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Abstract

In this article, we investigate the existence and uniqueness of solution of controlled
hybrid neutral stochastic differential equations with infinite delay (HNSFDEswID). It is
known that the time lag generated by the controller in each discrete observation must
be different. The controlled HNSFDEswID are affected by the variable delay induced by
the control function, the infinite time delay, and the highly nonlinear coefficients of the
systems itself, which makes our problem more sophisticated. Different from the classical
Khasminskii-types conditions in the literature, we provide some sufficient conditions for
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the mean square and almost sure exponential stability for controlled HNSFDEswID by
using the M-matrix technique and a suitable Lyapunov functional. In this sense, the main
contributions of our results, compared with those in the literature, are the infinite time
delay, the neutral term and the new Lyapunov functions. Finally, we illustrate our results
by a numerical example.

1 Introduction

The applications of dynamical systems are found in many branches of technologies, sciences,
economy, physics, biology amongst others. Many researchers have devoted much more attention
to the investigation and study of different types of deterministic and stochastic dynamical sys-
tems (see [1, 2, 5, 6, 9, 12, 13, 31, 33]).
One important class of stochastic dynamical systems is given by stochastic functional differential
equations (SFDEs), which are very useful to characterize equations with states depending on the
present and on the past (see [11]-[19], [23] and [24]-[29]). One of the most important class of
SFDEs are the hybrid SFDEs (HSFDEs) or SFDES with Markovian switching, which contain,
in particular, the cases modeled by stochastic differential equations with delay (SDEswD) and
Markovian switching, which have been proved very appropriate to describe many phenomena in
the real world.

Stability theory is an essential topic in the analysis of HSFDEs (see [10] and [20]-[22]). On the
one hand, many published papers in the literature impose that the coefficients in the equations
must satisfy some linear growth condition (see [4] and [27]). But, on the other hand, in practical
situations, many SFDEs do not often satisfy this type of linear growth condition (i.e. SFDEs
can be highly nonlinear). Therefore, there exist many papers in which the authors studied the
asymptotic properties and establish some stability criteria of the HSFDEs which are highly non-
linear (see [7]-[10], [22] and [26]).

In many science, engineering and economic fields, many phenomena are influenced by ran-
dom factors and time delay even in the terms containing derivatives, which motivates and justify
to model such systems by hybrid neutral stochastic functional differential equations (HNSFDEs).

HNSFDEs are important extensions of HSFDEs (see [3], [25] and [30]). HNSFDEs have been
used when a neutral stochastic functional differential equation experiences sudden changes in its
coefficients structures due to some environmental phenomena. The exponential stabilization of
HSFDEs by means of state feedback controllers has been widely discussed (see [21] and [22]). In
[22], the authors constructed a delay control based on discrete-time state observations to guar-
antee the stability of HSFDEs (which are highly nonlinear) and they assumed that the time lag
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generated by the controller in each discrete observation should be different.

To the best of our knowledge, there is no existing result on the exponential stability and the
mean square stability of highly nonlinear HNSFDEswID. In this sense, our paper extends the
work in [22] to the neutral case with infinite delay.
Different from the previous works in the literature, the main highlights of our paper are as follows:
(1) Our system (2.1) is infinite-dimensional and its coefficients are highly nonlinear.
(2) The controlled equation (2.6) includes not only discrete modes and continuous states but also
new discrete states.
(3) Comparing with [22], our model contains a neutral term and infinite delays which make the
system more complicated to deal with.
(4) We investigate existence and uniqueness of solution to system (2.6) by using the Lyapunov
techniques.
(5) Different from the Khasminskii-type conditions in the literature, we study the mean square
exponential stability and the almost sure exponential stability via the M-matrix method.
The paper is arranged as follows. In Section 2, we recall some preliminaries and fundamental
concepts for our analysis. In Section 3, we study the existence and uniqueness of the solution
of HNSFDEswID. In Section 4, we investigate the mean square and the exponential stability of
HNSFDEswID. Eventually, in Section 5, we illustrate our results by a numerical example.

2 Preliminaries and basic notions

Denote by C([ρ, 0],Rc) the family of continuous functions from [ρ, 0] into Rc and W (ϑ) =
(W1(ϑ), . . . ,Wp(ϑ))T a p-dimensional Brownian motion defined on a complete probability space

(Ω,F,P). Let |s| denote the Euclidean norm of s ∈ Rc and |L| =
√
trace(LTL) the trace norm,

for a matrix L. Let BC((−∞, 0],Rc) be the set of bounded continuous functions µ : (−∞, 0]→ Rc

equipped with the norm ||µ|| = supζ≤0 |µ(ζ)| . For q > 0, denote by Lq((−∞, 0],Rc) the set of

measurable functions ψ : (−∞, 0] → Rc such that
∫ 0

−∞ |ψ(ϑ)|qdϑ < ∞. Let N ((−∞, 0),R+) be

the family of non-negative continuous bounded functions ν(·) satisfying
∫ 0

−∞ ν(ϑ)dϑ = 1. For

each ε > 0, let N (ε) ((−∞, 0),R+) be the set of continuous bounded non-negative functions ν(·)
such that 0 ≤M (ε) =

∫ 0

−∞ e
−εϑν(ϑ)dϑ <∞.

Denote by {l(ϑ), ϑ ∈ [0,+∞)} a Markov chain (which is right-continuous) on {Ω,F, (Fϑ)ϑ≥0,P},
taking values in Θ = {1, 2, . . . , N}, whose generator Σ = (σbd)N×N is given by

P (l(ϑ+ ∆) = d|l(ϑ) = b) =


σbd∆ + o(∆), if b 6= d

1 + σbb∆ + o(∆), if b = d,
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where ∆ > 0. Here σbd ≥ 0 is the transition rate from b to d, if b 6= d, while

σbb = −
∑
d6=b

σbd.

We say that the matrix O (or the vector t > 0) is positive if all its elements are positive. We
say that the square matrix O = (obd)N×N is a Z-matrix if it has non-positive off-diagonal entries
(namely obd ≤ 0, ∀ b 6= d) and all positive diagonal entries.

Definition 2.1. The square matrix O = (obd)N×N is said to be a nonsingular M -matrix if O can
take the form O = sI−T such that s > ρ(T ), all elements of T are nonnegative, I is the identity
matrix and ρ(T ) is the spectral radius of T .

Lemma 2.1. If O is a Z-matrix, the following assertions are equivalent:

(i) O is a nonsingular M-matrix.

(ii) O is semi-positive.

(iii) O−1 exists and its elements are all nonnegative.

Suppose that l(·) and W (·) are independent.
Consider the following HNSFDEswID:
d(τ(ϑ)− F (ϑ, τϑ)) = h1 (τ(ϑ), τϑ, ϑ, l(ϑ)) dϑ+ h2 (τ(ϑ), τϑ, ϑ, l(ϑ)) dW (ϑ), ϑ ≥ 0

τ0 = χ,
(2.1)

where the initial function χ ∈ BC((−∞, 0],Rc) ∩ Lq((−∞, 0],Rc)) l(0) = b0 ∈ Θ, τ(ϑ) =
(τ1(ϑ), τ2(ϑ), . . . , τi(ϑ))T and τϑ : (−∞, 0] → Rc is the segment of the solution defined as
τϑ(θ) = τ(ϑ + θ) for θ ∈ (−∞, 0]. Consequently, the initial condition τ0 = χ means τ(θ) = χ(θ)
for all θ ≤ 0.
Assume that

h1 : Rc × BC((−∞, 0],Rc)× R+ ×Θ→ Rc,

h2 : Rc × BC((−∞, 0],Rc)× R+ ×Θ→ Rc×p, F : R+ × BC((−∞, 0],Rc)→ Rc.

Assume that F (ϑ, 0) = h1 (0, 0, ϑ, r) = h2 (0, 0, ϑ, r) = 0 for all (ϑ, r) ∈ R+ ×Θ.
Let C1,2 (Rc × R+ ×Θ,R+) be the set of all non-negative functions V (τ, ϑ, b) on Rc × R+ × Θ,
which are twice continuously differentiable with respect to τ and once continuously differentiable
with respect to ϑ.
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Let LV : Rc × BC((−∞, 0],Rc)× R+ ×Θ→ R be the operator satisfying (see [20])

LV (τ, φ, ϑ, b) = Vϑ(τ − F (ϑ, φ), ϑ, b) + Vτ (τ − F (ϑ, φ), ϑ, b)h1 (φ, ϑ, b)

+
1

2
trace

(
hT2 (φ, ϑ, b)Vττ (τ − F (ϑ, φ), ϑ, b)h2(φ, ϑ, b)

)
+

N∑
k=1

γbkV (τ − F (ϑ, φ), ϑ, k),

where

Vϑ(τ, ϑ, b) =
∂V (τ, ϑ, b)

∂ϑ
, Vτ (τ, ϑ, b) =

(
∂V (τ, ϑ, b)

∂τ1

, . . . ,
∂V (τ, ϑ, b)

∂τc

)
,

Vττ (τ, ϑ, b) =

(
∂2V (τ, ϑ, b)

∂τm∂τn

)
c×c

.

Lemma 2.2. Let q > 1, ε > 0 and (i1, i2) ∈ R2. Then,

|i1 + i2|q ≤
[
1 + ε

1
q−1
]q−1(|i1|q +

|i2|q

ε

)
.

Proof. See ([18]).

Remark 2.3. Let q > 1 and (i1, i2) ∈ R2. By taking ε = 1 in Lemma 2.2, we obtain

|i1 + i2|q ≤ 2q−1
(
|i1|q + |i2|q

)
.

Assumption 2.4. For each ε > 0, there exists K̃ε > 0 such that

|h1 (φ1(0), φ1, ϑ, b)−h1 (φ2(0), φ2, ϑ, b) | ∨ |h2 (φ1(0), φ1, ϑ, b)−h2 (φ2(0), φ2, ϑ, b) | ≤ K̃ε||φ1−φ2||
(2.2)

∀φ1, φ2 ∈ BC((−∞, 0],Rc) verifying ||φ1|| ∨ ||φ2|| ≤ ε and ∀(ϑ, b) ∈ R+ ×Θ.

Assumption 2.5. Suppose that there is a constant γ ∈ (0, 1) such that ∀ϑ ≥ 0 and ∀φ ∈
BC((−∞, 0],Rc), we have

|F (φ) | ≤ γ|φ(0)|. (2.3)

Assumption 2.6. Let q ≥ 2 and ν ∈ N ((−∞, 0),R+). Suppose that for each m ∈ Θ there exist
constants Ξ3 < 0, Ξ1, Ξ2 and Ξ4 ≥ 0 such that Ξ2 ≥ Ξ1 ≥ 0 and

|φ(0)− F (ϑ, φ)|q−2

[
(φ(0)− F (ϑ, φ))T h1 (φ(0), φ, ϑ, b) +

q − 1

2
|h2 (φ(0), φ, ϑ, b) |2

]

≤ Ξ4|φ(0)− F (ϑ, φ)|q−2 + Ξ3|φ(0)− F (ϑ, φ)|q + Ξ1

∫ 0

−∞
|φ(θ)|qν(θ)dθ − Ξ2|φ(0)|q. (2.4)
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Let π > π ≥ 0, while we shall assume πa ∈ [π, π] and π + π > π. Hence, set a bounded
function v : R+ → [π, π + π) defined by

v(ϑ) = ϑ− aπ for ϑ ∈ [aπ + πa, (a+ 1)π + πa+1), a = 0, 1, 2, ... (2.5)

If the HNSFDEswID (2.1) is unstable, we need to construct a delay feedback controller
u (τ(ϑ− v(ϑ)), ϑ, l(ϑ)) to guarantee that equation (2.1) becomes stable. Consequently, we will
study the controlled HNSFDEswID, for ϑ ≥ 0

d(τ(ϑ)−F (ϑ, τϑ)) = (h1(τ(ϑ), τϑ, ϑ, l(ϑ))+u (τ(ϑ− v(ϑ)), ϑ, l(ϑ)))dϑ+h2 (τ(ϑ), τϑ, ϑ, l(ϑ)) dW (ϑ),
(2.6)

with the initial condition

τ̂π0 = χ̂ ∈ BC((−∞, 0],Rc) ∩ Lq((−∞, 0],Rc), l(0) = b0 ∈ Θ, (2.7)

and the Borel measurable control function u : Rc × R+ ×Θ −→ Rc.

Assumption 2.7. Suppose that there exists a positive constant ρ satisfying

|u(z, ϑ, b)− u(z, ϑ, b)| ≤ ρ |z − z| , (2.8)

∀(ϑ, b) ∈ R+ ×Θ and ∀z, z ∈ Rc. Moreover, suppose that u(0, ϑ, b) ≡ 0, for all (ϑ, b) ∈ R+ ×Θ.

Clearly this hypothesis implies ∀(z, ϑ, b) ∈ Rc × R+ ×Θ

|u(z, ϑ, b)| ≤ ρ |z| . (2.9)

Definition 2.2. (i) System (2.1) is said to be asymptotically bounded in q-th moment if any
of its solutions τ(·) satisfies

lim sup
ϑ→+∞

E |τ(ϑ)|q < M, (2.10)

with M is a positive constant.

(ii) System (2.1) is called exponentially stable in q-th moment if

lim
ϑ→+∞

1

ϑ
log (E |τ(ϑ)|q) < 0,

for any solution τ(·).

(iii) System (2.1) is called almost surely exponentially stable if

lim
ϑ→+∞

sup
1

ϑ
log |τ(ϑ)| < 0, P− a.s.,

for any solution τ(·).
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3 Existence, Uniqueness and Boundedness

In this section, we will investigate the existence and uniqueness of the solution and the mean
square exponential stability of system (2.6).

Theorem 3.1. Under Assumptions (2.4)-(2.6), for any initial condition satisfying (2.7), there
is a unique global solution τ(ϑ) to equation (2.6).

Proof. We will split the proof into two steps.
Step 1: Let V : Rc × R+ ×Θ→ R+ be the Lyapunov function:

V (τ, ϑ, b) := V (τ) = |τ |q. (3.1)

We then have

LV (φ(0), φ, ϑ, b) = q|φ(0)− F (ϑ, φ)|q−2 (φ(0)− F (ϑ, φ))T [h1 (φ(0), φ, ϑ, b) + u(ϑ, φ(−v(ϑ)), b)]

+
1

2
q|φ(0)− F (ϑ, φ)|q−2|h2 (φ(0), φ, ϑ, b) |2

+
1

2
q(q − 2)|φ(0)− F (ϑ, φ)|q−4| (φ(0)− F (ϑ, φ))T h2 (φ(0), φ, ϑ, b) |2. (3.2)

Using the inequality

| (φ(0)− F (ϑ, φ))T h2 (φ(0), φ, ϑ, b) |2 ≤ |φ(0)− F (ϑ, φ)|2|h2 (φ(0), φ, ϑ, b) |2, (3.3)

we deduce

LV (φ(0), φ, ϑ, b)

= q|φ(0)− F (ϑ, φ)|q−2
[

(φ(0)− F (ϑ, φ))T h1 (φ(0), φ, ϑ, b) +
q − 1

2
|h2 (φ(0), φ, ϑ, b) |2

+ (φ(0)− F (ϑ, φ))T u(ϑ, φ(−v(ϑ)), b)
]

≤ qΞ4|φ(0)− F (ϑ, φ)|q−2 + qΞ3|φ(0)− F (ϑ, φ)|q + qγ|φ(0)− F (ϑ, φ)|q−1|φ(−v(ϑ))|

+qΞ1

∫ 0

−∞
|φ(θ)|qν(θ)dθ − qΞ2|φ(0)|q. (3.4)

Applying Young’s inequality, for ε > 0 arbitrary, we can derive that

qγ|φ(0)− F (ϑ, φ)|q−1|φ(−v(ϑ))| =

(
(qγ)

q
q−1 |φ(0)− F (ϑ, φ)|q

(εq)
1

q−1

) q−1
q

(εq|φ(−v(ϑ))|q)
1
q

≤ (qγ)
q

q−1

ε
1

q−1

|φ(0)− F (ϑ, φ)|q + ε|φ(−v(ϑ))|q. (3.5)
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Hence,

LV (φ(0), φ, ϑ, j) ≤ −K̃|φ(0)− F (ϑ, φ)|q + qΞ4|φ(0)− F (ϑ, φ)|q−2 + ε|φ(−v(ϑ))|q

+qΞ1

(∫ 0

−∞
|φ(θ)|qν(θ)dθ − |φ(0)|q

)
. (3.6)

Choose ε >
(qγ)q

(−qΞ3)q−1
such that K̃ = −qΞ3 −

(qγ)
q

q−1

ε
1

q−1

> 0, and note that V(t) = qΞ4t
q−2 − K̃tq

has a finite supremum value over [0,+∞) denoted by ϕ4 = sup
t∈[0,∞)

V(t).

Hence,

LV (φ(0), φ, ϑ, b) ≤ ϕ4 + qΞ1

(∫ 0

−∞
|φ(θ)|qν(θ)dθ − |φ(0)|q

)
+ ε|φ(−v(ϑ))|q. (3.7)

Step 2: As the coefficients of equation (2.6) are continuous and locally Lipschitz, for any
given initial condition (2.7), by the standard truncation method, there is a unique maximal local
strong solution of equation (2.6) on (−∞, νe), with νe the explosion time (see, e.g., [19, Theorem
3.2.2, p.95] and [28, Theorem 3.3]).

Let c0 > 0 be sufficiently large satisfying ||χ̂|| < c0. For each c ∈ N∗ such that c ≥ c0, let νc
be the stopping time defined by

νc = inf{ϑ ∈ [0, νe); |τ(ϑ)| ≥ c}.

It is clear that νc is increasing. Set ν∞ = lim
c→∞

νc. It is obvious that ν∞ ≤ νe a.s. We will prove

that ν∞ =∞ a.s, then νe =∞ a.s.
Set τ̃(ϑ) = τ(ϑ)− F (ϑ, τϑ) and τ̃(π0) = τ̂(π0)− F (ϑ, τ̂π0). Applying Itô’s formula and (3.7),

EV (τ̃(ϑ ∧ νc)) = EV (τ̃(π0)) + E
( ∫ ϑ∧νc

π0

LV (τ(s), τs, s, l(s)) ds
)

≤ EV (τ̃(π0)) + ϕ4ϑ+ εE
( ∫ ϑ∧νc

π0

|τ(s− v(s))|qds
)

+ qΞ1E
(∫ ϑ∧νc

π0

( ∫ 0

−∞
|τ(s+ θ)|qν(θ)dθ − |τ(s)|q

)
ds
)
. (3.8)

8



Applying now Fubini’s theorem,

E
(∫ ϑ∧νc

π0

( ∫ 0

−∞
|τ(s+ θ)|qν(θ)dθ − |τ(s)|q

)
ds

)
= E

(∫ 0

−∞

( ∫ ϑ∧νc

π0

|τ(s+ θ)|qds
)
ν(θ)dθ

)
− E

(∫ ϑ∧νc

π0

|τ(s)|qds
)

≤ E
(∫ 0

−∞

( ∫ ϑ∧νc

−∞
|τ(s)|qds

)
ν(θ)dθ

)
− E

(∫ ϑ∧νc

π0

|τ(s)|qds
)

= E
∫ π0

−∞
|χ̂(s)|qds. (3.9)

Besides, for all s ≥ π0, we have 0 ≤ s− v(s) ≤ s. This yields

E
(
|τ(s− v(s))|q1[π0,νc](s)

)
≤ sup

0≤w≤s
E
(
|τ(w ∧ νc)|q

)
.

Therefore, by (2.3), we obtain

EV (τ̃(ϑ ∧ νc)) ≤ EV (τ̃(π0)) + ϕ4ϑ+ qΞ1E
∫ π0

−∞
|χ̂(s)|qds

+ε

∫ ϑ

π0

E
(
|τ(s− v(s))|q1[π0,νc](s)

)
ds

≤ EV (τ̃(π0)) + ϕ4ϑ+ qΞ1E
∫ π0

−∞
|χ̂(s)|qds

+ε

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds

≤ E|τ̃(π0)|q + ϕ4ϑ+ qΞ1E
∫ π0

−∞
|χ̂(s)|qds

+ε

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds

≤ 2q−1E|τ̂π0 |q + 2q−1E|F (π0, τ̂π0)|q + ϕ4ϑ+ qΞ1E
∫ π0

−∞
|χ̂(s)|qds

+ε

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds

≤ 2q−1E||χ̂||q (1 + κq) + ϕ4ϑ+ qΞ1E
∫ π0

−∞
|χ̂(s)|qds

+ε

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds. (3.10)
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Thus,

E|τ̃(ϑ ∧ νc)|q ≤ L+ ϕ4ϑ+ L′
∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds, (3.11)

where

L = 2q−1E||χ̂||q (1 + κq) + qΞ1E
∫ π0

−∞
|χ̂(s)|qds,

and
L′ = ε.

Let ε > 0. For −∞ < θ ≤ 0, using Lemma 2.2, one has

E|τ(ϑ ∧ νc)|q ≤ (1 + ε
1

q−1 )q−1
(
E|τ̃(ϑ ∧ νc)|q +

E|F (ϑ ∧ νc, τϑ∧νc)|q

ε

)
≤ (1 + ε

1
q−1 )q−1

(
E|τ̃(ϑ ∧ νc)|q +

γqE|τ(ϑ ∧ νc)|q

ε

)
. (3.12)

Then,

E|τ(ϑ∧νc)|q ≤ (1+ε
1

q−1 )q−1
(
L+ϕ4ϑ+

γqE|τ(ϑ ∧ νc)|q

ε
+L′

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds
)
. (3.13)

Hence,

sup
π0≤t≤ϑ

E|τ(t ∧ νc)|q ≤
ε

ε

(1+ε
1

q−1 )q−1
− γq

(
L+ ϕ4ϑ+ L′

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds

)
. (3.14)

We have
lim
ε→∞

ε

(1 + ε
1

q−1 )q−1
− γq = 1− γq > 0.

Thus, there exists ε0 > 0, large enough, satisfying

ε0

(1 + ε
1

q−1

0 )q−1

− γq > 0.

It yields

sup
π0≤t≤ϑ

E|τ(t ∧ νc)|q ≤
ε0

ε0

(1+ε
1

q−1
0 )q−1

− γq

(
L+ ϕ4ϑ+ L′

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds

)
. (3.15)
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Moreover,

sup
0≤t≤ϑ

E|τ(t ∧ νc)|q ≤ sup
0≤t≤π0

E|τ(t ∧ νc)|q + sup
π0≤t≤ϑ

E|τ(t ∧ νc)|q

≤ E||χ̂||q +
ε0

ε0

(1+ε
1

q−1
0 )q−1

− γq

(
L+ ϕ4ϑ+ L′

∫ ϑ

π0

sup
0≤w≤s

E
(
|τ(w ∧ νc)|q

)
ds

)
.

Using Gronwall’s inequality we obtain

sup
0≤t≤ϑ

E|τ(t ∧ νc)|q ≤ Q(ϑ), (3.16)

where

Q(ϑ) = M(ϑ) +R
∫ ϑ

π0

M(s)eR(ϑ−s)ds,

M(ϑ) = E||χ̂||q +
ε0

ε0

(1+ε
1

q−1
0 )q−1

− γq
(L+ ϕ4ϑ) and R =

ε0
ε0

(1+ε
1

q−1
0 )q−1

− γq
L′.

Since
E|τ(ϑ ∧ νc)|q ≥ cqP (νc ≤ ϑ) ,

then

P (νc ≤ ϑ) ≤ Q(ϑ)

cq
.

Letting c → ∞, we deduce P (ν∞ ≤ ϑ) = 0. Thus, P (ν∞ > ϑ) = 1, ∀ϑ ≥ 0, which implies that
P (ν∞ =∞) = 1, as desired.

Theorem 3.2. Assume that Assumptions (2.4)-(2.6) hold. Then, system (2.6) is asymptotically
bounded in q-th moment.

Proof. Applying Itô’s formula to the function eεϑ |τ̃ |q and using (3.6), we have

d
(
eεϑV (τ̃(ϑ))

)
= eεϑ (LV (τ(ϑ), τϑ, ϑ, l(ϑ)) + εV (τ̃(ϑ))) dϑ

+ qeεϑ|τ̃(ϑ)|q−2τ̃(ϑ)Th2(τ(ϑ), τϑ, ϑ, l(ϑ))dW (ϑ). (3.17)
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Integrating (3.17) from π0 to ϑ, we can derive that

eεϑV (τ̃(ϑ)) = eεπ0V (τ̃(π0)) +

∫ ϑ

π0

eεs (LV (τ(s), τs, s, l(s)) + εV (τ̃(s))) ds

+ q

∫ ϑ

π0

eεs|τ̃(s)|q−2τ̃(s)Th2(τ(s), τs, s, l(s))dW (s)

≤ eεπ0V (τ̃(π0)) +

∫ ϑ

π0

qΞ1e
εs

∫ 0

−∞
|τ(s+ θ)|qν(θ)dθds

+

∫ ϑ

π0

eεs
(

(ε− K̃)|τ̃(s)|q + qΞ4|τ̃(s)|q−2 + ε|τ(s− v(s))|q − qΞ1|τ(s)|q
)
ds

+ q

∫ ϑ

π0

eεs|τ̃(s)|q−2τ̃(s)Th2(τ(s), τs, s, l(s))dW (s).

(3.18)

Set V1(ϑ) = qΞ1

∫ 0

−∞

∫ ϑ

ϑ+θ

eε(s−θ)|τ(s)|qdsν(θ)dθ. Using the differential calculation, one has

dV1(ϑ) = qΞ1

[∫ 0

−∞
eε(ϑ−θ)|τ(ϑ)|qν(θ)dθ −

∫ 0

−∞
eεϑ|τ(ϑ+ θ)|qν(θ)dθ

]
dϑ. (3.19)

Integrating (3.20) from π0 to ϑ, we have

V1(ϑ) ≤ V1(π0) + q

∫ ϑ

π0

Ξ1e
εs

[
M (ε)|τ(s)|q −

∫ 0

−∞
|τ(s+ θ)|qν(θ)dθ

]
ds, (3.20)

where

∫ 0

−∞
e−εθν(θ)dθ = M (ε). Using Remark 2.3 and Assumption (2.5), we have

|τ̃(ϑ)|q ≤ 2q−1(|τ(ϑ)|q + |F (ϑ, τϑ)|q)
≤ 2q−1(|τ(ϑ)|q + γq|τ(ϑ)|q)
= 2q−1(1 + γq)|τ(ϑ)|q. (3.21)

Plugging (3.20) and (3.21) into (3.18), we obtain

eεϑV (τ̃(ϑ) + V1(ϑ)) ≤ eεπ0V (τ̃(π0) + V1(π0)) +

∫ ϑ

π0

eεs [J(τ(s)) + ε|τ(s− v(s))|q] ds

+ q

∫ ϑ

π0

eεs|τ̃(s)|q−2τ̃(s)Th2(τ(s), τs, s, l(s))dW (s), (3.22)
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where J(s) = −
(

2q−1(1 + γq)(K̃ − ε)− qΞ1

(
M (ε) − 1

))
|s|q + 2q−3(1 + γq−2)qΞ4|s|q−2.

Choosing ε < K̃,
2q−1(1 + γq)(K̃ − ε)− qΞ1

(
M (ε) − 1

)
> 0.

Let C1 = sup
s≥0

J(s). Then,

eεϑV (τ̃(ϑ) + V1(ϑ)) ≤ eεπ0V (τ̃(π0) + V1(π0)) +

∫ ϑ

π0

eεs [C1 + ε|τ(s− v(s))|q] ds

+ q

∫ ϑ

π0

eεs|τ̃(s)|q−2τ̃(s)Th2(τ(s), τs, s, l(s))dW (s). (3.23)

Taking expectation on both sides of (3.23), we deduce

Eeεϑ|τ̃(ϑ)|q ≤ E
(
eεϑV (τ̃(ϑ)) + V1(ϑ)

)
≤ eεπ0V (τ̃(π0)) + V1(π0) + E

∫ ϑ

π0

eεs [C1 + ε|τ(s− v(s))|q] ds

≤ C2 + C1
eεϑ − eεπ0

ε
+ eεϑ sup

0≤s≤ϑ
E|τ(s)|q, (3.24)

where C2 = eεπ0V (τ̃(π0)) + V1(π0). For −∞ < θ ≤ 0, by Lemma 2.2 and Assumption (2.5), we
can derive that [

1

(1 + ε
1

q−1 )q−1
− γq

ε

]
E|τ(ϑ)|q ≤ E|τ̃(ϑ)|q. (3.25)

Hence,

E|τ(ϑ)|q ≤ 1[
1

(1+ε
1

q−1 )q−1
− γq

ε

] [C2 +
C1

ε
+ sup

0≤s≤ϑ
E|τ(s)|q

]
, (3.26)

which implies that

sup
0≤s≤ϑ

E|τ(s)|q ≤ sup
π0≤s≤ϑ

E|τ(s)|q + E||χ̂||q ≤ C3

[
C2 +

C1

ε
+ sup

0≤s≤ϑ
E|τ(s)|q

]
+ E||χ̂||q,

where C3 =
1[

1

(1+ε
1

q−1 )q−1
− γq

ε

] . It is easy to see that lim
ε→0+

C3 = 0−. Then, we may choose ε > 0,

small enough, such that C3 < 0. Consequently, we obtain

sup
0≤s≤ϑ

E|τ(s)|q ≤ 1

1− C3

[
C3

(
C2 +

C1

ε

)
+ E||χ̂||q

]
. (3.27)
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Letting ϑ→∞, it follows
sup

0≤s<∞
E|τ(s)|q ≤ C4, (3.28)

where C4 =
1

1− C3

[
C3

(
C2 +

C1

ε

)
+ E||χ̂||q

]
, as desired.

4 Mean square exponential Stability

In this section, we will present some conditions due to the control function u to ensure the mean
square and the exponential stability in q-th moment of system (2.6).

For ϑ ≥ π0, denote by τ̃(ϑ) = τ(ϑ) − F (ϑ, τϑ) and φ̃(0) = φ(0) − F (ϑ, φ). As for l̂ϑ to be well

defined, we set l̂(θ) = b0 for θ ≤ 0 and l̂ϑ = l(ϑ) for ϑ > 0.
∀ (ϑ, φ, i) ∈ (−∞, 0)×BC((−∞, 0],Rc)×Θ, we set h1(φ(0), φ, ϑ, i) = h1(φ(0), φ, 0, i), h2(φ(0), φ, ϑ, i) =
h2(φ(0), φ, 0, i) and u(φ(−v(0)), ϑ, i) = u(φ(−v(0)), 0, i).

Let π∗ = π + π and let ω > 0 be a free constant which will be determined later. Define

Û(τϑ, ϑ, l̂ϑ) = U(τ̃(ϑ), l(ϑ)) + ω

∫ 0

−π0

∫ ϑ

ϑ+s

Φ(τω, ω, l(ω))dωds,

where
U(z, b) = ηb |z|2 + η̂b |z|q , (4.1)

and

Φ(τϑ, ϑ, l(ϑ)) = π∗ |h1(τ(ϑ), τϑ, ϑ, l(ϑ)) + u(τ(ϑ− v(ϑ)), ϑ, l(ϑ))|2 + |h2(τ(ϑ), τϑ, ϑ, l(ϑ))|2 .

Lemma 4.1. For ϑ ≥ π0, Û(τϑ, ϑ, l̂ϑ) is a stochastic process with differential dÛ(τϑ, ϑ, l̂ϑ) given
by

dÛ(τϑ, ϑ, l̂ϑ) =

(
LU(τ(ϑ), τϑ, ϑ, l(ϑ)) + ωπ∗Φ(τϑ, ϑ, l(ϑ))− ω

∫ ϑ

ϑ−π∗
Φ(τs, s, l(s))ds

)
dϑ+ dM̂(ϑ),

where LU : Rc × BC((−∞, 0],Rc)× [π0,+∞)×Θ −→ R is defined by

LU(τ(ϑ), τϑ, ϑ, l(ϑ))

= 2ηl(ϑ)

(
τ̃(ϑ)T (h1(τ(ϑ), τϑ, ϑ, l(ϑ)) + u(τ(ϑ− v(ϑ)), ϑ, l(ϑ))) +

1

2
|h2(τ(ϑ), τϑ, ϑ, l(ϑ))|2

)
+ qη̂l(ϑ) |τ̃(ϑ)|q−2

(
τ̃(ϑ)T (h1(τ(ϑ), τϑ, ϑ, l(ϑ)) + u(τ(ϑ− v(ϑ)), ϑ, l(ϑ))) +

1

2
|h2(τ(ϑ), τϑ, ϑ, l(ϑ))|2

)
+

q(q − 2)

2
η̂l(ϑ) |τ̃(ϑ)|q−4 |τ̃(ϑ)h2(τ(ϑ), τϑ, ϑ, l(ϑ))|2 +

N∑
j=1

Πl(ϑ)j

(
ηj |τ̃(ϑ)|2 + η̂j |τ̃(ϑ)|q

)
,

where M̂(ϑ) is a local continuous martingale with M̂(π0) = 0.
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Remark 4.2. By the inequality |φ̃(0)Th2 (φ(0), φ, ϑ, j) |2 ≤ |φ̃(0)|2|h2 (φ(0), φ, ϑ, j) |2, it is obvi-
ous that

LU(τ(ϑ), τϑ, ϑ, l(ϑ))

≤ 2ηl(ϑ)

(
τ̃(ϑ)T (h1(τ(ϑ), τϑ, ϑ, l(ϑ)) + u(τ(ϑ− v(ϑ)), ϑ, l(ϑ))) +

1

2
|h2(τ(ϑ), τϑ, ϑ, l(ϑ))|2

)
+ qη̂l(ϑ) |τ̃(ϑ)|q−2

(
τ̃(ϑ)T (h1(τ(ϑ), τϑ, ϑ, l(ϑ)) + u(τ(ϑ− v(ϑ)), ϑ, l(ϑ)))

+
(q − 1)

2
|h2(τ(ϑ), τϑ, ϑ, l(ϑ))|2

)
+

N∑
j=1

Πl(ϑ)j

(
ηj |τ̃(ϑ)|2 + η̂j |τ̃(ϑ)|q

)
≤ LU(τϑ, ϑ, l(ϑ)) +

(
2ηl(ϑ) + qη̂l(ϑ) |τ̃(ϑ)|q−2) τ̃(ϑ)T (u(τ(ϑ− v(ϑ)), ϑ, l(ϑ))− u(τ(ϑ), ϑ, l(ϑ))) ,

(4.2)

where LU : BC((−∞, 0],Rc)× R+ ×Θ −→ R is defined by

LU(φ, ϑ,m) = 2ηm

(
φ̃(0)T (h1(φ(0), φ, ϑ,m) + u(φ(0), ϑ,m)) +

1

2
|h2(φ(0), φ, ϑ,m)|2

)
+ qη̂m

∣∣∣φ̃(0)
∣∣∣q−2

(
φ̃(0)T (h1(φ(0), φ, ϑ,m) + u(φ(0), ϑ,m)) +

q − 1

2
|h2(φ(0), φ, ϑ,m)|2

)
+

N∑
j=1

Πmj

(
ηj

∣∣∣φ̃(0)
∣∣∣2 + η̂j

∣∣∣φ̃(0)
∣∣∣q) . (4.3)

Assumption 4.3. Suppose that for each b ∈ Θ, there exist nonnegative constants Ξb1, Ξ̂b1, Ξb2,
Ξ̂b2, Ξb4, Ξ̂b4 and negative constants Ξb3, Ξ̂b3 such that, ∀ (ϑ, φ) ∈ R+ × BC((−∞, 0],Rc)∣∣∣φ̃(0)

∣∣∣q−2
(
φ̃(0)T (h1(φ(0), φ, ϑ, b) + u(φ(0), ϑ, b)) +

1

2
|h2(φ(0), φ, ϑ, b)|2

)
≤ Ξb4

∣∣∣φ̃(0)
∣∣∣q−2

+ Ξb3

∣∣∣φ̃(0)
∣∣∣q + Ξb1

∫ 0

−∞
|φ(θ)|q ν(θ)dθ − Ξb2 |φ(0)|q ,

and ∣∣∣φ̃(0)
∣∣∣q−2

(
φ̃(0)T (h1(φ(0), φ, ϑ, b) + u(φ(0), ϑ, b)) +

q − 1

2
|h2(φ(0), φ, ϑ, b)|2

)
≤ Ξ̂b4

∣∣∣φ̃(0)
∣∣∣q−2

+ Ξ̂b3

∣∣∣φ̃(0)
∣∣∣q + Ξ̂b1

∫ 0

−∞
|φ(θ)|q ν(θ)dθ − Ξ̂b2 |φ(0)|q .

Moreover,

Λ1 = −2diag (Ξ13,Ξ23, . . . ,ΞN3)− Π and Λ2 = −qdiag
(

Ξ̂13, Ξ̂23, . . . , Ξ̂N3

)
− Π,
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are non singular M-matrix and define

(η1, η2, ..., ηN)T = Λ−1
1 (1, 1, ..., 1)T , (η̂1, η̂2, ..., η̂N)T = Λ−1

2 (1, 1, ..., 1)T , (4.4)

where {ηb}1≤b≤N and {η̂b}1≤b≤N are positive constants.

Theorem 4.4. Let Assumptions (2.4)-(2.7) and (4.3) hold. Suppose that there exist positive
constants k, δ1, δ2, δ3, p ≥ q ≥ 2, αj, j = 1, . . . , 5, such that 0 < α1 < 1, a nonnegative constant
λ and a function W(·) ∈ C (Rc,R+) such that

α3

∣∣∣φ̃(0)
∣∣∣p+q−2

≤ W(φ̃(0)) ≤ α4 + α5

∣∣∣φ̃(0)
∣∣∣p+q−2

, (4.5)

and

LU(φ, ϑ, b) + δ1 |h1(φ(0), φ, ϑ, b)|2 + δ2 |h2(φ(0), φ, ϑ, b)|2 +
5

2
δ3

(
2ηb

∣∣∣φ̃(0)
∣∣∣+ qη̂b

∣∣∣φ̃(0)
∣∣∣q−1

)2

≤ −k
(∣∣∣φ̃(0)

∣∣∣2 + |φ(0)|2 − α1

∫ 0

−∞
|φ(θ)|2 ν(θ)dθ

)
− λW(φ(0))−W(φ̃(0)) + α2

∫ 0

−∞
W(φ(θ))ν(θ)dθ,

(4.6)

∀(ϑ, φ, b) ∈ R+ × BC((−∞, 0],Rc)×Θ. Suppose also π∗ is sufficiently small such that

π∗ <

√
kδ3(1− α1)

2ρ2
and π∗ ≤

√
δ1δ3√
2ρ
∧ δ2δ3

ρ2
∧ 1

2
√

10ρ
. (4.7)

Therefore, for any initial condition (2.7), the solution of equation (2.6) satisfies

lim
ϑ→+∞

1

ϑ
log
(
E |τ(ϑ)|2

)
< 0.

Proof. We split this proof into four steps.
Step 1: Using Assumption (2.7), (4.2) and (4.3), we can derive that

LU (τ(ϑ), τϑ, ϑ, l(ϑ)) ≤ LU(τϑ, ϑ, l(ϑ)) +
5

2
δ3

(
2ηl(ϑ) |τ̃(ϑ)|+ qη̂l(ϑ) |τ̃(ϑ)|q−1)2

+
ρ2

10δ3

|τ(ϑ)− τ(ϑ− v(ϑ))|2 .
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Thus,

Û(τϑ, ϑ, l̂ϑ) ≤ Û(τπ0 , π0, l̂π0) +

∫ ϑ

π0

LÛ(τs, s, l̂s)ds+ M̂(ϑ), (4.8)

where,

LÛ(τϑ, ϑ, l̂ϑ) = LU(τϑ, ϑ, l(ϑ)) +
5

2
δ3

(
2ηl(ϑ) |τ̃(ϑ)|+ qη̂l(ϑ) |τ̃(ϑ)|q−1)2

+
ρ2

10δ3

|τ(ϑ)− τ(ϑ− v(ϑ))|2 + ωπ∗Φ(τϑ, ϑ, l(ϑ))− ω
∫ ϑ

ϑ−π∗
Φ(τs, s, l(s))ds.

(4.9)

On the other hand, by Assumptions (2.4), (2.7) and Theorem 3.2, we deduce

sup
π0≤ϑ<∞

E
∣∣∣LÛ(τϑ, ϑ, l̂ϑ)

∣∣∣ <∞. (4.10)

Step 2: Let ω =
ρ2

δ3

. Using (4.8) and (4.10), we obtain for any ϑ ≥ π0

eεϑEÛ(τϑ, ϑ, l̂ϑ) ≤ eεπ0Û(τπ0 , π0, l̂π0) + E
∫ ϑ

π0

eεs
(
εÛ(τs, s, l̂s) + LÛ(τs, s, l̂s)

)
ds. (4.11)

By condition (4.7), we can see that

2 (π∗)2 ρ2

δ3

≤ δ1 and
π∗ρ2

δ3

≤ δ2.

Then, by elementary inequality and (2.9), we obtain

ωπ∗Φ(τs, s, l(s)) ≤
2 (π∗)2 ρ2

δ3

|h1(s, τs, l(s))|2 +
π∗ρ2

δ3

|h2(s, τs, l(s))|2

+
2 (π∗)2 ρ2

δ3

|u(τ(s− v(s)), s, l(s))|2

≤ δ1 |h1(s, τs, l(s))|2 + δ2 |h2(s, τs, l(s))|2 +
2 (π∗)2 ρ4

δ3

|τ(s− v(s))|2 .

(4.12)
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Plugging (4.12) into (4.9) and using (4.6), we have

LÛ(τs, s, l̂s) ≤ LU(τs, s, l(s)) + δ1 |h1(s, τs, l(s))|2 + δ2 |h2(s, τs, l(s))|2

+
5

2
δ3

(
2ηl(s) |τ̃(s)|+ qη̂l(s) |τ̃(s)|q−1)2

+
2 (π∗)2 ρ4

δ3

|τ(s− v(s))|2

+
ρ2

10δ3

|τ(ϑ)− τ(ϑ− v(ϑ))|2 − ρ2

δ3

∫ s

s−π∗
Φ(τw, w, l(w))dw

≤ −k
(
|τ̃(s)|2 + |τ(s)|2 − α1

∫ 0

−∞
|τ(s+ θ)|2 ν(θ)dθ

)
− λW(τ(s))−W(τ̃(s))

+ α2

∫ 0

−∞
W(τ(s+ θ))ν(θ)dθ +

2 (π∗)2 ρ4

δ3

|τ(s− v(s))|2

+
ρ2

10δ3

|τ(s)− τ(s− v(s))|2 − ρ2

δ3

∫ s

s−π∗
Φ(τw, w, l(w))dw. (4.13)

Using (4.7), we can derive that ρπ∗ ≤ 1

2
√

10
and

2 (π∗)2 ρ4

δ3

|τ(s− v(s))|2 ≤ (4π∗)2 ρ4

δ3

|τ(s)|2 +
ρ2

10δ3

|τ(s)− τ(s− v(s))|2 .

Hence,

LÛ(τs, s, l̂s) ≤ −k |τ̃(s)|2 + kα1

∫ 0

−∞
|τ(s+ θ)|2 ν(θ)dθ − λW(τ(s))−W(τ̃(s))

+ α2

∫ 0

−∞
W(τ(s+ θ))ν(θ)dθ +

ρ2

5δ3

|τ(s)− τ(s− v(s))|2

−

(
k − 4 (π∗)2 ρ4

δ3

)
|τ(s)|2 − ρ2

δ3

∫ s

s−π∗
Φ(τw, w, l(w))dw. (4.14)

Plugging (4.14) into (4.11), we have

eεϑEÛ(τϑ, ϑ, l̂ϑ) ≤ eεπ0Û(τπ0 , π0, l̂π0) + E
∫ ϑ

π0

εeεsÛ(τs, s, l̂s)ds+ I1 + I2 + I3 − I4, (4.15)
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where

I1 = E
∫ ϑ

π0

eεs

(
−k |τ̃(s)|2 −

(
k − 4 (π∗)2 ρ4

δ3

)
|τ(s)|2 + kα1

∫ 0

−∞
|τ(s+ θ)|2 ν(θ)dθ

)
ds

I2 = E
∫ ϑ

π0

eεs
(
−λW(τ(s))−W(τ̃(s)) + α2

∫ 0

−∞
W(τ(s+ θ))ν(θ)dθ

)
ds

I3 =
ρ2

5δ3

E
∫ ϑ

π0

eεs |τ(s)− τ(s− v(s))|2 ds

I4 =
ρ2

δ3

E
∫ ϑ

π0

eεs
(∫ s

s−π∗
Φ(τw, w, l(w))dw

)
ds.

Step 3: Using the substitution method, we obtain∫ ϑ

π0

∫ 0

−∞
eεs |τ(s+ θ)|2 ν(θ)dθds =

∫ 0

−∞
e−εθν(θ)

∫ ϑ

π0

eε(s+θ) |τ(s+ θ)|2 dsdθ

=

∫ 0

−∞
e−εθν(θ)

∫ ϑ+θ

π0+θ

eεs |τ(s)|2 dsdθ

≤ M (ε)

∫ ϑ

−∞
eεs |τ(s)|2 ds

≤ M (ε)eεπ0
∫ π0

−∞
|χ̂(s)|2 ds+M (ε)

∫ ϑ

π0

eεs |τ(s)|2 ds.

Therefore,

I1 ≤ kα1e
επ0M (ε)

∫ π0

−∞
|χ̂(s)|2 ds−

(
k − 4 (π∗)2 ρ4

δ3

− kα1M
(ε)

)
E
∫ ϑ

π0

eεs |τ(s)|2 ds

− kE
∫ ϑ

π0

eεs |τ̃(s)|2 ds. (4.16)

By the same method, we have

I2 ≤ α2e
επ0M (ε)

∫ π0

−∞
|W(χ̂(s))| ds+

(
M (ε)α2 − λ

)
E
∫ ϑ

π0

eεsW(τ(s))ds

− E
∫ ϑ

π0

eεsW(τ̃(s))ds. (4.17)

Applying the Fubini theorem, we can derive that

ρ2

5δ3

E
∫ ϑ

π0

eεs |τ(s)− τ(s− v(s))|2 ds =
ρ2

5δ3

∫ ϑ

π0

eεsE |τ(s)− τ(s− v(s))|2 ds.
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By the Itô isometry and the Hölder inequality,

E |τ(s)− τ(s− v(s))|2

≤ 3E|F (s, τs)− F (s, τs−v(s))|2 + 3E
∫ s

s−v(s)

(
π∗ |h1(τ(w), τw, w, l(w))− u(τ(w − v(w)), w, l(w))|2

+ |h2(τ(w), τw, w, l(w))|2
)
dw

≤ 3E|F (s, τs)− F (s, τs−v(s))|2 + 3E
∫ s

s−π∗

(
π∗ |h1(τ(w), τw, w, l(w))− u(τ(w − v(w)), w, l(w))|2

+ |h2(τ(w), τw, w, l(w))|2
)
dw.

Then, by Theorem 3.2, we have

I3 ≤
3

5
I4 + 3γ2(E|τ(s)|2 + E|τ(s− v(s))|2)

≤ 3

5
I4 + 6γ2C4. (4.18)

Substituting (4.16)–(4.18) into (4.15),

eεϑEÛ(τϑ, ϑ, l̂ϑ) ≤ C5 + E
∫ ϑ

π0

εeεsÛ(τs, s, l̂s)ds−

(
k − 4 (π∗)2 ρ4

δ3

− kα1M
(ε)

)
E
∫ ϑ

π0

eεs |τ(s)|2 ds

− kE
∫ ϑ

π0

eεs |τ̃(s)|2 ds−
(
λ−M (ε)α2

)
E
∫ ϑ

π0

eεsW(τ(s))ds

− E
∫ ϑ

π0

eεsW(τ̃(s))ds− 2

5
I4,

where

C5 = eεπ0Û(τπ0 , π0, l̂π0) + kα1e
επ0M (ε)

∫ π0

−∞
|χ̂(s)|2 ds+ α2e

επ0M (ε)

∫ π0

−∞
|W(χ̂(s))| ds+ 6γ2C4.

Step 4: By an elementary inequality and (4.5), we obtain

|τ |q ≤ |τ |2 + |τ |p+q−2 ≤ |τ |2 +
W(τ)

α3

.
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Using now the definition of Û ,

ω1e
εϑE |τ̃(ϑ)|2 ≤ eεϑEÛ(τϑ, ϑ, l̂ϑ)

≤ C5 −
(

1− εω3

α3

)
E
∫ ϑ

π0

eεsW(τ̃(s))ds− (k − εω2 − εω3)E
∫ ϑ

π0

eεs |τ̃(s)|2 ds

−

(
k − 4 (π∗)2 ρ4

δ3

− kα1M
(ε)

)
E
∫ ϑ

π0

eεs |τ(s)|2 ds

−
(
λ−M (ε)α2

)
E
∫ ϑ

π0

eεsW(τ(s))ds− 2

5
I4 + I5, (4.19)

where
ω1 = min

i∈Θ
ηi, ω2 = max

i∈Θ
ηi, ω3 = max

i∈Θ
η̂i

and

I5 =
ερ2

δ3

E
∫ ϑ

π0

eεs
(∫ 0

−π∗

∫ s

s+v

Φ(τw, w, l(w))dwdv

)
ds.

It is straightforward to show that

I5 ≤
ερ2

δ3

E
∫ ϑ

π0

eεs
(
π∗
∫ s

s−π∗
Φ(τw, w, l(w))dw

)
ds = επ∗I4.

We may choose ε > 0 to be sufficiently small and satisfying

επ∗ ≤ 2

5
, ε

ω3

α3

≤ 1, εω2 + εω3 ≤ k kα1M
(ε) +

4(π∗)2ρ4

δ3

≤ k and M (ε)α2 ≤ λ.

Substituting these into (4.19), we obtain

E |τ̃(ϑ)|2 ≤ C5

ω1

e−εϑ, ∀ϑ ≥ π0.

We know that

|τ̃(ϑ)|2 ≥ (
1

1 + ε
− γ2

ε
) |τ(ϑ)|2 . (4.20)

We have
lim
ε→∞

ε

1 + ε
− γ2 = 1− γ2 > 0.

Then, there exists ε > 0, such that

1

1 + ε
− γ2

ε
=

1

ε
(

ε

1 + ε
− γ2) > 0.
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Hence,

E |τ(ϑ)|2 ≤ 1
1

1+ε
− γ2

ε

C5

ω1

e−εϑ, ∀ϑ ≥ π0,

as desired.

Theorem 4.5. Suppose that all assumptions of Theorem 4.4 hold. Then, for any initial condition
satisfying (2.7), we have
(i) for any q̂ ∈ [2, q), the solution of equation (2.6) satisfies

lim
ϑ→+∞

1

ϑ
log
(
E |τ(ϑ)|q̂

)
< 0.

(ii) The solution of equation (2.6) is almost surely exponentially stable.

Proof. (i) By the Hölder inequality and Theorem 3.2, we can derive that, for any 2 ≤ q̂ < q,

E |τ(ϑ)|q̂ ≤
(
E |τ(ϑ)|2

) q−q̂
q−2 (E |τ(ϑ)|q)

q̂−2
q−2

≤

(
1

1
1+ε
− γ2

ε

C5

ω1

) q−q̂
q−2

C
q̂−2
q−2

4 e−εϑ
q−q̂
q−2 .

(ii) Using Itô’s formula and proceeding as (4.8) and (4.11), we obtain

eεϑ |τ̃(ϑ)|2 ≤ C5

ω1

+ M̃(ϑ), (4.21)

where M̃(ϑ) is a local continuous martingale with initial value M̃(π0) = 0.
Using the non-negative semi-martingale convergence theorem, one can derive that

lim
ϑ→∞

sup eεϑ |τ̃(ϑ)|2 <∞, a.s. (4.22)

Then, there exists a finite positive random variable ν satisfying

sup
π0≤ϑ<∞

eεϑ |τ̃(ϑ)|2 ≤ ν, a.s. (4.23)

Proceeding as in (4.20) and the proof of Theorem 2 in [3], we have

sup
π0≤ϑ<∞

eεϑ |τ(ϑ)|2 ≤ C6, (4.24)

where C6 =
1

1
1+ε
− γ2

ε

ν. This yields that, for all ϑ ≥ π0,

|τ(ϑ)|2 ≤ C6e
−εϑ. (4.25)

Therefore,

lim
ϑ→∞

sup
ln |τ(ϑ)|

ϑ
≤ −ε

2
, (4.26)

as desired.
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5 Illustrative Example

In this section, we present the following HNSFDEswID to illustrate our results:

d [τ(ϑ)− F (ϑ, τϑ)] = h1 (τ(ϑ), τϑ, ϑ, l(ϑ)) dϑ+ h2 (τ(ϑ), τϑ, ϑ, l(ϑ)) dW (ϑ), (5.1)

where W (ϑ) is a one dimensional Brownian motion, the function F is defined as

F (ϑ, φ) =
1

2

φ(0)

1 + e−φ2(−ς(ϑ))
,

where ς : R→ [0,+∞) is a continuous function which represents the unbounded variable delay.
In this sense, when we replace φ by τϑ, the expression takes the following form

F (ϑ, τϑ) =
1

2

τ(ϑ)

1 + e−τ2(ϑ−ς(ϑ))
.

The functions h1 and h2 have the corresponding expressions

h1 (τ(ϑ), τϑ, ϑ, 1) = −2
(

1 + e−τ
2(ϑ−ς(ϑ))

)(
2τ(ϑ)− 1

4

∫ 0

−∞
|τ(ϑ+ θ)|eθdθ

)
,

h2 (τ(ϑ), τϑ, ϑ, 1) =
1

2

∫ 0

−∞
|τ(ϑ+ θ)|eθdθ,

h1 (τ(ϑ), τϑ, ϑ, 2) = −4

3

(
1 + e−τ

2(ϑ−ς(ϑ))
)(

3τ(ϑ)− 1

5

∫ 0

−∞
|τ(ϑ+ θ)|eθdθ

)
,

h2 (τ(ϑ), τϑ, ϑ, 2) =

√
2

15

∫ 0

−∞
|τ(ϑ+ θ)|eθdθ.

Consider the following initial condition

χ̂ =

{
e0.01ϑ − e−1, if ϑ ∈ (−100, 0]
0, if ϑ ∈ (−∞,−100],

(5.2)

l(0) = 1.

Remark 5.1. Since it is hard to make numerical simulation for the equation with infinite delay,
we have considered a special initial condition (5.2) here. Although this is enough to illustrate
our previous theoretical results. For the theory of numerical methods of SDEs, see [15], [16] and
[32].
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Set Θ = {1, 2} and the matrix Λ = (λmn)1≤m,n≤2 given by(
−1 1
1 −1

)
.

Thus, for b = 1

(φ(0)− F (ϑ, φ))T h1 (φ(0), φ, ϑ, 1) +
1

2
|h2 (φ(0), φ, ϑ, 1) |2

≤ −13

8
|φ(0)|2 +

1

2

(∫ 0

−∞
|φ(θ)|eθdθ

)2

. (5.3)

For b = 2

(φ(0)− F (ϑ, φ))T h1 (φ(0), φ, ϑ, 2) +
1

2
|h2 (φ(0), φ, ϑ, 2) |2

≤ −28

15
|φ(0)|2 +

1

5

(∫ 0

−∞
|φ(θ)|eθdθ

)2

. (5.4)

Using the Hölder inequality, we obtain(∫ 0

−∞
|φ(θ)|eθdθ

)2

≤
∫ 0

−∞
|φ(θ)|2eθdθ. (5.5)

Furthermore,

|φ(0)− F (ϑ, φ)| =
1
2

+ e−φ
2(−ς(ϑ))

1 + e−φ2(−ς(ϑ))
|φ(0)| ≤ |φ(0)|. (5.6)

Substituting (5.5) and (5.6) into (5.3) and (5.4), we have ∀b ∈ {1, 2}

(φ(0)− F (ϑ, φ))T h1 (φ(0), φ, ϑ, b) +
1

2
|h2 (φ(0), φ, ϑ, b) |2

≤ −13

8
|φ(0)|2 +

1

2

∫ 0

−∞
|φ(θ)|2eθdθ,

= −|φ(0)|2 − 5

8
|φ(0)|2 +

1

2

∫ 0

−∞
|φ(θ)|2eθdθ,

≤ −|φ(0)− F (ϑ, φ)|2 − 5

8
|φ(0)|2 +

1

2

∫ 0

−∞
|φ(θ)|2eθdθ. (5.7)

By the fact that |φ(0)− F (ϑ, φ)|2−2 = 1, we can see that ∀b ∈ {1, 2}

(φ(0)− F (ϑ, φ))T h1 (φ(0), φ, ϑ, b) +
1

2
|h2 (φ(0), φ, ϑ, b) |2

≤ −|φ(0)− F (ϑ, φ)|2 + 1− 5

8
|φ(0)|2 +

1

2

∫ 0

−∞
|φ(θ)|2eθdθ. (5.8)
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Then, Assumption (2.6) is satisfied with Ξ1 = 1
2
, Ξ2 = 5

8
, Ξ3 = −1 and Ξ4 = 1. However,

letting the initial condition (5.2), from the numerical simulation of the computer based on Euler-
Maruyama scheme with time step 10−3, we can see that HNSFDEswID (5.1) is not stable. This
result can be clearly illustrated in Figure 1.
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Figure 1: The computer simulation of the sample paths of the Markov chain and the System
(5.1) using the EulerMaruyama method with time step 10−3.

Now, we will construct a control function u to stabilize the system (5.1). Let the function
u : R× R+ × S −→ R defined by

u(τ, ϑ, 1) =
1

2
τ and u(τ, ϑ, 2) =

4

3
τ. (5.9)

It is obvious to see that Assumption (2.7) is fulfilled with ρ = 2. By Theorems 3.1 and 3.2, the
following system:

d(τ(ϑ)−F (ϑ, τϑ)) = (h1 (τ(ϑ), τϑ, ϑ, l(ϑ)) + u (τ(ϑ− v(ϑ)), ϑ, l(ϑ))) dϑ+h2 (τ(ϑ), τϑ, ϑ, l(ϑ)) dW (ϑ),
(5.10)

25



has a unique global solution on ϑ ≥ 0 for any initial data χ̂. Moreover, we have(
φ̃(0)T (h1(φ(0), φ, ϑ, b) + u(φ(0), ϑ, b)) +

1

2
|h2(φ(0), φ, ϑ, b)|2

)
≤ Ξb4 + Ξb3

∣∣∣φ̃(0)
∣∣∣2 + Ξb1

∫ 0

−∞
|φ(θ)|2 ν(θ)dθ − Ξb2 |φ(0)|2 .

Hence, Assumption (4.3) holds with

Ξ14 = Ξ24 = Ξ̂14 = Ξ̂24 = 0, Ξ13 = Ξ̂13 = −1

4
, Ξ12 = Ξ̂12 =

5

8
, Ξ11 = Ξ̂11 =

1

2
,

Ξ23 = Ξ̂23 = − 3

10
, Ξ22 = Ξ̂22 = 1 and Ξ21 = Ξ̂21 =

4

15
.

Let

Λ1 = Λ2 = −2diag (Ξ13,Ξ23)− Γ =

(
3
2
−1

−1 8
5

)
.

Therefore,

Λ−1
1 = Λ−1

2 =

(
8
7

5
7

5
7

15
14

)
.

On the other hand, we will prove that system (5.10) satisfies all the assumptions of Section 4.
We consider

U(τ,m) =


26
7
|τ |2, for b = 1

25
7
|τ |2, for b = 2.

Then, for b = 1

LU(φ, ϑ, 1) +
1

128
|h1(φ(0), φ, ϑ, 1)|2 + |h2(φ(0), φ, ϑ, 1)|2 +

49

676
(η1 + η̂1)2

∣∣∣φ̃(0)
∣∣∣2

≤ −
∣∣∣φ̃(0)

∣∣∣2 − 51

14
|φ(0)|2 +

1783

448

∫ 0

−∞
|φ(θ)|2 eθdθ.

For b = 2

LU(φ, ϑ, 2) +
1

128
|h1(φ(0), φ, ϑ, 2)|2 + |h2(φ(0), φ, ϑ, 2)|2 +

49

676
(η2 + η̂2)2

∣∣∣φ̃(0)
∣∣∣2

≤ −727

676

∣∣∣φ̃(0)
∣∣∣2 − 43

7
|φ(0)|2 +

3217

1575

∫ 0

−∞
|φ(θ)|2 eθdθ.
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This implies that for ∀b ∈ {1, 2}

LU(φ, ϑ, b) +
1

128
|h1(φ(0), φ, ϑ, b)|2 + |h2(φ(0), φ, ϑ, b)|2 +

49

676
(ηb + η̂b)

2
∣∣∣φ̃(0)

∣∣∣2
≤ −

∣∣∣φ̃(0)
∣∣∣2 − 3 |φ(0)|2 + 4

∫ 0

−∞
|φ(θ)|2 eθdθ

≤ −1

2

(∣∣∣φ̃(0)
∣∣∣2 + |φ(0)|2 − 1

2

∫ 0

−∞
|φ(θ)|2 eθdθ

)
− 5

2
|φ(0)|2 − 1

2

∣∣∣φ̃(0)
∣∣∣2 +

15

4

∫ 0

−∞
|φ(θ)|2 eθdθ.

Consequently, Theorem 4.4 is satisfied with

k =
1

2
, α1 =

1

2
, λ = 5, α2 =

15

2
,

W(τ) =
1

2
τ 2, δ1 =

1

128
, δ2 = 1, δ3 =

49

6760
, and π∗ = 10−3.

Therefore, system (5.10) is exponentially stable in mean square.
To perform a computer simulation, we set π∗ = 10−4 and the same initial condition as before.

The sample paths of the Markov chain and the solution of system (5.10) are shown in Figure 2.
According to the time step 10−3, we use 1000 realizations for this discretization to give the

trajectory of simulation of the mean square of τ(ϑ). The mean square exponential stability for
system (5.10) is shown in Figure 3 and clearly the simulation supports our theoretical results.

6 Conclusion

In this article, we have investigated the stability of highly nonlinear HNSFDEswID by construct-
ing a suitable delay control. Moreover, in the literature, there is no existing results about the
stability theory of highly nonlinear HNSFDEswID.
Hence, for highly nonlinear HNSFDEswID, it is necessary to design a new delay control to sta-
bilize the system.
The new controlled HNSFDEswID includes not only discrete modes and continuous states but
also new discrete states with respect to the infinite time delay, so it is a hard task to study this
type of system. We have obtained the existence and uniqueness theorem of the HNSFDEswID. In
this way, we construct delay controls, which ensure that the controlled HNSFDEswID is bounded
in q-th moment, and is mean square and almost sure exponentially stable. Finally, we analyze a
numerical example to illustrate our results.
Combining our results in this article with those of [30], we can study the feedback control problem
of HNSFDEswID with different structures.
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Figure 2: The computer simulation of the sample paths of the Markov chain and the System
(5.10) using the EulerMaruyama method with time step 10−3.
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Figure 3: Mean square stability for the System (5.10).
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