
Analysis of channel utilization for controller area networks

JoséLuis Sevillano*, Arturo Pascual, Gabriel Jime´nez, Antón Civit-Balcells

Facultad de Informa´tica, Universidad de Sevilla, Avda. Reina Mercedes, s/n. 41012, Seville, Spain

Received 21 May 1997; received in revised form 30 April 1998; accepted 1 May 1998

Abstract

In this paper, a model for the analysis of the CAN protocol is presented, extending the analysis already developed for fixed priority
multiprocessors. Two cases are considered, which correspond to the main commercial devices. The model allows us to obtain some useful
results for the design of CAN-based systems. The main conclusions are those regarding bus utilization, both total and per priority level. The
results are validated using simulation. Finally, the real-time behavior is also briefly discussed.q 1998 Elsevier Science B.V. All rights reserved.

Keywords:Controller area network; Performance analysis; Markov chain models; Real-time

1. Introduction

One of the most important elements in a distributed con-
trol system is the communication channel. Shared broadcast
buses are usually preferred to point-to-point links, because
the latter are more complex when the number of devices is
high. Besides, they require a comparatively high delay to
establish a connection [10]. One of the communication pro-
tocols for broadcast buses is CAN (Controller Area Network
[7]), which although designed for the automotive industry,
has been successfully used in many other control appli-
cations. The CAN protocol meets all the requirements of
real-time communication systems: message delays are
bounded [11], it includes a complete message-based priority
policy, cost per node is low and several off-the-shelf devices
include built-in interfaces for CAN: microcontrollers
Philips 82C592 (8051 compatible), Siemens SABC167CR,
Motorola 68HC08/5, Intel 80196,...; controllers Philips
82C200, Intel 82527, etc. Furthermore, the CAN architec-
ture only defines the lowest two levels of the OSI model.
The application levels are based on specific protocols that
depend on the application, for instance, DEVICEnetTM for
communicating PLCs and intelligent sensors, or M3S in
rehabilitation engineering [4]. This reduced number of
levels leads to simpler systems and lower delays, and there-
fore supposes a significant improvement when compared to
systems like MAP.

When we are interested in the real-time behavior of a
communication protocol, the main aspect is the study of

‘schedulability’ of the system, that is, the guarantee that
messages will meet their ‘deadlines’ or ‘crisis times’. Santos
et al. [8] obtain the conditions to guarantee the schedulabil-
ity of several priority disciplines, including fixed priority
discipline. Tindell et al. [12] present a specific study for
the CAN protocol, where they obtain the worst-case
bound of message delays using an analysis developed for
fixed-priority pre-emptive scheduling, which include details
such as error management and ‘Remote Transmission
Request’ messages (RTR). The importance of details such
as the number of transmission message buffers and the
effect of using a particular CAN controller has also been
pointed out [14]. From the point of view of the protocol
general behavior, fixed priority systems are well studied in
the literature [16], although CAN introduces some charac-
teristics that prevent us from using these studies in a direct
way [9]. The main difference is that CAN uses message-
based priorities. In order to make this point clearer, we need
to briefly describe the protocol.

CAN is a multi-master (orstations) broadcast bus operat-
ing at a maximum data rate of 1 Mbps. Bus length is limited
in order to allow synchronization, although the actual length
depends not only on the propagation delay on the cable, but
also on delay times of CAN controllers and transceivers, and
even on oscillator tolerance [1]. Typically, at 1 Mbps the
bus must be no longer than 50 m.

Every message is assigned a unique identifier (11 bits),
which not only allows receivers to filter messages, but it
also assigns a priority to the message. Although there
are several frame types, for our study we will only
considerdata frames, which are composed of 47 overhead

Computer Communications 21 (1998) 1446–1451

COMCOM 1414

0140-3664/98/$ - see front matterq 1998 Elsevier Science B.V. All rights reserved.
PII S0140-3664(98)00166-2

* Corresponding author.



bits (Identifier, CRC, ACK, etc.) and a data field of up to
8 bytes.

When a station has a message for transmission, it
waits until the channel is idle and then transmits (just like
a 1-persistent CSMA) beginning with the identifier and
monitoring the bus during transmission. If two or more
stations try to transmit simultaneously, the wired-AND
behavior of the bus makes the lower priority station lose
arbitration, as it sends a recessive bit (‘1’) and sees a domi-
nant bit (‘0’) transmitted by the higher priority station. In
that case, it stops transmitting and waits for the bus to
become idle again. Identifiers are required to be unique,
so that the winning message is not interrupted after a
collision. Therefore the channel is always busy with useful
transmissions. Of course, the overhead bits limit the
maximum throughput to 58% even in the best case (data
field of 8 bytes). In fact, this value is usually lower because
‘bit stuffing’ may insert up to 19 bits. Version 2.0 of CAN
protocol introduces a longer identifier field (29 bits) in
‘extended format’ messages in order to increase the priority
levels, although in many applications 11 bits are more than
enough.

Two varieties of CAN controllers exist: BasicCAN (e.g.
Philips 82C200), which typically uses a single transmission
buffer and the CPU manages the queuing of messages; and
FullCAN (e.g. Intel 82527), which implements a more com-
plex buffering system, based on shared memory locations,
and an ‘acceptance filter’ so that only the useful messages
are presented to the CPU. This different buffering mechan-
ism has a strong effect on performance [14].

The rest of the paper is organized as follows. First of all,
we present a simple model for CAN extending the analysis
already developed for fixed priority multiprocessors [2]. We
include the effect of the buffer size for transmission. Then
we validate the analysis through simulation, and show some
interesting results. Finally, we discuss some aspects regard-
ing the schedulability of CAN-based systems.

2. Analysis of the CAN protocol

We consider a system composed ofN stations andW
identifiers per station, that is, any station generates messages
with up toWdifferent identifier values. We first assume that

stations have a buffer that can store at most one message at a
time. This assumption simplifies the model, and is the case
of most BasicCAN controllers. Later in this section the
model will be extended to handle a higher buffer size. We
also assume a constant message length. The channel is
assumed to be slotted in time, with slot size equal to the
message transmission time, including the transmission of
the identifier field (and therefore including the arbitration).
The propagation delay is also included in the slot time,
although it is almost negligible. Finally, we also consider
an error-free channel.

Since CAN requires identifiers to be unique within the
system, we may consider each of these identifiers as pseudo-
stations that are assigned a fixed priority (the smaller the
identifier value, the higher the priority). Letr i denote the
probability that a station generates a message in a slot with
an identifier valuei, 1 # i # NW. From now on, we simply
say that identifieri ‘generates’ a message. We assume that
r i ¼ r is a constant for alli. These probabilities are referred
to the beginning of a time-slot, and they represent the
situation for the rest of the slot. We also define the following
probabilities:

1. Pi ¼ P{identifier i gets the station’s buffer}, that is, it has
the highest priority of those identifiers generated within
the station.

2. Ri ¼ P{identifier i succeeds in transmitting once it has
got its station’s buffer}, that is, it has the highest priority
of those (in the whole system) that got the buffer and are
trying to transmit.

The computation of these probabilities will be discussed
below. Anyway, with these definitions the behavior of iden-
tifier i may be modeled using a Markov chain as shown in
Fig. 1.

Identifier i remains in the Idle (I) state if it either does not
generate any message for transmission-(1¹ r)- or it gener-
ates a message but does not have the highest priority within
the station-r(1 ¹ Pi)- or it generates a message, gets the
buffer, wins arbitration and transmits-rPiRi-. It should be
noted that the time slot includes arbitration and transmission
of messages. When it generates the highest priority message
within the station, but it loses arbitration-rPi(1 ¹ Ri)-, then
it moves to the Active (A) state. In this state, the station’s
buffer is taken.

Fig. 1. State transition diagram, one message buffer per station.

1447J. Luis Sevillano et al./Computer Communications 21 (1998) 1446–1451



The identifier leaves the Active state if any higher priority
message is generated within the station-(1¹ Pi)- in which
case it must release the buffer (pre-emption). The message is
discarded, and it may be retransmitted later, but under
control of a higher software level (not the controller), so
this fact is not included in our model. In case it keeps
the buffer, it would transmit with probabilityPiRi.
Otherwise-(1¹ Ri)Pi- it will be retransmitted in the next
slot.

Let us defineqI(i) andqA(i) as the equilibrium probabil-
ities of states Idle and Active, respectively. Then,

qI(i) ¼
1¹ Pi(1¹ Ri)

1þ Pi(1¹ Ri)(r ¹ 1)

qA(i) ¼
rPi(1¹ Ri)

1þ Pi(1¹ Ri)(r ¹ 1)
:

At this point, we are able to computePi, Ri. Since identifiers
are ordered by their priorities, these probabilities can be
computed recursively assumingP1 ¼ R1 ¼ 1:

Pi ¼
∏

n[j,n,i
(1¹ rPn)qI(n),

wherej is the station wherei is generated. That is, it is the
probability that all the highest priority identifiers within the
station are in the Idle stateand that they remain in the Idle
state. Of course we exclude the possibility of a transmission
in that slot. Note that these probabilities depend on what we
may call ‘configuration’, that is, the distribution of identi-
fiers among stations. As we will see shortly, the configura-
tion has a great effect on performance. Similarly,

Ri ¼
∏i ¹ 1

n¼ 1
(1¹ rPn)qI(n):

Using this model, the channel utilization of any given
identifier can be expressed as:

Si ¼ rPiRiqI(i) þ PiRiqA(i),

and the total channel utilization:

S¼
∑NW

i ¼ 1
Si :

The above model assumes that the station’s buffers can store
at most one message at a time, so that those messages that
find the buffers full are discarded. However, the model can
be easily extended to handle higher buffer sizes. This is the
case of FullCAN controllers. In order to simplify the model,
we suppose that there is exactly one message buffer per
identifier. In other words, we assume that an identifier
does not generate new messages until the current one has
been transmitted, and that there is always enough space for a
new message. An ideal CAN controller should have 2032
messages buffers (not extended). Of course, real controllers
implement a much lower buffer size. For example, the Intel
82527 implements 15 messages per station, enough for most
applications.

In this case, an identifier can be in one of three states: Idle
(I), when it either does not generate any message for trans-
mission or it simply generates a message, wins arbitration
and transmits; Busy (B) when it is queued because a higher
priority message is generated within the station; or Active
(A) when it becomes the highest priority message within the
station and it can arbitrate for the channel. The state transi-
tion diagram is shown in Fig. 2. Now, the equilibrium prob-
abilities are:

qI(i) ¼
P2

i Ri

P2
i Ri þ rPi(1¹ PiRi) þ r(1¹ Pi)

qB(i) ¼
r(1¹ Pi)

P2
i Ri þ rPi(1¹ PiRi) þ r(1¹ Pi)

qA(i) ¼
rPi(1¹ PiRi)

P2
i Ri þ rPi(1¹ PiRi) þ r(1¹ Pi)

Fig. 2. State transition diagram, one message buffer per identifier.

1448 J. Luis Sevillano et al./Computer Communications 21 (1998) 1446–1451



With regard to the probabilitiesPi andRi, we have:

Pi ¼
∏

n[j,n,i
(1¹ r)qI(n),

Ri ¼
∏i ¹ 1

n¼ 1
(1¹ r)qI(n),

that is, using the same previous reasoning, the probability
that all the highest priority identifiers stay in the Idle state
excluding the possibility of a transmission. The channel
utilization can be computed just as in the previous model.

3. Validation of the model

In order to validate this model, a simulation study was
performed [6]. The simulation software was written using
SMPL [5]. For the comparison between the models, we
consider two configurations that will also allow us to
show some interesting results regarding the distribution of
identifiers among stations. If we assume that stations are
ordered by any standard, we consider the following
configurations:

1. Configuration A, where theW higher priority identifiers
are assigned to the first station, the nextW to the second
and so on. Therefore, stationj would have assigned con-
secutive identifiers (j ¹ 1)W þ 1,(j ¹ 1)W þ 2,…,jW.

2. Configuration B, where identifiers are assigned alter-
natively among stations. Therefore, stationj would

have assigned non consecutive identifiersj,N þ

j,…,N(W ¹ 1) þ j.

Figs. 3 and 4 show the percentage of channel utilization
per identifier for the case of one message buffer, obtained
from both the simulation and the analytical model. We con-
sider three values for the loadG¼ NWr. We observe that the
estimation using the analysis is very close to the simulation
results, although a slight deviation can be observed at high
loads. At low loads, the channel is evenly distributed among
identifiers, but as the load increases it is expected that only
higher priority identifiers obtain the bus. However, since
every station is able to hold at most one message, a lower
priority message may obtain a better service because an
identifier has to compete first with identifiers within the
station. This undesirable effect is due to the distributed nat-
ure of the arbitration mechanism, and depends on the con-
figuration (it does not occur with configuration B). It may
get worse because the time to copy a new message (e.g. in
every pre-emption) to the transmit buffer is non-zero, and
lower priority messages in other stations may use this time
to acquire the bus. This ‘priority inversion’ problem [3] will
be further discussed in the next section.

Figs. 5 and 6 show the results for the case of one message
buffer per identifier. At low loads the results are similar to
those obtained previously, so they are not shown in order to
simplify the figures. Even at medium loads the analysis is
not as close to simulation as with the previous model. This is
probably due to the assumptions needed to keep the
model simple. Anyway, the model is still useful to show

Fig. 3. Configuration A, one message buffer per station.

Fig. 4. Configuration B, one message buffer per station.

1449J. Luis Sevillano et al./Computer Communications 21 (1998) 1446–1451



the protocol qualitative behavior; for example, how the band-
width is distributed according to the priority level even at
high loads, that is, no priority inversion is observed. These
results confirm those obtained elsewhere in the literature [14].

4. Schedulability of the system

In spite of this analysis, the most important consideration
when using CAN in real-time applications is the schedul-
ability of the system, as we pointed out in the Introduction,
so we should take this fact into account. We may trivially
conclude that message delays are not upper bounded
because the access of the lower priority messages cannot
be guaranteed (except for the highest priority identifier). In
general, this is the case in all simple, unfair fixed priority
systems [15]. However, this problem can be solved using
real-time scheduling techniques, provided that the rate at
which an identifier generates messages for transmission is
bounded. Note that we do not mean that messages have to be
strictly periodic, although we denote ‘period’ as this mini-
mum time between invocations of any given identifier.

Tindell et al. [11,12] present an analysis to bound
message response times, and this worst-case analysis can
be applied to assess the schedulability of the system.
Their main results can be summed up as follows. The
worst-case delay of a message (identifieri) is given by [11]:

ri ¼ Cmaxþ
∑i ¹ 1

m¼ 1
d ri

Tm
eCm:

where Ci is the message transmission time andTi is the
message period. The first term represents the worst-case
blocking time, that is, the longest time that an identifieri
can be delayed by lower priority messages, due to the fact
that a higher priority message cannot interrupt a message
that is already transmitting. The second term is the inter-
ference from higher priority messages that prevents identi-
fier i from acquiring the bus.

This model assumes that the channel would not be released
to lower priority messages if there are higher priority mes-
sages pending [11], that is, it does not include the priority
inversion problem observed with some cases (except for mes-
sages that are already transmitting). As a result, the analysis
cannot be applied to one message buffer controllers [14].

To extend the model, we have to distinguish between two
cases, as in the case of ‘local priority’ protocols [13]. First,
when an identifieri competes for the buffer within the sta-
tion j, we have:∑
m[j, m,i

d ri

Tm
e(Cm þ 2Cmax):

This term obviously depends on the configuration. Follow-
ing Ref. [14], we include two additional messages due to the
non-zero time to copy a new message in the transmit buffer.
Each time a higher priority message pre-emptsi, the bus
could be claimed twice by lower priority identifiers at other
stations: once wheni releases the buffer and once more
when the higher priority message has been transmitted
andi is put back in the buffer. Note that we are considering
the worst case.

Fig. 5. Configuration A, one message buffer per identifier.

Fig. 6. Configuration B, one message buffer per identifier.

1450 J. Luis Sevillano et al./Computer Communications 21 (1998) 1446–1451



Finally, there are still two terms regarding the blocking
time and the interference from higher priority messages at
the other stations. Note that the blocking time should
include the case when the message using the bus wheni is
generated belongs to the same station. In that case, wheni is
copied to the station’s buffer the bus could be acquired by
other stations, so the worst case blocking time is 2Cmax. So

ri ¼ 2Cmaxþ
∑

m[j,m,i
d ri

Tm
e(Cm þ 2Cmax)

∑
mÓj, m,i

d ri

Tm
eCm

As can be seen from this equation, the worst case behavior
of BasicCAN controllers is very poor. As a result, the utili-
zation bound below which deadlines are guaranteed can be
as low as 11%, depending on the application [14], not to
mention the protocol overhead (. 43%).

5. Conclusions

In this paper, a model for the analysis of the CAN proto-
col is presented, extending the analysis already developed
for fixed priority multiprocessors. Two cases are considered,
which correspond to the main alternatives in commercial
devices: on the one hand, one message buffer as implemen-
ted in BasicCAN controllers is considered; on the other
hand, we study the situation with one message bufferper
identifier (more than one per station), as in the case of
FullCAN controllers. The model allows us to obtain some
useful results for designing CAN-based systems. The main
conclusions are those regarding bus utilization (which is
usually very low due to the protocol overhead), both total
and per identifier; the effect of the controller and buffer size;
the distribution of identifiers among stations, etc. The results
of the analysis are validated by a SMPL-based simulation.
Finally, the worst-case analysis is also discussed, following
the work of Tindell et al. [12]. Our results confirm those
obtained by these authors [14], in the sense that BasicCAN
controllers present several drawbacks. These problems
include high worst-case message delays and priority
inversion in some cases. Our analysis quantify their effect
on performance.

Acknowledgements

This work was supported by CICYT of the Spanish
Government under project TAP93-0443.

References

[1] P. Buehring, Bit timing parameters for CAN networks, Philips Report
KIE 07/91 ME, 1991.

[2] K. Hwang, F.A. Briggs, Computer Architecture and Parallel
Processing, McGraw-Hill, New York, 1984.

[3] D.I. Katcher, S.S. Sathaye, J.K. Strosnider, Fixed priority scheduling
with limited priority levels, IEEE Trans. Comp. 44 (1995) 1140–
1144.

[4] S. Linnman, M35: the local network for electric wheelchairs and
rehabilitation equipment, IEEE Trans. Rehabilitation Eng. 4 (1996).

[5] M.H. MacDougall, Simulating Computer Systems, The MIT Press,
Cambridge, MA, 1987.

[6] A. Pascual, A preliminary performance study of the CAN protocol (in
Spanish), Research Report, Universidad de Sevilla, 1996.

[7] Road Vehicles—Interchange of Digital Information—Controller
Area Network (CAN) for High Speed Communication. ISO 11898,
1993.

[8] J. Santos et al., Priorities and protocols in hard real-time LANs;
implementing a crisis-free system, Computer Communications 14
(1991) 507–514.

[9] J. Sevillano et al., A performance study of CAN in manufacturing
cells, Proc. of 14th IASTED Int. Conf. Applied Informatics.
Innsbruck, Austria, February 1996, pp. 12–14.

[10] K.G. Shin, C. Chou, Design and evaluation of real-time communica-
tion for FielBus-based manufacturing systems, IEEE Trans. Robot.
Automat. 12 (1996) 357–367.

[11] K. Tindell, A. Burns, Guaranteed message latencies for distributed
safety¹ Critical hard real-time control networks. Technical Report
YCS229, Department of Computer Science, University of York, 1994.

[12] K. Tindell, A. Burns, A. Wellings, Calculating controller area network
(CAN) message response times, Proc. IFAC Workshop on Distributed
Computer Control Systems (DCCS), Toledo, Spain, September, 1994.

[13] K. Tindell, A. Burns, A. Wellings, Guaranteeing hard real time end-
to-end communications deadlines, Technical Report RTRG/91/107,
Department of Computer Science, University of York, 1991.

[14] K. Tindell, H. Hansson, A. Wellings, Analysing real-time communi-
cations: controller area network (CAN), Technical Report,
Department of Computer Science, University of York, 1994.

[15] M.K. Vernon, S.T. Leutenegger, Fairness analysis of multiprocessor
bus arbitration protocols, CSTR#744, University of Wisconsin–
Madison, September, 1988.

[16] B. Wilkinson, Comments on ‘Design and analysis of arbitration
protocols’, IEEE Trans. Computers 41 (1992) 345–351.

1451J. Luis Sevillano et al./Computer Communications 21 (1998) 1446–1451


