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Abstract

In this paper we investigate stochastic dynamics and invariant measures for stochastic 3D Lagrangian-averaged Navier-

Stokes (LANS) equations driven by infinite delay and additive noise. We first use the Galerkin approximations, a priori

estimates and standard Gronwall lemma to show the well-posedness for the corresponding random equation, whose

solution operators lead to the existence of a random dynamical system. Next, the asymptotic compactness for the

random dynamical system is established via the Ascoli-Arzelà theorem. Besides, we derive the existence of a global

random attractor for the random dynamical system. Moreover, we prove that the random dynamical system is bounded

and continuous with respect to the initial time. Eventually, we construct a family of invariant Borel probability measures,

which is supported by the global random attractor.
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1. Introduction

As we know, the LANS model arises from a one-dimensional model of nonlinear shallow-water wave dynamics.
It is the first to use the Lagrangian averaging technique to deal with the turbulence closure problem. The main
reason is that such a model requires lower computational cost than a usual Navier-Stokes equation (see Holm
[27] for more details).

It is also worth pointing out that delay effects play a significant role in the modeling of physical, biological,
engineering phenomena and in other real world applications. To describe better a realistic model, we should
consider some hereditary characteristics such as aftereffect, time lag, memory and time delay. It seems natural
to impose an external force which may take into account not only the current state of the system, but also some
part of its history (bounded delay), sometimes even the whole history (unbounded or infinite delay). Inspired
by this fact, Caraballo and Real initiated Navier-Stokes models with some hereditary features in [12], in which
the existence of solutions was established in both two and three-dimensional spaces. Besides, the uniqueness of
solutions was proved in the two-dimensional case. Later on, the asymptotic behavior of those solutions and the
existence of a pullback attractor were carried out in [13, 14].

In this article, we investigate the following stochastic 3D LANS equations driven by infinite delay and
additive noise: 

∂t(u− α∆u) + ν(Au− α∆(Au)) + (u · ∇)(u− α∆u)

− α∇u∗ ·∆u+∇p = f(x) + g(ut) + κ(x)Ẇ , in (s,+∞)×O,
div u = 0, in (s,+∞)×O,
u = 0, Au = 0 on (s,+∞)× ∂O,
u(s+ r, x) = φ(r, x), r ∈ (−∞, 0], x ∈ O,

(1.1)

where O ⊆ R3 is a bounded open set with sufficiently regular boundary ∂O, s ∈ R, A is the Stokes operator,
the positive constants ν and α denote the kinematic viscosity of the fluid and the square of the spatial scale at
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which fluid motion is filtered respectively, the symbol ∗ denotes the transpose of a matrix, u = (u1, u2, u3) and
p are the averaged (or large-scale) velocity and pressure of the fluid respectively, f and κ are given functions
defined on O, and the term g is the external force containing some hereditary terms, such as memory, unbounded
variable or infinite distributed delay, etc, ut denotes the segment of solutions up to time t, i.e. ut(s) = u(t+ s)
for all s ≤ 0, φ is an initial velocity field defined in (−∞, 0], and W is a two-sided real-valued Wiener process
on a complete probability space which will be specified later.

Notice that when α converges to zero, system (1.1) goes to the classical 3D Navier-Stokes equation whose
dynamical behavior has been widely investigated in [7, 12, 17, 18, 26, 28, 37]. Problem (1.1) in the deterministic
case without delay (i.e., κ = 0 and g is independent of u) has been studied in [19, 35], where several issues have
been investigated: the global existence, uniqueness, regularity and asymptotic stability of solutions as well as
the existence and finite dimensionality of global attractors. For the stochastic case but without delay, Caraballo
et al. in [15] have investigated stochastic dynamics of the 3D LANS equations for the first time.

Concerning this model with finite delays or memory, the analysis was discussed by Caraballo et al. in [10, 11].
In the first paper, the authors proved the existence of a unique solution to the stochastic 3D LANS equations.
In the second one, the existence and exponential stability of stationary solutions were established. To our
knowledge, unbounded or infinite delay effects have been considered in other equations, such as reaction-diffusion
equations, globally modified Navier-Stokes equations and usual Navier-Stokes models (see [30, 31, 33, 34, 43]).
However, they have not yet been thoroughly investigated for LANS models. Motivated by the above references,
we may choose several state spaces to deal with the infinite delay case in the stochastic 3D LANS system. The
first one is the Banach space

Cγ(H) = {ϕ ∈ C((−∞, 0];H) : lim
r→−∞

eγrϕ(r) exists in H}, where γ > 0, (1.2)

where H is the 3D Lebesgue-type Hilbert space. The second one is

C−∞(H) = {ϕ ∈ C((−∞, 0];H) : lim
r→−∞

ϕ(r) exists in H}. (1.3)

Moreover, we also use Cγ(V ) and C−∞(V ), where V is another Sobolev-type subspace instead of H in (1.2)
and (1.3).

In the present article, our main goal is to prove the existence of invariant Borel probability measures for the
stochastic 3D LANS system driven by infinite delay and additive noise. For the research of infinite dimensional
evolution equations, especially for invariant probability measures, there are a number of different mathematical
methods applied to ergodicity. One approach is to consider some kinds of simple linear or semi-linear first order
PDEs, see [22, 29]. Although the authors discussed linear systems where solutions are able to depict chaotic
or ‘turbulent’ behavior, the method is limited to a very specific class of equations. Another different method,
i.e. the classical Krylov-Bogolyubov method, focuses on the study of stochastic PDEs, one can define ergodicity
via the Markov semigroup induced by the stochastic semiflow. Thanks to Krylov-Bogolyubov’s method, the
existence of invariant measures for stochastic PDEs has been extensively investigated, we refer the reader to
[2–4, 21, 41] and [5, 6, 23, 36, 39] for bounded and unbounded domains, respectively. However, by using this
approach, we find that invariant measures of the Markov semigroup are deterministic probability measures and
thus they are not supported by global random attractors.

Based on the previous discussion, in this paper we introduce a different technique to construct invariant
measures, that is, the so called ‘generalized Banach limit’, denoted by LIMt→+∞, pioneered in [25] and developed
in [8, 16, 24, 32, 40, 42]. The use of such limit allows us to relate time averages with ensemble averages in the
state space.

To our knowledge, this work seems to be the first one to discuss invariant Borel probability measures for
the stochastic 3D LANS system with infinite delay and additive noise, even there is not any published work
on studying this issue for stochastic delay equations. We mainly apply the abstract theory for autonomous
random dynamical systems in [42, Theorem 2.1] to our model (1.1). To this end, we shall transform (1.1)
into a deterministic equation with a random parameter (see Eq. (3.8)) and prove that the solution operators
associated to Eq. (1.1) generate a random dynamical system {ϕ(t, s, ω)}t≥s,ω∈Ω in the state space Cγ(V ). In
addition,

(1) the random dynamical system {ϕ(t, s, ω)}t≥s,ω∈Ω possesses a global random attractor A(ω) in Cγ(V );
(2) for each given t ∈ R, almost all ω ∈ Ω and φ ∈ Cγ(V ), the Cγ(V )-valued function s 7→ ϕ(t, s, θ−tω)φ is

continuous and bounded on (−∞, t].
Using the classical Galerkin method, a priori estimates and standard Gronwall lemma, we first derive the

existence of a unique weak solution to system (3.8). We then obtain some uniform estimates of the solutions
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to system (3.8) ensuring the existence of a global random absorbing set in Cγ(V ) (see Lemma 4.2). Next, we
establish the asymptotic compactness for ϕ in Cγ(V ) via the Ascoli-Arzelà theorem (see Lemma 4.4). Moreover,
we show the existence of global random attractors for ϕ (see Theorem 4.6). Finally, for each given t ∈ R, almost
all ω ∈ Ω and φ ∈ Cγ(V ), the continuity and boundedness of Cγ(V )-valued function ϕ(t, s, ω)φ with respect to
s on (−∞, t] are proved in Lemmas 5.1 and 5.4, respectively.

This paper is organized as follows. In Section 2, we describe some preliminaries, including some definitions
relative to the random dynamical system, some notations and linear operators, some suitable assumptions about
the non-delayed external force f , delay term g and additive noise κ. In Section 3, we prove the well-posedness
of the stochastic 3D LANS equation with infinite delay and additive noise (1.1). Section 4 is devoted to the
existence of a global random attractor in Cγ(V ) for the stochastic equation (1.1). In the last section, we
construct a family of invariant Borel probability measures of Eq. (1.1) by using the method of generalized
Banach limit.

2. Preliminaries

2.1. Random dynamical system

Let (X, ‖ · ‖X) be a separable Banach space equipped with a Borel σ-algebra B(X). Let (Ω,F ,P) be
a complete probability space with a group {θt}t∈R such that P is the Wiener distribution, Ω is a subset of
{ω ∈ C(R,R) : ω(0) = 0} with P(Ω) = 1, F is a σ-algebra, and each θt : Ω→ Ω is measure-preserving. If {θt}t∈R
fulfills the group property and the mapping (t, ω) 7→ θtω is B(R× F ,F) measurable, then (Ω,F ,P; {θt}t∈R) is
called a measurable dynamical system and {θt}t∈R is said to be the metric dynamical system over the complete
probability space (Ω,F ,P).

For the reader convenience, we need to introduce the following definitions relative to the random dynamical
system (see [20, 42]).

Definition 2.1. A family of mappings ϕ(t, s, ω) : X 7→ X, −∞ < s < t < +∞, parameterized by ω ∈ Ω, is
said to be a random dynamical system over the measurable dynamical system (Ω,F ,P; {θt}t∈R), if it holds for
almost all ω ∈ Ω,

(i) ϕ(t, r, ω)ϕ(r, s, ω)x = ϕ(t, s, ω)x for all s ≤ r ≤ t and x ∈ X;
(ii) ϕ(t, s, ω)· is continuous on X;
(iii) for all t ∈ R, x ∈ X, the mapping (s, ω) 7→ ϕ(t, s, ω)x is measurable from ((−∞, t]×Ω,B((−∞, t])⊗F)

to (X,B(X));
(iv) for all s < t, x ∈ X, the mapping ω 7→ ϕ(t, s, ω)x is measurable from (Ω,F) to (X,B(X)).

Set

Ψ(t− s, θsω) = ϕ(t, s, ω) and Φ(t) : (ω, φ) 7→ (θtω,Ψ(t, ω)φ).

If Ψ(t, ω) satisfies the cocycle property, that is, Ψ(t + s, ω) = Ψ(t, θsω)Ψ(s, ω), then {Φ(t)}t∈R fulfills the
semigroup property Φ(t+ s) = Φ(t)Φ(s). The mapping {Φ(t)}t∈R is a skew product flow on Ω×X.

A family D = {D(ω) : ω ∈ Ω} is said to be random (or measurable) if the mapping ω → distX(x,D(ω)) is
(F ,B(R+)) measurable for each x ∈ X.

Denote by P(X) the family of all nonempty subsets of X. Let D be given a family of nonempty random
sets D = {D(ω) : ω ∈ Ω} ⊆ P(X). The class D is said to be a universe in P(X).

Definition 2.2. The random dynamical system ϕ is said to be D-asymptotically compact if, for any (t, ω,D) ∈
R × Ω × D and any sequences {sn}, {xn} ⊂ X with sn ≤ t, limn→+∞ sn = −∞ and xn ∈ D(θsn−tω), the
sequence {ϕ(t, sn, θ−tω)xn} is relatively compact in X.

Definition 2.3. Let {ϕ(t, s, ω)}t≥s,ω∈Ω be a random dynamical system with a universe D over the measurable
dynamical system (Ω,F ,P; {θt}t∈R). A random subset {A(ω)}ω∈Ω of X is called a global D-random attractor
for {ϕ(t, s, ω)}t≥s,ω∈Ω, if

(i) A is compact, that is, each A(ω) is compact in X;
(ii) A is invariant, that is, for all (t, ω) ∈ R× Ω,

ϕ(t, s, ω)A(θsω) = A(θtω), ∀s ≤ t;

(iii) A is D-attracting, that is, for each (t, ω,D) ∈ R× Ω×D,

lim
s→−∞

distX(ϕ(t, s, θ−tω)D(θs−tω),A(ω)) = 0. (2.1)
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2.2. Notations and hypotheses

Denote by L2(O) := (L2(O))3,H1
0(O) := (H1

0 (O))3, C∞0 (O) := (C∞0 (O))3 and

V = {u ∈ C∞0 (O) : ∇ · u = 0 in O}.

Let H and V be the closure of V in L2(O) and H1
0(O), respectively. Denote by | · |, ‖ · ‖ and ‖ · ‖∗ the norms

in H,V and V ∗, respectively, where V ∗ is the dual space of V . Let (·, ·) and ((·, ·)) be the scalar products in H
and V , respectively. For all u, v ∈ H1

0(O), we set

((u, v)) = (u, v) + α(∇u,∇v) =

3∑
j=1

∫
O
uj(x)vj(x)dx+ α

3∑
i,j=1

∫
O

∂uj
∂xi

∂vj
∂xi

dx. (2.2)

We now consider the Stokes operator A, defined by

Aw = −P(∆w), ∀ w ∈ D(A) = H2(O) ∩ V,

where H2(O) = (H2(O))3, P is the Leray operator from L2(O) onto H. We deduce

(Au, v) = ((u, v)), ‖u‖H2(O) ≤ C1|Au|, ∀u ∈ D(A), v ∈ V, (2.3)

where C1 is a positive constant. In particular, D(A) is a Hilbert space.
Denote by ‖ · ‖(D(A))∗ the norm in (D(A))∗, where (D(A))∗ is the dual space of D(A). Identifying V with

its dual space V ∗, in view of D(A) ⊂ V ∗, we identify v ∈ D(A) with the element hv ∈ V ∗, defined by

hv(u) = ((v, u)), u ∈ V.

Let 〈·, ·〉 be the duality product between (D(A))∗ and D(A). We then define a continuous linear operator

Ã ∈ L(D(A), (D(A))∗) defined dy

〈Ãu, v〉 = ν(Au, v) + να(Au,Av), ∀ u, v ∈ D(A). (2.4)

Let v = u, we infer from (2.4) that

2〈Ãu, u〉 = 2ν(Au, u) + 2να(Au,Au) ≥ 2να‖u‖2D(A) =: α̃‖u‖2D(A). (2.5)

For all k ≥ 1, let ξk, λk be the eigenvectors and eigenvalues of the Stokes operator A, respectively, by the
definition of operator Ã and (2.2), we obtain

〈Ãξk, v〉 = νλk((ξk, v)), (2.6)

which implies that, the eigenvalues of the operator Ã are given by λ̃k := νλk.
Due to the properties of Ã, we define ((u, v))Ã = 〈Ãu, v〉, for all u, v ∈ D(A), it is clear that ((·, ·))Ã is the

inner product in D(A), and its norm is equivalent to ‖ · ‖D(A). Without loss of generality, we can assume that
for all u, v ∈ D(A),

(u, v)D(A) = 〈Ãu, v〉, and so λ̃1‖u‖2 ≤ ‖u‖2D(A), ∀u, v ∈ D(A). (2.7)

Denote by D(Ã) = {u ∈ D(A) : Ãu ∈ V } the domain of the operator Ã, it is a subspace of D(A) with the

inner product (u, v)D(Ã) = ((Ãu, Ãv)), for all u, v ∈ D(Ã) , and norm |u|D(Ã) = ‖Ãu‖. Note that D(Ã) is a

Hilbert space, and the injection D(Ã) ⊂ D(A) is continuous and

λ̃1‖u‖2D(A) ≤ |u|
2
D(Ã)

, ∀u ∈ D(Ã). (2.8)

We then consider the following trilinear operator:

b#(u, v, w) = 〈(u · ∇)v, w〉−1 + 〈∇u∗ · v, w〉−1, ∀ (u, v, w) ∈ D(A)× L2(O)×H1
0(O),

where 〈·, ·〉−1 denotes the duality product between H−1(O) and H1
0(O) or between H−1(O) and H1

0 (O). Thanks
to [15, Proposition 2.2], we find

b#(u, v, w) = −b#(w, v, u), ∀ (u, v, w) ∈ D(A)× L2(O)×D(A), (2.9)
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which implies that b#(u, v, u) = 0,∀ (u, v) ∈ D(A)× L2(O).

Define a bilinear mapping B̃ : D(A)×D(A)→ (D(A))∗, denoted by

〈B̃(u, v), w〉 = b#(u, v − α∆v, w), ∀ (u, v, w) ∈ D(A)×D(A)×D(A),

B̃(u) will be used to denote B̃(u, u) for all u ∈ D(A). By the definition and properties of b#, it follows that
there exists a positive constant c̃ := c̃(O) such that for all (u, v, w) ∈ D(A)×D(A)×D(A),

〈B̃(u, v), u〉 = 0, 〈B̃(u), v〉 = −〈B̃(v, u), u〉; (2.10)

‖B̃(u, v)‖(D(A))∗ ≤ c̃‖u‖‖v‖D(A); (2.11)

|〈B̃(u, v), w〉| ≤ c̃‖u‖D(A)‖v‖D(A)‖w‖. (2.12)

Taking the state space X = Cγ(V ), which is a Banach space with sup norm, that is,

‖u‖Cγ(V ) = sup
r∈(−∞,0]

eγr‖u(r)‖.

In order to analyze our problem, we need to establish some suitable assumptions.
We first suppose that there exists a constant µ such that

0 < µ < 1 and (1− µ)λ̃1 < γ. (2.13)

Let a := 2(1− µ)λ̃1, then 0 < a < 2γ.
Recall that P(Cγ(V )) is the family of all subsets of Cγ(V ). Denote by Da the tempered universe of nonempty

random subsets D = {D(ω) : ω ∈ Ω} ⊆ P(Cγ(V )), that is, D ∈ Da if and only if,

lim
s→−∞

ea(s−t)‖D(θs−tω)‖2Cγ(V ) = 0,∀ (t, ω) ∈ R× Ω. (2.14)

We then assume that the non-delayed external force f and the additive noise κ satisfy:

f and κ ∈ H−1(O). (2.15)

Then, we require some assumptions on the delay term g.
Let g : Cγ(V )→ H−1(O) satisfy the following conditions:
(G1) For any η ∈ Cγ(V ), g(η) is measurable;
(G2) g(0) = 0;
(G3) There exists a constant Lg > 0 such that for all η, ζ ∈ Cγ(V ),

‖g(η)− g(ζ)‖H−1(O) ≤ Lg‖η − ζ‖Cγ(V );

(G4) There exists a constant Cg > 0 such that, for all s ∈ R, t ≥ s and u, v ∈ C0((−∞, t);V ),∫ t

s

‖g(ur)− g(vr)‖2H−1(O)dr ≤ C
2
g

∫ t

−∞
‖u(r)− v(r)‖2dr;

(G5) There exists a constant C̃g > 0 such that, for all s ∈ R, t ≥ s, all decreasing function $ ∈ C0([s, t]),∫ t

s

$(r)‖g(ur)− g(vr)‖2H−1(O)dr ≤ C̃
2
g

∫ t

s

$(r)‖u(r)− v(r)‖2dr;

(G6) If the sequence {vm} converges weakly to v in L2(−∞, T ;D(A)), weakly star in L∞(s, T ;V ) and
strongly in L2(−∞, T ;V ), then g(vm· ) converges weakly to g(v·) in L2(s, T ;H−1(O)), ∀ T > s.

Next, let us define f̃ , κ̃ ∈ V and g̃ : Cγ(V )→ V as

((f̃ , w)) = 〈f, w〉−1, ∀ w ∈ V, (2.16)

((κ̃, w)) = 〈κ,w〉−1, ∀ w ∈ V, (2.17)

((g̃(η), w)) = 〈g(η), w〉−1, ∀ (η, w) ∈ Cγ(V )× V. (2.18)
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Besides, g̃ : Cγ(V )→ V also satisfies the following conditions:
(H1) For any η ∈ Cγ(V ), g̃(η) is measurable;
(H2) g̃(0) = 0;
(H3) Setting Lg̃ = Lg, we obtain, for all η, ζ ∈ Cγ(V ),

‖g̃(η)− g̃(ζ)‖ ≤ Lg̃‖η − ζ‖Cγ(V );

It follows from (H2) and (H3) that, for all η ∈ Cγ(V ),

‖g̃(η)‖ ≤ Lg̃‖η‖Cγ(V ). (2.19)

(H4) Letting Cg̃ = Cg, for all s ∈ R, t ≥ s and u, v ∈ C0((−∞, t);V ),∫ t

s

‖g̃(ur)− g̃(vr)‖2dr ≤ C2
g̃

∫ t

−∞
‖u(r)− v(r)‖2dr;

(H5) Taking C̃g̃ = C̃g, for all s ∈ R, t ≥ s and all decreasing function $ ∈ C0([s, t]),∫ t

s

$(r)‖g̃(ur)− g̃(vr)‖2dr ≤ C̃g̃
∫ t

s

$(r)‖u(r)− v(r)‖2dr;

(H6) If the sequence {vm} converges weakly to v in L2(−∞, T ;D(A)), weakly star in L∞(s, T ;V ) and
strongly in L2(−∞, T ;V ), then g̃(vm· ) converges weakly to g̃(v·) in L2(s, T ;V ), ∀ T > s.

3. Well-posedness of stochastic 3D LANS equations with infinite delay and additive noise

Based on the previous operators and assumptions, we focus on the stochastic dynamics and invariant mea-
sures of the following stochastic 3D LANS equations with infinite delay and additive noise:

du

dt
+ Ãu(t) + B̃(u(t)) = f̃ + g̃(ut) + κ̃

dW

dt
, ∀ t > s,

us = φ,
(3.1)

which is satisfied in (D(A))∗, a.s. for all t > s.
In order to define a random dynamical system for Eq. (3.1), we need to transform the stochastic equation into

a random system. As usual, let z(θtω) = −
∫ 0

−∞ es(θtω)(s)ds with t ∈ R, which is the solution of the stochastic

Ornstein-Uhlenbeck equation dz + zdt = dW (t). Thanks to [1], we obtain that there exists a θt-invariant set Ω̃
of full measure such that z(θtω) is continuous with respect to t, and the following results hold:

lim
t→±∞

z(θtw)

t
= lim
t→±∞

1

t

∫ 0

−t
z(θsw)ds = 0, (3.2)

lim
t→±∞

1

t

∫ 0

−t
|z(θsw)|mds =

Γ( 1+m
2 )
√
π

,∀m > 0, (3.3)

for all ω ∈ Ω̃, where Γ denotes the Gamma function. Note that t → z(θtω) is continuous and tempered for all

ω ∈ Ω̃, where Ω̃ is a θ-invariant full-measure subspace of Ω but we do not distinguish them below. Therefore,
it follows from [1, Proposition 4.3.3] that there exists a tempered function r(ω) > 0 such that for P-a.e. ω ∈ Ω,

|z(ω)|2 ≤ r(ω), (3.4)

where r(ω) satisfies, for P-a.e. ω ∈ Ω,

r(θtω) ≤ e a2 |t|r(ω), t ∈ R. (3.5)

Combining (3.4) and (3.5), for P-a.e. ω ∈ Ω,

|z(θtω)|2 ≤ e a2 |t|r(ω), t ∈ R. (3.6)
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Let

v(t, s, ω, ψ) = u(t, s, ω, φ)− κ̃z(θtω), t ≥ s, (3.7)

then by (3.1) and (3.7), we deduce
dv

dt
+ Ãv(t) + B̃(v(t)) = −z(θtω)Ãκ̃− z(θtω)B̃(κ̃)

+ f̃ + g̃(ut) + z(θtω)κ̃, ∀ t > s,

vs = ψ,

(3.8)

where ψ(ι) = φ(ι)− κ̃z(θι+sω) with ι ≤ 0.

Definition 3.1. Suppose that ψ ∈ Cγ(V ). A stochastic process v defined on R is called a solution to system
(3.8) if

v ∈ L2(s, T ;D(A)) ∩ L∞(s, T ;V ), ∀ T > s,

vs = ψ and the system (3.8) is satisfied in (D(A))∗, that is, for almost all ω ∈ Ω,

((v(t), w)) +

∫ t

s

〈Ãv(r) + B̃(v(r)), w〉dr +

∫ t

s

z(θrω)〈Ãκ̃+ B̃(κ̃), w〉dr

= ((ψ(0), w)) +

∫ t

s

((
f̃ + g̃(ur), w

))
dr +

∫ t

s

z(θrω)((κ̃, w))dr, (3.9)

for all t ≥ s and w ∈ D(A).

Theorem 3.2. Suppose (H1)-(H6) and (2.16)-(2.18) hold. For each (ω, s, ψ) ∈ Ω × R × Cγ(V ), the system
(3.8) has a unique weak solution v(·, s, ω, ψ) in the sense of Definition 3.1 defined on [s,+∞).

Proof. Using a Galerkin method and a priori estimates given in [12], one can similarly prove the existence of
weak solutions to Eq. (3.8), while, the uniqueness follows from a standard Gronwall lemma.

The following result shows that the solution to system (3.8) is continuous with respect to initial data.

Theorem 3.3. Suppose that (H1)-(H6) and (2.16)-(2.18) are satisfied. Let ψ, ψ̃ ∈ Cγ(V ) be two initial values

to problem (3.8). Let v(·) = v(·, s, ω, ψ) and ṽ(·) = ṽ(·, s, ω, ψ̃) be two solutions to system (3.8) at the initial
time s, respectively. Then, we obtain, for all ι ≥ s,

max
r∈[s,ι]

‖v(r, s, ω, ψ)− ṽ(r, s, ω, ψ̃)‖2

≤
(

1 +
L2
g̃

2γ

)
‖ψ − ψ̃‖2Cγ(V ) exp

(∫ ι

s

( c̃2
2
‖v(σ)‖2D(A) + 1 + L2

g̃

)
dσ

)
. (3.10)

Proof. Setting u(ι) = u(ι, s, ω, φ) = v(ι) + κ̃z(θιω), ũ(ι) = ũ(ι, s, ω, φ̃) = ṽ(ι) + κ̃z(θιω), we have v(ι) − ṽ(ι) =
u(ι)− ũ(ι) and ‖vι − ṽι‖2Cγ(V ) = ‖uι − ũι‖2Cγ(V ). Then it follows from (3.8) that

d

dι
‖v(ι)− ṽ(ι)‖2 = −2〈Ã(v(ι)− ṽ(ι)) + B̃(v)− B̃(ṽ), v(ι)− ṽ(ι)〉+ 2((g̃(uι)− g̃(ũι), v(ι)− ṽ(ι))), (3.11)

where ι ≥ s. By (2.12), (H3) and the fact that 〈B̃(u)− B̃(v), u− v〉 = 〈B̃(v, u− v), u− v〉 for all u, v ∈ D(A),
we easily obtain

d

dι
‖v(ι)− ṽ(ι)‖2 =

( c̃2
2
‖v‖2D(A) + 1

)
‖v(ι)− ṽ(ι)‖2 + L2

g̃‖vι − ṽι‖2Cγ(V ). (3.12)

Note that for σ ∈ [s, ι], we find

‖vσ − ṽσ‖2Cγ(V ) ≤ max
{

sup
ϑ≤s−σ

e2γϑ‖v(σ + ϑ)− ṽ(σ + ϑ)‖2, sup
s−σ≤ϑ≤0

e2γϑ‖v(σ + ϑ)− ṽ(σ + ϑ)‖2
}
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≤ max
{

sup
ϑ≤s−σ

e2γϑ‖ψ(σ + ϑ− s)− ψ̃(σ + ϑ− s)‖2, sup
s−σ≤ϑ≤0

e2γϑ‖v(σ + ϑ)− ṽ(σ + ϑ)‖2
}

≤ max

{
sup
ϑ≤0

e2γ(ϑ−σ+s)‖ψ(ϑ)− ψ̃(ϑ)‖2, sup
s≤ϑ≤σ

‖v(ϑ)− ṽ(ϑ)‖2
}

≤ max
{
e2γ(s−σ)‖ψ − ψ̃‖2Cγ(V ), max

s≤ϑ≤σ
‖v(ϑ)− ṽ(ϑ)‖2

}
. (3.13)

Combining (3.12) and (3.13), we have

‖v(ι)− ṽ(ι)‖2 ≤ ‖ψ(0)− ψ̃(0)‖2 +

∫ ι

s

( c̃2
2
‖v(σ)‖2D(A) + 1

)
‖v(σ)− ṽ(σ)‖2dσ

+ L2
g̃‖ψ − ψ̃‖2Cγ(V )

∫ ι

s

e2γ(s−σ)dσ + L2
g̃

∫ ι

s

max
s≤ϑ≤σ

‖v(ϑ)− ṽ(ϑ)‖2dσ. (3.14)

Taking supremum of (3.14),

max
r∈[s,ι]

‖v(r, s, ω, ψ)− ṽ(r, s, ω, ψ̃)‖2

≤ ‖ψ(0)− ψ̃(0)‖2 +

∫ ι

s

( c̃2
2
‖v(σ)‖2D(A) + 1

)
‖v(σ)− ṽ(σ)‖2dσ

+ L2
g̃‖ψ − ψ̃‖2Cγ(V )

∫ ι

s

e2γ(s−σ)dσ + L2
g̃

∫ ι

s

max
s≤ϑ≤σ

‖v(ϑ)− ṽ(ϑ)‖2dσ (3.15)

≤
(

1 +
L2
g̃

2γ

)
‖ψ − ψ̃‖2Cγ(V ) +

∫ ι

s

( c̃2
2
‖v(σ)‖2D(A) + 1 + L2

g̃

)
max
s≤ϑ≤σ

‖v(ϑ)− ṽ(ϑ)‖2dσ,

which, together with the Gronwall inequality, yields (3.10) as desired.

Let v(t, s, ω, ψ) be the solution to system (3.8) with ψ(ι) = φ(ι)− κ̃z(θι+sω), where ι ≤ 0, and s is the initial
time. Then u(t, s, ω, φ) = v(t, s, ω, ψ) + κ̃z(θtω) is the solution to Eq. (3.1) corresponding to the initial value
φ. Next, we can define the family of operators {ϕ(t, s, ω)}t≥s,ω∈Ω by

ϕ(t, s, ω)φ = ut(·, s, ω, φ)

= vt(·, s, ω, ψ) + κ̃z(θt+·ω).

By Theorems 3.2 and 3.3, one can prove the above mapping is a continuous random dynamical system over
the measurable dynamical system (Ω,F ,P; {θt}t∈R) with state space Cγ(V ) by using the same method in [20].
Moreover, for P-a.s. ω ∈ Ω,

ϕ(t, s, ω)φ = ϕ(t− s, 0, θsω)φ, ∀ s < t, φ ∈ Cγ(V ).

4. Existence of global random attractors in Cγ(V )

In this section, we first obtain uniform estimates on the solutions of problem (3.8), we then prove that the
random dynamical system ϕ associated with problem (1.1) has a global Da-random absorbing set in Cγ(V ), and
further prove it is Da-asymptotically compact in Cγ(V ) via the Ascoli-Arzelà theorem. Finally, the existence
of global Da-random attractors for ϕ is proved.

4.1. Uniform estimates of solutions

In this section, we first obtain uniform estimates on the solutions of problem (3.8), we then prove that the
random dynamical system ϕ associated with problem (1.1) has a global Da-random absorbing set in Cγ(V ), and
further prove it is Da-asymptotically compact in Cγ(V ) via the Ascoli-Arzelà theorem. Finally, the existence
of global Da-random attractors for ϕ is proved.

Lemma 4.1. Let (H1)-(H6), (2.13) and (2.16)-(2.18), κ̃ ∈ D(Ã) and ψ ∈ Cγ(V ) hold. Then, for each (t, ω,D) ∈
R× Ω×Da and ψ ∈ D(θs−tω), there exists an s0 := s0(t, ω,D) < 0 such that for all s ≤ s0 + t,

‖vt(·, s, θ−tω, ψ)‖2Cγ(V ) ≤ R(ω), (4.1)

where R(ω) = M
(
1 + r(ω)

)
with the positive constant M being independent of t, s and ω.
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Proof. Let r ∈ R be fixed. Taking the inner product of the first equation in (3.8) with v(r) := v(r, s, ω, ψ), s ≤ r,
we obtain

d

dr
‖v‖2 + 2‖v‖2D(A) = −2z(θrω)〈Ãκ̃+ B̃(κ̃), v〉+ 2((f̃ + g̃(ur), v)) + 2z(θrω)((κ̃, v)). (4.2)

Consider µ, which is given by (2.13). Since κ̃ ∈ D(Ã) ↪→ D(A), (2.7) and (2.12), we deduce that, there exists a
positive constant c1 such that

2|z(θrω)〈Ãκ̃+ B̃(κ̃), v〉| ≤ 2|z(θrω)||〈Ãκ̃+ B̃(κ̃), v〉|

≤ 2|z(θrω)|(‖κ̃‖D(A)‖v‖D(A) + λ̃
− 1

2
1 c̃‖κ̃‖2D(A)‖v‖D(A))

≤ c1|z(θrω)|2 +
1

4
µ‖v‖2D(A). (4.3)

Thanks to (2.7) and (2.19), we find

2((f̃ + g̃(ur), v)) ≤ 2λ̃
− 1

2
1 (‖f̃‖+ ‖g̃(ur)‖)‖v‖D(A)

≤ c2‖f̃‖2 + c2‖g̃(ur)‖2 +
1

2
µ‖v‖2D(A)

≤ c2‖f̃‖2 + c3‖ur‖2Cγ(V ) +
1

2
µ‖v‖2D(A), (4.4)

where c2 = 4λ̃−1
1 µ−1, c3 = c2L

2
g̃. Since v(r, s, ω, ψ) = u(r, s, ω, φ)− κ̃z(θrω) with s ≤ r, we deduce

‖ur‖2Cγ(V ) = sup
ι≤0

e2γι‖u(r + ι)‖2

= sup
ι≤0

e2γι‖v(r + ι) + κ̃z(θr+ιω)‖2

≤ 2‖vr‖2Cγ(V ) + 2‖κ̃‖2 sup
ι≤0

e2γι|z(θr+ιω)|2. (4.5)

By (2.7), we obtain

2|z(θrω)||((κ̃, v))| ≤ 2λ̃
− 1

2
1 |z(θrω)|‖κ̃‖‖v‖D(A)

≤ c4|z(θrω)|2 +
1

4
µ‖v‖2D(A), (4.6)

where c4 = c2‖κ̃‖2 <∞ on account of κ̃ ∈ D(Ã) ↪→ V . Substituting (4.3)-(4.6) into (4.2), we have

d

dr
‖v‖2 + (2− µ)‖v‖2D(A) ≤ c2‖f̃‖

2 + 2c3‖vr‖2Cγ(V ) + c5 sup
ι≤0

e2γι|z(θr+ιω)|2,

where c5 = c1 + 2c3‖κ̃‖2 + c4. By a = 2(1− µ)λ̃1 ∈ (0, 2γ) and (2.7), we can rewrite the above inequality as

d

dr
‖v‖2 + a‖v‖2 + µ‖v‖2D(A) ≤ c2‖f̃‖

2 + 2c3‖vr‖2Cγ(V ) + c5 sup
ι≤0

e2γι|z(θr+ιω)|2. (4.7)

Multiplying (4.7) by ear and integrating the inequality on [s, r], we obtain

‖v(r)‖2 + µ

∫ r

s

ea(σ−r)‖v(σ, s, ω, ψ)‖2D(A)dσ ≤ e
a(s−r)‖ψ‖2Cγ(V ) + c2a

−1‖f̃‖2 + 2c3

∫ r

s

ea(σ−r)‖vσ‖2Cγ(V )dσ

+ c5

∫ r

s

ea(σ−r) sup
ι≤0

e2γι|z(θσ+ιω)|2dσ. (4.8)

For all t ∈ R with t ≥ s, we replace ω by θ−tω in (4.8), then by (3.6),

‖v(r, s, θ−tω, ψ)‖2 + µ

∫ r

s

ea(σ−r)‖v(σ, s, θ−tω, ψ)‖2D(A)dσ
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≤ ea(s−r)‖ψ‖2Cγ(V ) + c2a
−1‖f̃‖2 + 2c3

∫ r

s

ea(σ−r)‖vσ‖2Cγ(V )dσ + 2c5a
−1r(ω)e

a
2 |r−t|. (4.9)

By (4.9) and 0 < a < 2γ, we imply that, for all s ≤ r,

‖vr‖2Cγ(V ) ≤ max
{

sup
ϑ≤s−r

e2γϑ‖v(r + ϑ)‖2, sup
s−r≤ϑ≤0

e2γϑ‖v(r + ϑ)‖2
}

≤ max
{

sup
ϑ≤s−r

e2γϑ‖ψ(r + ϑ− s)‖2, sup
s−r≤ϑ≤0

e2γϑ‖v(r + ϑ)‖2
}

≤ max

{
sup
ϑ≤0

e2γ(ϑ+s−r)‖ψ(ϑ)‖2, sup
s−r≤ϑ≤0

e2γϑ

(
ea(s−r−ϑ)‖ψ‖2Cγ(V )

+ c2a
−1‖f̃‖2 + 2c3

∫ r+ϑ

s

ea(σ−r−ϑ)‖vσ‖2Cγ(V )dσ + 2c5a
−1r(ω)e

a
2 |r+ϑ−t|

)}

≤ 2ea(s−r)‖ψ‖2Cγ(V ) + c2a
−1‖f̃‖2 + 2c3

∫ r

s

ea(σ−r)‖vσ‖2Cγ(V )dσ + 2c5a
−1r(ω)e

a
2 |r−t|. (4.10)

Since s ≤ r, (4.10) can be rewritten as

‖vr‖2Cγ(V ) ≤ 2‖ψ‖2Cγ(V ) + c2a
−1‖f̃‖2 + 2c3

∫ r

s

ea(σ−r)‖vσ‖2Cγ(V )dσ + 2c5a
−1r(ω)e

a
2 |r−t|

=: β(r) + 2c3

∫ r

s

ea(σ−r)‖vσ‖2Cγ(V )dσ, (4.11)

where β(r) = 2‖ψ‖2Cγ(V ) + c2a
−1‖f̃‖2 + 2c5a

−1r(ω)e
a
2 |r−t|. Applying the Gronwall lemma to (4.11), we deduce,

for all s ≤ r,

‖vr(·, s, θ−tω, ψ)‖2Cγ(V ) ≤ β(r) +

∫ r

s

β(σ)ea(σ−r)e
∫ r
σ
ea(ϑ−r)dϑdσ

≤M(1 + e
a
2 |r−t|r(ω)), (4.12)

where the positive constant M is independent of t, s and ω. Letting r = t in (4.10), by ψ ∈ D(θs−tω), then
there exists an s0 = s0(ω,D) < 0 such that for all s ≤ s0 + t, we derive

‖vt‖2Cγ(V ) ≤ 2 + c2a
−1‖f̃‖2 + 2c3

∫ t

s

ea(σ−t)‖vσ‖2Cγ(V )dσ + 2c5a
−1r(ω). (4.13)

Using the Gronwall lemma to (4.13) or taking r = t in (4.12), we both imply

‖vt(·, s, θ−tω, ψ)‖2Cγ(V ) ≤ R(ω), (4.14)

where R(ω) is the same number as in (4.1). This proof is concluded.

4.2. Existence of global random absorbing sets

We now prove the existence of a global Da-random absorbing set in Cγ(V )

Lemma 4.2. Suppose that (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) are satisfied. Let ϕ be the random
dynamical system generated by problem (1.1). For each (t, ω,D) ∈ R× Ω×Da and φ ∈ D(θs−tω), there exists
an s0 := s0(t, ω,D) < 0 such that for all s ≤ s0 + t,

‖ut(·, s, θ−tω, φ)‖2Cγ(V ) ≤ R(ω), (4.15)

where we recall that R(ω) = M
(
1+r(ω)

)
with the positive constant M being independent of t, s and ω. Moreover,

the random dynamical system ϕ has a global Da-random absorbing set in Cγ(V ).

Proof. Given D = {D(ω) : ω ∈ Ω} ∈ Da, we define

D̃(ω) = {ξ ∈ Cγ(V ) : ‖ξ‖2Cγ(V ) ≤ 2‖D(ω)‖2Cγ(V ) + 2‖κ̃‖2r(ω)}. (4.16)
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Suppose that D̃ is a family corresponding to D which consists of the sets defined by (4.16), that is,

D̃ = {D̃(ω) : D̃(ω) satisfies (4.16), ω ∈ Ω}. (4.17)

Since D ∈ Da, we infer from (3.4), for all s ≤ t,

ea(s−t)‖D̃(θs−tω)‖2Cγ(V ) ≤ 2ea(s−t)‖D(θs−tω)‖2Cγ(V ) + 2ea(s−t)‖κ̃‖2Cγ(V )e
a
2 |s−t|r(ω)

≤ 2ea(s−t)‖D(θs−tω)‖2Cγ(V ) + 2e
a
2 (s−t)‖κ̃‖2Cγ(V )r(ω)→ 0, as s→ −∞.

This shows D̃ ∈ Da. Since ψ(ι) = φ(ι)− κ̃z(θι+s−tω) with ι ≤ 0, it follows from (3.4), (3.5), φ ∈ D(θs−tω) and
0 < a < 2γ that

‖ψ‖2Cγ(V ) = sup
ι≤0

e2γι‖ψ(ι)‖2

= sup
ι≤0

e2γι‖φ(ι)− κ̃z(θι+s−tω)‖2

≤ 2 sup
ι≤0

e2γι‖φ(ι)‖+ 2‖κ̃‖2 sup
ι≤0

e2γι|z(θι+s−tω)|2

≤ 2‖φ‖Cγ(V ) + 2‖κ̃‖2 sup
ι≤0

e2γιe
a
2 |ι|r(θs−tω)

≤ 2‖D(θs−tω)‖2Cγ(V ) + 2‖κ̃‖2r(θs−tω),

which, together with (4.16), yields ψ ∈ D̃(θs−tω). Since D̃ is tempered, it follows from (4.1) in Lemma 4.1 that,
there exists an s0 := s0(t, ω,D) < 0 such that for all s ≤ s0 + t,

‖vt(·, s, θ−tω, ψ)‖2Cγ(V ) ≤ R(ω). (4.18)

Thanks to (3.6), (3.7), 0 < a < 2γ and (4.18), we deduce

‖ut‖2Cγ(V ) = sup
ι≤0

e2γι‖u(t+ ι, s, θ−tω, φ)‖2

= sup
ι≤0

e2γι‖v(t+ ι, s, θ−tω, ψ) + κ̃z(θιω)‖2

≤ 2‖vt‖2Cγ(V ) + 2‖κ̃‖2 sup
ι≤0

e2γι|z(θιω)|2

≤ 2‖vt‖2Cγ(V ) + 2‖κ̃‖2r(ω)

≤ R(ω).

This implies (4.15) as desired. We then define the family K = {K(ω) : ω ∈ Ω},

K(ω) = {ζ ∈ Cγ(V ) : ‖ζ‖2Cγ(V ) ≤ R(ω)}. (4.19)

Then K is a random absorbing set for ϕ in Cγ(V ).
Finally, it suffices to prove that K is tempered, that is, K ∈ Da. Indeed, by (3.5), we deduce, for each t ∈ R,

ea(s−t)R(θs−tω) = Mea(s−t)(1 + r(θs−tω)
)

≤Mea(s−t)(1 + e
a
2 |s−t|r(ω)

)
→ 0 as s→ −∞, (4.20)

which implies

ea(s−t)‖K(θs−tω)‖2Cγ(V ) ≤ e
a(s−t)R(θs−tω)→ 0 as s→ −∞.

This shows K ∈ Da as desired. Therefore, the proof is complete.

4.3. Asymptotic compactness of solutions in Cγ(V )

In this subsection, we establish the Da-asymptotic compactness of solutions to problem (1.1) in Cγ(V ) by
using the Ascoli-Arzelà theorem. To this end, we require the asymptotic compactness of solutions to problem
(3.8) in Cγ(V ) as stated below.

Recall that the uniform Gronwall lemma as in [38, Lemma 1.1] which is the key to prove the asymptotic
compactness of solutions.
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Lemma 4.3. Let s0 ∈ R and T > 0, assume that y, h1, h2 are three nonnegative, locally integrable function on
R such that y′ is locally integrable on R and

dy

dq
≤ h1y + h2, for q ≥ s0 − T. (4.21)

In addition, ∫ s0

s0−T
h1(σ)dσ ≤ b1,

∫ s0

s0−T
h2(σ)dσ ≤ b2,

∫ s0

s0−T
y(σ)dσ ≤ b3, (4.22)

where b1, b2, b3 are positive constants, then for all r ∈ [s0 − T, s0],

y(r) ≤ eb1
(
b2 +

b3
T

)
. (4.23)

Proof. Suppose that s0 − T ≤ q ≤ r ≤ s0. Multiplying (4.21) by exp
( ∫ s0

q
h1(σ)dσ

)
, we deduce

d

dq

(
y(q)exp

(∫ s0

q

h1(σ)dσ
))
≤ h2(q)exp

(∫ s0

q

h1(σ)dσ
)
, ∀ q ∈ [s0 − T, s0]. (4.24)

Integrating (4.24) from q ∈ [s0 − T, r] with r ∈ [q, s0] to r, we infer from (4.22) that

y(r)exp
( ∫ s0

r

h1(σ)dσ
)
≤ y(q)exp

(∫ s0

q

h1(σ)dσ
)

+

∫ r

q

h2(q̂)exp
(∫ s0

q̂

h1(σ)dσ
)
dq̂

≤ y(q)exp
(∫ s0

q

h1(σ)dσ
)

+ exp
(∫ s0

q

h1(σ)dσ
)∫ r

q

h2(q̂)dq̂,

which implies

y(r) ≤ y(q)exp
(∫ r

q

h1(σ)dσ
)

+ exp
(∫ r

q

h1(σ)dσ
)∫ r

q

h2(q̂)dq̂

≤
(
y(q) +

∫ s0

s0−T
h2(q̂)dq̂

)
exp
(∫ s0

s0−T
h1(σ)dσ

)
,

Integration of the last inequality, with respect to q between s0 − T and r, we imply, for all r ∈ [q, s0] with
q ∈ [s0 − T, s0],

y(r) ≤ eb1
(
b2 +

b3
T

)
. (4.25)

Since q ∈ R is arbitrary, then for all r ∈ [s0 − T, s0], (4.25) holds. The proof is concluded.

Lemma 4.4. Let (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) hold. For each (t, s0, ω) ∈ R×R×Ω, assume
that {sn}n≥1 is a decreasing sequence satisfying sn → −∞ as n→ +∞ and sn ≤ s0. Besides, ψn is a sequence
of functions such that ψn ∈ K(θsn−tω) for each positive integer n. Denote by v(n)(·) = v(·, sn, θ−tω, ψn) the

solutions to system (3.8) corresponding to the initial data ψn at the initial time sn. Then the sequence {v(n)
s0 (·)}

has a convergent subsequence in Cγ(V ).

Proof. Let ω ∈ Ω be fixed, and take arbitrary sequence sn → −∞ such that sn ≤ s0 for some fixed s0 ∈ R.
Taking an arbitrary positive number T . We infer from (4.12) in Lemma 4.1 that there exists n0 ∈ Z+ satisfying
sn ≤ s0 − T for all n ≥ n0, and

‖v(n)
r ‖2Cγ(V ) ≤M

(
1 + sup

r,t∈[s0−T ,s0]

e
a
2 |r−t|r(ω)

)
≤ R(ω), ∀ r, t ∈ [s0 − T , s0], ∀ n ≥ n0, (4.26)

where we recall that R(ω) = M
(
1 + r(ω)

)
with the positive constant M being independent of t, T , s, s0, n

and ω.
For the proof of the lemma, we will proceed in the following three steps.
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Step 1: We show that {v(n)(r)}n≥n0,ω∈Ω is pre-compact in V for all r, t ∈ [s0 − T , s0]. Due to the
compactness of the embedding D(A) ↪→ V , we need to prove that {v(n)(·)}n≥n0,ω∈Ω is bounded in L∞(s0 −
T , s0;D(A)). More precisely, we claim that, for all r, t ∈ [s0 − T , s0], the following two inequalities hold:

‖v(n)(r, sn, θ−tω, ψn)‖2D(A) ≤ e
R(ω), r, t ∈ [s0 − T , s0], (4.27)

and ∫ s0

s0−T
‖Ãv(n)(σ, sn, θ−tω, ψn)‖2dσ ≤ eR(ω). (4.28)

Now we replace r by s0 − T in (4.26), then for every t ∈ [s0 − T , s0],

‖v(n)(s0 − T , sn, θ−tω, ψn)‖2 ≤M(1 + e
a
2 |s0−T−t|r(ω))

≤ R(ω). (4.29)

Thanks to (4.7) and (4.29), we deduce that, for r ≥ s0 − T ,

‖v(n)(r, sn, θ−tω, ψn)‖2 + µ

∫ r

s0−T
ea(σ−r)‖v(n)(σ)‖2D(A)dσ

≤ ea(s0−T−r)‖v(n)(s0 − T , sn, θ−tω, ψn)‖2 + c‖f̃‖2 + c

∫ r

s0−T
ea(σ−r)‖v(n)

σ ‖2Cγ(V )dσ

+ c

∫ r

s0−T
ea(σ−r) sup

ι≤0
e2γι|z(θσ+ι−tω)|2dσ. (4.30)

Dropping the first term on the left-hand side of (4.30), then replacing r by s0, we infer from (4.26), (4.29) and
(3.6) that, for t ∈ [s0 − T , s0],

µ

∫ s0

s0−T
ea(σ−s0)‖v(n)(σ)‖2D(A)dσ ≤ e

−aT ‖v(n)(s0 − T , sn, θ−tω, ψn)‖2 + c‖f̃‖2 + c

∫ s0

s0−T
ea(σ−s0)‖v(n)

σ ‖2Cγ(V )dσ

+ c

∫ s0

s0−T
ea(σ−s0) sup

ι≤0
e2γι|z(θσ+ι−tω)|2dσ

≤ R(ω) + c‖f̃‖2 + cTR(ω) + cr(ω)

∫ s0

s0−T
ea(σ−s0)e

a
2 |σ−t|dσ

≤ R(ω). (4.31)

Notice that ea(σ−s0) ≥ e−aT for σ ∈ [s0 − T , s0], the above equality implies, for all sn ≤ t− T ,∫ s0

s0−T
‖v(n)(σ, sn, θ−tω, ψn)‖2D(A)dσ ≤ e

aTµ−1R(ω). (4.32)

Taking the inner product of the first equation in (3.8) with Ãv(n)(r) := Ãv(n)(r, sn, θ−tω, ψn), we obtain, for all
r, t ∈ [s0 − T , s0],

d

dr
‖v(n)(r)‖2D(A) + 2‖Ãv(n)(r)‖2 + 2〈B̃(v(n)(r)), Ãv(n)(r)〉

= −2z(θr−tω)((Ãκ̃, Ãv(n)(r)))− 2z(θr−tω)〈B̃(κ̃), Ãv(n)(r)〉

+ 2((f̃ + g̃(u(n)
r ), Ãv(n)(r))) + 2z(θr−tω)((κ̃, Ãv(n)(r))). (4.33)

Thanks to (2.12),

−2〈B̃(v(n)(r)), Ãv(n)(r)〉 ≤ 2c̃‖v(n)(r)‖2D(A)‖Ãv
(n)(r)‖

≤ 1

4
µ‖Ãv(n)(r)‖2 + c‖v(n)(r)‖4D(A). (4.34)

By κ̃ ∈ D(Ã) and (2.12), we have

− 2z(θr−tω)((Ãκ̃, Ãv(n)(r)))− 2z(θr−tω)〈B̃(κ̃), Ãv(n)(r)〉
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≤ 2|z(θr−tω)|‖Ãκ̃‖‖Ãv(n)(r)‖+ 2c̃|z(θr−tω)|‖κ̃‖2D(A)‖Ãv
(n)(r)‖

≤ c|z(θr−tω)|2 +
1

4
µ‖Ãv(n)(r)‖2. (4.35)

Thanks to (3.6), (3.7) and the fact that 0 < a < 2γ, we deduce

2((f̃ + g̃(u(n)
r ), Ãv(n)(r))) ≤ 2(‖f̃‖+ ‖g̃(u(n)

r )‖)‖Ãv(n)(r)‖

≤ c‖f̃‖2 + c‖v(n)
r ‖2Cγ(V ) + c sup

ι≤0
e2γι|z(θr+ι−tω)|2 +

1

4
µ‖Ãv(n)(r)‖2. (4.36)

Note that κ̃ ∈ D(Ã), we have

2z(θr−tω)((κ̃, Ãv(n)(r))) ≤ 2|z(θr−tω)|‖κ̃‖‖Ãv(n)(r)‖

≤ 4µ−1‖κ̃‖2|z(θr−tω)|2 +
1

4
µ‖Ãv(n)(r)‖2. (4.37)

It follows from (4.33)-(4.37) that

d

dr
‖v(n)(r)‖2D(A) + (2− µ)‖Ãv(n)(r)‖2 ≤ c‖f̃‖2 + c‖v(n)

r ‖2Cγ(V ) + c sup
ι≤0

e2γι|z(θr+ι−tω)|2

+ c‖v(n)(r)‖2D(A)‖v
(n)(r)‖2D(A).

Thanks to (3.6) and (4.26), it yields

d

dr
‖v(n)(r)‖2D(A) + (2− µ)‖Ãv(n)(r)‖2

≤ c‖f̃‖2 + c‖v(n)
r ‖2Cγ(V ) + c sup

ι≤0
e2γι|z(θr+ι−tω)|2 + c‖v(n)(r)‖2D(A)‖v

(n)(r)‖2D(A)

≤ c‖f̃‖2 +R(ω) + ce
a
2 |r−t|r(ω) + c‖v(n)(r)‖2D(A)‖v

(n)(r)‖2D(A)

≤ c‖f̃‖2 +R(ω) + ce
a
2 T r(ω) + c‖v(n)(r)‖2D(A)‖v

(n)(r)‖2D(A)

=: I(r) + c‖v(n)(r)‖2D(A)‖v
(n)(r)‖2D(A). (4.38)

By (4.32), we deduce, for all sn ≤ s0 − T ,

b1 := c

∫ s0

s0−T
‖v(n)(σ, sn, θ−tω, ψn)‖2D(A)dσ ≤ cb2,

where b2 = eaTµ−1R(ω). Note that I(r) in (4.38) satisfies∫ s0

s0−T
I(r)dr = T

(
c‖f̃‖2 +R(ω) + ce

a
2 T r(ω)

)
=: b3.

Applying the uniform Gronwall lemma introduced in Lemma 4.3 to (4.38), we have, for r, t ∈ [s0 − T , s0],

‖v(n)(r, sn, θ−tω, ψn)‖2D(A) ≤ e
b1
(
b3 +

b2

T

)
. (4.39)

This implies (4.27) as desired. It follows from (4.38) and (4.39) that, for all t ∈ [s0 − T , s0],∫ s0

q

‖Ãv(n)(r)‖2dr ≤
∫ s0

q

I(r)dr + c

∫ s0

q

‖v(n)(r)‖4D(A)dr + ‖v(n)(q, sn, θ−tω, ψn)‖2D(A)

≤ b3 + ce2b1
(
b3 +

b2

T

)2

+ eb1
(
b3 +

b2

T

)
, (4.40)

which shows (4.28) holds.
Step 2: We establish the equi-continuity of {v(n)(r)}n≥n0,ω∈Ω in V , for all r, t ∈ [s0 − T , s0], sn ≤ s0 − T

for all n ≥ n0 and ψn ∈ K(θsn−tω) by contradiction. Assume that the equi-continuity does not hold true, then
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there would exist a positive constant ε0 and two sequences {r(1)
n } and {r(2)

n } such that s0−T ≤ r(1)
n ≤ r(2)

n ≤ s0

and |r(1)
n − r(2)

n | ≤ 1
n ,

‖v(n)(r(1)
n )− v(n)(r(2)

n )‖ ≥ ε0. (4.41)

By Step 1, we obtain {v(n)(r)}n≥n0,ω∈Ω is pre-compact in V . So we can assume that r
(1)
n → r∗, v(n)(r∗)→ z∗

and v(n)(r
(i)
n )→ z(i) (i = 1, 2) in V as n→ +∞. Then it follows r

(2)
n → r∗ as n→ +∞ immediately. Moreover,

‖z(1) − z(2)‖ ≥ ε0. (4.42)

Let y(n)(r) := v(n)(r) − v(n)(r∗) = v(r, sn, θ−tω, ψn) − v(r∗, sn, θ−tω, ψn) with r, t ∈ [s0 − T , s0] for all n ≥ n0

and ω ∈ Ω, we infer from (3.8) that

d

dr
‖y(n)(r)‖2 + 2‖y(n)(r)‖2D(A) + 2〈Ãv(n)(r∗), y(n)(r)〉+ 2〈B̃(v(n)(r)), y(n)(r)〉

= −2z(θr−tω)〈Ãκ̃+ B̃(κ̃), y(n)(r)〉+ 2((f̃ + g̃(u(n)
r ), y(n)(r))) + 2z(θr−tω)((κ̃, y(n)(r))). (4.43)

The Young inequality implies

2|〈Ãv(n)(r∗), y(n)(r)〉| = 2|((v(n)(r∗), y(n)(r)))D(A)|

≤ 6‖v(n)(r∗)‖2D(A) +
1

6
‖y(n)(r)‖2D(A). (4.44)

By (2.7), (2.12) and (4.27), we obtain

2|〈B̃(v(n)(r)), y(n)(r)〉| ≤ 2λ̃
− 1

2
1 c̃‖v(n)(r)‖2D(A)‖y

(n)(r)‖D(A)

≤ 6λ̃−1
1 c̃2‖v(n)(r)‖4D(A) +

1

6
‖y(n)(r)‖2D(A)

≤ eR(ω) +
1

6
‖y(n)(r)‖2D(A). (4.45)

Taking into account (2.7), (2.12) and κ̃ ∈ D(Ã) ↪→ D(A), we have

2|z(θr−tω)〈Ãκ̃+ B̃(κ̃), y(n)(r)〉| ≤ 2|z(θr−tω)|(‖κ̃‖D(A)‖y(n)(r)‖D(A) + λ̃
− 1

2
1 c̃‖κ̃‖2D(A)‖y

(n)(r)‖D(A))

≤ c1|z(θr−tω)|2 +
1

6
‖y(n)(r)‖2D(A). (4.46)

Thanks to (3.6), we deduce, for all t ∈ [s0 − T , s0],

|z(θr−tω)|2 ≤ r(ω) sup
r,t∈[s0−T ,s0]

e
a
2 |r−t|

≤ e a2 T r(ω). (4.47)

Thanks to (2.7), (3.6), (3.7), 0 < a < 2γ and (4.26), we deduce

2((f̃ + g̃(u(n)
r ), y(n)(r)))

≤ 2λ̃
− 1

2
1 (‖f̃‖+ ‖g̃(u(n)

r )‖)‖y(n)(r)‖D(A)

≤ 6λ̃−1
1 ‖f̃‖2 + 6λ̃−1

1 ‖g̃(u(n)
r )‖2 +

1

3
‖y(n)(r)‖2D(A)

≤ 6λ̃−1
1 ‖f̃‖2 + 12λ̃−1

1 L2
g̃‖v(n)

r ‖2Cγ(V ) + 12λ̃−1
1 L2

g̃‖κ̃‖2 sup
ι≤0

e2γι|z(θr+ι−tω)|2 +
1

3
‖y(n)(r)‖2D(A)

≤ 6λ̃−1
1 ‖f̃‖2 +R(ω) + c2r(ω) +

1

3
‖y(n)(r)‖2D(A). (4.48)

By (2.7), (4.47) and κ̃ ∈ D(Ã), we obtain

2|z(θr−tω)||((κ̃, y(n)(r)))| ≤ 2λ̃
− 1

2
1 |z(θr−tω)|‖κ̃‖‖y(n)(r)‖D(A)
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≤ c3r(ω) +
1

6
‖y(n)(r)‖2D(A). (4.49)

Substituting (4.44)-(4.49) into (4.43),

d

dr
‖y(n)(r)‖2 + ‖y(n)(r)‖2D(A) ≤ 6‖v(n)(r∗)‖2D(A) + eR(ω) +R(ω). (4.50)

Integrating (4.50) from r∗ to r
(i)
n , we have

‖y(n)(r(i)
n )‖2 ≤

(
ρ̃0 + eR(ω) +R(ω)

)
|r(i)
n − r∗|, (4.51)

where ρ̃0 = 6 supr∈[s0−T ,s0]{‖v(n)(r)‖2D(A) : n ≥ n0, ω ∈ Ω} is bounded by eR(ω) due to (4.27). Letting n→ +∞
in (4.51), we derive

‖z(i) − z∗‖2 = lim
n→+∞

‖v(n)(r(i)
n )− v(n)(r∗)‖2 = 0, i = 1, 2,

which contradicts (4.42).
Step 3: We establish the asymptotic compactness of solutions to problem (3.8) in Cγ(V ).
Recall that v(n)(·) = v(·, sn, θ−tω, ψn). By steps 1-2, it follows from the Ascoli-Arzelà theorem that

{v(n)(·)}n∈N+,ω∈Ω is pre-compact in C([s0 − T , s0];V ) with each T > 0, and thus there exists a function

ξ(·) ∈ C([−T , 0];V ) and a subsequence of v
(n)
s0 (·) such that v

(n)
s0 (·)

∣∣
[−T ,0]

→ ξ(·) in C([−T , 0];V ). Repeating the

procedure for nT with n = 2, 3, · · · , and using the diagonal procedure (relabeled the same), we can obtain a

function ξ(·) ∈ C((−∞, 0];V ) satisfying v
(n)
s0 (·)

∣∣
[−T ,0]

→ ξ(·) in C([−T , 0];V ). Moreover, by the estimate (4.26),

we obtain

‖ξ(r)‖2 ≤ R(ω), ∀ r ∈ [−T , 0], for any T > 0. (4.52)

In the following, we prove that in fact v
(n)
s0 (·) → ξ(·) in Cγ(V ). It suffices to prove that, for every ε > 0, there

exists some integer nε > 0 such that

sup
r∈(−∞,0]

e2γr‖v(n)
s0 (r)− ξ(r)‖2 < ε, ∀ t ∈ [s0 − T , s0], n ≥ nε. (4.53)

Let Tε > 0 be fixed such that max{Me−2γTε ,Me−2γTεr(ω),Me−(2γ− a2 )Tεe
a
2 T r(ω)} < ε

8 . Taking nε ≥ n0 such

that e2γr‖v(n)
s0 (r) − ξ(r)‖2 < ε for all r ∈ [−Tε, 0], and sn ≤ s0 − Tε for all n ≥ nε. Therefore, to prove (4.53),

we only need to check the following conclusion holds:

sup
r∈(−∞,−Tε]

e2γr‖v(n)
s0 (r)− ξ(r)‖2 < ε, ∀ t ∈ [s0 − T , s0], n ≥ nε.

By (4.52) and the fact that 0 < a < 2γ, we find, for all m ≥ 0, and r ∈ [−(Tε +m+ 1),−(Tε +m)],

e2γr‖ξ(r)‖2 ≤Me−2γ(Tε+m)
(
1 + r(ω)

)
≤Me−2γTε +Me−2γTεr(ω)

<
ε

4
.

Note that

v(n)
s0 (r) =

{
ψn(r + s0 − sn), if r ∈ (−∞, sn − s0),

v(n)(r + s0), if r ∈ [sn − s0, 0].

Therefore, this proof is finished if we prove that

max
{

sup
r∈(−∞,sn−s0)

e2γr‖ψn(r + s0 − sn)‖2, sup
r∈[sn−s0,−Tε]

e2γr‖v(n)(r + s0)‖2
}
<
ε

4
.

On the one hand, by ψn ∈ K(θsn−tω), (3.5) and the fact that 0 < a < 2γ, we deduce, for all t ∈ [s0 − T , s0],

sup
r≤sn−s0

e2γr‖ψn(r + s0 − sn)‖2 = sup
r≤sn−s0

e2γ(r−sn+s0)e2γ(sn−s0)‖ψn(r + s0 − sn)‖2
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≤ e2γ(sn−s0)‖ψn‖2Cγ(V )

≤Me2γ(sn−s0)(1 + r(θsn−tω))

≤Me2γ(sn−s0)(1 + e
a
2 |sn−s0|e

a
2 |s0−t|r(ω))

≤Me−2γTε +Me−(2γ− a2 )Tεe
a
2 T r(ω)

≤ ε

8
+
ε

8

=
ε

4
.

On the other hand, by (4.26) with T = Tε, we deduce

sup
r∈[sn−s0,−Tε]

e2γr‖v(n)(r + s0)‖2 = sup
r∈[sn−s0+Tε,0]

e2γ(r−Tε)‖v(n)(r − Tε + s0)‖2

≤ e−2γTε‖v(n)
−Tε+s0‖

2
Cγ(V )

≤ e−2γTεR(ω)

= Me−2γTε(1 + r(ω))

≤ ε

4
.

Therefore, the proof of Lemma 4.4 is complete.

Let us now prove the Da-asymptotic compactness of solutions to problem (1.1) in Cγ(V ).

Lemma 4.5. Assume that (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) hold. Let ϕ be the random dynamical
system generated by problem (1.1). For each (t, s0, ω) ∈ R× R× Ω, if sn → −∞ as n→ +∞ and sn ≤ s0 and
φn ∈ D(θsn−tω), then ϕ is Da-asymptotically compact in Cγ(V ).

Proof. Notice that

ϕ(s0, sn, θ−tω)φn = us0(·, sn, θ−tω, φn)

= vs0(·, sn, θ−tω, ψn) + κ̃z(θs0−t+·ω), ∀ sn ≤ s0, t ≤ s0.

By φn ∈ K(θsn−tω), we easily imply ψn ∈ K(θsn−tω). Thanks to Lemma 4.4, we find that the sequence
vs0(·, sn, θ−tω, ψn) of solutions to problem (3.8) has a convergent subsequence in Cγ(V ). Thus, ϕ(s0, sn, θ−tω)φn
has also a convergent subsequence in Cγ(V ).

4.4. Existence of global random attractors

Based on the previous results, one can derive the existence of a global Da-random attractor for ϕ in Cγ(V )
which is stated below.

Theorem 4.6. Suppose that the same hypotheses and notations in Lemmas 4.2 and 4.5 hold. Then, the random
dynamical system ϕ possesses a global Da-random attractor A = {A(ω) : ω ∈ Ω} in Cγ(V ).

Proof. It follows from Lemma 4.2 that the random dynamical system ϕ has a global Da-random absorbing set
in Cγ(V ). By Lemma 4.5, ϕ is Da-asymptotically compact in Cγ(V ). Thanks to [9, Theorem 7], we finally
obtain the existence of a global Da-random attractor A = {A(ω) : ω ∈ Ω}.

5. Existence of invariant measures in Cγ(V )

In the rest of this paper, we prove the existence of invariant measures in Cγ(V ). To this end, we need to
show that, for each given t ∈ R, ω ∈ Ω and φ ∈ Cγ(V ), the Cγ(V )-valued function s 7→ ϕ(t, s, θ−tω)φ is bounded
and continuous on (−∞, t].

Lemma 5.1. Let (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) hold. Then, for each (t, ω, φ) ∈ R×Ω×Cγ(V ),
the Cγ(V )-valued function s 7→ ϕ(t, s, θ−tω)φ is bounded on (−∞, t].
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Proof. Let t ∈ R, ω ∈ Ω and φ ∈ Cγ(V ) be given. By (4.15) in Lemma 4.2, we deduce that, for all s ∈ (−∞, t],

‖ϕ(t, s, θ−tω)φ‖2Cγ(V ) = ‖ut(·, s, θ−tω, φ)‖2Cγ(V ) ≤ R(ω), (5.1)

where we recall that R(ω) = M
(
1 + r(ω)

)
with the positive constant M being independent of t, s and ω. This

shows R(ω) is bounded independently of s ∈ (−∞, t].

Lemma 5.2. If ψ ∈ Cγ(V ) is given, then for each ε > 0, there exists δ = δ(ψ, ε) > 0 such that, for all
s1, s2 ∈ (−∞, 0] with |s1 − s2| < δ,

eγs2‖ψ(s1)− ψ(s2)‖ < ε. (5.2)

Proof. Let ψ∞ := lim
s→−∞

eγsψ(s) ∈ V . By the definition of Cγ(V ), we find that, for any ε > 0 there exists s0 < 0

such that

‖eγsψ(s)− ψ∞‖ <
ε

4
, ∀ s ≤ s0, (5.3)

which implies

‖eγs1ψ(s1)− eγs2ψ(s2)‖ ≤ ‖eγs1ψ(s1)− ψ∞‖+ ‖eγs2ψ(s2)− ψ∞‖ <
ε

2
, ∀ s1, s2 ≤ s0. (5.4)

Due to the uniform continuity of the V -valued function s 7→ eγsψ(s) on the interval [s0, 0], there exists δ′ ∈ (0, 1)
such that, for all s1, s2 ∈ [s0, 0] with |s1 − s2| < δ′,

‖eγs1ψ(s1)− eγs2ψ(s2)‖ < ε

2
. (5.5)

Let δ = min
{
δ′, 1

γ ln(1+ ε
2‖ψ‖Cγ (V )

)
}

, we infer from (5.4) and (5.5) that, for all s1, s2 ∈ (−∞, 0] with |s1−s2| < δ,

eγs2‖ψ(s1)− ψ(s2)‖ ≤ ‖eγs1ψ(s1)− eγs2ψ(s2)‖+ |eγs1 − eγs2 |‖ψ(s1)‖

≤ ε

2
+
∣∣eγ(s2−s1) − 1

∣∣eγs1‖ψ(s1)‖

≤ ε

2
+
∣∣eγ(s2−s1) − 1

∣∣‖ψ‖Cγ(V ) < ε. (5.6)

This yields (5.2) as desired.

Lemma 5.3. Let (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) hold. For given s∗ ∈ R, ψ ∈ Cγ(V ), almost
all ω ∈ Ω, and for any ε > 0, there exists δ0 = δ0(s∗, ψ, ω, ε) > 0 such that for all s ∈ (s∗ − δ0, s∗), r, t ∈ [s, s∗],

‖v(r, s, θ−tω, ψ)− ψ(0)‖ < ε. (5.7)

Proof. Firstly, we prove that there exists a constant χ > 0 such that∫ s∗

s

∥∥∥ d
dr
v(r, s, θ−tω, ψ)

∥∥∥2

(D(A))∗
dr ≤ χ, ∀ s ∈ [s∗ − 1, s∗], t ∈ [s, s∗]. (5.8)

Indeed, we infer from (3.8), V ↪→ (D(A))∗, (2.11), (2.7) and κ̃ ∈ D(Ã) that∥∥∥ d
dr
v(r, s, θ−tω, ψ)

∥∥∥2

(D(A))∗
≤ c‖Ãv‖2 + c‖B̃(v)‖2(D(A))∗ + c|z(θr−tω)|2(‖Ãκ̃‖2 + ‖B̃(κ̃)‖2(D(A))∗)

+ c‖f̃‖2 + c‖g̃(ur)‖2 + c|z(θr−tω)|2‖κ̃‖2

≤ c‖Ãv‖2 + c‖v‖2D(A) + c|z(θr−tω)|2 + c‖f̃‖2 + c‖ur‖2Cγ(V ). (5.9)

Integrating (5.9) over [s, s∗], we deduce, for all s ∈ [s∗ − 1, s∗], t ∈ [s, s∗],∫ s∗

s

∥∥∥ d
dr
v(r, s, θ−tω, ψ)

∥∥∥2

(D(A))∗
dr ≤ c

∫ s∗

s∗−1

‖Ãv(r)‖2dr + c

∫ s∗

s∗−1

‖v(r)‖2D(A)dr

+ c‖f̃‖2 +

∫ s∗

s∗−1

‖ur‖2Cγ(V )dr + c

∫ s∗

s∗−1

|z(θr−tω)|2dr. (5.10)
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By similar arguments to those in (4.28) and (4.32), we deduce the first two terms on the right-hand side of
(5.10) are bounded, that is,

c

∫ s∗

s∗−1

‖Ãv(r)‖2dr + c

∫ s∗

s∗−1

‖v(r)‖2D(A)dr <∞.

Thanks to (4.5) and (4.12) in Lemma 4.1, for all s ∈ [s∗ − 1, s∗], t ∈ [s, s∗], we have∫ s∗

s∗−1

‖ur‖2Cγ(V )dr ≤M
∫ s∗

s∗−1

(1 + e
a
2 |r−t|r(ω))dr

≤M(1 + e
a
2 r(ω)).

By (3.6), the last term in (5.10) is bounded by∫ s∗

s∗−1

|z(θr−tω)|2dr ≤ r(ω)

∫ s∗

s∗−1

e
a
2 |r−t|dr

≤ e a2 r(ω), ∀ s ∈ [s∗ − 1, s∗], t ∈ [s, s∗], (5.11)

which, together with f̃ ∈ V , shows (5.10) is finite. Therefore, (5.8) holds.
Note that, for all s∗ − 1 ≤ s ≤ r ≤ s∗ and t ∈ [s, s∗], it follows,

‖v(r, s, θ−tω, ψ)− ψ(0)‖2

= ‖v(r, s, θ−tω, ψ)‖2 − ‖ψ(0)‖2 − 2
((
v(r, s, θ−tω, ψ)− ψ(0), ψ(0)

))
=

∫ r

s

d

dσ

∥∥∥v(σ, s, θ−tω, ψ)
∥∥∥2

dσ − 2
((
v(r, s, θ−tω, ψ)− ψ(0), ψ(0)

))
. (5.12)

We now estimate the last two terms of (5.12). On the one hand, by (3.6), (3.7), (4.7) and (4.12), we have∣∣∣ ∫ r

s

d

dσ

∥∥∥v(σ, s, θ−tω, ψ)
∥∥∥2

dσ
∣∣∣ ≤ c(s∗ − s)‖f̃‖2 + c

∫ s∗

s

‖vσ‖2Cγ(V )dσ + c

∫ s∗

s

sup
ι≤0

e2γι|z(θσ+ι−tω)|2dσ

≤ c(s∗ − s)‖f̃‖2 + c

∫ s∗

s

‖vσ‖2Cγ(V )dσ + c

∫ s∗

s

e
a
2 |σ−t|r(ω)dr

≤ c(s∗ − s)‖f̃‖2 + c(s∗ − s)
(

1 + sup
σ∈[s∗−1,s∗]

e
a
2 |σ−t|r(ω)

)
≤ c(s∗ − s)‖f̃‖2 + c(s∗ − s)

(
1 + e

a
2 r(ω)

)
, t ∈ [s, s∗]. (5.13)

As f̃ ∈ V , there exists some δ′0 = δ′0(ε, s∗, ψ) ∈ (0, 1) such that∣∣∣ ∫ r

s

d

dσ

∥∥∥v(σ, s, θ−tω, ψ)
∥∥∥2

dσ
∣∣∣ < ε2

2
, s∗ − δ′0 < s < t ≤ s∗. (5.14)

On the other hand, since ψ(0) ∈ V and D(A) is dense in V , there exists some ψ∗ ∈ D(A) such that

‖ψ∗ − ψ(0)‖ < ε2

8R(ω)
. (5.15)

Thanks to (4.12) in Lemma 4.1, we find, for all s ∈ [s∗ − 1, s∗], t ∈ [s, s∗], r ∈ [s∗ − 1, s∗],

‖v(r, s, θ−tω, ψ)‖2 ≤M
(

1 + e
a
2 |r−t|r(ω)

)
≤M(1 + e

a
2 r(ω)) = R(ω). (5.16)

By (5.8), (5.15) and (5.16), we deduce

2
∣∣((v(r, s, θ−tω, ψ)− ψ(0), ψ(0)

))∣∣
≤ 2
∣∣〈v(r, s, θ−tω, ψ)− ψ(0), ψ∗〉

∣∣+ 2
∣∣((v(r, s, θ−tω, ψ)− ψ(0), ψ(0)− ψ∗

))∣∣
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≤ 2
∣∣∣〈 ∫ r

s

d

dσ
v(σ, s, θ−tω, ψ)dσ, ψ∗

〉∣∣∣+ 2R(ω)‖ψ(0)− ψ∗‖

≤ 2
√
s∗ − s‖ψ∗‖D(A)

(∫ s∗

s

∥∥∥ d
dσ
v(σ, s, θ−tω, ψ)

∥∥∥2

(D(A))∗
dσ

) 1
2

+
ε2

4

≤ 2
√
χ(s∗ − s)‖ψ∗‖D(A) +

ε2

4
, ∀ r ∈ [s, s∗], t ∈ [s, s∗]. (5.17)

This implies that there exists some δ′′0 = δ′′0 (ε, s∗, ψ) ∈ (0, 1) such that

2
∣∣((v(r, s, θ−tω, ψ)− ψ(0), ψ(0)

))∣∣ ≤ ε2

2
, s∗ − δ′′0 < s ≤ r ≤ s∗, s ≤ t ≤ s∗. (5.18)

Letting δ0 = min{δ′0, δ′′0 }, we infer from (5.12), (5.14) and (5.18) that (5.7) holds.

Lemma 5.4. Let (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) hold. Then, for given t ∈ R, almost all ω ∈ Ω
and φ ∈ Cγ(V ), the Cγ(V )-valued function s 7→ ϕ(t, s, θ−tω)φ is continuous on (−∞, t].

Proof. Note that

(ϕ(t, s, θ−tω)φ)(r) = ut(r, s, θ−tω, φ)

= vt(r, s, θ−tω, ψ) + κ̃z(θrω), r ≤ 0, (5.19)

where ψ ∈ Cγ(V ) due to φ ∈ Cγ(V ). The above equality, together with the continuity of |z(θtω)| with respect to
t ∈ R for P-a.s. ω ∈ Ω, shows that we only need to prove that vt

(
r, ·, θ−tω, ψ

)
is both left and right continuous on

(−∞, t]. We start with the left continuity. Without loss of generality, for given s∗ ∈ R, ω ∈ Ω and ψ ∈ Cγ(V ),
we just need to prove that for any ε > 0, there exists a positive constant δ = δ(ε, s∗, ω, ψ) such that for all
s ∈ (s∗ − δ, s∗), t ∈ [s, s∗] and almost all ω ∈ Ω,

‖vt(·, s, θ−tω, ψ)− vt(·, s∗, θ−tω, ψ)‖Cγ(V ) < ε.

By Lemma 5.2, we find that, for every ε > 0, there exists some δ′ = δ′(ε, ψ) > 0 such that for all s1, s2 ∈ (−∞, 0]
with |s1 − s2| < δ′,

eγs2‖ψ(s1)− ψ(s2)‖ < ε

2
. (5.20)

Thanks to Lemma 5.3, there exists δ′′ = δ′′(ε, s∗, ω, ψ) > 0 such that, for all s ∈ (s∗ − δ′′, s∗), r ∈ [s, s∗],
t ∈ [s, s∗] and almost all ω ∈ Ω, it follows

‖v(r, s, θ−tω, ψ)− ψ(0)‖ < ε

2
. (5.21)

By (5.20) and (5.21), for the above ε, there exists some δ = δ(ε, s∗, ω, ψ) = min{δ′, δ′′} > 0 such that, for all
s ∈ (s∗ − δ, s∗), r ∈ [s, s∗], t ∈ [s, s∗] and almost all ω ∈ Ω,

‖v∗(r, s∗, θ−tω, ψ)− v(r, s, θ−tω, ψ)‖ = ‖ψ(r − s∗)− v(r, s, θ−tω, ψ)‖
≤ ‖ψ(r − s∗)− ψ(0)‖+ ‖ψ(0)− v(r, s, θ−tω, ψ)‖
< ε, (5.22)

where v∗(r, s∗, θ−tω, ψ) is the solution with the initial datum ψ at the initial time s∗. The above inequality
implies

max
r∈[s,s∗]

‖v∗(r, s∗, θ−tω, ψ)− v(r, s, θ−tω, ψ)‖ ≤ ε, s ∈ (s∗ − δ, s∗), t ∈ [s, s∗], (5.23)

which implies, for all t ∈ [s, s∗],

max
r∈[s,t]

‖v∗(r, s∗, θ−tω, ψ)− v(r, s, θ−tω, ψ)‖ ≤ ε, s ∈ (s∗ − δ, s∗). (5.24)

By (5.20) and (5.24), we find that, for the above ε, for all s ∈ (s∗ − δ, s∗), t ∈ [s, s∗] and almost all ω ∈ Ω,

‖vt(r, s, θ−tω, ψ)− vt(r, s∗, θ−tω, ψ)‖Cγ(V ) = sup
r≤0

eγr
(
‖v(r + t, s, θ−tω, ψ)− v∗(r + t, s∗, θ−tω, ψ)‖

)
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≤ max
{

sup
r≤s−t

eγr‖ψ(r + t− s)− ψ(r + t− s∗)‖,

sup
s−t≤r≤0

eγr‖v(r + t, s, θ−tω, ψ)− v∗(r + t, s∗, θ−tω, ψ)‖
}

≤ max
{

sup
r≤0

eγ(r+s−t)‖ψ(r)− ψ(r + s− s∗)‖,

sup
s≤r≤t

‖v(r, s, θ−tω, ψ)− v∗(r, s∗, θ−tω, ψ)‖
}
≤ ε. (5.25)

This implies that the Cγ(V )-valued function s 7→ ϕ(t, s, θ−tω)φ is left continuous at s = s∗. It is similar to
prove the right continuity of ϕ(t, s, θ−tω)φ at s = s∗, and we omit the details.

Recall the definition of generalized Banach limit, which plays an important role in constructing the invariant
measures for ϕ (see [24, 25, 32, 42] for more details).

Definition 5.5. A generalized Banach limit is any linear functional, denoted by LIMt→+∞, defined on the
space of all bounded real-valued functions on [0,+∞) and satisfying

(1) LIMt→+∞ξ(t) ≥ 0 for nonnegative functions ξ(·) on [0,+∞);
(2) LIMt→+∞ξ(t) = limt→+∞ ξ(t) if the usual limit limt→+∞ ξ(t) exists.

Remark 5.6. Note that we will discuss the asymptotic behavior s → −∞ of ϕ(t, s, ω)•, and thus, we require
generalized limits as s→ −∞. For a given real-valued function ξ defined on (−∞, 0] and a given Banach limit
LIMt→+∞, we define LIMt→−∞ξ(t)=LIMt→+∞ξ(−t).

Theorem 5.7. Let (H1)-(H6), (2.13), (2.16)-(2.18) and κ̃ ∈ D(Ã) hold. Let {ϕ(t, s, ω)}t≥s,ω∈Ω be the random
dynamical system associated with problem (1.1) over the measurable dynamical system (Ω,F ,P; {θt}t∈R) with
the state space Cγ(V ). Let A(ω) be the global Da-random attractor obtained in Theorem 4.6. Then for a given
continuous mapping ζs : R 7→ Cγ(V ) with ζs(·) ∈ Da and a generalized Banach limit LIMt→+∞, there exists for
almost all ω ∈ Ω, a family of Borel probability measures {µθtω}t∈R on Cγ(V ) such that the support of µθtω is
contained in A(θtω) and

LIMs→−∞
1

t− s

∫ t

s

Υ(ϕ(t, r, ω)ζr)dr =

∫
A(θtω)

Υ(u)dµθtω(u)

=

∫
Cγ(V )

Υ(u)dµθtω(u)

= LIMs→−∞
1

t− s

∫ t

s

∫
Cγ(V )

Υ(ϕ(t, r, ω)u)dµθrω(u)dr,

for every real-valued continuous functional Υ on Cγ(V ). Moreover, µθtω is invariant in the sense that∫
A(θtω)

Υ(u)dµθtω(u) =

∫
A(θsω)

Υ(ϕ(t, s, ω)u)dµθsω(u), ∀ t ≥ s.

Proof. For the random dynamical system {ϕ(t, s, ω)}t≥s,ω∈Ω on the space Cγ(V ), we need to verify the conditions
(i) and (ii) in [42, Theorem 2.1].

By Theorem 4.6, we obtain that {ϕ(t, s, θ−tω)}t≥s,ω∈Ω possesses a global Da-random attractor A(ω) in
Cγ(V ). Thus, (i) has been proved. Moreover, by Lemmas 5.1 and 5.4, we deduce that for each t ∈ R, almost
all ω ∈ Ω and φ ∈ Cγ(V ), the Cγ(V )-valued function s 7→ ϕ(t, s, θ−tω)φ is continuous and bounded on (−∞, t],
and thus (ii) holds true. Therefore, we obtain the results of Theorem 5.7.
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