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NONTRIVIAL EQUILIBRIUM SOLUTIONS AND GENERAL
STABILITY FOR STOCHASTIC EVOLUTION EQUATIONS WITH
PANTOGRAPH DELAY AND TEMPERED FRACTIONAL NOISE*

YARONG LIUT, YEJUAN WANG!, AND TOMAS CARABALLOS

Abstract. In this paper, we investigate the asymptotic behaviour of stochastic pantograph delay
evolution equations driven by a tempered fractional Brownian motion (tfBm) with Hurst parameter
H > 1/2. First of all, the global existence, uniqueness and mean square stability with general
decay rate of mild solutions are established. In particular, we would like to point out that our
analysis is not necessary to construct Lyapunov functions, but we deal directly with stability via
the Banach fixed point theorem, the fractional power of operators and the semigroup theory. It is
worth emphasizing that a novel estimate of stochastic integrals with respect to tfBm is presented,
which greatly contributes to the stability analyses. Then after extending the factorization formula
to the tfBm case, we construct the nontrivial equilibrium solution, defined for ¢ € R, by means of
an approximation technique and a convergence analysis. Moreover, we analyze the Holder regularity
in time and general stability (including both polynomial and logarithmic stability) of the nontrivial
equilibrium solution in the sense of mean square. As an example of application, the reaction diffusion
neural network system with pantograph delay is considered, and the nontrivial equilibrium solution
and general stability of the system are proved under the Lipschitz assumption.

Key words. pantograph delay, stochastic evolution equation, moment general stability, additive
tempered fractional noise, nontrivial equilibrium solution, Holder regularity

MSC codes. Primary, 60H15; Secondary, 35A02, 35B35, 60G22

1. Introduction. A tempered fractional Brownian motion (tfBm) {B* (t)},
first introduced by Meerschaert and Sabzikar [23], is a stochastic process defined by
exponentially tempering the power law kernel in the moving average representation
of a fractional Brownian motion (fBm), i.e.,

+oo 1 1
1Ly B = / et ) 7F = e (<) | Blas),

o0

where tempered parameter p > 0, Hurst index H € (0,1), (s)+ = sl{ss03, 0° = 0
and B(t) is a real-valued Brownian motion on the real line. In particular, when p = 0
and H € (0,1), t{Bm reduces to a fBm, which is a Gaussian, stationary-increment,
self-similar stochastic process (see, e.g., [10]). If 1/2 < H < 1, the increments of
fBm exhibit long range dependence, i.e., their autocorrelation function decays as a
power law. However, the increments of tfBm with 1/2 < H < 1 exhibit semi-long
range dependence, i.e., their autocorrelation function decays like a power law over
fine/moderate scales, but quasi-exponentially over large scales. Since the tempered
parameter p > 0 controls the deviation from power law spectrum at low frequencies,
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the spectral density of tempered fractional Gaussian noise (tfGn) follows the same
power law with f{Gn at moderate frequencies, but remains bounded at low frequencies.
Due to the semi-long range dependence of tfBm, tempered fractional processes have
recently played an increasingly important role in many fields of application such as
in the physics, modeling of transient anomalous diffusions, geophysical flows and
finance. However, to the best of our knowledge, there has been little mention of
stochastic differential equations driven by tfBm even in the nondelay case. Very
recently, we have established the existence, uniqueness, Holder regularity, exponential
and polynomial stability of mild solutions for stochastic delay evolution equations
driven by t{Bm [20, 31].

In this paper, in addition to the global existence, uniqueness and mean square
stability with general decay rate of mild solutions, we mainly focus on the construction
and general stability analyses of nontrivial equilibrium solutions for the following
stochastic evolution equation with pantograph delay:

(1.2) {d“((éi — —Au(t)dt + f(t,u(nt)dt + g(t)dBE™ (1), t>0, 5 e (0,1),
U = Ug.

Here Bg’H(t) is a Q-cylindrical tempered fractional Brownian motion with respect to
filtered probability space (2, F, P, (F;)i>0) in some Hilbert space K, —A is a closed,
densely defined linear operator generating an analytic semigroup S(t), ¢ > 0, on a
separable Hilbert space H with inner product (-,-) and norm || - ||, f is a Lipschitz
continuous function and g : [0,00) x Q — Z5(K, H) where .Z5(K, H) is the space of
all @Q-Hilbert-Schmidt operators from K into H.

The stochastic pantograph delay differential equation is a particular kind of sto-
chastic differential equations with unbounded variable delays. The proportional delay
is indeed one of the many objective-existent delay types. The pantograph is a device
used in electric locomotive to collect electric current from the overload lines. There-
upon then the pantograph-delay was first used to model electrodynamics [27]. The
proportional delay is also required in web quality of service routing decision, since it
is convenient to control the networks running time according to the network allowed
delays [19, 33]. Now the proportional delay arises naturally in a wide variety of appli-
cations such as cell growth, medicine, astrophysics and quantum mechanics [17]. Tt is
important to emphasize that our results hold not only for the proportional delay case,
but for the unbounded variable or distributed delay and even for the case of without
delay. Many researchers have studied the stability theory for stochastic delay differ-
ential equations based on the Lyapunov method or Razumikhin’s approach; see for
example [29, 32]. The Razumikhin-Lyapunov technique has been used in [12, 14, 22]
to considered the moment stability for stochastic pantograph differential equations.
The exponential stability has been investigated in [5] for stochastic pantograph dif-
ferential equations by constructing Lyapunov functions. The polynomial asymptotic
behaviour has been studied in [1] for stochastic pantograph equations. However most
results are related to stochastic ordinary differential equations driven by Brownian
motion with pantograph delays.

For the fractional Brownian motion case, the existence and uniqueness results
have been established in [3, 7] for stochastic differential equations driven by fBm.
Holder continuous paths approach has been used in [2, 6] to study the exponential
stability of the trivial solution for evolution equations and lattice systems driven by
fBm with Hurst parameter H > 1/2. The exponential asymptotic behavior of mild
solutions has been considered in [4] for stochastic bounded delay evolution equations
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driven by fBm with H > 1/2. Up to date, we do not know any published work on
the construction and general stability of nontrivial equilibrium solutions for stochastic
evolution equations even in the fBm case and without delay.

This work consists of two major parts. The first part is devoted to the glob-
al existence, uniqueness and mean square stability with general decay rate of mild
solutions for problem (1.2) by using the Banach fixed point theorem, the fractional
power of operators and the semigroup theory. It has been pointed out in [31] that the
stochastic integral with respect to tfBm is bounded by

EH/ dBﬂH )H2§((2H—1)t2H71ﬁ(2—2H,H_%)
(1.3) g 22 _;{H’_}T %)> /OtEllg(s)lléd&

where || - ||2Q is given in (2.1) below. For the case of unbounded delay, to overcome the
difficulty caused by the dependence on ¢ of the right hand side of the inequality (1.3),
we have established the exponential stability of mild solutions to stochastic evolution

equations with unbounded delay and tfBm by considering the abstract phase space

(1.4) {u € O(—o0;0; L? (% HY)) :  Jim " E|u(0)||3 exists}
——00

where the parameter i > 0 [31]. In this paper, because of the presence of pantograph
delay and tfBm, we first introduce a novel estimate of stochastic integrals with respect
to tfBm (see Lemma 2.6 for more details). Since the right hand side of (2.9) in Lemma
2.6 is irrelevant to time ¢, this will greatly contributes to the stability analyses for
the unbounded delay case including pantograph delay. It is also worth mentioning
here that our stability analysis is not expected to construct Lyapunov functions or
use Razumikhin’s approach as in [5, 12, 14, 22] for stochastic ordinary differential
equations with pantograph delays, but deal with stability with general decay rate
by using the Banach fixed point theorem, the fractional power of operators and the
semigroup theory.

The second part focuses on the construction of the nontrivial equilibrium solution,
defined for ¢ € R, to stochastic evolution equations with pantograph delay and tem-
pered fractional noise. Further, we prove that the nontrivial equilibrium solution is
Holder continuous in time and mean square stable with general decay rate (including
both polynomial and logarithmic stability), namely, any other solution converges to
the nontrivial equilibrium solution in L2(Q; H*) with general decay rate, provided that
the corresponding data belongs to L?(Q; H*). To construct the nontrivial equilibrium
solution u* for problem (1.2), we first extend the factorization formula to the tfBm
case, and then the existence and uniqueness of u* follow from constructing a Cauchy
convergent sequence of linear versions and using the convergence analysis. Because of
the difficulty caused by pantograph delay, we remark that we can not apply Gronwal-
I’s inequality to analyze the stability of the nontrivial equilibrium solution as in [25]
for stochastic reaction-diffusion equations driven by Brownian motion. Therefore, the
general stability of the nontrivial equilibrium solution in the sense of mean square is
established by using the Banach fixed point theorem. Finally, the Holder regularity
of the nontrivial equilibrium is given for stochastic partial differential equations with
tfBm and pantograph delay.

The paper is organized as follows. In Section 2, we extend the factorization
formula to the tfBm case, and some necessary preliminaries on stochastic integrals
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with respect to tfBm are given which are crucial in our analysis. In Section 3, the
global existence, uniqueness and general stability of mild solutions are established
for problem (1.2). In Section 4, we first construct the nontrivial equilibrium solution
for stochastic evolution equations with pantograph delay and tempered fractional
noise, and then the Holder regularity in time and general stability of the nontrivial
equilibrium solution are presented. In Section 5, the reaction diffusion neural network
system with pantograph delay and tfBm is investigated as an example. In the end a
summary of this work is provided in Section 6.

2. Preliminaries. Consider a separable Hilbert space K endowed with a com-
plete orthonormal basis {e;}ien. Let H be another Hilbert space with norm || - ||
and inner product (-,-). We denote by Z(K,H) the space of all bounded linear
operators from K into H. For convenience, we use the same notation || - || for the
norms of K and .Z (K, H), and use the same notation (-,-) to denote the inner prod-
uct of K. Let Q € Z(K,K) be an operator defined by Qe; = \;e; with finite trace
trQ =Y, i < oo. Let ¢ € Z(K,H) and define

(2.1) 16112 = Tr(¢Qe"™) = > [[v/Niges]|”,
=1

where ¢* is the adjoint of the operator ¢. If [|¢[l, < oo, then ¢ is called a Q-
Hilbert-Schmidt operator. Here .,Z”QO (K, H) denotes the space of all Q-Hilbert-Schmidt
operators from K into H.

Let (2, F, P) be a complete probability space with a filtration {F;};>¢ satisfying
the usual conditions (i.e. it is increasing and right continuous while Fy contains all
P-null sets). Here {F;};>0 denotes the filtration generated by B”, i.e.,

(2.2) Fo=o{BPM(s):0< s <tyi > 1},

where Hurst parameter H € (0,1) and {Bip’H(t);t > 0};>1 is a sequence of one-
dimensional t{Bms mutually independent over (2, F, P). Let Bg’H be the tempered
fractional Brownian motion defined on the probability space. We suppose that

o0
BEM (1) =Y VAB (Mei, >0,
=1

Denote by H* = D(A*) the Banach space, where D(A*) denotes the domain of
the fractional power operator A* : H — H. For any v € H* define its norm by

lvllx = 4]

Denote by L?(Q;HY) = L2(Q, F, P;H*) the space of all strongly-measurable, L?
integrable H*-valued random variable. For any v € L?(2; H*), we consider the norm

1
V]l 200y = (Ellv()]X) -

The notation C/(c, d; L?(Q; H*)) denotes the Banach space of all continuous functions
from (c,d) into L*(€;H*). As usual the space C(c,d; L?(€;H")) is considered with
the supremum norm. Let C(X) denote the constant depending on X.

Now we recall the definitions of left and right-sided Riemann-Liouville tempered
fractional integrals, the stochastic integrals with respect to fBm and tfBm; see [21]
and [24] for more details.
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DEFINITION 2.1. For any interval (a,b) with a,b € R (a = —00,b = o0), the left
and right-sided Riemann-Liouville fractional integrals on (a,b) (resp. R) of order ~
(v > 0) are defined by

(2.3) JJu= ﬁ/a (t—y)  u(y)dy,
and
I 41

respectively. The Fourier transforms of _  IJu and I’ u are

(25)  F(oLu)(2) = (i2) "F (u)(2), F(Lou)(2) = (—iz) 7 F (u)(2).

DEFINITION 2.2. Lety,p > 0. For any a,b € R withb > a (a = —00,b = 00), the
left and right tempered fractional integral on (a,b) (resp. R) are defined by

¢
oI u = e I [P u(t)) = ﬁ / (- S)Wileip(tis)U(S)dsv
and
P t —pt 1 ’ —1,—p(s—t)
I Pu = e I e Pu(t)] = W/t (s =) e u(s)ds,

respectively. The Fourier tmnsforms of _ I""u and I u are
F (L) () = (p +i2) " Fw)(2),
(2.6) ( Pu)(z) = (p—i2) VT (u)(z).

DEFINITION 2.3. For any H € (%, 1) and a,b € R with b > a, we define

(2
(

b b 1
[ wtan e =+ 3) / I R u)dB (),

1
for any u € Ay := {u € L*(a f |tIH 2u(t)|?dt < oo} Here Ay is a linear space
with inner product (u,v) 4, : (Uo, V0>L2(a,b where

Uo(t) = DCH + )00 7(0), Volt) = D(H + ). ().

DEFINITION 2.4. For any % < H<1, p>0, and for any a,b € R with b > a, we
define

b H 1 b H-Lp H+%,p
[ utasr ) =+ ) [T - p 2 u)ds ),

2
for any u € Ay := {u € L*(a,b) : fb |tf7§’pu(t —p I 2Py, |2dt < oo}. Here
Ay s a linear space with inner product (u,v)a, := (U, V) 2(ap) where
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LEMMA 2.5. For any % < H <1, we have

1 1
“3(y - s)H*%G*P(y*S)e*P(mfs)dS < §F(H + §)p7H71|JC _ y|H—1.

m\a
>
S
—
8
\
)
S~—
Iy
[N

Proof. For the case x > y, we deduce that

TA\Y X )
/ (:E - S)H_f(y — S)H_fe_p(y_s)e_P(Z—S)ds

v ]. 1 1
< - (r—)H 5y = )2 Py g
< [ e 0 e s
< 1 y(:z: - s)Hﬁl(y—s)Hféefp(yfs)ds
SN
1 Y 1
(2.8) §2—(xfy)H71/ (y — s)F—2e PU=5)ds
p a
1 1, _
< ST(H+35)p Bt @ —y) i,

where we have used the fact that the function u~! is monotone decreasing for the

case H < 1. In a similar way, for the case y > = we have

Ty 1 1
/ (x— S)Hf%(y - S)Hféefp(yfs)efp(zfs)ds < EF(H + i)prfl(y — )1

The proof is complete. 0

The following lemma is concerned with the estimation of stochastic integrals with
respect to tfBm.

LEMMA 2.6. Let H € (1/2,1) and a,b € R with b > a. If ¢ : [a,b] x Q@ —
.L”CS(K, H) satisfies ||pe;|| € L?(a,b),

H——
?|Igell, aI"‘ [ pesll € L?(a,b; L*(;R)),
s H-L > H 2
Aillody  ?|des Ail| oL i )
; a’t ”(be ” L2(a,b;L2(4R)) * ; ¢ ||¢€ ” L2(a,b;L2(R))

then

EHfgﬁ(s)ngH(s)H <T(H + )p HZA/ (T | $(r)ed]])*ar

(2.9) +2(H — %)%(2 _oH,H — 5) Z /\i/ B || g(r)es]|)*dr

Proof. Thanks to Lemma 1 in [26], in view of the It6 isometry and the indepen-
dence of the sequence {B? ’H(t)}izl, we derive that

o [ etranty o = ] [ 3ot Reaast o

6
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<Yonp / b ||¢<s>ei||dvaH<s>\2

b 1 2
=3 (B ots)edl = 0 L ots)el)aBo)|
2
=S P (el — p Iy Ep(s)e | ds
=1

IN

i2)\iE/a [(H %)2(/5 lo(r)eql| (r — S)H*%eﬂ’(“s)dr)2
+02( / o (a)eill (@ - s>Hée”<“)dx)1 s

00 b b b ) 3
=S g)’E [ [ [ lsmedomed -7 Ea - s
i=1 a S S

x e Pr=5)e=r(=%) grdlds

e e} b b b
+Y 2B / / / lé(@)eilllowelly — 574 @ — 5) 7

x e PW=3)e=P(@=5) drdyds

e b b rAl

;WH‘QZE [ temelionete -3t asra
> b b prxzAy

2 20'E lo@gedlllld(mell(y — )7 (@ — 573
o[ [0 f

x e PW=3)e=P(==9) dsdrdy

s b b
ZZAZ-(H — %)26(2 —2H,H — %)E/ / |6ei|l|o(r)ei||lt = r[>—2didr
i=1 a a

IN

IN

o 1 B b b B
+ S NLH + 0 ME [ [ e@el lo)ele ~ ol dody
i=1 a Ja

1 , 1 [eS) b H_1 2
<2(H - 3)*B(2—2H,H - §>Z&'/ E(alr " * [|é(r)es]|) dr

(2.10)

IR b H 9
P R LR
where we have used (2.7), and the following inequality (see [31, Lemma 1])
rAl s )
/ (r—s)H—*(l—s) —5ds§,8(2—2H,H_§)|Z_T|2H_2 0

in the second-to-last inequality.

Remark 2.7. Observe that in the case of the one-dimensional tfBm B*(t), it is

7
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easily seen that

b b u )
g [ owasetis)| <ve+ o [ EE 60 ar
1., 1 b H_1 2
(2.11) +2(H—§) ﬂ(2—2H,H—§)/ E(Ly 2 |p(r)]) dr

Remark 2.8. The conclusion (2.9) still holds if a = —oo or b = oo
For the case fBm, the following result can be directly obtained from Lemma 2.6.

LEMMA 2.9. Let H € (1/2,1) and a,b € R with b > a. If ¢ : [a,b] x Q@ —
ZH(K,H) satisfies | ¢e;| € L?(a,b),

I3 | gei] € L2<a,b; LX(Q;R)),

Z’\Z “ ”%H Lap@E)
then
b 2
o()AB (s)|
1oo 1 & b 74 2
(2.12) < (H - 3)"5(2 — 2H, H ~ §>ZM/ E(ay? [|¢(r)es]|) dr
i=1 a

We note that the Theorem 5.10 of [8] can be generalized to the tfBm case. The
following theorem gives the factorization formula for stochastic integrals with respect
to tfBm. For convenience, the proof is provided.

THEOREM 2.10. Assume that for Hurst parameter H € (1/2,1), some x € (0,1)
and all t € [to, T,

Ce/ t— s)X (ZAE// s — 1) X(s —y) X

HSt—r Gu(r eZHHSt— Vs (y eZH\r— 12H=2drdy

4t ;AE/t /t (5 — ) X(s — )X

2

(2.13) HSt—a: Ox(x elHHS (t—1)os(1) ez|||ac—l|H 1da:dl> ds < 400,
where Cy = max {(H — 3)(2H - 1)3(2 — 2H,H — 1), T(H + 1)}. If

B (¢) / S(t—s)¢.(s)dBG" (), Y;vH(s):/S(s—r)*XS(s—r)@(r)ngH(r),

to
then

01 B0 =T s gvp s, el )

X
™ to

where tg € R and ¢y : [to, T] x Q — fg(K, H).
8
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Proof. Thanks to the condition (2.13), we deduce that

sinﬂxﬂ' /t(t — )X LS(t — S)YXP’H(s)dS
(215) = Smﬁ“ /t (t— s)18(t — 5) /t (s — 1)XS (s — )pu (B (r)ds
- Sinﬂ” /t [ / (t = 5)¥" (s = r)Xds| S(t = r)n (r)aBG" (),

which together with

™

t0§r§t7 X€(071>7

/rt(t — )X (s—r)Xds =

gives the assertion of this theorem. In fact, the condition (2.13) ensures exchange the
deterministic of the right hand side of (2.15) with the stochastic integral Y. In
view of the stochastic Fubini theorem, we derive that

H/ (1 = 5 1/<s—r> XS (t — )6, (r)aBg (r)ds|
g/ s)X7 |
<C/(tfsx I{Z)\E‘/ s—r) XHStfr(,zb* eZHdBpH )‘12d5
<c/ (t— s)X (2(H—;)2ﬁ(2—2H,H—;)Z/\iE//(s—r)‘x

X (s —y) XHStfrqﬁ* 61||||St7 Vi (y 61”‘7‘7 \QH 2drdy

+F(H+2)p1HZ:/\ZE/tO /to (s —a) (s — )X

sin 7’

L2(QH)

-X _ p,H
X St —rouraBg" o) o

Nl

(2.16) X ||S(t = @) pu(@)es ||| St = Dpu()es|| [z — 1]~ 1d:r,dl> ds. 0
With the above factorization formula for stochastic integrals with respect to tfBm,

we give the following result here for the fBm case when p = 0.

THEOREM 2.11. Assume that for Hurst parameter H € (1/2,1), some x € (0,1)
and all t € [to, T,

[e-o (ZAE//M s )X |

(2.17) HSt—r ox(r eZHHSt— Vi (y 61H|T7 y|2H - 2d7‘dy> ds < +00.
If

By (t) = ) S(t— s)o«(s)dBE (s),  Y{(s) = /ts(s = 1) TXS(s = )i (r)dBG (r),
9
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305 then

sin xym

506 (2.18) BH(t) = /t(ts)xlS(ts)YH(s)ds, t € [to, T,

X
™ to

307 where tg € R and ¢, : [to, T] x @ — L5 (K, H).

308 3. Mean-square a-type stability of mild solutions. The purpose of this
309 section is to show the global existence and mean square stability with general decay
310 rate of mild solutions to (1.2). We need to impose some assumptions on the a-type
311 function, which will be used as the decay function in this paper. The a-type function
312 satisfies:

313 (Zp) 1) a € C(RT,R") is increasing;

314 2) a(0) > 0 and lim;_, oo a(t) = 00;

315 3) a(t) satisfies that

316 lim sup ef%a(t) =0,
t—o0

317 where § is given in the assumption (Z;) below;
318 4) There exists a positive constant C, such that

) a(t)
319 lim sup
=0 a(nt/2)

=0,

320 where n € (0,1) is given in (1.2).
321 Observe that functions a(t) = log(2 4+ t) and a(t) = 1 +t¢ (0 < ¢* < 1) satisfy the
322 above requirements.

323 Next we give some assumptions on the operator A, f and g:

324 (Z1) There exist a real number § > 0 and positive constants Cy,Cy 9 > 1 such
325 that for any = € H,

326 [A*S(t)z|| < Croe t x|, ¢ >0,

33¢ HS(t)mH < C’oe*‘;tHxH, t>0.

329 (Z5) There exist nonnegative functions Li,l; € L°(R™) such that for any u,v €
330 L2(;H?) and t > 0,

o 2

331 E||f(t,u)—f(t7v)H SLl(t)E”u_v”i’

332 and

333 1£(£,0)12 < L(2), (/OOO (a(r)ll(r))er> = < 0.

334 (Z3) There exists a nonnegative function Iy € L>(R™) such that for any ¢ > 0,
o 2
335 (3.1) Ellg®t)|l, < l2(t),
336 and [ satisfies
¢ . N
337 (3.2) lim sup a(t) / (t —y) = 2e 0V, (y)dy = C),
t—o00 0
10
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347
348
349

w W

[N
=

L
S8
o

360

361

362

363

364

365
366
367

368

369

t
(3.3) imsupa(t) [ (6= y)# e V(y)dy = Ca
0

t—o0
where 6’1, ég are positive constants.
Now we need to state the definition of the mild solution to problem (1.2).

DEFINITION 3.1. Let T > 0 and ug be an Fo-measurable initial process satisfying

Ellug|3 < oo. An Fi-measurable stochastic process u(t) is called a mild solution of
problem (1.2)on [0,T] if u € C(0,T; L*(Q;HY)) and for t € [0,T),

(3.4) wu(t) = S({t)ug + /0 St —r)f(r,u(nr))dr + /0 S(t— r)g(r)ng’H(r) P-a.s.

Remark 3.2. The solution given by (3.4) also has continuous trajectories with
probability 1.

The following theorem is dedicated to mean-square a-type stability of mild solu-
tions.

THEOREM 3.3. Let H € (%,1), A€ (0, %), ug € L2(;H?) and the assumptions
(Zo)-(Z3) hold. Let ||L1| o w+y be sufficiently small such that

(3.5) [4C, V1] C3 o (T = X)L || poe ety < 1,

where 4C, V 1 = max{4C,,1}, 6, Cxo and C, are given in the assumptions (1) and
(Zo), respectively. Then problem (1.2) has a unique global mild solution u satisfying

(3.6) sup a(r)EHu(r)Hi < 00.
r€[0,00)

Proof. We first define the abstract phase space C} = Cy(0, 00; L?(Q; H*)) with
the norm

lulo = sup IOEJu(®)]3, ue C(0,00, L2(%HY)),

te[0,00)
where

(3.7) I(t) = {Q(T)v te[0,1],

a(t), t>T,

with 7" > 0 given later. Then (C}, || - [|9) is a Banach space. Now we shall show that
the following mapping 2 defined by

(3.8)  (2u)(t) = S(t)uo + /0 St —r)f(r,u(nr))dr —|—/0 S(t— 1")g(7’)ngH(r)7

is contractive and bounded on C}.
Step 1. In view of (3.8), the assumptions (Z;)-(Zz) and the Holder inequality, we
find that for t € [0,7] and any u,v € C},

I E||(2u)(t) — (20) (1)

<aOCRoB( [ e =) ) = £ ) )

11

2
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370

382

388

389

390
391

392
393

394

(3.9)

t
O‘(T)Ci,o/o e 0t=r) (t— r)_’\dr

% / eI — ) B f(ryu(nr)) — f(rv(nr)||Pdr
0

_ 2
< Ci,o@A 'T(1 =X)Ly oo gyl — 0]l

For the case t > T', we obtain that for any u,v € Cg‘,

I E||(2u)(t) — (20) )|

(3.10)

15

< 2a(t)E</§ [t = 7)(f(r.u(nr)) — fr,v(r))) ”Adr)z

+ 2a(t /HSt—r (ryu(nr)) — f(r,v(nr)))|| \dr )2
::‘71+s72~

Duo to the assumptions (Z;)-(Z2) and the Holder inequality, we deduce that

T < 204(@05,015(/05 e (=) f(ryulnr)) — f(?",’U(W))Hde

t

< 2a(t)C§,0(%)_2/\ /oé e_‘s(t_T)dr/o2 e_é(t_T)E||f(7“7U(77T)) - f(m(m‘))llzdr

_oxe” . _
< 2a(t )C/\OHU_U”19HL1”L°° ®+) ( 2 3 S2=r) (o)) "t
(3.11)
12 t 72/\67&
< 2a(t)(a(0)) CA,oHU*U||ﬁ||L1|\Lw(R+)(§) 5

thanks to the monotonicity of «, and

Jo < 205(@030]5(/i et — )| f(r,unr)) — f(r,v(m))Hdr)Q

¢
< 2a(t)C§,O/ e 0t — )N
t

(3.12)

_ 2
<2080 (T = A) flw = vllol| Ll Lo ey

2

X [ e (= ) B f(rulnr) = o) dr

2

a(t)

a(nt/2)

By (3.9)-(3.12), the assumptions (3.5) and (Zy), we find that there exists T large
enough such that for all ¢t > 0,

(3.13)

sup (1) E||(2u)( (Qv)(t)”i < ||lu—v|ls-
te[0,00)

Step 2. On account of (3.8), we obtain that

I(t)E||(L2u)(

DI < 30()C2e2 Elju|? + 60/t / (¢~ ) 0) )’

12
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307 4—&%@£ﬂy/tAAS@——ﬂg@ﬂdB%H(mHQ

398 (3.14) + 69(t / HS (t—r)(f(r,ulnr)) — f(r, 0))H>\d7")2
9 < 30(t >C§e*2“E||uo||A + s+ o+ Ts.

401 Similar to (3.10)-(3.12), we have that for ¢ > T,

402 (3.15) TIs < Cllu|ly < oo,

103 where T is large enough. Using the assumption (Zp), we derive that for ¢t > T,

t 2
100 eI [ eI =00y ar)
0
3 2
105 < C(A)Hzl||Lm(R+)a(t)e*5t( / e3(t/2=7) (12 — r)*Adr)
0
406 (3.16) +C(X,0) a(t) /t e 0t — ) A (r) () dr
' a(t/2) ). !
407 < - —ot a(t) E .
18(\ < C(/\,5)(||Z1HL (R+)O¢(t)€ + a(t/2) 1) < o0
409  Thanks to Lemma 2.6, we deduce that for ¢t > T,
10 Jy <6(H — })26( —2H,H — )\ I,I.i_% ANS(t —7)g(r)e; 2dr
! 2
H 2
411 +3I'(H + Z)\ / [OIF ||A’\S(t - r)g(r)eiH} dr
H=2|| oA 2
412 ! t)Z)\i/ E(/ (r—y)"2|A S(t—y)g(y)einy) dr
i=1 70 0
o0 t r " 2
a3 +CH) at) Y N / B( / (r =) E ANt~ y)g(y)eidy) dr
i=1 0 0
(3.17)
414 =Ji +Ji.

9}

416 In view of the assumptions (Zy)-(Z;) and the Holder inequality, we find that

2
417 JL<CH Z)\ / (/ y)H—%e—é(t—y)(t — y)—A”g(y)einil/) dr
418 < C(H)Oé(t) Z)\Z/ 6*25(1‘/7T)(t _ r)*Q)\\/ (’)" . y)Hfge*(S(T*y)dy
=1 70 0
419 ></ (r —y)H_%e_é(T_y)E”g(y)@i||2dyd7"
0

t T
120 (3.18) gcgnmn/Qf%Wﬂ@frr”/krfw”%aﬂ“wEM@mg@m
0 0
13
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126

427

428

429

430

431

432
433

134

436

439
140
441
442
443
444
445
146

447

448

449

o

< ClEDlallmora(e™ [ 30/ r)y a4 i) )
0

t T
% / e 20 (1 — 1) =P (r) / (r — y)H_%e_J(T_y)lz(y)dydr
: 0

2

e, o)
< () (Ial=mnyale™ + Zo7) < o

and

o0 t r
Ji<CH)pMa(t) > / e () / (r—y) 2 e 00 gy
i=1 70 0
x / (r — y) ¥ Le SV B g(y)es | 2dydr

0

(3.19) < C(H)p" |la]| poo rrycx(t)e ™ / T 2000277 (19 _ )2 gy 4 C(H)p T
0
L _a)
a(t/2)

< C(H)p (I ey + acft(f)z)) =

where we have used the assumptions T3 and limsup, . e~ % a(t) = 0.
On the other hand, we find that for ¢ € [0,T],

(3.20) Tz +TJa+Ts < C(a(T) + ||lulls)-

t T
/ =250 ()= (r) / (r—y) 7 e 0091y (y)dydr
t 0

2

The assertion of this theorem follows immediately by applying the Banach fixed point
theorem. O

Remark 3.4. For the case a(t) = 14+t¢ (0 < ¢* < 1), we can find some examples
of the function [y, satisfying the assumption (Z), such that

/ (1+ rc*)Q(rC*fé(l + rc*)f?’)zdr < 0,
0
or

0o . _
/ (1+7r¢ )Ze_zc"dr < 0.
0

Remark 3.5. One may check that (3.2) in the assumption (Z3) holds. For example,

if we consider a(t) = 14+t (0 < ¢, < 1) and l3(t) = =% (0 < 4y < 1) where
% + g — 2¢, > H, then we have

alt) / (t— ) e D1y

< (1+tc*)(/0t(t—y)H‘ge‘”“‘”)dy)é(/Ot(t—y)H‘gy‘eOdy)

H

SC(l+tc*)t ;ZO*%%O as t — oo.

D=

The assertion (3.3) follows similarly.
14
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460

161
462
463
464

465

166

467

468

469

480

481

482

183

484

485

COROLLARY 3.6. Let H € (%,1), P (O,%), ug € L2(;HY), the assumptions
(Zv)-(Z3) and (3.5) hold. Then there exists a unique global mild solution u to problem

(1.2) with fBm Bg instead of BgH satisfying

(3.21) sup a(r)Ellu(r)[|} < oe.
ref0,00)

4. Existence, Holder regularity and stability of nontrivial equilibrium
solutions. In this section, we construct the nontrivial equilibrium solution v*, defined
for all ¢t € R, to the following semilinear stochastic differential equation
(4.1)
du(t) = —Au(t)dt + f(t,u(nt))dt + g(t)ngH(t), teR, ne(0,1), He(1/2,1).
The existence and uniqueness of the nontrivial equilibrium solution, as well as stability
with general decay rate a(t) and Holder regularity are also addressed. To investigate

the mild solution u* defined for all t € R, we start by introducing the following
infinite-dimensional tfBm:

(4.2) BG(t) = i VB (t)ey,
i=1

where sequences {\; }ien, {€; }ien have been given in Section 2 and Bf’H(t) is defined
by

B (1) = éf’H(t), for t > 0,
! B/ (1), fort <0.

Here Ef A and Elp A are independent standard one-dimensional tfBms. Let
(4.3) Fi ::a(U{Bf’H(S)—Bf’H(T) :rSsSt,iEl}),

be the o-algebra generated by {Bf’H(s) By r<s<ti> 1}.

The following definition is on the mild solution of problem (4.1) defined for all
teR.

DEFINITION 4.1. A H*-valued stochastic process u(t) is called a mild solution to
problem (4.1) on R if

i) u(t) is Fy-measurable for each t € R;

i1) Supyeg ”u(t)HLz(Q;H)\) < o0

iii) u(t) is continuous almost surely in t € R with respect to H* norm;
)

i) it holds that for all —oo <ty <t < 00,

t

ult) = (¢ = to)ulto) + [ S(t =) uur))dr
(4.4) —|—/t S(t—r)g(r)ngH(r) P-a.s.

4.1. Linear version. Before constructing the mild solution of problem (4.1), we
consider the following linear equation:
H
(4.5) du = —Audt + ((t)dt +(1)dBg " (), teR, H e (1/2,1).

15
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186
487

188

489
490

491

492

193

194

495

496

497

498
499

510

THEOREM 4.2. Let X\ € (0, %) and the assumption (I1) be fulfilled. Suppose that
C(t) and (t) in (4.5) are Fy-measurable and satisfy

(4.6) sup E||¢(t)||? < oo and supE||¢(t)||2Q < 0.
terR teR

Then the linear equation (4.5) has a unique solution U* in the sense of Definition 4.1,
which is mean-square Hoélder continuous in t € R, i.e.,

(4.7)  sup [lut(t + h) —u*(t)|| L2 mr) < Cmax{h%_)‘, h'=*}  for each h > 0.
teR

Furthermore, the solution u* is exponentially stable, i.e., for any tg € R and any
solution o(t) of Eq. (4.5) in the sense of Definition 3.1, with Fy,-measurable o(to)
and Ello(to)|]3 < oo,

(4.8) E||@(t) — ot)||5 < Ce S0 E|[a* (ty) — olto)|[;-
Proof. Let
(4.9) u*(t) = /_ St —r)¢(r)dr+ /_ S(t— r)w(r)ngH(r).

Step 1. The process u*(t) given by (4.9) is well defined.
Let us start focusing on

M2(t) == [ S(t—r)p(r)dBg" (r).

We deduce from Lemma 2.6 that for n > m,

B2 () - I12,(t)||5 < 2(H - %)23(2 —9H,H — %)

X i/\iE /nm [_nlf7%||A)‘S(t - 7")1/)(7”)61Hrd7“
(4.10) +F(H—|—;)p1_H§:)\iE/_;m L [ S( — rytr)ed)] ar
0o | —m 7"r_ Ho3l ahare . 2r
setndone [ ([ -0 Hase el a)

+C(H)p1H§:>\iE/nm (/

T

(r— y)%ﬂHA)\S(t - y)w(y)einy) 2dr.

—n

Then by making use of the assumptions (Z7), (4.6), the Holder inequality and the
definition of gamma function, we arrive at

m

BT (t) — T2, 1) |> < C(H) i )\iE/i
i=1 —-n
([ e = g wteddy) ar + (i

—n

16
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ot
—
[\

00 —m r H 2
<D NE | (] =0 ) weay) ar
513 Z)\ E/ e 200=) (¢ — 7")_2’\/ (r— y)H_%e_‘s(r_y)dy

14 g / (r = ) =3 e~ [y (y)e,| 2dydr
515 (4.11) ot HZ/\ E/ e 20(t= T) 7“)‘”‘/ (T—y)%_le_‘s(r_y)dy
516 g / (r = ) ¥ 7100 [ y)es [2dydr
—m 1
517 < C(H)(l + plfH) SUPEHw(t)H?Q(/ 676p1(t7r) (t _ 7,)72p1)\dr> P1
teR —-n

518 X (/7m e*‘ll‘“t*’”)clv")H

—5q1t( —dqgim __ —5q1n) 1

_ e e e 3

519 < C(H)(1+ p* H)SupEHz/)(t)Hé( 5 ) '
520 teR q1

521  where we choose p; > 1 such that Ap; < % and 1/p; +1/q1 = 1. Next we consider
t
522 (4.12) L (t) := S(t —r)¢(r)dr.

—n

523 Applying the assumptions (Z;), (4.6) and the Holder inequality gives that for n > m,

) 2
524 E||IL, (t) — 10, (8) ||
o ,
- <CoB( [ eI Mot ar)
-n
i o
526 (4.13) <R / e 2t dr / e (=) TRE|((r)|Pdr

e

—at (effsm _ 67571)

27 < CR 6T (1 —2)

2 5 sup E||¢(t)]|.
528 teR

529 Hence, it follows from (4.11) and (4.13) that u*(¢) is well defined.
530 Step 2. The process u* defined by (4.9) is a solution in the sense of Definition 4.1.

531 (I) Measurability and continuity of u*(¢) in time.
532 In view of the F; measurability of ((¢) and ¥(¢), by (4.3) we have that the
533 process u*(t) is Fy-measurable. Note that if conditions (2.13) and
(4.14)
S
534 / (s —r)™XS(s —r)y(r)dBg ™ (r) € L*(Q L (to, T; H)), s € (to,T),
to
535 hold true for x € (0,1) and ¢y € R, then we can obtain that the process
536 u*(t) has continuous trajectories with probability 1 by using the factorization
537 formula for the stochastic integral (2.14) and Proposition 5.9 of [8]. Indeed,
538 we derive from the assumption (Z;) and the definition of gamma function
17
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539 that

540 Cz/ (t —s)X (Z)\E// s—r) X(s—y)¥

541 X HS (t —r)v(r ei||||S t—y)(y eiH|7‘—y|2H 2drdy

542 +ptH Z /\iE/ / (s—ax)X(s—=1)7X
i=1 to Jto

N

543 x |[S(t — @) (@)e; ||| St — Do)es ||| — l|H1dxdl> ds

t
544 §C(H)/( s)XTlemdt=9) Z)\E// s—1)"X(s—y)~X

to i=1
545 x e eV (e |4 (y)el|Ir — y* 7 2drdy
546 (4.15) +pt Z )\iE/ / (s —2) X(s — 1) Xe 070 =0(s=D)

i=1 to Jto

2

547 X | (z)eq ||| (D) e |||z — l|H_1dxdl> ds

t 0 s
548 < C(H) / (t—s) e 0= NN E / (5 —y) " PXe 200w

to i=1 to
549 @l (ly =t~ + s =y dy + p" 7Y N

1=1
s 2
550 x E [ (s=1)"2Xe 2D 1yp()e; |2 () — tol® + s — ZH)dl> ds
to

[N

< C(H)(1+ p ) (T = 10)7=4 + (T~ 10) %) (sup Bllv(#)llg)*-

ot
w

o

Thanks to Lemma 2.6, in view of (2.10), (4.14) follows immediately from
similar arguments as in (4.15).

(1) supes Ela* (0] < .
In view of the assumptions (Z;), (4.6) and the Holder inequality, we deduce

o ot Ot ot
ot ot Ut
ot

57 that
2
558 EH / St —r)¢(r)dr
A
t 2
550 <CoB( [ o)A elar)
t t
560 (4.16) < Ci,o / e~ 0(t=T) (t _ T)f)‘dr/ e~ 0(t=T) (t _ T)iAEHC(T)szT
— 2
561 < C3o(M'T(1 = N) sup E|IC(1)]1?,
562 teR

18
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563 and by Lemma 2.6,

t 2 1 1
564 EH / St — r)¢(r)ngH(r)H <9(H - >)2B(2—2H,H — -)
o A 2 2
oo t o 1 2
565 X Z)‘ZE/ {,OOIT TE|ANS(t - r)q/z(r)eiH] dr
i=1 —oo
Lone ' LI 2
566 +T(H + 5)/) ;ME/OO [—OOIT | ArS(t *T)%D(T)ein] dr
00 t T 3 2
s semyne [ ([ r-pt ety oelds) dr
i=1 e e
00 t T - 2
568 +C(H)pt Z)\ZE/ (/ (r—y)2 e vt — y)_AW(y)einy) dr
i=1 —o° —o°
(4.17)
0 t T .
569 < C(H) Z )\zE/ 6725(1377‘) (t _ 7,,)72/\ / (T o y)H*%e*Cs(T*y)dy
i=1 B -
o : / (r— )" 20V ()| Pdydr
0 t T
571 + C(H)pl_H Z )\iE/ e 20(t=7) (t— r)_2)‘ / (r— y)%_le_‘m_y)dy
i=1 - —00
72 < [ = E e e Pdyar
573 < C(H)(1+ p'~ ™) sup Bl (1) 13-
574 teR
575 (I1I) The process u*(t) satisfies (4.4).
576 It follows from the definition of w*(¢) that
to tO
571 @) =St —to)( [ Sto—r)Crydr+ [ S(to—rye(r)dBg" (1)
t t
578 + [ St—r)C(r)dr+ [ S(t—r)(r)dBgT (r)
t[) tO
t t
579 (4.18) = S(t—to)u*(to) + [ St—r)¢(r)dr+ [ S(t—r)p(r)dBg" (r).
580 to to

581 Step 3. The Hélder regularity, exponential stability and uniqueness of u*(t).
582 (I) Now we show the Holder regularity.
583  Omn account of (4.9), we have that for each h > 0,

584 @ (t +h) —a*(t) ||L2(Q;H’\)
t
585 < H/_OO (St+h—r) _S(t—r))g(r)dr‘ L2 (N
t
586 + H / (St+h—r)—S(t— T))Qﬁ(T)dBcij(T)‘ L2(H)
19
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557 (4.19) + H /Hh S(t+h— T)C(T)dr’
t

L2(QHN)
t+h
588 + H / S(t+h— r)w(r)ngH(r)‘
t

589 =T+ Jr + Tz + Jo.

L2 (Q;HY)

591 Let us first consider the term 7. We deduce from Lemma 2.6 that

t  ptth
592 I < H/ / AS(s — r)w(r)dsngH(r)‘
—oco Jit

L2(HN)

o= [T st nea )

S
L2(Q;HM)
o0 3

594 (4.20) < C(H) /t+h {Z)\iE/t [OoIf_éHA1+>\S(5—r)w(r)eiHrdr] ds
¢ Py —o0

O s t . 9 13
595 +C(H)p / [Z/\E/ {_OOI?HAP“)‘S(Sfr)gb(r)ein} dr} ds
t i=1 —00
599 =T +J7.

598 Using the assumption (Z;) and the Holder inequality results in

o dseen [T S [ ([ e-wmiee)

i=1 o0 Mo
2 2
600 x e 067y (5 — y)*(H’\)dy) dr] ds
t+h 0 t
601 gC(H)/ [Z )\iE/ e 205 (g — p)72014N)
t i=1 —o00
1
r T 3
602 (4.21)  x / (r — )T 27009 |y (y)e; || 2dy / (ry)ng‘s(’"y)dydr} ds
L [tth t 3
603 < c(H) (sup B[ (1)3) / { / (s—r)_Q(H’\)dr} ds
teR t —0o0
601 = C(H) (sup E[lw()[3) *h? 2,
605 teR

606  and

i t+h o0 t
607 j72 < C(H)p 2 / |:Z )\zE/ e 20(s—r) (s — T)—2(1+>\)
t i=1 —00

T r 5
608 ></ (7“—y)%‘le“;“‘y)|I¢(y)ei\|2dy/ (r—y)g‘le‘é“‘y)dydr} ds
—00 —0o0
- , tth t 3
609 (4.22) < C(H)p = (supE||w(t)||2Q)2/ U (s—r)2(1+>‘)dr} ds
teR t —0o0
610 — C(H)p*" (sup Bl (1) 2) S,
S

20
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611

612 In a similar way as in (4.20)-(4.22), we obtain

2y 3
613 Jo = ( S(t+h— T)i//(r)ngH(T) )
o0 thh o o 2 1%
614 < C(H) {ZAiE/ [tIr 2| ANS(t+h— r)@/}(r)ein} dr]
i=1 t
1—H e t+h H 2 %
615 +C(H)p 2 {Z )\iE/ [tL? HA)‘S(t—Fh—r)w(r)eiH] dr}
i t
o t+h r
616 < C(H) [Z)”E (/ e OUFh=V) (¢ 4 p — y)>
i=1 ¢ t
- Hog 2 73
617 < (r =" (yeldy) dr
e ee} t+h r
618 +C(H)p 2 {Z )\iE/ (/ e OUHh=Y) (4 — g ™A
i=1 ¢ ¢
2y 2 2
619 (=) e ay) o]
00 t+h
620 <C(H) {Z )\iE/ e 20(th=r) (4 4 p)=22
i=1 t

621 (4.23) ></ e—J(T—y>(r—y)H—%dy/ e“s(r‘y)(r—y)H‘gllw(y)eillzdydr}
t t

s t+h
622 +C(H)p% {ZME/ o—20(t+h—r) (t+h—7r)"2

i=1 t
623 x/ 6*5(r*y)(7«,y)%71dy\/ eé(ry)(ry)glllw(y)eiﬂzdydr}

t t
<C(H 2 E ok [ [ —25(t+h—r) b )-2Ag 2
o S CHE)1+p77) (sup Bl (D)) e (t+h—7r)"dr
€ t
=E 3pt-A

02 <CH)(1+p72 ) (sup Ellv(t)]g) *h2 "
626 teR

627 By using the assumption (Z;) and the Holder inequality, we find that

t+h t
628 Ts = H /t /_ ) AS(s—r)C(r)drds‘ oo
t+h t 9 %
629 §/ / (EHAH)‘S(S—T)C(T)H ) drds
t —00
1 t+h
630 (4.24) <C’1+,\0(supEHC )2 / / (=) (s — 1)~ Ddrds
631 < C(\)(sup E||¢())? )th—*,
632 teR
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633
634
635
636
637
638
639
640
641
643
644
645
646
647
648

649

and
t+h
T < / 15+ h =) 2 pen

t+h 1
<Ciro (/ e O(t+h—r) (t+h— r)_kdr> :
¢

— )

[SIE

t+h
(4.25) < ( / e b 4 — ) B Pdr)
t
< CN) (sup E|[¢(t)[|*) > h' .
teR
Inserting (4.20)-(4.25) into (4.19), by the assumption (4.6), we have
[ (¢ +h) =T (O] L2z

1-H

<C(H)(1+p*= )(igﬂgEnw(t)né)%h%*+c<A>(§gﬂgEH<<t>||2)%hH

(4.26) < Cmax{h? > h'"*},

that is, u*(t) is mean-square Holder continuous.
(II) Exponential stability and uniqueness of u*(t).
Let o(t) be any solution of (4.5) satisfying E||o(to)||3 < oo. Then we have

t t
(4.27) o(t) = S(t —to)o(to) + / St —r)C(r)dr+ | S(t-— T)?/)(T)ngH(T).
to to
In view of (4.18), applying the assumption (Z;) results in
(4.28) Ela*(t) — o(t)|3 < Cge " E|[u* (to) — o(to)lI3-

This implies that @*(¢) is exponentially stable.
We now turn to the uniqueness of u*. If v(t) be another solution satisfying
sup,cg E||v(t)]|3 < oo, then for arbitrary r < ¢,

(@20)  Bla®) - vy < e B () - v} < ce 0,
thanks to Definition 4.1 and the assumption (Z;). Letting r — —oco, we have

(4.30) E|ja*(t) — v(t)Hi =0 forall teR.

We derive from Markov’s inequality that for each ¢ € R and any ¢ > 0,
o 1 ~

(4.31) P(llo(®) =@ (@)l > ) < ZEllo(t) — @ I3,

and consequently

(4.32) P(llot) —u*(t)]x=0 forall te QNR) =1,

where @ denotes the rational numbers. Since the mapping ¢ — |Jv(t) — @*(t)||x is
continuous with probability 1, we have that

(4.33) P(lo(t) —a*(t)x =0 forall teR)=1.

The proof is complete. ]
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4.2. Nonlinear version. Now let us turn to consider the semilinear equation
(4.1). Analysis of the linear case indicates that one can obtain the unique sequence
{un} defined for t € R. By exploiting an approximation technique and a convergence
analysis of {u,}, we construct the nontrivial equilibrium solution u* defined for t € R
to problem (4.1). The following result is on existence, uniqueness, mean-square a-type
stability and Holder continuity in time of u*.

THEOREM 4.3. Let A € (0, 1), the assumptions (Zy) and (I1) be satisfied. Suppose
that the assumptions (Iz) and (Z3) hold for t € R. Assume that the function Ly in
the assumption (Zz) is sufficiently small such that

(4.34) W = [3C. V4] C3 (8T (1 = X)Ll e my < 1,

where 3C, V 4 = max{3C,,4}, §,Cxro and C. are given in the assumptions (Z1) and
(Zo), respectively. Then problem (4.1) has a unique solution u*(t) in the sense of
Definition 4.1 which is mean-square Holder continuous int € R, i.e.,

sup [|[u*(t + ) — u*(t)|| L2 () < Cmax{h? > K"} for each h> 0.
teR
Moreover, the solution u*(t) is a-type stable, that is,

L log Bju (1) — oft)|3
t—o00 log «(t)

(4.35) <0,

where o(t) is any solution of problem (1.2) in the sense of Definition 3.1.
Proof. Let ug =0 and let {u,} be a sequence defined by

(4.36) i1 (t) = — Aty (£)dt + f(t, up (nt))dt + g(t)dBG (2).

Thanks to the assumptions (Z2) and (Z3), we find that

2
(4.37) sup B|| f(t, un(nt))]|” < 2001l ®) + 20 L1l Lo =) sup Ellun (1[5,
teR teR
and
2
(4.38) sup Hg(t)HQ < ||l2HLoc(]R).
teR

Hence, by Theorem 4.2 we have the unique solution u,1(t) satisfying

(4.30) o B2 ()13 < o
and
490)  wna®)= [ S it [ st rgang o)

Step 1. The sequence {uy,(t)} converges to the process u*(t), and u*(t) is a solution
in the sense of Definition 4.1.
(1) supseg llun(t)]|L2(0m>) is bounded which is independent of n.
Following similar arguments as in (4.16) and (4.17), by (4.37)-(4.38) and (4.40)
we deduce that

Bl 01 <25 [ 8= )16 toryi|
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2
699 —|—2EH/ St —r)g(r)d B"’ (r )H/\

00 (441) <2034 (87 (1 = ) sup Bl £ (t wa (nt)|I? + CCH)(L + o'~ ) sup [lg()]
teR teR

_ 2
01 <4CR0(2 7T = X)) (Mo + I1Lallzoe g s1p Bl (83
€

783 +C(H)(1 + p )|l Lo~ ().
704  which implies that

05 (4.42) jlelﬂgEllunH(t)Hi <C+ WﬁgﬂgEHun(t)lli-

706 In view of the assumption (4.34), applying the recursive method to (4.42) results in

C

707 (4.43 sup E[un41(t)[|5 < :
07 (443) Sup ]
708 (2) The sequence {u,(t)} is convergent.
709 In a similar way as in (3.9) we derive

2
710 E||tin41( )— )5

2
¥ - EH S(t =) (f(ryun () = F(ry s (o)) |
712 / e 0 (f — ) Ay
K 2
713 (4.44) x/ e 0= (4 )*AEHf(r, un(nr)) ff(r,un_l(nr))H dr
714 < C3yo (AT - )) | L1l oo (m) iuﬂ};EHun(t) —un 1 (D3
€
V4

715 S75UPEHUH()_un 10]5¢
716 2 te

717 Then it follows from (4.43) and the assumption # < 1 that

718 sup [|un () — wm ()| L2 )
€R
n—1 1
719 <) sw i1 (t) = wi ()| L2y = sup (Bllujpa(t) —ui(1)]3) 2
: c . c
j=m

n—1

3 1
m0 (445) < (su}gEHuj_,_l(t)—uj(t)Hi)z < (sup Bl (1)]3)* 3 (
- te te

M\N

w\‘%

i
3

723  where we have used the recursive method in the second-to-last inequality. Hence,
724 there exists a limiting function w*(¢) such that

725 (4.46) sup Ellun () —u” ()3 = 0 as n— oo,
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728
729
730
731
732

749

which together with (4.43) yields

for each ¢ € R.

4.47 Ellu*@®)|3 <

(1.47) o (@13 <
Due to the fact that the sequence {u,(t)} is Fi-measurable for each ¢ € R, we have
that the process u*(t) is Fi-measurable as a limit of {u,}.

(3) The process u*(t) satisfies (4.4) and has continuous trajectories with probability
1.

Arguing as in (4.18), by (4.40) we obtain
(4.48)
t t
Unt1(t) = S(t —to)un+1(to) + /t St —r)f(r,un(nr))dr + /t S(t— T)Q(T)dBcij(T)~

We will take the limit of the above identity to show that u*(t) satisfies (4.4). Thanks
to the Markov inequality, in view of (4.46), we derive that for each e > 0,

(4.49) P([lunsa(t) —w* ()]s > €) < ;12E||Un+l(t) —u* (1)} =30,
which implies that for each t € R,

(4.50) Unt1(t) = u*(¢) in probability

as n — o0o. Since S(t — tp) is a bounded operator, we have

(4.51) S(t — to)unt1(to) — S(t — to)u™(tg) in probability as n — oc.

By similar arguments as in (3.9), we deduce from the Markov inequality that
t
P(H St —r)(f(r,un(nr)) — f(r, u*(m‘)))drH)\ > 5)
to

s < 58| [ 0=t - e )]

IN

1 - 2 *
S CRo( T = X)) Ll ) ilelﬂgE\lun(t) —u ()3,
which together with (4.46) gives

(4.53) / St — 1) f(r,un(nr))dr "=3° / St —r)f(r,u”(nr))dr in probability.

to
Thus, by using (4.50)-(4.51) and (4.53), we can conclude that for all ¢ € R,

u*(t) = S(t —to)u*(to) + ) St —r)f(r,u (nr))dr
(4.54) + t S(t— r)g(r)ngjH(r) P-a.s.

to

that is, u*(t) satisfies (4.4). On the other hand, the process u*(t), defined by (4.54),
has continuous trajectories with probability 1. In fact, the continuity of the first two
terms can be checked straightforwardly, and the continuity of the third one follows
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755 from similar arguments as in the proof of step 2 in Theorem 4.2.
756 Step 2. The process u*(t) is Holder continuous in ¢t € R.

757 Similar to (4.20)-(4.25), we obtain that for each h > 0,
758 [|u* (t + h) = uw*(t) HLZ(Q;HA)
t
759 < H [m (S(t +h—r)—S(t- T))f(rvu (W))dT‘ L2(:H)
t
I — — - p7H
760 + [m (S(t +h T) S(t T))g(T)dBQ (T)’ L2(;HN)
t+h
o ] [ s n—nseac e,
t+h H
762 - Bg ‘
v " /t S(t+h=r)g(r)dBg=(r) L2 (QHN)
763 < ) (sup B f(r, " (r))|2) * 2>
reR
764 +C(H)(1+ ™% ) (sup g(r)|3) F 1
reR
- < CO) (13~ ey + 12l gy (sup Bl (9)]13) ) 1>
765 > 1 L>(R) 1 Lo (R) teﬂg A
766 +C(H)(1er%)”lﬂgw(k)h%ﬂ\
7 (4.55) < Cmax{h? * h'"*},

769 where we have used (4.37) and (4.38) in the last inequality.

770 Step 3. The process u*(t) is a-type stable in the sense of mean square.

771 We shall prove this assertion by using the Banach fixed point theorem in a suit-
772 able space introduced next. Since the proof of the case {3 > 0 is simpler than the
773 case to < 0, we assume that t; < 0. Consider the abstract phase space C3). =
774 Cys (to, oo; L2(§; ]HI)‘)) with the norm

775 [ullg- = sup I*OE|u®)|i, u € C(to,00; L*(QHY)),
tE[to,OO)
776 where
T), telt,T),
7T (4.56) o) = ) o, 7]
a(t), t>1T,

778 with T > 0 given later. Then (C., || - [l9+) is a Banach space. Set

779 (4.57) o(t) = o(t) — u™(?),

780 where p(t) is any solution of problem (1.2) in the sense of Definition 3.1. We introduce
781 the mapping 2 defined by

(4.58)
t
w2 (20)(t) =St —to)alt) + | St —r)(f(r,e(nr) + " () — f(r,u(yr)))dr.
to
783 Now we show that 2 is contractive and bounded on Cj..

781 (I) 2 is a contraction mapping.
26
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785 On account of the assumptions (Z;)-(Z;) and the Holder inequality, we obtain
786 that for any g1, 02 € C3. and t € [to, T,

787 7 (OF]|(2a)() - (@&, < v (1)E| / S(t )

- (£ i) + ) — £ () + ()|

789 < a(T)C’f’OE( /t:e“”) (t—r)=>

- o G + o)) = £, Bar) + () )

1 (4.59) < o(T)C3, /t :e—ﬂt—” (t— 1) Pdr /tt e~ (4 _ )

792 X B||f(r, @i (nr) + u* (7)) — F(r, G20pr) + u* ()| *dr

2 < CRo (T =) L1l e ) 161 = Bllo--

795 On the other hand, for ¢t > T,

w9 (OE]|(@2a)0) - (2&)0)|

o <3anE( / (¢~ ) (7. G or) + () — (. ) + " ()| yr)
(4.60)

798 +3a(t)B( /0 1St =) (£(r, 61 (nr) + u* () = £(r, 3(nr) + u* () HAdr)Q

799 +3a()B( / 1St = r)(f(r, 6 () +u* () = £(r, G20pr) +u* () <|Adr)2

899 =T+ T 42- Tty

802 Tt follows from the assumptions (Z)-(Zz), the Holder inequality and (4.57) that

0
803 T < SC/Q\)Oa(t)(/ e 0 — )
to
2
S04 X ||, 81 (o) + w* () = F(r, G3(r) +u* yr) )
0
805 < 3C§’0a(t)t_2)‘/ e =) gy
t
0 ’ )
806 (4.61) ></ e CTIE| f(r, 01 () 4w (nr)) = f(r, 6a(nr) + u* (nr)) || dr
to
. 2 1 —2X ,—26t ’ or || A ~ 2
807 < 30)\705||L1“L0€(R)a(t)t e e EHgl(m") — 92(777")||/\dr
to
a(T))~! PN _ox —
sos <3630 L ym @13 — Bl (e,
810
811 T2 < 3a(t)C§7OE( / et ()
0
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815

819

820

826

832

834
835
836
837
838

839

840

< 183 )+ () — £ GaCe) + u* () )

b 4
<3a()C30(5) > /0 Ry

t

h / e D E| f(r, 61 () + w* (7)) — F(r, B(nr) +u* () ||*dr

2 1~ A~ ty—ane % [ —8(t)2—r) -1
S3a(t)C>\,0”91_Q2||19*||L1||L°°(R)(§) a e (a(nr))” dr

t —dt

Ll (5) 5

(162) < 3a()(a(0))'CR4llGi - &) -

19*

thanks to the monotonicity of «, and
t
Jih < 3a(t)C§$OE( / e 20t — )~
t
2
< || £, 81 () + w” () = F(r, Ba(r) + e ar)

t t
(4.63) < 304(t)C>2\70/ e =) (¢ — T)i)\dT/ e 0T (¢ — ) A

t

2 2

x E|| f(r, & (nr) +w* (nr)) — f(r, a2(nr) + w* (nr))||*dr

_ 2 ~ —~
<3C3 (0T = N) Nlor — 2llo~ | L1l oo ()

Inserting (4.61)-(4.63) into (4.60), in view of the assumption lim sup,_, . a&t%) =C,,

we can take T large enough such that for any ¢ > T,
— — 2
P (E((2a)(t) - (2a2)(t)||

< Ca(D) ta(t)t= e " |g

(4.64) +Ca(t)t* e g1 — aallo + W |61 — @allo

This together with (4.59) implies that for any ¢ > o,
(4.65)

1(241) - (263) sup 9 (4)E||(2a1)(1) - (2a) @) < 6 - Gallo

t€[to,00)

thanks to the assumptions # < 1 and lim sup,_, . e_%oz(t) = 0, where # is given in
(4.34). Therefore, the mapping 2 defined by (4.58) is contractive on the space C3..
(II) 2 maps C3. into itself.
By similar arguments as in (4.60)-(4.63), we derive from (4.58) that for any o €
0;9\* and t > T,
HE[ 2o

< 20%(t E||St—t0 to)||3
(4.66)  +20°(t EH St—r)(f<r,§(nr)+u*(nr>)— f(r,u*(nr)))drHj

< 2059" (t)e st VE|o(to)lI3 + ClIallo- (a(T)) ()t >Ne
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843

844

845

846

847

854

859
860
861
862

863

864

865

866

t

ﬁ*<§>*2*a<t>e-‘“ / * 3D ) Adr + €l —)

+C|lo «—
[l o] o 9 a(nt/2)

which implies that

9O E|(Z2) )|} < Cllallo-,

when T is sufficiently large. In a similar way as in (4.59), we obtain that for any
te [to,T],
() E|(220) )] < Cliallo-

Hence the desired assertion follows immediately by the Banach fixed point theorem.

Remark 4.4. For ty < 0 the proof of mean-square a-type stability can be slightly
modified. In that case one can consider the phase space Cy, = Cy: (nto, oo; L2(Q; HA))
4

with the norm

lulo; = sup G OE|u)|, we C(to, 00; L*(QHY)),

tento,00)

where

5(0) = {a(T), t € [nto, T1,

and the mapping 2, defined by

(4.67)

S(t —to)alto) + [ S(t—r)(f(r,80pr) +u*(nr) — F(r,u* (nr))dr,
(20)(t) = N

o(t), t € [nto, to),

tZt(b

where p(t) and o(t) are given in Theorem 4.3.

COROLLARY 4.5. Let A € (0, 1), the assumptions (Zy)-(Z1) and (4.34) be satisfied.
Suppose that the assumptions (o) and (Z3) hold for t € R. Then problem (4.1) with
fBm Bg instead of Bg’H has a unique solution u*(t) in the sense of Definition 4.1
which is mean-square Holder continuous in t € R, i.e.,

sup [|[u*(t + h) — u* ()| L2 (i) < Cmax{héfA7 Y=Y for each h > 0.
teR

Moreover, the solution u*(t) is a-type stable, that is,

(168) 1o log Ellu(8) — ()1

<0,
t—o0 log a(t)

where o(t) is any solution of problem (1.2) in the sense of Definition 3.1.
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5. An illustrative example. In this section we will analyze an example to
illustrate the effectiveness of our abstract results. We consider the following class of
reaction diffusion neural networks with proportional delay:

(5.1)
9i(t) = —div(ai(x)Vyi) + Y dij(tyw; (y; (nt) + Li(t,2) + Y by (8, 2) B (0),
j=1 j=1
t>0,

yi(0)=9?,  ie{1,2,---,n},
yi(t,) =0, in 00, i€ {1,2,--- ,n},

where O C R" is a bounded domain with a smooth boundary 00, y;(t) is the state
variable (potential or voltage) of the ith neuron at time ¢, d;;(¢) is the time-varying
connection weight, w; is the activation function, n € (0,1) is the proportional de-
lay factor, I;(t,x) is the external input, {Bf’H(t)}je{l,l..,W} is a sequence of one-
dimensional tfBms mutually independent.

For each ¢ € {1,2--- ,n}, define the operator A; by

(5.2) A= — Za o a”)

8xk

Let y = (y1,52, - ,yn)T and H = (L2(O))". Denote
(5.3) Ay = (Aryr, Agya, -+ Anyn)
It’s clear that A is a sectorial operator in H (see, e.g., [16]). Define
(54)  ftzyt) = (Faltz,y(n), otz ynt), - faltzy(nt)
where fi(t,z,y(nt)) = ( J(W(y(nt))" + Li(t, ). Here
= (din (), dia(t), -+, din(t)),
(Wly(mt)™ = (w1 (y1 (7)), wa(y2(nt)). - wn(ya (1))

Set g(t,z) = (bij)nxn and Bp (t) = S, B2 (t)e; where {eiticq1,2, .y is an
orthonormal basis on R”. The (5.1) can be reformulated as

(5.5) dy(t) = —Ay(t)dt + f(t,z,y(nt))dt + g(t, 2)dBg" (t).

We always assume that the neuron activation function w; satisfies
(5.6) w;i(0) =0 and |w;(z) —w;(y)| < Ljlz —yl, Vo,yeR.
The matric D = (dij)nxn and external inputs I; satisfy
(5.7)  |di(t) <di; and L) <T(t), 4j€{1,2,--,n}, teR,

respectively. The term b;; satisfies

(5.8) Z Ibi; ()]* <U(t), teR.

1,7=1
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Then for the function f, we have that for ¢t € R,
2
(5.9) B f(t,u) = f(t.0)||" < LoEu — |3,

and

(5.10) 1£( 017 < 30,

where Lo =71, (227, Eiij)z. For the function g, we obtain

(5.11) lg@)I* <i(r), teRr.

In particular, by Theorems 3.3 and 4.3 we have the following result.

THEOREM 5.1. Let A € (0, 3). Suppose that the assumptions (5.6)-(5.8), (Zo),
(5.12)

4[C, V1] C2y (P 'T(1 = M) Lo <1 and Ha(t)(i@(t))?)\

j=1

< o0,
L2(0,00)

are satisfied, where Cy 0,9 and Cy, a(t) are given in the assumptions (I1) and (Zo),

respectively. If I(t) satisfies (3.2) and (3.3) given in the assumption (I3), then for
each initial data y° € H* problem (5.1) has a unique global mild solution y satisfying

(5.13) sup_ a(r)Ely(r < oc.
re|0,00

Moreover, problem (5.1), but for t € R, has a unique solution y*(t) in the sense of
Definition 4.1, which is mean-square Holder continuous in t € R and a-type stable.

6. Conclusions. In this work we studied the asymptotic behaviour of stochastic
evolution equations with pantograph delay and tempered fractional noise. First we
presented a novel estimate of stochastic integrals with respect to tfBm, which can
be used in a wider range of study areas. We then proved the global existence, u-
niqueness and mean square stability with general decay rate of mild solutions without
constructing Lyapunov functions or using Razumikhin’s approach. Finally, by using
our generalized factorization formula which is new even in the fBm case, we obtained
the existence, uniqueness and Holder regularity of the nontrivial equilibrium solution.
In particular, we exploited the Banach fixed point theorem to establish the general
stability of the nontrivial equilibrium solution, since the Gronwall inequality can not
be applied to stochastic partial differential equations with pantograph delay. One
technical challenge is that the coefficient of stochastic integrals with respect to tfB-
m is irrelevant to time ¢, which is different with (1.3) given in [31]. The presence of
pantograph delay also makes the analysis more complicated and challenging. Another
highlight of the work is the construction and stability analysis of the nontrivial equi-
librium solution defined for ¢ € R, and the results also hold true for the unbounded
variable or distributed delay and even for the case of without delay.

One of the future works in this direction is to carry out stability analysis for
stochastic differential equations driven by tfBm of the second kind (tfBmII). Com-
pared with tfBm, tfBmll can be written as stochastic integrals in a simpler way in
terms of tempered fractional calculus. TfBm and tfBmll are connected, and more
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precisely have similar path properties (see Remark 2.4 in [30]). The increments of
tfBmlT are called tempered fractional Gaussian noise of the second kind (t{GnlII). In
contrast with tfGn, tfGnll is a more realistic model in turbulence and other applied
areas, since the spectral density of tfGnll decays as a power function for frequencies
|w| > p but remains bounded and separated from zero near zero frequency. TfBmII
is an interesting problem and this would open a new research area.
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