u, v〉A0
:= 〈U0, V0〉L2(a,b) where189

U0(t) = Γ(H +
1

2
)tI

H− 1
2

b f(t), V0(t) = Γ(H +
1

2
)tI

H− 1
2

b g(t).190

Definition 2.4. For any 1
2 < H < 1, ρ > 0, and for any a, b ∈ R with b > a, we191

define192 ∫ b

a

u(t)dBρ,H(t) := Γ(H +
1

2
)

∫ b

a

(
tI
H− 1

2 ,ρ

b u(t)− ρ tI
H+ 1

2 ,ρ

b u(t)
)
dB(t),193

for any u ∈ A1 :=
{
u ∈ L2(a, b) :

∫ b
a

∣∣
tI
H− 1

2 ,ρ

b u(t) − ρ tI
H+ 1

2 ,ρ

b u(t)
∣∣2dt < ∞}. Here194

A1 is a linear space with inner product 〈u, v〉A1 := 〈U, V 〉L2(a,b) where195

U(t) = Γ(H +
1

2
)
(
tI
H− 1

2 ,ρ

b u(t)− ρ tI
H+ 1

2 ,ρ

b u(t)
)
,

V (t) = Γ(H +
1

2
)
(
tI
H− 1

2 ,ρ

b v(t)− ρ tI
H+ 1

2 ,ρ

b v(t)
)
.

196
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Lemma 2.5. For any 1
2 < H < 1, we have197

∫ x∧y

a

(x− s)H− 1
2 (y − s)H− 1

2 e−ρ(y−s)e−ρ(x−s)ds ≤ 1

2
Γ(H +

1

2
)ρ−H−1|x− y|H−1.

(2.7)

198
199

Proof. For the case x > y, we deduce that200 ∫ x∧y

a

(x− s)H− 1
2 (y − s)H− 1

2 e−ρ(y−s)e−ρ(x−s)ds201

≤
∫ y

a

1

1 + ρ(x− s)
(x− s)H− 1

2 (y − s)H− 1
2 e−ρ(y−s)ds202

≤ 1

2
√
ρ

∫ y

a

(x− s)H−1(y − s)H− 1
2 e−ρ(y−s)ds203

≤ 1

2
√
ρ

(x− y)H−1

∫ y

a

(y − s)H− 1
2 e−ρ(y−s)ds(2.8)204

≤ 1

2
Γ(H +

1

2
)ρ−H−1(x− y)H−1,205

206

where we have used the fact that the function uH−1 is monotone decreasing for the207

case H < 1. In a similar way, for the case y > x we have208 ∫ x∧y

a

(x− s)H− 1
2 (y − s)H− 1

2 e−ρ(y−s)e−ρ(x−s)ds ≤ 1

2
Γ(H +

1

2
)ρ−H−1(y − x)H−1.209

210

The proof is complete.211

The following lemma is concerned with the estimation of stochastic integrals with212

respect to tfBm.213

Lemma 2.6. Let H ∈ (1/2, 1) and a, b ∈ R with b > a. If φ : [a, b] × Ω →214

L 0
Q(K,H) satisfies ‖φei‖ ∈ L2(a, b),215

I
H− 1

2
a t ‖φei‖, I

H
2

a t ‖φei‖ ∈ L2(a, b;L2(Ω;R)),216

∞∑
i=1

λi

∥∥∥ I
H− 1

2
a t ‖φei‖

∥∥∥2

L2(a,b;L2(Ω;R))
+

∞∑
i=1

λi

∥∥∥ I
H
2

a t ‖φei‖
∥∥∥2

L2(a,b;L2(Ω;R))
<∞,217

218

then219

E
∥∥∥∫ b

a

φ(s)dBρ,HQ (s)
∥∥∥2

≤ Γ(H +
1

2
)ρ1−H

∞∑
i=1

λi

∫ b

a

E
(
I
H
2

a r

∥∥φ(r)ei
∥∥)2dr220

+ 2(H − 1

2
)2β(2− 2H,H − 1

2
)

∞∑
i=1

λi

∫ b

a

E
(
I
H− 1

2
a r

∥∥φ(r)ei
∥∥)2dr.(2.9)221

222

Proof. Thanks to Lemma 1 in [26], in view of the Itô isometry and the indepen-223

dence of the sequence {Bρ,Hi (t)}i≥1, we derive that224

E
∥∥∥∫ b

a

φ(s)dBρ,HQ (s)
∥∥∥2

= E
∥∥∥∫ b

a

∞∑
i=1

φ(s)
√
λieidB

ρ,H
i (s)

∥∥∥2

225
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≤
∞∑
i=1

λiE
∣∣∣ ∫ b

a

∥∥φ(s)ei
∥∥dBρ,Hi (s)

∣∣∣2226

=

∞∑
i=1

λi(Γ(H +
1

2
))2E

∣∣∣ ∫ b

a

(
sI
H− 1

2 ,ρ

b ‖φ(s)ei‖ − ρ sI
H+ 1

2 ,ρ

b ‖φ(s)ei‖
)
dBi(s)

∣∣∣2227

=

∞∑
i=1

λi(Γ(H +
1

2
))2E

∫ b

a

∣∣∣sIH− 1
2 ,ρ

b ‖φ(s)ei‖ − ρ sI
H+ 1

2 ,ρ

b ‖φ(s)ei‖
∣∣∣2ds228

≤
∞∑
i=1

2λiE

∫ b

a

[(
H − 1

2

)2(∫ b

s

‖φ(r)ei‖(r − s)H−
3
2 e−ρ(r−s)dr

)2

229

+ ρ2
(∫ b

s

‖φ(x)ei‖(x− s)H−
1
2 e−ρ(x−s)dx

)2
]
ds230

=

∞∑
i=1

2λi
(
H − 1

2

)2
E

∫ b

a

∫ b

s

∫ b

s

‖φ(r)ei‖‖φ(l)ei‖(r − s)H−
3
2 (l − s)H− 3

2231

× e−ρ(r−s)e−ρ(l−s)drdlds232

+

∞∑
i=1

2λiρ
2E

∫ b

a

∫ b

s

∫ b

s

‖φ(x)ei‖‖φ(y)ei‖(y − s)H−
1
2 (x− s)H− 1

2233

× e−ρ(y−s)e−ρ(x−s)dxdyds234

≤
∞∑
i=1

2λi
(
H − 1

2

)2
E

∫ b

a

∫ b

a

∫ r∧l

a

‖φ(r)ei‖‖φ(l)ei‖(r − s)H−
3
2 (l − s)H− 3

2 dsdrdl235

+

∞∑
i=1

2λiρ
2E

∫ b

a

∫ b

a

∫ x∧y

a

‖φ(x)ei‖‖φ(y)ei‖(y − s)H−
1
2 (x− s)H− 1

2236

× e−ρ(y−s)e−ρ(x−s)dsdxdy237

≤
∞∑
i=1

2λi
(
H − 1

2

)2
β(2− 2H,H − 1

2
)E

∫ b

a

∫ b

a

∥∥φ(l)ei
∥∥∥∥φ(r)ei

∥∥|l − r|2H−2dldr238

+

∞∑
i=1

λiΓ(H +
1

2
)ρ1−HE

∫ b

a

∫ b

a

‖φ(x)ei‖‖φ(y)ei‖|x− y|H−1dxdy239

≤ 2(H − 1

2
)2β(2− 2H,H − 1

2
)

∞∑
i=1

λi

∫ b

a

E
(
I
H− 1

2
a r

∥∥φ(r)ei
∥∥)2dr240

+ Γ(H +
1

2
)ρ1−H

∞∑
i=1

λi

∫ b

a

E
(
I
H
2

a r

∥∥φ(r)ei
∥∥)2dr,

(2.10)

241

242

where we have used (2.7), and the following inequality (see [31, Lemma 1])243

∫ r∧l

a

(r − s)H− 3
2 (l − s)H− 3

2 ds ≤ β(2− 2H,H − 1

2
)|l − r|2H−2

244
245

in the second-to-last inequality.246

Remark 2.7. Observe that in the case of the one-dimensional tfBm Bρ,H(t), it is247
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easily seen that248

E
∥∥∥∫ b

a

φ(s)dBρ,H(s)
∥∥∥2

≤ Γ(H +
1

2
)ρ1−H

∫ b

a

E
(
I
H
2

a r ‖φ(r)‖
)2
dr249

+ 2(H − 1

2
)2β(2− 2H,H − 1

2
)

∫ b

a

E
(
I
H− 1

2
a r ‖φ(r)‖

)2
dr.(2.11)250

251

Remark 2.8. The conclusion (2.9) still holds if a = −∞ or b =∞.252

For the case fBm, the following result can be directly obtained from Lemma 2.6.253

Lemma 2.9. Let H ∈ (1/2, 1) and a, b ∈ R with b > a. If φ : [a, b] × Ω →254

L 0
Q(K,H) satisfies ‖φei‖ ∈ L2(a, b),255

I
H− 1

2
a t ‖φei‖ ∈ L2(a, b;L2(Ω;R)),256

∞∑
i=1

λi

∥∥∥ I
H− 1

2
a t ‖φei‖

∥∥∥2

L2(a,b;L2(Ω;R))
<∞,257

258

then259

E
∥∥∥ ∫ b

a

φ(s)dBHQ (s)
∥∥∥2

260

≤
(
H − 1

2

)2
β(2− 2H,H − 1

2
)

∞∑
i=1

λi

∫ b

a

E
(
I
H− 1

2
a r

∥∥φ(r)ei
∥∥)2dr.(2.12)261

262

We note that the Theorem 5.10 of [8] can be generalized to the tfBm case. The263

following theorem gives the factorization formula for stochastic integrals with respect264

to tfBm. For convenience, the proof is provided.265

Theorem 2.10. Assume that for Hurst parameter H ∈ (1/2, 1), some χ ∈ (0, 1)266

and all t ∈ [t0, T ],267

C`

∫ t

t0

(t− s)χ−1

( ∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− r)−χ(s− y)−χ268

×
∥∥S(t− r)φ?(r)ei

∥∥∥∥S(t− y)φ?(y)ei
∥∥|r − y|2H−2drdy269

+ ρ1−H
∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− x)−χ(s− l)−χ270

×
∥∥S(t− x)φ?(x)ei

∥∥∥∥S(t− l)φ?(l)ei
∥∥|x− l|H−1dxdl

) 1
2

ds < +∞,(2.13)271

272

where C` = max
{

(H − 1
2 )(2H − 1)β(2− 2H,H − 1

2 ),Γ(H + 1
2 )
}

. If273

Bρ,HA (t) =

∫ t

t0

S(t−s)φ?(s)dBρ,HQ (s), Y ρ,Hχ (s) =

∫ s

t0

(s−r)−χS(s−r)φ?(r)dBρ,HQ (r),274

then275

(2.14) Bρ,HA (t) =
sinχπ

π

∫ t

t0

(t− s)χ−1S(t− s)Y ρ,Hχ (s)ds, t ∈ [t0, T ],276

where t0 ∈ R and φ? : [t0, T ]× Ω→ L 0
Q(K,H).277
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Proof. Thanks to the condition (2.13), we deduce that278

sinχπ

π

∫ t

t0

(t− s)χ−1S(t− s)Y ρ,Hχ (s)ds279

=
sinχπ

π

∫ t

t0

(t− s)χ−1S(t− s)
∫ s

t0

(s− r)−χS(s− r)φ?(r)dBρ,HQ (r)ds(2.15)280

=
sinχπ

π

∫ t

t0

[ ∫ t

r

(t− s)χ−1(s− r)−χds
]
S(t− r)φ?(r)dBρ,HQ (r),281

282

which together with283 ∫ t

r

(t− s)χ−1(s− r)−χds =
π

sinχπ
, t0 ≤ r ≤ t, χ ∈ (0, 1),284

gives the assertion of this theorem. In fact, the condition (2.13) ensures exchange the285

deterministic of the right hand side of (2.15) with the stochastic integral Y ρ,Hχ . In286

view of the stochastic Fubini theorem, we derive that287 ∥∥∥∫ t

t0

(t− s)χ−1

∫ s

t0

(s− r)−χS(t− r)φ?(r)dBρ,HQ (r)ds
∥∥∥
L2(Ω;H)

288

≤
∫ t

t0

(t− s)χ−1
∥∥∥ ∫ s

t0

(s− r)−χS(t− r)φ?(r)dBρ,HQ (r)
∥∥∥
L2(Ω;H)

ds289

≤ C
∫ t

t0

(t− s)χ−1

[ ∞∑
i=1

λiE
∣∣∣ ∫ s

t0

(s− r)−χ
∥∥S(t− r)φ?(r)ei

∥∥dBρ,Hi (r)
∣∣∣2] 1

2

ds290

≤ C
∫ t

t0

(t− s)χ−1

(
2(H − 1

2
)2β(2− 2H,H − 1

2
)

∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− r)−χ291

× (s− y)−χ
∥∥S(t− r)φ?(r)ei

∥∥∥∥S(t− y)φ?(y)ei
∥∥|r − y|2H−2drdy292

+ Γ(H +
1

2
)ρ1−H

∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− x)−χ(s− l)−χ293

×
∥∥S(t− x)φ?(x)ei

∥∥∥∥S(t− l)φ?(l)ei
∥∥|x− l|H−1dxdl

) 1
2

ds.(2.16)294

295

With the above factorization formula for stochastic integrals with respect to tfBm,296

we give the following result here for the fBm case when ρ = 0.297

Theorem 2.11. Assume that for Hurst parameter H ∈ (1/2, 1), some χ ∈ (0, 1)298

and all t ∈ [t0, T ],299 ∫ t

t0

(t− s)χ−1

( ∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− r)−χ(s− y)−χ300

×
∥∥S(t− r)φ?(r)ei

∥∥∥∥S(t− y)φ?(y)ei
∥∥|r − y|2H−2drdy

) 1
2

ds < +∞.(2.17)301

302

If303

BHA (t) =

∫ t

t0

S(t− s)φ?(s)dBHQ (s), Y Hχ (s) =

∫ s

t0

(s− r)−χS(s− r)φ?(r)dBHQ (r),304
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then305

(2.18) BHA (t) =
sinχπ

π

∫ t

t0

(t− s)χ−1S(t− s)Y Hχ (s)ds, t ∈ [t0, T ],306

where t0 ∈ R and φ? : [t0, T ]× Ω→ L 0
Q(K,H).307

3. Mean-square α-type stability of mild solutions. The purpose of this308

section is to show the global existence and mean square stability with general decay309

rate of mild solutions to (1.2). We need to impose some assumptions on the α-type310

function, which will be used as the decay function in this paper. The α-type function311

satisfies:312

(I0) 1) α ∈ C(R+,R+) is increasing;313

2) α(0) > 0 and limt→∞ α(t) =∞;314

3) α(t) satisfies that315

lim sup
t→∞

e−
δt
2 α(t) = 0,316

where δ is given in the assumption (I1) below;317

4) There exists a positive constant C∗ such that318

lim sup
t→∞

α(t)

α(ηt/2)
= C∗,319

where η ∈ (0, 1) is given in (1.2).320

Observe that functions α(t) = log(2 + t) and α(t) = 1 + tc
∗

(0 < c∗ < 1) satisfy the321

above requirements.322

Next we give some assumptions on the operator A, f and g:323

(I1) There exist a real number δ > 0 and positive constants C0, Cλ,0 ≥ 1 such324

that for any x ∈ H,325 ∥∥AλS(t)x
∥∥ ≤ Cλ,0e−δtt−λ‖x‖, t > 0,326 ∥∥S(t)x
∥∥ ≤ C0e

−δt‖x‖, t ≥ 0.327328

(I2) There exist nonnegative functions L1, l1 ∈ L∞(R+) such that for any u, v ∈329

L2(Ω;Hλ) and t ≥ 0,330

E
∥∥f(t, u)− f(t, v)

∥∥2 ≤ L1(t)E‖u− v‖2λ,331

and332

‖f(t, 0)‖2 ≤ l1(t),
(∫ ∞

0

(
α(r)l1(r)

)2
dr
) 1

2

:= Ξ1 <∞.333

(I3) There exists a nonnegative function l2 ∈ L∞(R+) such that for any t ≥ 0,334

(3.1) E
∥∥g(t)

∥∥2

Q
≤ l2(t),335

and l2 satisfies336

lim sup
t→∞

α(t)

∫ t

0

(t− y)H−
3
2 e−δ(t−y)l2(y)dy = Ĉ1,(3.2)337
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lim sup
t→∞

α(t)

∫ t

0

(t− y)
H
2 −1e−δ(t−y)l2(y)dy = Ĉ2,(3.3)338

339

where Ĉ1, Ĉ2 are positive constants.340

Now we need to state the definition of the mild solution to problem (1.2).341

Definition 3.1. Let T > 0 and u0 be an F0-measurable initial process satisfying342

E‖u0‖2λ < ∞. An Ft-measurable stochastic process u(t) is called a mild solution of343

problem (1.2)on [0, T ] if u ∈ C(0, T ;L2(Ω;Hλ)) and for t ∈ [0, T ],344

(3.4) u(t) = S(t)u0 +

∫ t

0

S(t− r)f(r, u(ηr))dr +

∫ t

0

S(t− r)g(r)dBρ,HQ (r) P -a.s.345

Remark 3.2. The solution given by (3.4) also has continuous trajectories with346

probability 1.347

The following theorem is dedicated to mean-square α-type stability of mild solu-348

tions.349

Theorem 3.3. Let H ∈ ( 1
2 , 1), λ ∈ (0, 1

2 ), u0 ∈ L2(Ω;Hλ) and the assumptions350

(I0)-(I3) hold. Let ‖L1‖L∞(R+) be sufficiently small such that351 [
4C∗ ∨ 1

]
C2
λ,0

(
δλ−1Γ(1− λ)

)2‖L1‖L∞(R+) < 1,(3.5)352353

where 4C∗ ∨ 1 = max{4C∗, 1}, δ, Cλ,0 and C∗ are given in the assumptions (I1) and354

(I0), respectively. Then problem (1.2) has a unique global mild solution u satisfying355

(3.6) sup
r∈[0,∞)

α(r)E‖u(r)‖2λ <∞.356

Proof. We first define the abstract phase space Cλϑ = Cϑ
(
0,∞;L2(Ω;Hλ)

)
with357

the norm358

‖u‖ϑ = sup
t∈[0,∞)

ϑ(t)E‖u(t)‖2λ, u ∈ C
(
0,∞;L2(Ω;Hλ)

)
,359

where360

(3.7) ϑ(t) =

{
α(T ), t ∈ [0, T ],

α(t), t ≥ T,
361

with T > 0 given later. Then
(
Cλϑ , ‖ · ‖ϑ

)
is a Banach space. Now we shall show that362

the following mapping Q defined by363

(3.8) (Qu)(t) = S(t)u0 +

∫ t

0

S(t− r)f(r, u(ηr))dr +

∫ t

0

S(t− r)g(r)dBρ,HQ (r),364

is contractive and bounded on Cλϑ .365

Step 1. In view of (3.8), the assumptions (I1)-(I2) and the Hölder inequality, we366

find that for t ∈ [0, T ] and any u, v ∈ Cλϑ ,367

ϑ(t)E
∥∥(Qu)(t)− (Qv)(t)

∥∥2

λ
368

≤ ϑ(t)C2
λ,0E

(∫ t

0

e−δ(t−r)(t− r)−λ
∥∥f(r, u(ηr))− f(r, v(ηr))

∥∥dr)2

369
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≤ α(T )C2
λ,0

∫ t

0

e−δ(t−r)(t− r)−λdr(3.9)370

×
∫ t

0

e−δ(t−r)(t− r)−λE
∥∥f(r, u(ηr))− f(r, v(ηr))

∥∥2
dr371

≤ C2
λ,0

(
δλ−1Γ(1− λ)

)2‖L1‖L∞(R+)‖u− v‖ϑ.372373

For the case t ≥ T , we obtain that for any u, v ∈ Cλϑ ,374

ϑ(t)E
∥∥(Qu)(t)− (Qv)(t)

∥∥2

λ
375

≤ 2α(t)E
(∫ t

2

0

∥∥S(t− r)
(
f(r, u(ηr))− f(r, v(ηr))

)∥∥
λ
dr
)2

376

+ 2α(t)E
(∫ t

t
2

∥∥S(t− r)
(
f(r, u(ηr))− f(r, v(ηr))

)∥∥
λ
dr
)2

(3.10)377

:= J1 + J2.378379

Duo to the assumptions (I1)-(I2) and the Hölder inequality, we deduce that380

J1 ≤ 2α(t)C2
λ,0E

(∫ t
2

0

e−δ(t−r)(t− r)−λ
∥∥f(r, u(ηr))− f(r, v(ηr))

∥∥dr)2

381

≤ 2α(t)C2
λ,0

( t
2

)−2λ
∫ t

2

0

e−δ(t−r)dr

∫ t
2

0

e−δ(t−r)E
∥∥f(r, u(ηr))− f(r, v(ηr))

∥∥2
dr382

≤ 2α(t)C2
λ,0‖u− v‖ϑ‖L1‖L∞(R+)

( t
2

)−2λ e−δt

δ

∫ t
2

0

e−δ(t/2−r)(α(ηr))−1dr383

≤ 2α(t)(α(0))−1C2
λ,0‖u− v‖ϑ‖L1‖L∞(R+)

( t
2

)−2λ e−δt

δ2
,

(3.11)

384
385

thanks to the monotonicity of α, and386

J2 ≤ 2α(t)C2
λ,0E

(∫ t

t
2

e−δ(t−r)(t− r)−λ
∥∥f(r, u(ηr))− f(r, v(ηr))

∥∥dr)2

387

≤ 2α(t)C2
λ,0

∫ t

t
2

e−δ(t−r)(t− r)−λdr388

×
∫ t

t
2

e−δ(t−r)(t− r)−λE
∥∥f(r, u(ηr))− f(r, v(ηr))

∥∥2
dr(3.12)389

≤ 2C2
λ,0

(
δλ−1Γ(1− λ)

)2‖u− v‖ϑ‖L1‖L∞(R+)
α(t)

α(ηt/2)
.390

391

By (3.9)-(3.12), the assumptions (3.5) and (I0), we find that there exists T large392

enough such that for all t ≥ 0,393

(3.13) sup
t∈[0,∞)

ϑ(t)E
∥∥(Qu)(t)− (Qv)(t)

∥∥2

λ
< ‖u− v‖ϑ.394

Step 2. On account of (3.8), we obtain that395

ϑ(t)E
∥∥(Qu)(t)

∥∥2

λ
≤ 3ϑ(t)C2

0e
−2δtE‖u0‖2λ + 6ϑ(t)E

(∫ t

0

∥∥S(t− r)f(r, 0)
∥∥
λ
dr
)2

396

12

This manuscript is for review purposes only.



+ 3ϑ(t)E
∥∥∥∫ t

0

AλS(t− r)g(r)dBρ,HQ (r)
∥∥∥2

397

+ 6ϑ(t)E
(∫ t

0

∥∥S(t− r)
(
f(r, u(ηr))− f(r, 0)

)∥∥
λ
dr
)2

(3.14)398

≤ 3ϑ(t)C2
0e
−2δtE‖u0‖2λ + J3 + J4 + J5.399400

Similar to (3.10)-(3.12), we have that for t ≥ T ,401

(3.15) J5 ≤ C‖u‖ϑ <∞,402

where T is large enough. Using the assumption (I0), we derive that for t ≥ T ,403

J3 ≤ C(λ)ϑ(t)
(∫ t

0

e−δ(t−r)(t− r)−λ‖f(r, 0)‖dr
)2

404

≤ C(λ)‖l1‖L∞(R+)α(t)e−δt
(∫ t

2

0

e−δ(t/2−r)(t/2− r)−λdr
)2

405

+ C(λ, δ) α(t)

α(t/2)

∫ t

t
2

e−δ(t−r)(t− r)−λl1(r)α(r)dr(3.16)406

≤ C(λ, δ)
(
‖l1‖L∞(R+)α(t)e−δt +

α(t)

α(t/2)
Ξ1

)
<∞.407

408

Thanks to Lemma 2.6, we deduce that for t ≥ T ,409

J4 ≤ 6(H − 1

2
)2β(2− 2H,H − 1

2
)α(t)

∞∑
i=1

λi

∫ t

0

E
[

0I
H− 1

2
r

∥∥AλS(t− r)g(r)ei
∥∥]2dr410

+ 3Γ(H +
1

2
)ρ1−Hα(t)

∞∑
i=1

λi

∫ t

0

E
[

0I
H
2
r

∥∥AλS(t− r)g(r)ei
∥∥]2dr411

≤ C(H)α(t)

∞∑
i=1

λi

∫ t

0

E
(∫ r

0

(r − y)H−
3
2

∥∥AλS(t− y)g(y)ei
∥∥dy)2

dr412

+ C(H)ρ1−Hα(t)

∞∑
i=1

λi

∫ t

0

E
(∫ r

0

(r − y)
H
2 −1

∥∥AλS(t− y)g(y)ei
∥∥dy)2

dr413

:= J 1
4 + J 2

4 .

(3.17)

414415

In view of the assumptions (I0)-(I1) and the Hölder inequality, we find that416

J 1
4 ≤ C(H)α(t)

∞∑
i=1

λi

∫ t

0

E
(∫ r

0

(r − y)H−
3
2 e−δ(t−y)(t− y)−λ‖g(y)ei‖dy

)2

dr417

≤ C(H)α(t)

∞∑
i=1

λi

∫ t

0

e−2δ(t−r)(t− r)−2λ

∫ r

0

(r − y)H−
3
2 e−δ(r−y)dy418

×
∫ r

0

(r − y)H−
3
2 e−δ(r−y)E‖g(y)ei‖2dydr419

≤ C(H)α(t)

∫ t

0

e−2δ(t−r)(t− r)−2λ

∫ r

0

(r − y)H−
3
2 e−δ(r−y)E‖g(y)‖2Qdydr(3.18)420
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≤ C(H)‖l2‖L∞(R+)α(t)e−δt
∫ t

2

0

e−2δ(t/2−r)(t/2− r)−2λdr + C(H)
α(t)

α(t/2)
421

×
∫ t

t
2

e−2δ(t−r)(t− r)−2λα(r)

∫ r

0

(r − y)H−
3
2 e−δ(r−y)l2(y)dydr422

≤ C(H)
(
‖l2‖L∞(R+)α(t)e−δt +

α(t)

α(t/2)

)
<∞,423

424

and425

J 2
4 ≤ C(H)ρ1−Hα(t)

∞∑
i=1

λi

∫ t

0

e−2δ(t−r)(t− r)−2λ

∫ r

0

(r − y)
H
2 −1e−δ(r−y)dy426

×
∫ r

0

(r − y)
H
2 −1e−δ(r−y)E‖g(y)ei‖2dydr427

≤ C(H)ρ1−H‖l2‖L∞(R+)α(t)e−δt
∫ t

2

0

e−2δ(t/2−r)(t/2− r)−2λdr + C(H)ρ1−H(3.19)428

× α(t)

α(t/2)

∫ t

t
2

e−2δ(t−r)(t− r)−2λα(r)

∫ r

0

(r − y)
H
2 −1e−δ(r−y)l2(y)dydr429

≤ C(H)ρ1−H
(
‖l2‖L∞(R+)α(t)e−δt +

α(t)

α(t/2)

)
<∞,430

431

where we have used the assumptions I3 and lim supt→∞ e−
δt
2 α(t) = 0.432

On the other hand, we find that for t ∈ [0, T ],433

(3.20) J3 + J4 + J5 < C
(
α(T ) + ‖u‖ϑ

)
.434

The assertion of this theorem follows immediately by applying the Banach fixed point435

theorem.436

Remark 3.4. For the case α(t) = 1 + tc
∗

(0 < c∗ < 1), we can find some examples437

of the function l1, satisfying the assumption (I2), such that438 ∫ ∞
0

(1 + rc
∗
)2
(
rc
∗− 1

2 (1 + rc
∗
)−3
)2
dr <∞,439

440

or441 ∫ ∞
0

(1 + rc
∗
)2e−2c̃rdr <∞.442

443

444

Remark 3.5. One may check that (3.2) in the assumption (I3) holds. For example,445

if we consider α(t) = 1 + tc? (0 < c? < 1) and l2(t) = t−
`0
2 (0 < `0 < 1) where446

1
2 + `0 − 2c? > H, then we have447

α(t)

∫ t

0

(t− y)H−
3
2 e−δ(t−y)l2(y)dy448

≤
(
1 + tc?

)( ∫ t

0

(t− y)H−
3
2 e−2δ(t−y)dy

) 1
2
(∫ t

0

(t− y)H−
3
2 y−`0dy

) 1
2

449

≤ C
(
1 + tc?

)
t
H−`0

2 − 1
4 → 0 as t→∞.450451

The assertion (3.3) follows similarly.452
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Corollary 3.6. Let H ∈ ( 1
2 , 1), λ ∈ (0, 1

2 ), u0 ∈ L2(Ω;Hλ), the assumptions453

(I0)-(I3) and (3.5) hold. Then there exists a unique global mild solution u to problem454

(1.2) with fBm BHQ instead of Bρ,HQ satisfying455

(3.21) sup
r∈[0,∞)

α(r)E‖u(r)‖2λ <∞.456

4. Existence, Hölder regularity and stability of nontrivial equilibrium457

solutions. In this section, we construct the nontrivial equilibrium solution u∗, defined458

for all t ∈ R, to the following semilinear stochastic differential equation459

(4.1)

du(t) = −Au(t)dt+ f(t, u(ηt))dt+ g(t)dBρ,HQ (t), t ∈ R, η ∈ (0, 1), H ∈ (1/2, 1).460

The existence and uniqueness of the nontrivial equilibrium solution, as well as stability461

with general decay rate α(t) and Hölder regularity are also addressed. To investigate462

the mild solution u∗ defined for all t ∈ R, we start by introducing the following463

infinite-dimensional tfBm:464

(4.2) Bρ,HQ (t) =

∞∑
i=1

√
λiB

ρ,H
i (t)ei,465

where sequences {λi}i∈N, {ei}i∈N have been given in Section 2 and Bρ,Hi (t) is defined466

by467

Bρ,Hi (t) =

{
B̃ρ,Hi (t), for t ≥ 0,

B̂ρ,Hi (−t), for t ≤ 0.
468

Here B̃ρ,Hi and B̂ρ,Hi are independent standard one-dimensional tfBms. Let469

(4.3) Ft := σ
(⋃{

Bρ,Hi (s)−Bρ,Hi (r) : r ≤ s ≤ t, i ≥ 1
})
,470

be the σ-algebra generated by
{
Bρ,Hi (s)−Bρ,Hi (r) : r ≤ s ≤ t, i ≥ 1

}
.471

The following definition is on the mild solution of problem (4.1) defined for all472

t ∈ R.473

Definition 4.1. A Hλ-valued stochastic process u(t) is called a mild solution to474

problem (4.1) on R if475

i) u(t) is Ft-measurable for each t ∈ R;476

ii) supt∈R ‖u(t)‖L2(Ω;Hλ) <∞;477

iii) u(t) is continuous almost surely in t ∈ R with respect to Hλ norm;478

iv) it holds that for all −∞ < t0 < t <∞,479

u(t) = S(t− t0)u(t0) +

∫ t

t0

S(t− r)f(r, u(ηr))dr480

+

∫ t

t0

S(t− r)g(r)dBρ,HQ (r) P -a.s.(4.4)481

482

4.1. Linear version. Before constructing the mild solution of problem (4.1), we483

consider the following linear equation:484

(4.5) du = −Audt+ ζ(t)dt+ ψ(t)dBρ,HQ (t), t ∈ R, H ∈ (1/2, 1).485
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Theorem 4.2. Let λ ∈ (0, 1
2 ) and the assumption (I1) be fulfilled. Suppose that486

ζ(t) and ψ(t) in (4.5) are Ft-measurable and satisfy487

(4.6) sup
t∈R

E‖ζ(t)‖2 <∞ and sup
t∈R

E‖ψ(t)‖2Q <∞.488

Then the linear equation (4.5) has a unique solution ũ∗ in the sense of Definition 4.1,489

which is mean-square Hölder continuous in t ∈ R, i.e.,490

(4.7) sup
t∈R
‖ũ∗(t+ h)− ũ∗(t)‖L2(Ω;Hλ) ≤ Cmax{h 1

2−λ, h1−λ} for each h > 0.491

Furthermore, the solution ũ∗ is exponentially stable, i.e., for any t0 ∈ R and any492

solution %(t) of Eq. (4.5) in the sense of Definition 3.1, with Ft0-measurable %(t0)493

and E‖%(t0)‖2λ <∞,494

(4.8) E
∥∥ũ∗(t)− %(t)

∥∥2

λ
≤ Ce−C(t−t0)E

∥∥ũ∗(t0)− %(t0)
∥∥2

λ
.495

Proof. Let496

(4.9) ũ∗(t) =

∫ t

−∞
S(t− r)ζ(r)dr +

∫ t

−∞
S(t− r)ψ(r)dBρ,HQ (r).497

Step 1. The process ũ∗(t) given by (4.9) is well defined.498

Let us start focusing on499

Π2
n(t) :=

∫ t

−n
S(t− r)ψ(r)dBρ,HQ (r).500

We deduce from Lemma 2.6 that for n > m,501

E
∥∥Π2

n(t)−Π2
m(t)

∥∥2

λ
≤ 2(H − 1

2
)2β(2− 2H,H − 1

2
)502

×
∞∑
i=1

λiE

∫ −m
−n

[
−nI

H− 1
2

r

∥∥AλS(t− r)ψ(r)ei
∥∥]2dr503

+ Γ(H +
1

2
)ρ1−H

∞∑
i=1

λiE

∫ −m
−n

[
−nI

H
2
r

∥∥AλS(t− r)ψ(r)ei
∥∥]2dr(4.10)504

≤ C(H)

∞∑
i=1

λiE

∫ −m
−n

(∫ r

−n
(r − y)H−

3
2

∥∥AλS(t− y)ψ(y)ei
∥∥dy)2

dr505

+ C(H)ρ1−H
∞∑
i=1

λiE

∫ −m
−n

(∫ r

−n
(r − y)

H
2 −1

∥∥AλS(t− y)ψ(y)ei
∥∥dy)2

dr.506

507

Then by making use of the assumptions (I1), (4.6), the Hölder inequality and the508

definition of gamma function, we arrive at509

E
∥∥Π2

n(t)−Π2
m(t)

∥∥2

λ
≤ C(H)

∞∑
i=1

λiE

∫ −m
−n

510

×
(∫ r

−n
(r − y)H−

3
2 e−δ(t−y)(t− y)−λ‖ψ(y)ei‖dy

)2

dr + C(H)ρ1−H
511
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×
∞∑
i=1

λiE

∫ −m
−n

(∫ r

−n
(r − y)

H
2 −1e−δ(t−y)(t− y)−λ‖ψ(y)ei‖dy

)2

dr512

≤ C(H)

∞∑
i=1

λiE

∫ −m
−n

e−2δ(t−r)(t− r)−2λ

∫ r

−n
(r − y)H−

3
2 e−δ(r−y)dy513

×
∫ r

−n
(r − y)H−

3
2 e−δ(r−y)‖ψ(y)ei‖2dydr514

+ C(H)ρ1−H
∞∑
i=1

λiE

∫ −m
−n

e−2δ(t−r)(t− r)−2λ

∫ r

−n
(r − y)

H
2 −1e−δ(r−y)dy(4.11)515

×
∫ r

−n
(r − y)

H
2 −1e−δ(r−y)‖ψ(y)ei‖2dydr516

≤ C(H)(1 + ρ1−H) sup
t∈R

E‖ψ(t)‖2Q
(∫ −m
−n

e−δp1(t−r)(t− r)−2p1λdr
) 1
p1

517

×
(∫ −m
−n

e−q1δ(t−r)dr
) 1
q1

518

≤ C(H)(1 + ρ1−H) sup
t∈R

E‖ψ(t)‖2Q
(e−δq1t(e−δq1m − e−δq1n)

δq1

) 1
q1
,519

520

where we choose p1 > 1 such that λp1 <
1
2 and 1/p1 + 1/q1 = 1. Next we consider521

(4.12) Π1
n(t) :=

∫ t

−n
S(t− r)ζ(r)dr.522

Applying the assumptions (I1), (4.6) and the Hölder inequality gives that for n > m,523

E
∥∥Π1

n(t)−Π1
m(t)

∥∥2

λ
524

≤ C2
λ,0E

(∫ −m
−n

e−δ(t−r)(t− r)−λ‖ζ(r)‖dr
)2

525

≤ C2
λ,0

∫ −m
−n

e−δ(t−r)dr

∫ −m
−n

e−δ(t−r)(t− r)−2λE‖ζ(r)‖2dr(4.13)526

≤ C2
λ,0δ

2λ−1Γ(1− 2λ)
e−δt(e−δm − e−δn)

δ
sup
t∈R

E‖ζ(t)‖2.527
528

Hence, it follows from (4.11) and (4.13) that ũ∗(t) is well defined.529

Step 2. The process ũ∗ defined by (4.9) is a solution in the sense of Definition 4.1.530

(I) Measurability and continuity of ũ∗(t) in time.531

In view of the Ft measurability of ζ(t) and ψ(t), by (4.3) we have that the532

process ũ∗(t) is Ft-measurable. Note that if conditions (2.13) and533

(4.14)∫ s

t0

(s− r)−χS(s− r)ψ(r)dBρ,HQ (r) ∈ L2
(
Ω;L2(t0, T ;H)

)
, s ∈ (t0, T ),534

hold true for χ ∈ (0, 1) and t0 ∈ R, then we can obtain that the process535

ũ∗(t) has continuous trajectories with probability 1 by using the factorization536

formula for the stochastic integral (2.14) and Proposition 5.9 of [8]. Indeed,537

we derive from the assumption (I1) and the definition of gamma function538

17

This manuscript is for review purposes only.



that539

C`

∫ t

t0

(t− s)χ−1

( ∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− r)−χ(s− y)−χ540

×
∥∥S(t− r)ψ(r)ei

∥∥∥∥S(t− y)ψ(y)ei
∥∥|r − y|2H−2drdy541

+ ρ1−H
∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− x)−χ(s− l)−χ542

×
∥∥S(t− x)ψ(x)ei

∥∥∥∥S(t− l)ψ(l)ei
∥∥|x− l|H−1dxdl

) 1
2

ds543

≤ C(H)

∫ t

t0

(t− s)χ−1e−δ(t−s)

( ∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− r)−χ(s− y)−χ544

× e−δ(s−r)e−δ(s−y)‖ψ(r)ei‖‖ψ(y)ei‖|r − y|2H−2drdy545

+ ρ1−H
∞∑
i=1

λiE

∫ s

t0

∫ s

t0

(s− x)−χ(s− l)−χe−δ(s−x)e−δ(s−l)(4.15)546

× ‖ψ(x)ei‖‖ψ(l)ei‖|x− l|H−1dxdl

) 1
2

ds547

≤ C(H)

∫ t

t0

(t− s)χ−1e−δ(t−s)

( ∞∑
i=1

λiE

∫ s

t0

(s− y)−2χe−2δ(s−y)
548

× ‖ψ(y)ei‖2
(
|y − t0|2H−1 + |s− y|2H−1

)
dy + ρ1−H

∞∑
i=1

λi549

× E
∫ s

t0

(s− l)−2χe−2δ(s−l)‖ψ(l)ei‖2
(
|l − t0|H + |s− l|H

)
dl

) 1
2

ds550

≤ C(H)(1 + ρ1−H)
(

(T − t0)H−
1
2 + (T − t0)

H
2

)(
sup
t∈R

E‖ψ(t)‖2Q
) 1

2 .551
552

Thanks to Lemma 2.6, in view of (2.10), (4.14) follows immediately from553

similar arguments as in (4.15).554

(II) supt∈RE‖ũ∗(t)‖2λ <∞.555

In view of the assumptions (I1), (4.6) and the Hölder inequality, we deduce556

that557

E
∥∥∥∫ t

−∞
S(t− r)ζ(r)dr

∥∥∥2

λ
558

≤ C2
λ,0E

(∫ t

−∞
e−δ(t−r)(t− r)−λ‖ζ(r)‖dr

)2

559

≤ C2
λ,0

∫ t

−∞
e−δ(t−r)(t− r)−λdr

∫ t

−∞
e−δ(t−r)(t− r)−λE‖ζ(r)‖2dr(4.16)560

≤ C2
λ,0

(
δλ−1Γ(1− λ)

)2
sup
t∈R

E‖ζ(t)‖2,561
562
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and by Lemma 2.6,563

E
∥∥∥∫ t

−∞
S(t− r)ψ(r)dBρ,HQ (r)

∥∥∥2

λ
≤ 2(H − 1

2
)2β(2− 2H,H − 1

2
)564

×
∞∑
i=1

λiE

∫ t

−∞

[
−∞I

H− 1
2

r

∥∥AλS(t− r)ψ(r)ei
∥∥]2dr565

+ Γ(H +
1

2
)ρ1−H

∞∑
i=1

λiE

∫ t

−∞

[
−∞I

H
2
r

∥∥AλS(t− r)ψ(r)ei
∥∥]2dr566

≤ C(H)

∞∑
i=1

λiE

∫ t

−∞

(∫ r

−∞
(r − y)H−

3
2 e−δ(t−y)(t− y)−λ‖ψ(y)ei‖dy

)2

dr567

+ C(H)ρ1−H
∞∑
i=1

λiE

∫ t

−∞

(∫ r

−∞
(r − y)

H
2 −1e−δ(t−y)(t− y)−λ‖ψ(y)ei‖dy

)2

dr568

≤ C(H)

∞∑
i=1

λiE

∫ t

−∞
e−2δ(t−r)(t− r)−2λ

∫ r

−∞
(r − y)H−

3
2 e−δ(r−y)dy

(4.17)

569

×
∫ r

−∞
(r − y)H−

3
2 e−δ(r−y)‖ψ(y)ei‖2dydr570

+ C(H)ρ1−H
∞∑
i=1

λiE

∫ t

−∞
e−2δ(t−r)(t− r)−2λ

∫ r

−∞
(r − y)

H
2 −1e−δ(r−y)dy571

×
∫ r

−∞
(r − y)

H
2 −1e−δ(r−y)‖ψ(y)ei‖2dydr572

≤ C(H)(1 + ρ1−H) sup
t∈R

E‖ψ(t)‖2Q.573
574

(III) The process ũ∗(t) satisfies (4.4).575

It follows from the definition of ũ∗(t) that576

ũ∗(t) = S(t− t0)
(∫ t0

−∞
S(t0 − r)ζ(r)dr +

∫ t0

−∞
S(t0 − r)ψ(r)dBρ,HQ (r)

)
577

+

∫ t

t0

S(t− r)ζ(r)dr +

∫ t

t0

S(t− r)ψ(r)dBρ,HQ (r)578

= S(t− t0)ũ∗(t0) +

∫ t

t0

S(t− r)ζ(r)dr +

∫ t

t0

S(t− r)ψ(r)dBρ,HQ (r).(4.18)579

580

Step 3. The Hölder regularity, exponential stability and uniqueness of ũ∗(t).581

(I) Now we show the Hölder regularity.582

On account of (4.9), we have that for each h > 0,583 ∥∥ũ∗(t+ h)− ũ∗(t)
∥∥
L2(Ω;Hλ)

584

≤
∥∥∥∫ t

−∞

(
S(t+ h− r)− S(t− r)

)
ζ(r)dr

∥∥∥
L2(Ω;Hλ)

585

+
∥∥∥∫ t

−∞

(
S(t+ h− r)− S(t− r)

)
ψ(r)dBρ,HQ (r)

∥∥∥
L2(Ω;Hλ)

586
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+
∥∥∥∫ t+h

t

S(t+ h− r)ζ(r)dr
∥∥∥
L2(Ω;Hλ)

(4.19)587

+
∥∥∥∫ t+h

t

S(t+ h− r)ψ(r)dBρ,HQ (r)
∥∥∥
L2(Ω;Hλ)

588

:= J6 + J7 + J8 + J9.589590

Let us first consider the term J7. We deduce from Lemma 2.6 that591

J7 ≤
∥∥∥∫ t

−∞

∫ t+h

t

AS(s− r)ψ(r)dsdBρ,HQ (r)
∥∥∥
L2(Ω;Hλ)

592

=

∫ t+h

t

∥∥∥∫ t

−∞
AS(s− r)ψ(r)dBρ,HQ (r)

∥∥∥
L2(Ω;Hλ)

ds593

≤ C(H)

∫ t+h

t

[ ∞∑
i=1

λiE

∫ t

−∞

[
−∞I

H− 1
2

r

∥∥A1+λS(s− r)ψ(r)ei
∥∥]2dr] 1

2

ds(4.20)594

+ C(H)ρ
1−H

2

∫ t+h

t

[ ∞∑
i=1

λiE

∫ t

−∞

[
−∞I

H
2
r

∥∥A1+λS(s− r)ψ(r)ei
∥∥]2dr] 1

2

ds595

:= J 1
7 + J 2

7 .596597

Using the assumption (I1) and the Hölder inequality results in598

J 1
7 ≤ C(H)

∫ t+h

t

[ ∞∑
i=1

λiE

∫ t

−∞

(∫ r

−∞
(r − y)H−

3
2 ‖ψ(y)ei‖599

× e−δ(s−y)(s− y)−(1+λ)dy
)2

dr

] 1
2

ds600

≤ C(H)

∫ t+h

t

[ ∞∑
i=1

λiE

∫ t

−∞
e−2δ(s−r)(s− r)−2(1+λ)

601

×
∫ r

−∞
(r − y)H−

3
2 e−δ(r−y)‖ψ(y)ei‖2dy

∫ r

−∞
(r − y)H−

3
2 e−δ(r−y)dydr

] 1
2

ds(4.21)602

≤ C(H)
(

sup
t∈R

E‖ψ(t)‖2Q
) 1

2

∫ t+h

t

[ ∫ t

−∞
(s− r)−2(1+λ)dr

] 1
2

ds603

= C(H)
(

sup
t∈R

E‖ψ(t)‖2Q
) 1

2h
1
2−λ,604

605

and606

J 2
7 ≤ C(H)ρ

1−H
2

∫ t+h

t

[ ∞∑
i=1

λiE

∫ t

−∞
e−2δ(s−r)(s− r)−2(1+λ)

607

×
∫ r

−∞
(r − y)

H
2 −1e−δ(r−y)‖ψ(y)ei‖2dy

∫ r

−∞
(r − y)

H
2 −1e−δ(r−y)dydr

] 1
2

ds608

≤ C(H)ρ
1−H

2

(
sup
t∈R

E‖ψ(t)‖2Q
) 1

2

∫ t+h

t

[ ∫ t

−∞
(s− r)−2(1+λ)dr

] 1
2

ds(4.22)609

= C(H)ρ
1−H

2

(
sup
t∈R

E‖ψ(t)‖2Q
) 1

2h
1
2−λ.610
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611

In a similar way as in (4.20)-(4.22), we obtain612

J9 =
(
E
∥∥∥ ∫ t+h

t

AλS(t+ h− r)ψ(r)dBρ,HQ (r)
∥∥∥2) 1

2

613

≤ C(H)

[ ∞∑
i=1

λiE

∫ t+h

t

[
tI
H− 1

2
r

∥∥AλS(t+ h− r)ψ(r)ei
∥∥]2dr] 1

2

614

+ C(H)ρ
1−H

2

[ ∞∑
i=1

λiE

∫ t+h

t

[
tI
H
2
r

∥∥AλS(t+ h− r)ψ(r)ei
∥∥]2dr] 1

2

615

≤ C(H)

[ ∞∑
i=1

λiE

∫ t+h

t

(∫ r

t

e−δ(t+h−y)(t+ h− y)−λ616

× (r − y)H−
3
2 ‖ψ(y)ei‖dy

)2

dr

] 1
2

617

+ C(H)ρ
1−H

2

[ ∞∑
i=1

λiE

∫ t+h

t

(∫ r

t

e−δ(t+h−y)(t+ h− y)−λ618

× (r − y)
H
2 −1‖ψ(y)ei‖dy

)2

dr

] 1
2

619

≤ C(H)

[ ∞∑
i=1

λiE

∫ t+h

t

e−2δ(t+h−r)(t+ h− r)−2λ
620

×
∫ r

t

e−δ(r−y)(r − y)H−
3
2 dy

∫ r

t

e−δ(r−y)(r − y)H−
3
2 ‖ψ(y)ei‖2dydr

] 1
2

(4.23)621

+ C(H)ρ
1−H

2

[ ∞∑
i=1

λiE

∫ t+h

t

e−2δ(t+h−r)(t+ h− r)−2λ
622

×
∫ r

t

e−δ(r−y)(r − y)
H
2 −1dy

∫ r

t

e−δ(r−y)(r − y)
H
2 −1‖ψ(y)ei‖2dydr

] 1
2

623

≤ C(H)(1 + ρ
1−H

2 )
(

sup
t∈R

E‖ψ(t)‖2Q
) 1

2

[ ∫ t+h

t

e−2δ(t+h−r)(t+ h− r)−2λdr

] 1
2

624

≤ C(H)(1 + ρ
1−H

2 )
(

sup
t∈R

E‖ψ(t)‖2Q
) 1

2h
1
2−λ.625

626

By using the assumption (I1) and the Hölder inequality, we find that627

J6 =
∥∥∥∫ t+h

t

∫ t

−∞
AS(s− r)ζ(r)drds

∥∥∥
L2(Ω;Hλ)

628

≤
∫ t+h

t

∫ t

−∞

(
E
∥∥A1+λS(s− r)ζ(r)

∥∥2
) 1

2

drds629

≤ C1+λ,0

(
sup
t∈R

E‖ζ(t)‖2
) 1

2

∫ t+h

t

∫ t

−∞
e−δ(s−r)(s− r)−(λ+1)drds(4.24)630

≤ C(λ)
(

sup
t∈R

E‖ζ(t)‖2
) 1

2h1−λ,631
632

21

This manuscript is for review purposes only.



and633

J8 ≤
∫ t+h

t

∥∥S(t+ h− r)ζ(r)
∥∥
L2(Ω;Hλ)

dr634

≤ Cλ,0
(∫ t+h

t

e−δ(t+h−r)(t+ h− r)−λdr
) 1

2

635

×
(∫ t+h

t

e−δ(t+h−r)(t+ h− r)−λE‖ζ(r)‖2dr
) 1

2

(4.25)636

≤ C(λ)
(

sup
t∈R

E‖ζ(t)‖2
) 1

2h1−λ.637
638

Inserting (4.20)-(4.25) into (4.19), by the assumption (4.6), we have639 ∥∥ũ∗(t+ h)− ũ∗(t)
∥∥
L2(Ω;Hλ)

640

≤ C(H)(1 + ρ
1−H

2 )
(

sup
t∈R

E‖ψ(t)‖2Q
) 1

2h
1
2−λ + C(λ)

(
sup
t∈R

E‖ζ(t)‖2
) 1

2h1−λ
641

≤ Cmax{h 1
2−λ, h1−λ},(4.26)642643

that is, ũ∗(t) is mean-square Hölder continuous.644

(II) Exponential stability and uniqueness of ũ∗(t).645

Let %(t) be any solution of (4.5) satisfying E‖%(t0)‖2λ <∞. Then we have646

(4.27) %(t) = S(t− t0)%(t0) +

∫ t

t0

S(t− r)ζ(r)dr +

∫ t

t0

S(t− r)ψ(r)dBρ,HQ (r).647

In view of (4.18), applying the assumption (I1) results in648

(4.28) E‖ũ∗(t)− %(t)‖2λ ≤ C2
0e
−2δ(t−t0)E‖ũ∗(t0)− %(t0)‖2λ.649

This implies that ũ∗(t) is exponentially stable.650

We now turn to the uniqueness of ũ∗. If v(t) be another solution satisfying651

supt∈RE‖v(t)‖2λ<∞, then for arbitrary r ≤ t,652

(4.29) E
∥∥ũ∗(t)− v(t)

∥∥2

λ
≤ C2

0e
−2δ(t−r)E

∥∥ũ∗(r)− v(r)
∥∥2

λ
≤ Ce−2δ(t−r),653

thanks to Definition 4.1 and the assumption (I1). Letting r → −∞, we have654

(4.30) E
∥∥ũ∗(t)− v(t)

∥∥2

λ
= 0 for all t ∈ R.655

We derive from Markov’s inequality that for each t ∈ R and any ε > 0,656

(4.31) P
(
‖v(t)− ũ∗(t)‖λ > ε

)
≤ 1

ε2
E‖v(t)− ũ∗(t)‖2λ,657

and consequently658

(4.32) P
(
‖v(t)− ũ∗(t)‖λ = 0 for all t ∈ Q ∩ R

)
= 1,659

where Q denotes the rational numbers. Since the mapping t → ‖v(t) − ũ∗(t)‖λ is660

continuous with probability 1, we have that661

(4.33) P
(
‖v(t)− ũ∗(t)‖λ = 0 for all t ∈ R

)
= 1.662

The proof is complete.663
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4.2. Nonlinear version. Now let us turn to consider the semilinear equation664

(4.1). Analysis of the linear case indicates that one can obtain the unique sequence665

{un} defined for t ∈ R. By exploiting an approximation technique and a convergence666

analysis of {un}, we construct the nontrivial equilibrium solution u∗ defined for t ∈ R667

to problem (4.1). The following result is on existence, uniqueness, mean-square α-type668

stability and Hölder continuity in time of u∗.669

Theorem 4.3. Let λ ∈ (0, 1
2 ), the assumptions (I0) and (I1) be satisfied. Suppose670

that the assumptions (I2) and (I3) hold for t ∈ R. Assume that the function L1 in671

the assumption (I2) is sufficiently small such that672

(4.34) W :=
[
3C∗ ∨ 4

]
C2
λ,0

(
δλ−1Γ(1− λ)

)2‖L1‖L∞(R) < 1,673

where 3C∗ ∨ 4 = max{3C∗, 4}, δ, Cλ,0 and C∗ are given in the assumptions (I1) and674

(I0), respectively. Then problem (4.1) has a unique solution u∗(t) in the sense of675

Definition 4.1 which is mean-square Hölder continuous in t ∈ R, i.e.,676

sup
t∈R
‖u∗(t+ h)− u∗(t)‖L2(Ω;Hλ) ≤ Cmax{h 1

2−λ, h1−λ} for each h > 0.677

Moreover, the solution u∗(t) is α-type stable, that is,678

(4.35) lim
t→∞

logE‖u∗(t)− %(t)‖2λ
logα(t)

< 0,679

where %(t) is any solution of problem (1.2) in the sense of Definition 3.1.680

Proof. Let u0 ≡ 0 and let {un} be a sequence defined by681

(4.36) dun+1(t) = −Aun+1(t)dt+ f(t, un(ηt))dt+ g(t)dBρ,HQ (t).682

Thanks to the assumptions (I2) and (I3), we find that683

sup
t∈R

E
∥∥f(t, un(ηt))

∥∥2 ≤ 2‖l1‖L∞(R) + 2‖L1‖L∞(R) sup
t∈R

E‖un(t)‖2λ,(4.37)684
685

and686

sup
t∈R

∥∥g(t)
∥∥2

Q
≤ ‖l2‖L∞(R).(4.38)687

688

Hence, by Theorem 4.2 we have the unique solution un+1(t) satisfying689

(4.39) sup
t∈R

E‖un+1(t)‖2λ <∞,690

and691

(4.40) un+1(t) =

∫ t

−∞
S(t− r)f(r, un(ηr))dr +

∫ t

−∞
S(t− r)g(r)dBρ,HQ (r).692

Step 1. The sequence {un(t)} converges to the process u∗(t), and u∗(t) is a solution693

in the sense of Definition 4.1.694

(1) supt∈R ‖un(t)‖L2(Ω;Hλ) is bounded which is independent of n.695

Following similar arguments as in (4.16) and (4.17), by (4.37)-(4.38) and (4.40)696

we deduce that697

E‖un+1(t)‖2λ ≤ 2E
∥∥∥∫ t

−∞
S(t− r)f(r, un(ηr))dr

∥∥∥2

λ
698
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+ 2E
∥∥∥∫ t

−∞
S(t− r)g(r)dBρ,HQ (r)

∥∥∥2

λ
699

≤ 2C2
λ,0

(
δλ−1Γ(1− λ)

)2
sup
t∈R

E‖f(t, un(ηt))‖2 + C(H)(1 + ρ1−H) sup
t∈R
‖g(t)‖2Q(4.41)700

≤ 4C2
λ,0

(
δλ−1Γ(1− λ)

)2(‖l1‖L∞(R) + ‖L1‖L∞(R) sup
t∈R

E‖un(t)‖2λ
)

701

+ C(H)(1 + ρ1−H)‖l2‖L∞(R),702703

which implies that704

(4.42) sup
t∈R

E‖un+1(t)‖2λ ≤ C + W sup
t∈R

E‖un(t)‖2λ.705

In view of the assumption (4.34), applying the recursive method to (4.42) results in706

(4.43) sup
t∈R

E‖un+1(t)‖2λ ≤
C

1−W
.707

(2) The sequence {un(t)} is convergent.708

In a similar way as in (3.9) we derive709

E
∥∥un+1(t)− un(t)

∥∥2

λ
710

= E
∥∥∥∫ t

−∞
S(t− r)

(
f(r, un(ηr))− f(r, un−1(ηr))

)
dr
∥∥∥2

λ
711

≤ C2
λ,0

∫ t

−∞
e−δ(t−r)(t− r)−λdr712

×
∫ t

−∞
e−δ(t−r)(t− r)−λE

∥∥f(r, un(ηr))− f(r, un−1(ηr))
∥∥2
dr(4.44)713

≤ C2
λ,0

(
δλ−1Γ(1− λ)

)2‖L1‖L∞(R) sup
t∈R

E‖un(t)− un−1(t)‖2λ714

≤ W

2
sup
t∈R

E‖un(t)− un−1(t)‖2λ.715
716

Then it follows from (4.43) and the assumption W < 1 that717

sup
t∈R
‖un(t)− um(t)‖L2(Ω;Hλ)718

≤
n−1∑
j=m

sup
t∈R
‖uj+1(t)− uj(t)‖L2(Ω;Hλ) =

n−1∑
j=m

sup
t∈R

(
E‖uj+1(t)− uj(t)‖2λ

) 1
2719

≤
n−1∑
j=m

(
sup
t∈R

E‖uj+1(t)− uj(t)‖2λ
) 1

2 ≤
(

sup
t∈R

E‖u1(t)‖2λ
) 1

2

n−1∑
j=m

(W
2

) j
2(4.45)720

≤
( C

1−W

) 1
2

n−1∑
j=m

1

2
j
2

→ 0 as n,m→∞,721

722

where we have used the recursive method in the second-to-last inequality. Hence,723

there exists a limiting function u∗(t) such that724

(4.46) sup
t∈R

E‖un(t)− u∗(t)‖2λ → 0 as n→∞,725
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which together with (4.43) yields726

(4.47) E‖u∗(t)‖2λ ≤
C

1−W
for each t ∈ R.727

Due to the fact that the sequence {un(t)} is Ft-measurable for each t ∈ R, we have728

that the process u∗(t) is Ft-measurable as a limit of {un}.729

(3) The process u∗(t) satisfies (4.4) and has continuous trajectories with probability730

1.731

Arguing as in (4.18), by (4.40) we obtain732

(4.48)

un+1(t) = S(t− t0)un+1(t0) +

∫ t

t0

S(t− r)f(r, un(ηr))dr +

∫ t

t0

S(t− r)g(r)dBρ,HQ (r).733

We will take the limit of the above identity to show that u∗(t) satisfies (4.4). Thanks734

to the Markov inequality, in view of (4.46), we derive that for each ε > 0,735

(4.49) P
(
‖un+1(t)− u∗(t)‖λ > ε

)
≤ 1

ε2
E‖un+1(t)− u∗(t)‖2λ

n→∞−→ 0,736

which implies that for each t ∈ R,737

(4.50) un+1(t)→ u∗(t) in probability738

as n→∞. Since S(t− t0) is a bounded operator, we have739

(4.51) S(t− t0)un+1(t0) −→ S(t− t0)u∗(t0) in probability as n→∞.740

By similar arguments as in (3.9), we deduce from the Markov inequality that741

P
(∥∥∥∫ t

t0

S(t− r)
(
f(r, un(ηr))− f(r, u∗(ηr))

)
dr
∥∥∥
λ
> ε
)

742

≤ 1

ε2
E
∥∥∥∫ t

t0

S(t− r)
(
f(r, un(ηr))− f(r, u∗(ηr))

)
dr
∥∥∥2

λ
(4.52)743

≤ 1

ε2
C2
λ,0

(
δλ−1Γ(1− λ)

)2‖L1‖L∞(R) sup
t∈R

E‖un(t)− u∗(t)‖2λ,744
745

which together with (4.46) gives746

(4.53)

∫ t

t0

S(t− r)f(r, un(ηr))dr
n→∞−→

∫ t

t0

S(t− r)f(r, u∗(ηr))dr in probability.747

Thus, by using (4.50)-(4.51) and (4.53), we can conclude that for all t ∈ R,748

u∗(t) = S(t− t0)u∗(t0) +

∫ t

t0

S(t− r)f(r, u∗(ηr))dr749

+

∫ t

t0

S(t− r)g(r)dBρ,HQ (r) P -a.s.(4.54)750

751

that is, u∗(t) satisfies (4.4). On the other hand, the process u∗(t), defined by (4.54),752

has continuous trajectories with probability 1. In fact, the continuity of the first two753

terms can be checked straightforwardly, and the continuity of the third one follows754
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from similar arguments as in the proof of step 2 in Theorem 4.2.755

Step 2. The process u∗(t) is Hölder continuous in t ∈ R.756

Similar to (4.20)-(4.25), we obtain that for each h > 0,757 ∥∥u∗(t+ h)− u∗(t)
∥∥
L2(Ω;Hλ)

758

≤
∥∥∥ ∫ t

−∞

(
S(t+ h− r)− S(t− r)

)
f(r, u∗(ηr))dr

∥∥∥
L2(Ω;Hλ)

759

+
∥∥∥∫ t

−∞

(
S(t+ h− r)− S(t− r)

)
g(r)dBρ,HQ (r)

∥∥∥
L2(Ω;Hλ)

760

+
∥∥∥∫ t+h

t

S(t+ h− r)f(r, u∗(ηr))dr
∥∥∥
L2(Ω;Hλ)

761

+
∥∥∥∫ t+h

t

S(t+ h− r)g(r)dBρ,HQ (r)
∥∥∥
L2(Ω;Hλ)

762

≤ C(λ)
(

sup
r∈R

E‖f(r, u∗(ηr))‖2
) 1

2h1−λ
763

+ C(H)(1 + ρ
1−H

2 )
(

sup
r∈R
‖g(r)‖2Q

) 1
2h

1
2−λ764

≤ C(λ)
(
‖l1‖

1
2

L∞(R) + ‖L1‖
1
2

L∞(R)

(
sup
t∈R

E‖u∗(t)‖2λ
) 1

2

)
h1−λ

765

+ C(H)(1 + ρ
1−H

2 )‖l2‖
1
2

L∞(R)h
1
2−λ766

≤ Cmax{h 1
2−λ, h1−λ},(4.55)767768

where we have used (4.37) and (4.38) in the last inequality.769

Step 3. The process u∗(t) is α-type stable in the sense of mean square.770

We shall prove this assertion by using the Banach fixed point theorem in a suit-771

able space introduced next. Since the proof of the case t0 ≥ 0 is simpler than the772

case t0 < 0, we assume that t0 < 0. Consider the abstract phase space Cλϑ∗ =773

Cϑ∗
(
t0,∞;L2(Ω;Hλ)

)
with the norm774

‖u‖ϑ∗ = sup
t∈[t0,∞)

ϑ∗(t)E‖u(t)‖2λ, u ∈ C
(
t0,∞;L2(Ω;Hλ)

)
,775

where776

(4.56) ϑ∗(t) =

{
α(T ), t ∈ [t0, T ],

α(t), t ≥ T,
777

with T > 0 given later. Then
(
Cλϑ∗ , ‖ · ‖ϑ∗

)
is a Banach space. Set778

(4.57) %̂(t) = %(t)− u∗(t),779

where %(t) is any solution of problem (1.2) in the sense of Definition 3.1. We introduce780

the mapping Q defined by781

(4.58)

(Q%̂)(t) = S(t− t0)%̂(t0) +

∫ t

t0

S(t− r)
(
f(r, %̂(ηr) + u∗(ηr))− f(r, u∗(ηr))

)
dr.782

Now we show that Q is contractive and bounded on Cλϑ∗ .783

(I) Q is a contraction mapping.784
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On account of the assumptions (I1)-(I2) and the Hölder inequality, we obtain785

that for any %̂1, %̂2 ∈ Cλϑ∗ and t ∈ [t0, T ],786

ϑ∗(t)E
∥∥(Q%̂1)(t)− (Q%̂2)(t)

∥∥2

λ
≤ ϑ∗(t)E

∥∥∥∫ t

t0

S(t− r)787

(
f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

)
dr
∥∥∥2

λ
788

≤ α(T )C2
λ,0E

(∫ t

t0

e−δ(t−r)(t− r)−λ789

×
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥dr)2

790

≤ α(T )C2
λ,0

∫ t

t0

e−δ(t−r)(t− r)−λdr
∫ t

t0

e−δ(t−r)(t− r)−λ(4.59)791

× E
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥2
dr792

≤ C2
λ,0

(
δλ−1Γ(1− λ)

)2‖L1‖L∞(R)‖%̂1 − %̂2‖ϑ∗ .793794

On the other hand, for t ≥ T ,795

ϑ∗(t)E
∥∥(Q%̂1)(t)− (Q%̂2)(t)

∥∥2

λ
796

≤ 3α(t)E
(∫ 0

t0

∥∥S(t− r)
(
f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

)∥∥
λ
dr
)2

797

+ 3α(t)E
(∫ t

2

0

∥∥S(t− r)
(
f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

)∥∥
λ
dr
)2

(4.60)

798

+ 3α(t)E
(∫ t

t
2

∥∥S(t− r)
(
f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

)∥∥
λ
dr
)2

799

:= J 1
10 + J 2

10 + J 3
10.800801

It follows from the assumptions (I1)-(I2), the Hölder inequality and (4.57) that802

J 1
10 ≤ 3C2

λ,0α(t)
(∫ 0

t0

e−δ(t−r)(t− r)−λ803

×
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥dr)2

804

≤ 3C2
λ,0α(t)t−2λ

∫ 0

t0

e−δ(t−r)dr805

×
∫ 0

t0

e−δ(t−r)E
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥2
dr(4.61)806

≤ 3C2
λ,0

1

δ
‖L1‖L∞(R)α(t)t−2λe−2δt

∫ 0

t0

eδrE
∥∥%̂1(ηr)− %̂2(ηr)

∥∥2

λ
dr807

≤ 3C2
λ,0

(α(T ))−1

δ2
‖L1‖L∞(R)‖%̂1 − %̂2‖ϑ∗α(t)t−2λe−2δt,808

809
810

J 2
10 ≤ 3α(t)C2

λ,0E
(∫ t

2

0

e−δ(t−r)(t− r)−λ811
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×
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥dr)2

812

≤ 3α(t)C2
λ,0

( t
2

)−2λ
∫ t

2

0

e−δ(t−r)dr813

×
∫ t

2

0

e−δ(t−r)E
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥2
dr814

≤ 3α(t)C2
λ,0‖%̂1 − %̂2‖ϑ∗‖L1‖L∞(R)

( t
2

)−2λ e−δt

δ

∫ t
2

0

e−δ(t/2−r)(α(ηr))−1dr815

≤ 3α(t)(α(0))−1C2
λ,0‖%̂1 − %̂2‖ϑ∗‖L1‖L∞(R)

( t
2

)−2λ e−δt

δ2
,(4.62)816

817

thanks to the monotonicity of α, and818

J 3
10 ≤ 3α(t)C2

λ,0E
(∫ t

t
2

e−δ(t−r)(t− r)−λ819

×
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥dr)2

820

≤ 3α(t)C2
λ,0

∫ t

t
2

e−δ(t−r)(t− r)−λdr
∫ t

t
2

e−δ(t−r)(t− r)−λ(4.63)821

× E
∥∥f(r, %̂1(ηr) + u∗(ηr))− f(r, %̂2(ηr) + u∗(ηr))

∥∥2
dr822

≤ 3C2
λ,0

(
δλ−1Γ(1− λ)

)2‖%̂1 − %̂2‖ϑ∗‖L1‖L∞(R)
α(t)

α(ηt/2)
.823

824

Inserting (4.61)-(4.63) into (4.60), in view of the assumption lim supt→∞
α(t)

α(ηt/2) = C∗,825

we can take T large enough such that for any t ≥ T ,826

ϑ∗(t)E
∥∥(Q%̂1)(t)− (Q%̂2)(t)

∥∥2

λ
827

≤ C(α(T ))−1α(t)t−2λe−2δt‖%̂1 − %̂2‖ϑ∗828

+Cα(t)t−2λe−δt‖%̂1 − %̂2‖ϑ∗ + W ‖%̂1 − %̂2‖ϑ∗ .(4.64)829830

This together with (4.59) implies that for any t ≥ t0,831

(4.65)∥∥(Q%̂1)− (Q%̂2)
∥∥
ϑ∗

= sup
t∈[t0,∞)

ϑ∗(t)E
∥∥(Q%̂1)(t)− (Q%̂2)(t)

∥∥2

λ
< ‖%̂1 − %̂2‖ϑ∗ ,832

thanks to the assumptions W < 1 and lim supt→∞ e−
δt
2 α(t) = 0, where W is given in833

(4.34). Therefore, the mapping Q defined by (4.58) is contractive on the space Cλϑ∗ .834

(II) Q maps Cλϑ∗ into itself.835

By similar arguments as in (4.60)-(4.63), we derive from (4.58) that for any %̂ ∈836

Cλϑ∗ and t ≥ T ,837

ϑ∗(t)E
∥∥(Q%̂)(t)

∥∥2

λ
838

≤ 2ϑ∗(t)E
∥∥S(t− t0)%̂(t0)

∥∥2

λ
839

+ 2ϑ∗(t)E
∥∥∥∫ t

t0

S(t− r)
(
f(r, %̂(ηr) + u∗(ηr))− f(r, u∗(ηr))

)
dr
∥∥∥2

λ
(4.66)840

≤ 2C2
0ϑ
∗(t)e−2δ(t−t0)E‖%̂(t0)‖2λ + C‖%̂‖ϑ∗(α(T ))−1α(t)t−2λe−2δt

841
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+ C‖%̂‖ϑ∗
( t

2

)−2λ
α(t)e−δt

∫ t
2

0

e−δ(
t
2−r)(α(ηr))−1dr + C‖%̂‖ϑ∗

α(t)

α(ηt/2)
,842

843

which implies that844

ϑ∗(t)E
∥∥(Q%̂)(t)

∥∥2

λ
≤ C‖%̂‖ϑ∗ ,845

when T is sufficiently large. In a similar way as in (4.59), we obtain that for any846

t ∈ [t0, T ],847

ϑ∗(t)E
∥∥(Q%̂)(t)

∥∥2

λ
≤ C‖%̂‖ϑ∗ .848

Hence the desired assertion follows immediately by the Banach fixed point theorem.849

Remark 4.4. For t0 < 0 the proof of mean-square α-type stability can be slightly850

modified. In that case one can consider the phase space Cλϑ∗o
= Cϑ∗o

(
ηt0,∞;L2(Ω;Hλ)

)
851

with the norm852

‖u‖ϑ∗o = sup
t∈[ηt0,∞)

ϑ∗o (t)E‖u(t)‖2λ, u ∈ C
(
ηt0,∞;L2(Ω;Hλ)

)
,853

where854

ϑ∗o (t) =

{
α(T ), t ∈ [ηt0, T ],

α(t), t ≥ T,
855

and the mapping Qo defined by856

(4.67)

(Qo%̂)(t) =


S(t− t0)%̂(t0) +

∫ t

t0

S(t− r)
(
f(r, %̂(ηr) + u∗(ηr))− f(r, u∗(ηr))

)
dr,

t ≥ t0,
%̂(t), t ∈ [ηt0, t0],

857

where %̂(t) and %(t) are given in Theorem 4.3.858

Corollary 4.5. Let λ ∈ (0, 1
2 ), the assumptions (I0)-(I1) and (4.34) be satisfied.859

Suppose that the assumptions (I2) and (I3) hold for t ∈ R. Then problem (4.1) with860

fBm BHQ instead of Bρ,HQ has a unique solution u∗(t) in the sense of Definition 4.1861

which is mean-square Hölder continuous in t ∈ R, i.e.,862

sup
t∈R
‖u∗(t+ h)− u∗(t)‖L2(Ω;Hλ) ≤ Cmax{h 1

2−λ, h1−λ} for each h > 0.863

Moreover, the solution u∗(t) is α-type stable, that is,864

(4.68) lim
t→∞

logE‖u∗(t)− %(t)‖2λ
logα(t)

< 0,865

where %(t) is any solution of problem (1.2) in the sense of Definition 3.1.866
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5. An illustrative example. In this section we will analyze an example to867

illustrate the effectiveness of our abstract results. We consider the following class of868

reaction diffusion neural networks with proportional delay:869

(5.1)

ẏi(t) = −div(ai(x)∇yi) +

n∑
j=1

dij(t)wj(yj(ηt)) + Ii(t, x) +

n∑
j=1

bij(t, x)Ḃρ,Hj (t),

t > 0,

yi(0) = y0
i , i ∈ {1, 2, · · · , n},

yi(t, ·) = 0, in ∂O, i ∈ {1, 2, · · · , n},

870

where O ⊂ Rn is a bounded domain with a smooth boundary ∂O, yi(t) is the state871

variable (potential or voltage) of the ith neuron at time t, dij(t) is the time-varying872

connection weight, wj is the activation function, η ∈ (0, 1) is the proportional de-873

lay factor, Ii(t, x) is the external input, {Bρ,Hj (t)}j∈{1,2,··· ,n} is a sequence of one-874

dimensional tfBms mutually independent.875

For each i ∈ {1, 2 · · · , n}, define the operator Ai by876

−Aiu = −
n∑
k=1

∂

∂xk

(
ai(x)

∂u

∂xk

)
.(5.2)877

878

Let y = (y1, y2, · · · , yn)T and H = (L2(O))n. Denote879

Ay = (A1y1, A2y2, · · · , Anyn)T .(5.3)880881

It’s clear that A is a sectorial operator in H (see, e.g., [16]). Define882

f(t, x, y(ηt)) =
(
f1(t, x, y(ηt)), f2(t, x, y(ηt)), · · · , fn(t, x, y(ηt))

)T
,(5.4)883884

where fi(t, x, y(ηt)) = Di(t)(W(y(ηt)))T + Ii(t, x). Here885

Di =
(
di1(t), di2(t), · · · , din(t)

)
,886

(W(y(ηt)))T =
(
w1(y1(ηt)), w2(y2(ηt)), · · · , wn(yn(ηt))

)T
.887888

Set g(t, x) = (bij)n×n and Bρ,HQ (t) =
∑n
i=1B

ρ,H
i (t)ei where {ei}i∈{1,2,··· ,n} is an889

orthonormal basis on Rn. Then (5.1) can be reformulated as890

dy(t) = −Ay(t)dt+ f(t, x, y(ηt))dt+ g(t, x)dBρ,HQ (t).(5.5)891
892

We always assume that the neuron activation function wj satisfies893

wj(0) = 0 and |wj(x)− wj(y)| ≤ Lj |x− y|, ∀x, y ∈ R.(5.6)894895

The matric D = (dij)n×n and external inputs Ii satisfy896

|dij(t)| ≤ dij and ‖Ii(t)‖ < l̂i(t), i, j ∈ {1, 2, · · · , n}, t ∈ R,(5.7)897898

respectively. The term bij satisfies899

n∑
i,j=1

‖bij(t)‖2 ≤ l̃(t), t ∈ R.(5.8)900

901
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Then for the function f , we have that for t ∈ R,902

E
∥∥f(t, u)− f(t, v)

∥∥2 ≤ L0E‖u− v‖2λ,(5.9)903904

and905

‖f(t, 0)‖2 ≤
n∑
j=1

(l̂j(t))
2,(5.10)906

907

where L0 =
∑n
i=1

(∑n
j=1 dijLj

)2
. For the function g, we obtain908

‖g(t)‖2 ≤ l̃(t), t ∈ R.(5.11)909910

In particular, by Theorems 3.3 and 4.3 we have the following result.911

Theorem 5.1. Let λ ∈ (0, 1
2 ). Suppose that the assumptions (5.6)-(5.8), (I0),912

4
[
C∗ ∨ 1

]
C2
λ,0

(
δλ−1Γ(1− λ)

)2
L0 < 1 and

∥∥∥α(t)
( n∑
j=1

(l̂j(t))
2
)∥∥∥

L2(0,∞)
<∞,

(5.12)

913

914

are satisfied, where Cλ,0, δ and C∗, α(t) are given in the assumptions (I1) and (I0),915

respectively. If l̃(t) satisfies (3.2) and (3.3) given in the assumption (I3), then for916

each initial data y0 ∈ Hλ problem (5.1) has a unique global mild solution y satisfying917

(5.13) sup
r∈[0,∞)

α(r)E‖y(r)‖2λ <∞.918

Moreover, problem (5.1), but for t ∈ R, has a unique solution y∗(t) in the sense of919

Definition 4.1, which is mean-square Hölder continuous in t ∈ R and α-type stable.920

6. Conclusions. In this work we studied the asymptotic behaviour of stochastic921

evolution equations with pantograph delay and tempered fractional noise. First we922

presented a novel estimate of stochastic integrals with respect to tfBm, which can923

be used in a wider range of study areas. We then proved the global existence, u-924

niqueness and mean square stability with general decay rate of mild solutions without925

constructing Lyapunov functions or using Razumikhin’s approach. Finally, by using926

our generalized factorization formula which is new even in the fBm case, we obtained927

the existence, uniqueness and Hölder regularity of the nontrivial equilibrium solution.928

In particular, we exploited the Banach fixed point theorem to establish the general929

stability of the nontrivial equilibrium solution, since the Gronwall inequality can not930

be applied to stochastic partial differential equations with pantograph delay. One931

technical challenge is that the coefficient of stochastic integrals with respect to tfB-932

m is irrelevant to time t, which is different with (1.3) given in [31]. The presence of933

pantograph delay also makes the analysis more complicated and challenging. Another934

highlight of the work is the construction and stability analysis of the nontrivial equi-935

librium solution defined for t ∈ R, and the results also hold true for the unbounded936

variable or distributed delay and even for the case of without delay.937

One of the future works in this direction is to carry out stability analysis for938

stochastic differential equations driven by tfBm of the second kind (tfBmII). Com-939

pared with tfBm, tfBmII can be written as stochastic integrals in a simpler way in940

terms of tempered fractional calculus. TfBm and tfBmII are connected, and more941
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precisely have similar path properties (see Remark 2.4 in [30]). The increments of942

tfBmII are called tempered fractional Gaussian noise of the second kind (tfGnII). In943

contrast with tfGn, tfGnII is a more realistic model in turbulence and other applied944

areas, since the spectral density of tfGnII decays as a power function for frequencies945

|ω| > ρ but remains bounded and separated from zero near zero frequency. TfBmII946

is an interesting problem and this would open a new research area.947
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