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Resumen

Esta tesis combina las disciplinas de Investigación Operativa y Aprendizaje Automático a

través del desarrollo de formulaciones de Optimización Matemática y algoritmos de resolu-

ción numérica para construir modelos basados en árboles de clasificación y regresión.

A diferencia de los árboles de clasificación y regresión clásicos, generados de manera

heurística y voraz, construir un árbol a través de un problema de optimización nos permite

incluir fácilmente propiedades estructurales globales deseables. En esta tesis, ilustramos esta

flexibilidad para modelar los siguientes aspectos: sparsity, como sinónimo de interpretabilidad,

controlando el número de coeficientes no nulos, el número de variables predictoras y, si son

funcionales, la proporción de dominio usado en la predicción; un criterio social importante,

la equidad del modelo, evitando predicciones que discriminen a algunos individuos por su et-

nia u otras características sensibles; y la sensibilidad al coste de grupos de riesgo, asegurando

un rendimiento aceptable para ellos. Además, con este enfoque se obtiene de manera natural

el impacto que las variables predictoras continuas tienen en la predicción de cada individuo,

mejorando así la explicabilidad local de los modelos de clasificación y regresión basados en

árboles.

Todos los enfoques propuestos en esta tesis se formulan a través de problemas de Opti-

mización Continua que son escalables con respecto al tamaño de la muestra de entrenamiento,

se estudian desde el punto de vista teórico, se evalúan en conjuntos de datos reales y son com-

petitivos frente a los procedimientos habituales. Esto, junto a las buenas propiedades resumidas

en el párrafo anterior, se ilustra a lo largo de los diferentes capítulos de esta tesis.

La tesis se estructura de la siguiente manera. El estado del arte sobre árboles de decisión

(óptimos) se discute ampliamente en el Capítulo 1, mientras que los cuatro capítulos siguientes

exponen nuestra metodología.

El Capítulo 2 introduce de forma detallada el marco general que hila los capítulos de esta

tesis: un árbol aleatorizado con cortes oblicuos. En particular, presentamos nuestra propuesta

para tratar problemas de clasificación, la cual construye la probabilidad de pertenencia a cada

clase ajustada a cada individuo, a diferencia de las técnicas más populares existentes, en las que

a todos los individuos en el mismo nodo hoja se les asigna la misma probabilidad. Se tratan

con éxito preferencias en las tasas de clasificación en clases críticas mediante restricciones de

sensibilidad al coste.
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El Capítulo 3 extiende la metodología de clasificación del Capítulo 2 para tratar adicional-

mente sparsity. Esto se modela mediante regularizaciones con normas poliédricas que se

añaden a la función objetivo. Se estudian propiedades teóricas del árbol más sparse, y se

demuestra nuestra habilidad para sacrificar un poco de precisión en la clasificación por una

ganancia en sparsity.

En el Capítulo 4, los resultados obtenidos en los Capítulos 2 y 3 se adaptan para construir

árboles sparse para regresión. Se exploran propiedades teóricas de las soluciones. Los ex-

perimentos numéricos demuestran la escalabilidad de nuestro enfoque con respecto al tamaño

de la muestra de entrenamiento, y se ilustra cómo se generan las explicaciones locales en las

variables predictoras continuas. Además, mostramos cómo esta metodología puede reducir la

discriminación de grupos sensibles a través de las denominadas restricciones de justicia.

El Capítulo 5 extiende la metodología de regresión del Capítulo 4 para considerar variables

predictoras funcionales. De manera simultánea, la detección de un número reducido de inter-

valos que son críticos para la predicción es abordada. La sparsity en la proporción de dominio

de las variables predictoras funcionales a usar se modela también a través de un término de

regularización añadido a la función objetivo. De esta forma, se ilustra el equilibrio obtenido

entre la precisión de predicción y la sparsity en este marco.

Por último, el Capítulo 6 cierra la tesis con conclusiones generales y líneas futuras de

investigación.



Abstract

This PhD dissertation bridges the disciplines of Operations Research and Machine Learning by

developing novel Mathematical Optimization formulations and numerical solution approaches

to build classification and regression tree-based models.

Contrary to classic classification and regression trees, built in a greedy heuristic manner,

formulating the design of the tree model as an optimization problem allows us to easily include,

either as hard or soft constraints, desirable global structural properties. In this PhD dissertation,

we illustrate this flexibility to model: sparsity, as a proxy for interpretability, by controlling the

number of non-zero coefficients, the number of predictor variables and, in the case of func-

tional ones, the proportion of the domain used for prediction; an important social criterion, the

fairness of the model, which aims to avoid predictions that discriminate against race, or other

sensitive features; and the cost-sensitivity for groups at risk, by ensuring an acceptable accu-

racy performance for them. Moreover, we provide in a natural way the impact that continuous

predictor variables have on each individual prediction, thus enhancing the local explainability

of tree models.

All the approaches proposed in this thesis are formulated through Continuous Optimization

problems that are scalable with respect to the size of the training sample, are studied theoret-

ically, are tested in real data sets and are competitive in terms of prediction accuracy against

benchmarks. This, together with the good properties summarized above, is illustrated through

the different chapters of this thesis.

This PhD dissertation is organized as follows. The state of the art in the field of (optimal)

decision trees is fully discussed in Chapter 1, while the next four chapters state our methodo-

logy.

Chapter 2 introduces in detail the general framework that threads the chapters in this thesis:

a randomized tree with oblique cuts. Particularly, we present our proposal to deal with classi-

fication problems, which naturally provides probabilistic output on class membership tailored

to each individual, in contrast to the most popular existing approaches, where all individuals

in the same leaf node are assigned the same probability. Preferences on classification rates in

critical classes are successfully handled through cost-sensitive constraints.

Chapter 3 extends the methodology for classification in Chapter 2 to additionally handle

sparsity. This is modeled by means of regularizations with polyhedral norms added to the
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objective function. The sparsest tree case is theoretically studied. Our ability to easily trade in

some of our classification accuracy for a gain in sparsity is shown.

In Chapter 4, the findings obtained in Chapters 2 and 3 are adapted to construct sparse

trees for regression. Theoretical properties of the solutions are explored. The scalability of our

approach with respect to the size of the training sample, as well as local explanations on the

continuous predictor variables, are illustrated. Moreover, we show how this methodology can

avoid the discrimination of sensitive groups through fairness constraints.

Chapter 5 extends the methodology for regression in Chapter 4 to consider functional pre-

dictor variables instead. Simultaneously, the detection of a reduced number of intervals that

are critical for prediction is performed. The sparsity in the proportion of the domain of the

functional predictor variables to be used is also modeled through a regularization term added

to the objective function. The obtained trade off between accuracy and sparsity is illustrated.

Finally, Chapter 6 closes the thesis with general conclusions and future lines of research.
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Extracting knowledge from data is a crucial task in Statistics and Machine Learning, and

is at the core of many fields, such as Biomedicine [Jakaitiene et al., 2016; Leng and Müller,

2005; Pardalos et al., 2007], Business Analytics [Baesens et al., 2003; Martens et al., 2007;

Van Vlasselaer et al., 2017], Computational Optimization [Alvarez et al., 2017; Khalil et al.,

2016; Kruber et al., 2017; Lodi and Zarpellon, 2017], Criminal Justice [Ridgeway, 2013; Zeng

et al., 2017], Cybersecurity [Martínez Torres et al., 2019], Health Care [Benítez-Peña et al.,

2021; Bertsimas et al., 2016; Chaovalitwongse et al., 2008; Souillard-Mandar et al., 2016;

Strzalkowska-Kominiak and Romo, 2021; Ustun and Rudin, 2016], Policy Making [Athey,

2018; Athey and Imbens, 2015; Athey et al., 2019; Kleinberg et al., 2018; Wager and Athey,

2018] and Regulatory Benchmarking [Benítez-Peña et al., 2020; Esteve et al., 2020; Lee and

Cai, 2020]. Mathematical Optimization plays an important role in building such models and

interpreting their output [Bertsimas and Shioda, 2007; Brooks, 2011; Carrizosa et al., 2018b,

2020, 2022a,b, 2017; Dash et al., 2018; Fang et al., 2013; Fountoulakis and Gondzio, 2016;

Rudin and Ertekin, 2018], see Bottou et al. [2018]; Carrizosa et al. [2021a]; Carrizosa and

Romero Morales [2013]; Duarte Silva [2017]; Gambella et al. [2021]; Goodfellow et al. [2016];

Liberti [2020]; Olafsson et al. [2008]; Palagi [2019]; Piccialli and Sciandrone [2018] for sur-

veys.

The aim of this PhD dissertation is the development of novel Mathematical Optimization

formulations for building classification and regression tree-based models, as well as numerical

solution approaches to solve them. Our models, formulated through Continuous Optimiza-

tion, enhance the flexibility of standard tree-based models. They are able to easily incorpo-

rate important desirable properties such as cost-sensitivity, explainability, fairness and sparsity.

Moreover, they are able to deal with complex data, such as functional data, see Cuevas [2014];

Wang et al. [2016]; Goia and Vieu [2016] for recent reviews and a special issue on the topic,

respectively.

The chapter is organized as follows. In Section 1.1, we introduce the role of Mathematical

Optimization when building a classification and regression tree. In Section 1.2, we briefly go

through the simplest (greedy heuristic) approaches to construct classification and regression

trees, as well as extensions such as Random Forests, to understand how the one-shot optimiza-

tion of the decisions across the whole tree is overcome. In Section 1.3, we review the Mixed

Integer Linear Optimization paradigms, as well as our Continuous Optimization proposal, to

build optimal decision trees, and how they compare against each other. Finally, Section 1.4

describes the main contributions of this thesis.

1.1 The role of Mathematical Optimization in Classification and
Regression Trees

Classification and regression trees [Loh, 2014] are state-of-the-art methods based on recursive

partitioning [Hastie et al., 2009]. They are conceptually simple, show excellent learning per-
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formance, are computationally cheap and routines and packages to train them are available in

popular languages such as Python and R, and are also appealing in terms of interpretability

[Freitas, 2014; Goodman and Flaxman, 2017; Hu et al., 2019; Lin et al., 2020; Meinshausen,

2010] because of their rule-based nature. This makes them popular in many applications, in-

cluding, for instance, a credit scoring exercise for granting a loan, described in what follows for

illustration purposes. There, we have a data set of individuals characterized by demographic

and financial predictor variables, among others, and, with this information, the model predicts

whether customers will be good or bad payers. In Figure 1.1, we have a stylized credit scoring

tree that will help us visualize some of the concepts reviewed below.

To construct a tree model, one has at hand a training sample defined by a set of individu-

als on which several predictor variables, either numerical or functional, as well as a response

variable are measured. Note that w.l.g. we assume that categorical variables have been mod-

eled through dummy ones, and thus replaced by a set of binary variables indicating the pres-

ence/absence of each category.

The main goal of a classification and regression tree is to predict, as accurately as possi-

ble, the response variable using the predictor variables. On the top of this primary goal, other

important characteristics may need to be considered, such as, e.g., cost-sensitivity constraints

to protect risk groups [Kao and Tang, 2014; Turney, 1995]; fairness of the method avoiding

the discrimination of groups that share sensitive features such as gender and race [Aghaei et

al., 2019; Iosifidis and Ntoutsi, 2019; Miron et al., 2020; Obermeyer et al., 2019; Romei and

Ruggieri, 2014; Zafar et al., 2017]; and explainability [Ghorbani and Zou, 2020; Gunning and

Aha, 2019; Holter et al., 2018; Miller, 2019] properties, e.g., sparsity of the tree model [Bert-

simas and Digalakis, 2022; Cohen et al., 2007; Guyon and Elisseeff, 2003; Hastie et al., 2015;

Weston et al., 2003] and local interpretability of the model [Lundberg et al., 2020; Lundberg

and Lee, 2017; Molnar et al., 2020; Ribeiro et al., 2016], in order to ensure that the knowledge

gained is actionable [Aouad et al., 2019; Bertsimas et al., 2019; Cui et al., 2015; Höppner et

al., 2020; Mišić, 2020], according to the so-called right-to-explanation in algorithmic decision-

making, imposed by the European Union since 2018 [European Commission, 2020; Goodman

and Flaxman, 2017]. See Rudin et al. [2022] for a review on this topic.

A tree model consists of a tree decision structure and a prediction structure. The tree

decision structure is defined by two elements, namely, the topology of the tree, i.e., the branch

nodes and the leaf nodes, as well as the arcs between them, and the splitting rules applied at the

branch nodes. The prediction structure is defined by the (statistical) prediction models attached

to the leaf nodes. To illustrate these concepts, consider the topology of the tree model in Figure

1.1, which consists of two branch nodes, Node 1 and Node 2, and three leaf nodes, Node 3,

Node 4 and Node 5. This is a binary tree, since each branch node has two children. The root

node is where all individuals of the training sample start. These individuals move along the

tree according to the queries asked at the branch nodes. In this way, and after partitioning the

training sample successively, each individual ends up reaching exactly one leaf node. In terms
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of splitting rules, the query asked in this example at the root node is whether predictor variable

age is below 50, while at Node 2 we ask whether salary is below 30. The purpose of this

splitting process is to ensure that individuals in the same leaf node follow the same pattern (i.e.,

they are from the same class or their response variable can be accurately predicted by a unique

model, such as, for instance, a linear or a logistic model) and said pattern is expected to be also

present for new individuals falling inside this leaf node. The prediction in a given leaf node is

chosen fitting a model to the subsample fallen into it. In Figure 1.1, we can see that Node 4

predicts individuals as good payers, since this is the most frequent class (in bold font) in Node

4, while, following a similar argument, the other two leaf nodes predict as bad payers.

Once the tree model is built, the prediction of future data is done in a deterministic way.

Given a new observation, starting from the root node, and applying the queries at the branch

nodes, it will end up in a leaf node. The prediction is that associated with such leaf node. In our

example, a new individual of age 43 and salary 28 would end up in Node 3, and therefore

it would be predicted as a bad payer.

Mathematical Optimization is present within the three elements that define a tree model,

namely, topology design of the tree, branching and prediction. First, we face the problem of

designing the topology of the tree. This network design problem is often avoided, by, e.g.,

choosing a binary tree of a given depth. To make this decision more data dependent, a larger

tree is built and pruned afterwards, collapsing existing leaf nodes into new ones containing

more individuals. See, e.g., Sherali et al. [2009] for structural properties of the optimization

problem associated with the pruning step. In this way, one obtains a more parsimonious tree,

which is expected to perform better for future individuals. Second, we have to decide the split-

ting rules at each branch node. It is common to see trees implementing splitting rules that

correspond to so-called orthogonal cuts, i.e., queries involving a single predictor variable, as in

Figure 1.1. The choice of the predictor variable and the threshold value can be modeled with

0-1 decision variables. However, it is common to see enumerative procedures being applied in-

dependently to each of the branch nodes, thus solving the problem locally and not globally, as

reviewed in Section 1.2. Although orthogonal cuts are popular (easy to build and to interpret),

higher efficiency can be achieved with more sophisticated splitting rules that combine several

predictor variables, such as, e.g., linear oblique cuts. See, e.g., Street [2005] for the optimiza-

tion of oblique cuts. Third, and last, we need to decide how predictions are made at each leaf

node. This boils down to solving an optimization problem for each one, the shape of which

depends upon the nature of the response variable. For instance, in a regression tree, predictions

can be made with a linear model obtained through an Ordinary Least Squares model. See, e.g.,

Demirović and Stuckey [2021] for the optimization of other criteria to measure the quality of

prediction.

Because of the availability of more powerful hardware and the dramatic advances in opti-

mization solvers over the last decades, there has been an increased interest by the Mathemati-

cal Optimization community to develop novel approaches to build classification and regression
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Node 1

age ≤ 50Is age ≤ 50?

Node 2

Is salary ≤ 30?

Node 3
good 45%
bad 55%

Node 4
good 80%
bad 20%

Node 5
good 30%
bad 70%

Yes No

Yes No

Figure 1.1: A tree model T to predict the good payers class vs the bad payers class, with
τB = {Node 1,Node 2} and τL = {Node 3,Node 4,Node 5}; orthogonal cuts age ≤ 50 and
salary ≤ 30; and prediction good for Node 4 and bad for Node 3 and Node 5.

trees, as reviewed in Section 1.3.

1.2 Greedy Classification and Regression Trees

In this section, we review the basic steps of greedy heuristics for classification and regression

trees as well as typical enhancements to reduce overfitting, or in other words, that these methods

are too much focused on the training data and may fail to accurately predict incoming data.

Throughout this section we discuss global optimization models that focus on the design of

specific components of the tree model [Aglin et al., 2020; Barros et al., 2011; Bennett, 1992;

Bennett and Blue, 1996; Fu et al., 2003; Grubinger et al., 2014; Hu et al., 2019; Lin et al., 2020;

Nijssen and Fromont, 2010; Pangilinan and Janssens, 2011; Savickỳ et al., 2000].

Since constructing optimal binary classification and regression trees is known to be an NP-

complete problem [Hyafil and Rivest, 1976], early research traditionally focused on the design

of greedy heuristic procedures [Yang et al., 2017] that require a low computational effort to

build tree models with just orthogonal cuts. These are recursive partitioning methods that build

the tree model in a forward stepwise search implementing orthogonal cuts, yielding binary

trees, e.g., CART [Breiman et al., 1984] and QUEST [Loh and Shih, 1997], or nonbinary trees,

a.k.a. multi-way trees [Kim and Loh, 2001], e.g., CHAID [Kass, 1980] and C4.5 [Quinlan,
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1993]. Figure 1.2 depicts the tree model for carevaluations, a real-world data set from the

UCI Machine Learning repository [Blake and Merz, 1998], with 1728 car evaluations divided

into 4 classes. This is a data set with 15 predictor variables, used to predict whether the car

evaluation is unacceptable, acceptable, good or very good.

In these greedy heuristic approaches, a criterion is needed to guide the branching at each

branch node. In our credit scoring example, at each branch node, one aims to leave (most of)

the good payers at one branch and (most of) the bad payers at the other one. This has been

done by optimizing some measure of the purity of a node with respect to the class split in a

classification task, e.g., Gini index or entropy, or its homogeneity with respect to the response

variable in a regression task, such as, e.g., mean squared error or mean absolute error. Purity,

although popular, only measures classification accuracy in an indirect way, and therefore may

not yield good generalization results [Fayyad and Irani, 1992], and other criteria, such as Max-

imum Likelihood [Su et al., 2004], have been proposed. At any branch node, one searches

for the splitting rule that yields the larger gain in purity or homogeneity of the children versus

the parent. For orthogonal cuts, this implies examining the gain for all the predictor variables

and all possible values of threshold, as many as individuals in the parent node. Although in

principle there may be an infinite amount of values for this threshold, just taking the midpoints

between consecutive observed values of the predictor variable in the training sample suffices.

We refer the reader to Liu et al. [2002] for a comprehensive review on enhancing classifica-

tion and regression tree methods through the discretization of continuous predictor variables

[Dougherty et al., 1995]. Functional predictor variables can follow the same splitting strategy

proposed for numerical ones by losing their functional nature once discretized and converted

to vectors. To overcome this issue, splitting rules tailored to functional predictor variables

based, e.g., on the search of representative curves [Balakrishnan and Madigan, 2006] or on

weighted integral features from the functional predictor variables, such as the mean or the vari-

ance, [Belli and Vantini, 2021], have been proposed. The process of partitioning finishes when

a stopping criterion is satisfied, for instance, when the requirement on the minimum number

of individuals at leaf nodes would be violated. Then, a prediction is chosen in each of the leaf

nodes. Commonly, for classification, a leaf node is labeled with the most frequent class in the

set of individuals that have fallen into the node, while for regression, the prediction equals to

the average of the response variable on those individuals, which is the prediction given by a

linear model with just an intercept and no predictor variables.

Trees built in this way may still overfit and therefore a post-pruning step is performed to

remove any unnecessary splits. Pruning is usually performed in a greedy fashion in which leaf

nodes are sequentially removed. While in the forward phase a purity criterion was considered,

now a criterion combining accuracy and tree complexity is used. The removal of leaf nodes

continues while the value of the criterion improves. To enhance their performance, the greedy

procedures were extended in different directions, and we will elaborate on two important ones

below.
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Figure 1.2: Illustration of CART for carevaluations obtained with the R package rpart
Therneau et al. [2015]. There are 16 leaf nodes, predicting one of the four classes, namely un-
acceptable (1), acceptable (2), good (3) or very good (4). The classification accuracy provided
by this model is 88.1%, while 71.3% of the predictor variables are used across the tree.
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The first enhancement relates to extending orthogonal splits to oblique, a.k.a. multivariate,

splits, with implementations such as OC1 [Murthy et al., 1994], oblique.tree [Truong, 2009]

and HHCART [Wickramarachchi et al., 2016]. Trees implementing oblique cuts are more ver-

satile and tend to generate smaller trees with better performance [Brodley and Utgoff, 1995; Li

et al., 2003]. This improvement in accuracy comes with increasing computational times, since

the enumerative procedure no longer applies and instead some form of optimization problem

has to be solved at each branch node. In addition, model interpretability may also be harmed.

There have been some proposals to build oblique cuts using a baseline classification method at

each branch node, such as Support Vector Machines [Orsenigo and Vercellis, 2003] or Logistic

Regression [Truong, 2009], such that the predictions obtained in this way split the parent node

into children. Nevertheless, tackling the optimization of oblique cuts is already found in the

seminal papers of Bennett [Bennett, 1992; Bennett and Blue, 1996]. For binary classification,

it is adjusted to the tree context the use of Linear Programming (LP) to build separating hy-

perplanes [Bennett and Mangasarian, 1992]. In Bennett [1992], the hyperplane that minimizes

the average distance from the misclassified individuals to the hyperplane is modeled as an LP

problem, while in Bennett and Blue [1996], for a fixed topology of the tree and fixed predic-

tions at the leaf nodes, the problem of finding the optimal oblique cuts for all branch nodes

is written as a set of disjunctive linear inequalities yielding a nonlinear problem. Since these

approaches apply only to two-class problems, in Street [2005], multi-class problems are ad-

dressed. In Norouzi et al. [2015], and given the challenge of optimizing the empirical loss of

the tree model, a convex-concave upper bound is optimized instead, using Stochastic Gradient

Descent.

The second enhancement relates to building models that combine the outputs given by a

collection of trees, as opposed to a single one, using bagging or boosting techniques, such as

Random Forests [Biau and Scornet, 2016; Breiman, 2001; Cousins and Riondato, 2019; Fawa-

greh et al., 2014; Genuer et al., 2017; Möller et al., 2016; Pospisil and Lee, 2019; Rahman

et al., 2019] or Gradient Boosting Machines [Friedman, 2001, 2002; Pande et al., 2017], re-

spectively. Random Forests (RFs) bag (unpruned) orthogonal trees, and more recently oblique

ones [Katuwal et al., 2020; Menze et al., 2011]. The trees in the RFs are built on bootstrapped

samples of individuals, where the variable selection at each branch node is performed using a

random subset of predictor variables. Hence, the trees built differ because different samples

of individuals and predictor variables are used. Once the trees are built following the greedy

approach described above, RF predicts by combining the predictions of the single trees.

There are other techniques to combine tree models, such as boosting, where weak learners

in the form of trees of small depth are combined through weights. These weights need to be

optimized [Demiriz et al., 2002; Friedman, 2001; Pfetsch and Pokutta, 2020], and techniques

such as column generation are used for this. RFs, as well as other methods combining tree

models, give, in general, better accuracies than single greedy trees [Fernández-Delgado et al.,

2014]. However, this is at the expense of losing interpretability and increasing running times.
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Indeed, these models have a highly complex decision function, being thus less appealing to

novel users. The way this lack of interpretability is often addressed is by giving a measure of

variable importance, which are often based on permutations of the sample values [Altmann et

al., 2010; Louppe et al., 2013; Strobl et al., 2008] or on Game Theory concepts from coopera-

tive games, such as the Shapley value [Casalicchio et al., 2019; Molnar et al., 2018]. Recently,

there have also been some contributions to enhance model interpretability by replacing the

complex model with a simpler surrogate, say a tree model, such that the output of both models

is as close as possible. This approach is suggested in Vidal and Schiffer [2020], where the clos-

est tree is extracted using dynamic programming. Alternatively, one can extract a collection of

rules, and techniques such as column generation may be used as in Akyüz and Birbil [2021];

Birbil et al. [2020] or heuristics as in Bénard et al. [2019, 2021].

To end this section, we note that classic classification and regression trees, as well as the

extensions mentioned above, cannot easily include desirable global structural properties, such

as model sparsity and cost-sensitivity, due to their greedy nature. Nevertheless, some attempts

have been made to address this shortcoming. To enhance model interpretability, one wishes to

perform feature selection to control the number of predictor variables used across the tree [Rug-

gieri, 2019]. The regularization framework in Deng and Runger [2012] adds to the criterion

optimized in each branch node a penalty term for predictor variables that have not appeared

yet in the tree, so that the process is reluctant to use too many predictor variables, yielding a

sparse tree model. This approach is refined in Deng and Runger [2013], by also including the

importance scores of the predictor variables [Louppe et al., 2013; Strobl et al., 2008], obtained

in a preprocessing step running a preliminary RF. In the next section, we model sparsity ex-

plicitly, which can then be optimized, as we achieve with the learning performance of the tree

model. Similarly, the control on the performance of the tree model in critical/risk groups is

done through cost parameters, such as penalizing with a higher cost the errors in the critical

groups, as opposed to modeling the corresponding constraints explicitly as we do.

1.3 Optimal Classification and Regression Trees

In recent times, many papers on building optimal (in some sense) classification and regression

trees have appeared. In this section, we review the literature on Mixed Integer Linear Optimiza-

tion approaches, and move on to the Continuous Optimization paradigm, which is the focus of

this thesis. The reader is referred to, e.g., Verhaeghe et al. [2020] for a constraint programming

paradigm, a SAT (Boolean satisfiability) one in Narodytska et al. [2018]; Yu et al. [2020], and

a dynamic programming one in Demirović et al. [2022].

1.3.1 Mixed-Integer Linear Optimization

In this section, we review Mixed-Integer Linear Optimization (MILO) approaches to build Op-

timal Classification and Regression Trees. The key issue in this paradigm is that one controls
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the path each individual takes and thus calls for the modeling of (many) binary decision vari-

ables. We start with the approach in Bertsimas and Dunn [2017]; Dunn [2018], and continue

by reviewing other relevant literature, which involves different decision variables and/or more

sophisticated solution approaches.

In Bertsimas and Dunn [2017], the aim is to build a deterministic optimal binary tree of a

given depth guided by two objectives, namely, the misclassification error and the complexity

of the tree, where the latter is measured as the summation across all branch nodes of the num-

ber of predictor variables used in the splitting rules. The MILO formulation in Bertsimas and

Dunn [2017] requires many decision variables, and a great part of them are binary. Also, the

size of some of the binary decision variables linearly depends on the size of the training sam-

ple. Therefore, as noted in Dunn [2018], this approach is only feasible for moderate training

sample sizes. This formulation has a nonlinear objective function, but one can define addi-

tional variables and additional big-M constraints to linearize it. This formulation can be given

to any MILO solver. The computational experiments in Bertsimas and Dunn [2017] illustrate

that good accuracies can be achieved with small depths, but at a considerable computational

cost for small and medium problem instances. To reduce this computational burden, a local

search approach is proposed in Dunn [2018], where the MILO formulation is solved for the

subproblems associated with branch nodes, thus yielding smaller formulations that are solved

repeatedly. With this local search procedure, it is possible to deal with deeper trees, up to

depth 10, more efficiently. However, it is harder to directly control, for instance, the number

of predictor variables to be used across the tree, a crucial issue if, on top of having a procedure

yielding high accuracies, identification of the relevant predictor variables is sought. Moreover,

we cannot perform a proper sensitivity analysis to explain how small perturbations on a given

feature affect the prediction. This means that it is not easy to identify the relevant variables

for a given individual, while this is obtained as a byproduct for randomized trees, as seen in

Section 1.3.2.

There are other approaches in the literature within the MILO paradigm. In Aghaei et al.

[2020], a flow-based MILO formulation is proposed for binary predictor variables. A sink node

is added to the tree, yielding a directed acyclic graph [Ahuja et al., 1993]. Only individuals

ending up in the sink are correctly classified, while flow conservation constraints are imposed

at the other nodes of the tree. In Firat et al. [2019], an alternative formulation is proposed with

new decision variables associated with the paths from the root node to the leaf nodes and their

splits, which is solved with a column generation-based heuristic. In Günlük et al. [2021], a

MILO formulation for combinatorial splitting rules for categorical variables is proposed, i.e.,

rules defined by a subset of categories that move individuals to the left child node if the rule is

satisfied and to the right child node, otherwise, yielding a binary representation [Carrizosa et

al., 2021b].

With the MILO approach, we face the curse of dimensionality since the number of binary

decision variables grows linearly with the size of the training sample. Recent attempts to



12 Chapter 1. Introduction

address this can be found in the literature. An alternative formulation is proposed in Verwer and

Zhang [2017]; Verwer et al. [2017, 2019] with a more compact feasible region that aggregates

some of the constraints described above. In Zhu et al. [2020] a subset of the training sample

is selected in a preprocessing step using an LP problem, while in Zantedeschi et al. [2020] a

continuous relaxation is developed.

1.3.2 Continuous Optimization

In this section, we describe the Nonlinear Continuous Optimization approach proposed in this

thesis to build Optimal Randomized Classification and Regression Trees, where functional pre-

dictor variables are also addressed. We then discuss how it compares to the MILO formulations

in the previous section.

In Optimal Randomized Classification and Regression Trees, the splitting rule at each

branch node is probabilistic [Irsoy et al., 2012; Suárez and Lutsko, 1999; Yang et al., 2018],

i.e., individuals move with a certain probability to the left child and with the complementary

probability to the right one. This type of rule is modeled evaluating the smooth cumulative

density function (CDF) of a univariate continuous random variable at splitting rules. See in

Figure 1.3 the probabilistic splitting rules at Nodes 1 and 2, using the CDF of a logistic random

variable. With a probabilistic splitting rule, each individual moves along all paths in the tree,

by defining a probability distribution across the leaf nodes. With the probabilities associated to

the individuals and the predictions at the leaf nodes, one can evaluate the total expected error

of the randomized tree model. The goal of Optimal Randomized Classification and Regres-

sion Trees is to minimize the expected error as well as maximize different kinds of sparsity

of the tree. These sparsity terms are modeled with LASSO terms and controlled with their

corresponding parameters. Figure 1.4 plots the Optimal Randomized Classification Tree for

carevaluations.

Once the tree model is built, the prediction of future data is done in a probabilistic way. The

predictions made at leaf nodes are weighted according to the probability distribution defined

across them, and added up. Note that the prediction function of randomized trees is smooth in

the continuous predictor variables, since the CDF is assumed to be a smooth function.

Apart from being continuous, this formulation requires fewer decision variables than the

MILO paradigm. The number of nodes in the tree, and thus the number of decision variables

in both paradigms, grows exponentially with the depth of the tree. Hence, solving this problem

may be time-demanding for large or even moderate depths. Fortunately, as in Section 1.3.1,

the computational experiments in Blanquero et al. [2020b, 2021a, 2022a,b] illustrate that good

accuracies can be achieved with small depths, namely, up to 4, with a low computational effort.

There are other important remarks on this problem that are noteworthy. First, the feasible region

speaks favorably towards the scalability with respect to the size of the training sample. Indeed,

when the number of individuals grows, the feasible region remains of the same size, since there

are no decision variables directly relating to the individuals. Hence, although the evaluation of
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Figure 1.3: A randomized tree model T to predict the good payers class vs the bad payers
class, using the CDF of a logistic random variable.

the objective function becomes more time demanding with larger sizes, the dimensionality of

the problem to be solved remains the same. Second, there are two regularization terms that can

help with feature selection, i.e., identify a subset of predictor variables with a good tradeoff be-

tween accuracy and sparsity. Third, we can perform with standard techniques a full sensitivity

analysis to study the impact that predictor variables have on the prediction for each individual.

Recall that the prediction function is smooth in the continuous predictor variables. Therefore,

we have that small changes in the continuous predictor variables in a given individual lead to

small changes in prediction since the prediction function can be approximated by its first order

Taylor expansion.

1.4 Contributions of this thesis

This PhD dissertation is devoted to enhancing Classification and Regression Tree-Based Mod-

els by means of Mathematical Optimization. The reader is referred to the paper Carrizosa et

al. [2021a] for a comprehensive review on this area. In this section, we briefly introduce and

motivate the problems addressed.

Chapter 2, based on the paper Blanquero et al. [2021a], introduces ORCT, a novel con-

tinuous optimization approach to build classification trees with oblique cuts that scales well

with the size of the training sample. ORCT naturally provides probabilistic output on class
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Figure 1.4: Illustration of Optimal Randomized Classification Tree for carevaluations.
The classification accuracy of this model is 92.7%, while 100% of the predictor variables are
used across the tree as well as in each of the three branch nodes. The magnitude of the coef-
ficients of the splitting rule in each branch node is visualized with a heatmap. The heatmap
transitions from blue for negative coefficients, to red for positive ones, while white is chosen
for values close to 0.



1.4. Contributions of this thesis 15

membership tailored to each individual, in contrast to the most popular existing approaches,

where all individuals in the same leaf node are assigned the same probability. The computa-

tional experience reported illustrates the outperformance of our approach in terms of accuracy

against CART and OC1 as well as recent proposals based on integer programming as those

in Bertsimas and Dunn [2017]. Moreover, we are comparable to oblique.tree and manage to

get close to improved methods like RFs and the local-search heuristic in Dunn [2018]. Prefer-

ences on classification rates in critical classes are successfully handled through cost-sensitive

constraints, unlike heuristic approaches like CART, OC1, oblique.tree or RF, which can not

address this issue explicitly.

Chapter 3, based on the paper Blanquero et al. [2020b], introduces S-ORCT, a continu-

ous optimization approach that extends ORCT to additionally handle sparsity, with the aim of

using fewer predictor variables in the cuts as well as along the whole tree, and thus enhanc-

ing interpretability. Both types of sparsity, namely local and global, are modeled by means

of regularizations with polyhedral norms. Theoretical results on the range of the sparsity pa-

rameters are shown. The computational experience reported supports the usefulness of our

methodology. In all our data sets, local and global sparsity can be improved without harm-

ing classification accuracy. Unlike greedy approaches like CART, our ability to easily trade in

some of our classification accuracy for a gain in global sparsity is shown.

Chapter 4, based on the paper Blanquero et al. [2022b], introduces S-ORRT, a continuous

optimization approach that extends S-ORCT to consider regression trees instead. Similar theo-

retical properties to those for classification are explored in this framework. Apart from sparsity,

and unlike CART and RF, S-ORRT can easily accommodate other important desirable proper-

ties for the regression task, such as cost-sensitivity and fairness. Thanks to the smoothness of

the predictions, local explanations on the continuous predictor variables are derived. The com-

putational experience reported shows the outperformance of S-ORRT in terms of prediction

accuracy against standard benchmark regression methods such as CART, OLS and LASSO.

Moreover, the scalability of our approach with respect to the size of the training sample is

illustrated.

Chapter 5, based on the work Blanquero et al. [2022a], introduces S-ORRT-FD, a contin-

uous optimization approach that extends S-ORRT to consider functional predictor variables

instead. Whilst fitting S-ORRT-FD, the detection of a reduced number of intervals that are

critical for prediction is performed, yielding a more interpretable output. An additional kind

of sparsity comes into play in this framework, which is defined as the proportion of the do-

main of the functional predictor variables to be used, namely, length sparsity, also modeled

through a regularization term. The computational experience reported shows that S-ORRT-FD

is competitive in terms of prediction accuracy to benchmark methods, including RF. Moreover,

S-ORRT-FD illustrates its ability to easily trade in some of our prediction accuracy for a gain

in length sparsity.

Finally, some general conclusions and possible lines of future research are provided in
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Chapter 6.
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In this chapter, a novel continuous-based approach for building optimal classification trees

with oblique cuts is provided, called hereafter an Optimal Randomized Classification Tree

(ORCT). The randomization of our approach as well as the inclusion of oblique cuts allow

the removal of the integer decision variables present in other recent proposals in the literature.

Moreover, the feasible region in our formulation is independent of the size of the training sam-

ple, which makes our approach scalable. An ORCT naturally provides probabilistic output on

class membership tailored to each individual, in contrast to existing approaches, where all in-

dividuals in the same leaf node are assigned the same probability. Preferences on classification

rates in critical classes are successfully handled, unlike heuristic approaches such as CART,

OC1, oblique.tree or RF, which can not address this issue explicitly. Our numerical results

illustrate the outperformance of our approach in terms of accuracy against CART and OC1 as

well as recent proposals based on integer programming as those in Bertsimas and Dunn [2017].

Moreover, we are comparable to oblique.tree and manage to get close to improved methods like

RFs and the local-search heuristic in Dunn [2018].

The chapter is organized as follows. In Section 2.1, we introduce the ORCT and its formu-

lation, as well as a variant that includes the possibility of controlling the classification perfor-

mance in critical classes. In Section 2.2, we show some theoretical properties that belong to

ORCT. In Section 2.3, computational experiments with ORCTs are reported. The results ob-

tained are compared with CART, OC1, oblique.tree, the integer programming-based approach

in Bertsimas and Dunn [2017] and its related local-search heuristic in Dunn [2018], and RFs.

Finally, conclusions and possible extensions are provided in Section 2.4.

2.1 Optimal Randomized Classification Trees

2.1.1 The basic idea

Suppose we are given a training sample of N individuals, I = {(xi, yi)}1≤i≤N , on which p

numerical predictor variables are measured, xi ∈ Rp, and one class label is associated with

each one, yi ∈ {1, . . . ,K}. Let Ik ⊂ I denote the set of individuals in I in class k, and |Ik|
its cardinality. For simplicity, numerical predictor variables are considered. Without loss of

generality, we assume that xi ∈ [0, 1]p.

Classic decision tree methods consist of sequentially, and greedily, partitioning the pre-

dictor space [0, 1]p into disjoint sets or nodes by imposing certain conditions on the predictor

variables. The usual splitting criterion is to take the split that makes descendant nodes purer,

i.e., nodes with observations more and more homogenous in terms of class membership. The

process of partitioning finishes when a stopping criterion is satisfied. Then, leaf nodes are la-

beled with a class label, 1, . . . ,K. Commonly, a leaf node is labeled with the most frequent

class in the individuals that have fallen into the node. Once the tree is built, the prediction of

future unlabeled data is done in a deterministic way. Given a new observation x starting from

the root node, it will end up in a leaf node depending on the values the predictor variables take,
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and its predicted class will be the class label of that leaf node. Alternatively, the prediction

of future unlabeled data can be done in a probabilistic way, using the relative frequencies of

belonging to each class of the corresponding leaf node.

As introduced in Chapter 1, the approach proposed here is different: prediction is random-

ized. At each node of an Optimal Randomized Classification Tree (ORCT), a random variable

will be generated to indicate by which branch one has to continue. Since we are building binary

trees, the Bernoulli distribution is appropriate, whose probability of success will be determined

by the value of a cumulative density function (CDF), evaluated over the vector of predictor

variables. In this way, each leaf node will not contain a subset of individuals but all the individ-

uals in the training sample, for which the probability of falling into such leaf node is known.

Finally, the class label of each leaf node will be a decision variable, which will be found by

minimizing the expected misclassification cost over the whole training sample.

The distinctive element in our approach is the fact that the yes/no rule in decision tree me-

thods is replaced by a soft rule, induced by a continuous CDF. In this way, a smoother and

therefore more stable rule is obtained. Indeed, suppose that the first cut of a classic classifica-

tion tree forces individuals with X ≤ b to go down the tree by the left branch. Then, for an

incoming individual with X = b + ε, ε > 0 sufficiently small, classic decision tree methods

would give them probability of going down the branchX > b equal to 1 and 0, otherwise, as in

the orange line in Figure 2.1. To avoid the discontinuities present in tree-based estimators like

CART and RF, we propose to smooth the probabilities of going left or right in a neighbourhood

of b through a CDF, see the green line in Figure 2.1.

Figure 2.1: The probability of an individual going down by the right branch is depicted for
both types of trees: the classic approach (orange line) and the proposed ORCT (green line).

2.1.2 The model

After having introduced how ORCTs work, we will next formulate the problem.
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Figure 2.2: Optimal Randomized Classification Tree for depth D = 2.

Our approach starts from the maximal binary tree of depth D, i.e., a binary tree in which

each branch node has two children and terminal nodes all have the same depth, namely, D. For

instance, Figure 2.2 shows the maximal binary tree of depth D = 2. Given D, the total number

of nodes is known in advance, T = 2(D+1) − 1. The sets of branch and leaf nodes are known

and numbered as follows:

Branch nodes: nodes t ∈ τB = {1, . . . , bT/2c}.
Leaf nodes: nodes t ∈ τL = {bT/2c+ 1, . . . , T}.
Oblique splits are modeled through linear combinations of the predictor variables. To

do that, we need to define, for each j = 1, . . . , p and each t ∈ τB , the decision variables

ajt ∈ [−1, 1] to indicate the value of the coefficient of predictor variable j in the oblique

cut over branch node t ∈ τB . The p × |τB| matrix of these coefficients will be denoted by

a = (ajt)j=1,...,p,t∈τB , and the expressions aj· and a·t will stand for the j-th row and the t-th

column of a, respectively. The intercepts of the linear combinations correspond to decision

variables µt ∈ [−1, 1], seen as the location parameter at every branch node t ∈ τB . Let µ be

the vector that comprises every µt, i.e., µ = (µt)t∈τB .

Now, the smooth CDF of a univariate continuous random variable F (·) centered at zero is

assumed. Then, for each individual i = 1, . . . , N at each branch node t ∈ τB , the parameter of

their corresponding Bernoulli distribution is obtained as follows:

pit (a·t, µt) = F

1

p

p∑
j=1

ajtxij − µt

 , i = 1, . . . , N, t ∈ τB. (2.1)

Note that this probability is a continuous function in the predictor variables xi, since the CDF

F is a continuous function.

The value pit (a·t, µt) will be used in the corresponding left branch and 1− pit (a·t, µt) in

the right one, as seen in Figure 2.2. We denote as NL(t) the set of ancestor nodes of node t

whose left branch takes part in the path from the root node to node t. Respectively, NR(t) is
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the set of ancestor nodes of node t whose right branch takes part in the path from the root node

to t. If N(t) denotes the set of ancestors of node t, we have that N(t) = NL(t) ∪NR(t). For

leaf node t = 5 in Figure 2.2: NL(5) = {1}, NR(5) = {2} and N(5) = {1, 2}.
Once these sets are defined, we can obtain the probability of an individual falling into a

given leaf node:

Pit (a,µ) ≡ P (xi ∈ t) =
∏

tl∈NL(t)

pitl (a·tl , µtl)
∏

tr∈NR(t)

(1− pitr (a·tr , µtr)) , i = 1, . . . , N, t ∈ τL.

(2.2)

As a consequence of (2.1), this probability is a continuous function in the predictor variables

xi.

Now, it is necessary to define, for each leaf node t ∈ τL, the binary decision variables

C = (Ckt)k=1,...,K,t∈τL that model the class label assigned to each of them, where

Ckt =

{
1, if node t is labeled with class k

0, otherwise
, k = 1, . . . ,K, t ∈ τL.

We must add the following set of constraints for making a single class prediction at each

leaf node:
K∑
k=1

Ckt = 1, t ∈ τL.

As a natural strengthening, we force each class k = 1, . . . ,K to be identified by, at least,

one terminal node, by adding the set of constraints below:∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K, (2.3)

where it is implicitly assumed that K ≤ 2D so that the previous constraints make sense. This

set of constraints prevent the observations belonging to the minority classes from being fully

misclassified. Nevertheless, they could be easily removed when desired.

For fixed a,µ,C, the probability of individual i being assigned to class k is equal to∑
t∈τL

Pit (a,µ)Ckt. (2.4)

Using the continuity of Pit (a,µ) in the predictor variables xi, we have that small changes in

xi lead to small changes in the values of the probabilities of class membership in (2.4). We

illustrate this amenable property of our approach using the balanced two-class simulated data

set in Figure 2.3. The data set consists of N = 400 individuals equally split into the two

classes, characterized by p = 2 predictor variables. The predictor variables for individuals

labeled as class k, k = 1, 2, have been generated following a bivariate normal distribution,

N (ηk,Σk). We have chosen η1 = (0.00, 1.25)>, η2 = (1.00,−0.25)> and Σ1 = Σ2 the
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Figure 2.3: Simulated data set with p = 2, K = 2 and N = 400 to compare the probabilities
of class membership derived from ORCT with those derived from CART (deterministic and
probabilistic) and RF.

identity matrix of size 2. In Figure 2.4, we compare the probabilistic output of ORCT with the

one derived from the two versions of CART described in Subsection 2.1.1 (a deterministic as

well as a probabilistic one) and RF. The CART classifier is built with the rpart R package

[Therneau et al., 2015] and RF with the randomForest R package [Liaw and Wiener, 2002]

both with the default tuning parameters, while the ORCT classifier outlined below is built with

depth D = 1. For each classifier, we derive the probability of belonging to class k = 1 and use

a heatmap plot to visualize it. Clearly, our ORCT approach is able to produce smoother class

membership probabilities. We illustrate these probabilities at four different points, namely,

A1 = (−1.0, 2.0), A2 = (1.1, 1.0), A3 = (−2.1,−1.1) and A4 = (3.0, 2.3). On the yellow

zone, the probability of belonging to class k = 1 for A1 is equal 0.9998. If one is placed on

the oblique cut, almost no-discriminatory probabilities are obtained. Indeed, the probability of

belonging to class k = 1 for A2 is equal to 0.5077. Above the cut, the probability of belonging

to class k = 1 increases smoothly. See A3 on the green zone, for which the probability of

belonging to class k = 1 is equal to 0.8701. Likewise, below the cut, the probability of

belonging to class k = 1 decreases instead. For A4, this probability is equal to 0.2438.

Once the probabilities in (2.4) have been defined, we can now model the objective function

of our model. As said before, the objective is to minimize the expected misclassification cost

over the sample, so we need to introduce a misclassification cost for classifying an individual

i, whose class is yi, in class k:

Wyik ≥ 0, k = 1, . . . ,K. (2.5)

We define Wyik = 0 if yi = k, k = 1, . . . ,K.
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Figure 2.4: Heatmap of probabilities of class membership for deterministic CART, probabilistic
CART, RF and ORCT on the simulated data set in Figure 2.3.
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Thus, the objective function takes the following form:

1

N

N∑
i=1

∑
t∈τL

Pit (a,µ)
K∑
k=1

WyikCkt. (2.6)

Hence, given the training sample I split intoK classes, the CDF F , the depth of the treeD and

the misclassification costsWyik, a mixed-integer non-linear optimization (MINLO) problem to

build the proposed classification tree reads as follows:

min
1

N

N∑
i=1

∑
t∈τL

Pit (a,µ)
K∑
k=1

WyikCkt

s.t.
K∑
k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K,

ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB,

µt ∈ [−1, 1] , t ∈ τB,

Ckt ∈ {0, 1} , k = 1, . . . ,K, t ∈ τL,

(2.7)

where Pit (a,µ) is defined as in (2.2).

The presence of binary decision variables in a framework where the objective function is

highly complex non-convex could appear to be discouraging. Nevertheless, without loss of

optimality, we can relax the binary decision variables Ckt, k = 1, . . . ,K, t ∈ τL, yielding to

the continuous formulation we were looking for. Theorem 2.1 guarantees the equivalence of

the resulting Non-Linear Continuous Optimization (NLCO) problem and the MINLO problem.

The NLCO problem, which will be referred henceforth as the Optimal Randomized Classi-

fication Tree (ORCT), reads as follows:

min
1

N

N∑
i=1

∑
t∈τL

Pit (a,µ)
K∑
k=1

WyikCkt

s.t.
K∑
k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K,

ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB,

µt ∈ [−1, 1] , t ∈ τB,

Ckt ≥ 0, k = 1, . . . ,K, t ∈ τL,

(2.8)

where Ckt, k = 1, . . . ,K, t ∈ τL, can be seen as the probability that the class label k is



26 Chapter 2. Optimal Randomized Classification Trees

assigned to leaf node t.

Theorem 2.1. There exists an optimal solution to (2.8) such thatCkt ∈ {0, 1} , k = 1, . . . ,K, t ∈
τL.

Proof.

The continuity of the objective function, defined in (2.8) over a compact set, ensures the

existence of an optimal solution of the optimization problem, by the Weierstrass Theorem. Let

(a∗,µ∗,C∗) be an optimal solution to (2.8). Fixing (a∗,µ∗), we have the following problem

on the decision variables Ckt, k = 1, . . . ,K, t ∈ τL:

min
1

N

N∑
i=1

∑
t∈τL

Pit (a∗,µ∗)
K∑
k=1

WyikCkt

s.t.
K∑
k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K,

Ckt ≥ 0, k = 1, . . . ,K, t ∈ τL,

a transportation problem for which the existence of an integer optimal solution is well-known

to hold, i.e., there is C = (Ckt), with Ckt ∈ {0, 1}, k = 1, . . . ,K, t ∈ τL, such that

(a∗,µ∗,C) is also optimal for (2.8). �

The prediction of future unlabeled data with predictor variables x that ORCT makes is

probabilistic by construction, namely, the probabilities in (2.4) are returned where xi is re-

placed by x. In our computational experience, this prediction is made in a deterministic fashion

by choosing the class for which the class membership probability is the highest.

2.1.3 ORCT with constraints on expected performance

Although classifiers seek a rule yielding a good overall classification rate, there are many cases

in which misclassification has different consequences for different classes. It is then more

appealing not to focus on the overall classification, but to obtain an acceptable overall perfor-

mance while ensuring a certain level of performance in some classes. Our ORCT has two ways

of achieving this. First, one could modify the misclassification costs (2.5) in the objective func-

tion (2.6), for different sets of values of Wyik. However, in this way, one has no direct control

on the misclassification rates for critical classes. Second, ORCT is flexible enough to allow

the incorporation of constraints on expected performance over the different classes explicitly.

Indeed, define the random variable Oi,

Oi =

{
1, if individual i is correctly classified

0, otherwise.
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Given k = 1, . . . ,K, a Correct Classification Rate (CCR) over the k−th class, namely, ρk,

is desired:
1

|Ik|
∑
i∈Ik

Oi ≥ ρk.

The expectation of achieving this performance can be written as:

E

 1

|Ik|
∑
i∈Ik

Oi

 =
1

|Ik|
∑
i∈Ik

E [Oi] =
1

|Ik|
∑
i∈Ik

∑
t∈τL

Pit (a,µ)Ckt ≥ ρk.

Hence, given the class k = 1, . . . ,K to be controlled and its desired performance ρk, the

following constraint would need to be added to the model:∑
i∈Ik

∑
t∈τL

Pit (a,µ)Ckt ≥ ρk|Ik|. (2.9)

2.2 Theoretical properties

In this section, we explore some theoretical properties of our approach. First, we show the

relationship between ORCT, which uses a randomized decision rule in each branch node, and

other optimization-based approaches, which are deterministic, as CARTs are. We will prove

that when the level of randomization decreases to zero, our ORCT converges to an Optimal

Deterministic Classification Tree (hereafter, ODCT), i.e., those reviewed in Section 1.3.1. Sec-

ond, we prove asymptotic results for the optimization problem attached to our ORCT when the

training sample size grows to infinity.

We start by investigating the relationship between ORCT and the so-called ODCTs. Recall

that ORCT uses the CDF F to make, at each branch node, the decision to move to the left or

to the right child node, while ODCT makes this decision in a deterministic fashion. In order

to show the convergence of ORCT to ODCT, we define a family of CDFs Fγ , parametrized by

γ > 0, such that

lim
γ→∞

Fγ (·) =

{
1, if (·) ≥ 0

0, otherwise
. (2.10)

An example of this family can be defined using the logistic CDF as follows

Fγ (·) =
1

1 + exp (− (·) γ)
, γ > 0, (2.11)

provided that the argument is different from zero.

For each value of the parameter γ we have an ORCT, say ORCT(γ). The larger the value of

γ, the closer the decision rule defined by Fγ is to a deterministic rule. In the limit case, when γ

is equal to∞, the decision rule is deterministic, using (2.10), and therefore the corresponding

optimal classification tree is an ODCT. Thus, it is now easy to show the following property.
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Proposition 2.1. One has lim
γ→∞

ORCT (γ) = ODCT.

In our numerical section, we will illustrate that with the logistic CDF family, and for large

values of γ, ORCT yields better results than the ODCT reported in Bertsimas and Dunn [2017].

This means that, by just allowing a small level of randomization, corresponding to an almost

deterministic cut, ORCT is preferable.

We now prove limit results for ORCT when the sample I = {(xi, yi)}1≤i≤N is independent

and identically distributed (i.i.d.) and its size grows to infinity. Unlike other optimization-based

tree classifiers, the feasible region in (2.8) does not depend on the training sample I , and the

objective function is continuous and separable on I . Thus, Problem (2.8) can be reformulated

as the Sample Average Approximation (SAA) problem of some theoretical or true stochastic

problem, which makes it possible to show consistency of the estimators of the optimal value

and the set of optimal solutions to their true counterparts, as stated in Shapiro et al. [2009].

We will start by rewriting (2.8) into a more compact formulation. The decision variables

ajt, j = 1, . . . , p, t ∈ τB , µt, t ∈ τB and Ckt, k = 1, . . . ,K, t ∈ τL, are grouped into the

n-dimensional decision vector z = (a,µ,C)T , where n = (p+ 1) |τB|+K|τL|. Note that z

comprises information on the cuts in the branch nodes of the tree as well as the assignments in

the leaf nodes. The feasible region will be denoted by Z, where

Z =
{
z = (a,µ,C)T ∈ Rn :a ∈ [−1, 1]p×|τB | ,µ ∈ [−1, 1]|τB | ,

K∑
k=1

Ckt = 1, t ∈ τL,

∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K,Ckt ≥ 0, k = 1, . . . ,K, t ∈ τL

}

which is a non-empty compact subset of Rn. Then, we have a sample ofN i.i.d. realizations of

a random vector ξ = (X, Y ) whose probability distributionE is supported on a set Ξ ⊂ Rp+1,

i.e., we have I = {ξi = (xi, yi)}1≤i≤N . Thus, Problem (2.8) can be written as:

min
z∈Z

{
ĝN (z) :=

1

N

N∑
i=1

G (z, ξi)

}
, (2.12)

where

G (z, ξi) =
∑
t∈τL

Pit (a,µ)
K∑
k=1

WyikCkt. (2.13)

Problem (2.12) can be seen as the SAA problem associated with the true stochastic problem:

min
z∈Z

{g (z) := E [G (z, ξ)]} . (2.14)

That is, for any z ∈ Z, the estimator of the expected value g (z), ĝN (z), is obtained by

averaging values G (z, ξi) , i = 1, . . . , N .
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Let ϑ∗ and S denote the optimal value and the set of optimal solutions of the true problem

(2.14), respectively. Similarly, ϑ̂N and ŜN will denote the optimal value and the set of optimal

solutions of the SAA problem (2.12), respectively. Our goal is to prove the consistency of the

SAA estimators to the true counterparts. The estimator ϑ̂N of the parameter ϑ is said to be

consistent, in the sense of Shapiro et al. [2009], if ϑ̂N converges with probability 1 (w.p.1) to

ϑ as N → ∞. For the set of optimal solutions, Shapiro et al. [2009] establish consistency of

the estimator ŜN to S when the deviation of ŜN from S, D(ŜN , S), converges w.p.1 to 0 as

N →∞, where D(ŜN , S) actually represents the distance between both sets.

Theorem 2.2. ϑ̂N and ŜN are consistent estimators of ϑ∗ and S.

Proof.

The result is a direct consequence of Theorems 7.48 and 5.3 in Shapiro et al. [2009]. We

will first show that the conditions of Theorem 7.48 hold. Indeed, we have that the sample is

i.i.d. and that Z is a nonempty compact subset of Rn. We also have that for any z ∈ Z the

function G (·, ξ) is continuous at z for almost every ξ ∈ Ξ, since the CDF F is a continuous

function by assumption. Finally, G (z, ξ) , z ∈ Z, is dominated by the following constant

function

|G (z, ξ)| ≤ max
k 6=yi
{Wyik} .

This constant function is integrable since the support of the probability distribution E is con-

tained in a compact set, namely Ξ ⊂ [0, 1]p×[1,K]. From Theorem 7.48, we know that g (z) is

finite valued and continuous on Z and ĝN (z) converges to g (z) w.p.1, as N →∞, uniformly

in z ∈ Z. In addition, we have that ŜN , S ⊂ Z. This, together with the continuity of both

ĝN and g, implies that ŜN , S 6= ∅. Thus, the conditions of Theorem 5.3 hold, and the desired

result follows. �

2.3 Computational experiments

The purpose of this section is to illustrate the performance of our ORCT, against the natural

benchmarking tree-based methods.

We can draw the following conclusions from our computational experiments. First, in terms

of classification accuracy, our approach outperforms CART, OC1 and a benchmark decision

tree approach based on integer programming, is comparable to oblique.tree, and is close to the

local-search heuristic approach in Dunn [2018] and RFs. Second, we show that our running

times are low. Third, we illustrate the flexibility of ORCTs to produce variable importance

metrics, and to handle cost-sensitive constraints, unlike heuristic approaches.

Several well-known data sets from the UCI Machine Learning Repository [Lichman, 2013]

have been chosen for the computational experiments. Table 2.1 reports the size, the number
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Table 2.1: Information about the data sets considered.

Data set Abbreviation N p K Class distribution
Connectionist-bench-sonar CBS 208 60 2 55% - 45%
Wisconsin W 569 30 2 63% - 37%
Credit-approval CA 653 37 2 55% - 45%
Pima-indians-diabetes PID 768 8 2 65% - 35%
Statlog-project-German-credit SPGC 1000 48 2 70% - 30%
Ozone-level-detection-one OLDO 1848 72 2 97% - 3%
Spambase SB 4601 57 2 61% - 39%
Magic-gamma-telescope MGT 19020 10 2 65% - 35%
Iris I 150 4 3 33.3%-33.3%-33.3%
Wine Wi 178 13 3 40%-33%-27%
Seeds S 210 7 3 33.3%-33.3%-33.3%
Thyroid-disease-ann-thyroid TADT 3772 21 3 92.5%-5%-2.5%
Car-evaluation CE 1728 15 4 70%-22%-4%-4%

of predictor variables, and the number of classes as well as the corresponding class distribu-

tion. This selection comprises data sets of different nature: from small-sized data sets, such

as Iris, to larger data sets, such as Thyroid-disease-ann-thyroid, Spambase and Magic-gamma-

telescope; the class distribution is also diverse, from Iris or Seeds, which are balanced data

sets, to Ozone-level-detection-one, which is highly imbalanced; lastly, and in addition to nu-

merical (continuous as well as integer) predictor variables, we have also considered data sets

with categorical predictor variables, modeled, as usual, through dummies.

The NLCO model (2.8) has been implemented using Pyomo optimization modeling lan-

guage [Hart et al., 2011, 2017] in Python 3.7 [Python Core Team, 2015]. As a solver, we have

used IPOPT 3.11.1 [Wächter and Biegler, 2006]. Our experiments have been conducted on a

PC, with an Intelr CoreTM i7-7700 CPU 3.60GHz processor and 32 GB RAM. The operating

system is 64 bits.

To train the ORCT, we solve the NCLP problem 20 times, starting from different random

initial solutions.

The CDF chosen has been the logistic one, see Equation (2.11). In our computational ex-

perience, we illustrate that a small level of randomization is enough for obtaining good results.

Thus, we have set γ = 512 for both constructing and testing our model.

Equal misclassification weights, Wyik = 0.5, i = 1, . . . , N, k = 1, . . . ,K, k 6= yi, have

been used for the experiments.

Each data set has been split into two subsets: the training subset (75%) and the test subset

(25%). The ORCT is built over the training subset and, then, its performance is evaluated by

determining the out-of-sample accuracy over the test subset. This procedure has been repeated

ten times, and average results are reported.

We will compare our ORCT of depths D = 1, . . . , 4 with: the full CART, as implemented
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Table 2.2: Results for D = 1 in terms of the out-of-sample accuracy.

Data set Out-of-sample accuracy Average time
CART OC1 oblique.tree OCT-H MIO OCT-H LS RF ORCT (in secs)

CBS 70.0(7) 70.8(5) 72.5(4) 70.4(6) 77.3(2) 83.1(1) 76.3(3) 8
W 92.0(7) 94.1(4) 93.7(5) 93.1(6) 94.8(3) 95.5(2) 96.4(1) 10
CA 85.7(4) 82.0(7) 83.5(6) 87.9(1) 86.0(3) 86.7(2) 83.7(5) 7
PID 74.2(4) 60.7(7) 76.0(2) 71.6(6) 73.1(5) 76.3(1) 76.0(2) 6
SPGC 72.1(3) 68.5(7) 73.8(2) 71.6(6) 72.1(3) 75.2(1) 72.1(3) 10
OLDO 95.6(5) 95.5(6) 92.9(7) 96.8(1) 96.2(4) 96.4(3) 96.7(2) 66
SB 89.2(6) 92.3(4) 92.7(3) 83.6(7) 94.2(2) 95.1(1) 89.8(5) 49
MGT 82.1(4) 78.8(6) 82.7(3) - 86.9(2) 87.7(1) 79.9(5) 122
Average 82.6(5.0) 80.3(5.8) 83.5(4.0) 82.1(4.7) 85.1(3.0) 87.0(1.5) 83.9(3.3) 35

in the rpart R package [Therneau et al., 2015]; two other greedy approaches that implement

oblique cuts: the full OC1 and the full oblique.tree, as implemented in Murthy et al. [1994] and

Csárdi and Truong [2012], respectively, with the default tuning parameters; the OCT-H MIO,

proposed in [Bertsimas and Dunn, 2017] that also constructs oblique cuts, at the same depth

as ORCT; the OCT-H LS in Dunn [2018] that employs a local-search heuristic for building

oblique trees at maximum depth D = 10; and Random Forests from randomForest R

package [Liaw and Wiener, 2002] with the default tuning parameters.

2.3.1 Results for ORCT

Tables 2.2, 2.3, 2.4 and 2.5 present the comparison of ORCT at depth D = 1, 2, 3 and 4,

respectively, against the benchmarks described above. Figures 2.5, 2.6, 2.7 and 2.8 depict

these results, where ORCT is highlighted in striped grey. Note that for data sets with K ≥ 3,

the ORCT at depth D = 1 would become infeasible due to the set of constraints (2.3).

Each table and each figure displays, per data set, the average out-of-sample accuracy over

the ten runs for CART, OC1, oblique.tree, RF and ORCT, as well as the average out-of-sample

accuracy across all data sets. Results for OCT-H MIO and OCT-H LS are taken from [Bertsimas

and Dunn, 2017] and [Dunn, 2018], respectively. Note that the Magic-gamma-telescope data

set is not available in [Bertsimas and Dunn, 2017]. Tables also include information about

the average execution time for ORCT. This time involves the data reading, the scaling of the

training set, the random generation of initial solutions, the optimization time, the scaling of the

test set using the scale parameters obtained in the training and the evaluation of performance.

The average solving time of an instance of a specific optimization problem is also shown.

Moreover, for each data set, we rank the methods by their accuracy. The rank is shown in

parentheses. A rank of 1 indicates that the method is the best in terms of out-of-sample accuracy

on a given data set and a rank of 7 indicates that the method performed the worst. The average

accuracy and rank of each method across all data sets are found at the bottom of the table.

We start by discussing the results for D = 1 in Table 2.2 and Figure 2.5. We will say that

two methods have a comparable accuracy if they differ in less than 1 percentage point. ORCT
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Figure 2.5: Comparison of ORCT at depth D = 1 and other tree-based methods in terms of the
out-of-sample accuracy.

generally outperforms CART, even with depth D = 1, i.e., one single oblique cut. This is

the case for all data sets except for CA and MGT. Regarding OC1, ORCT is generally better

except for SB. With respect to oblique.tree, ORCT is comparable (CA, PID) or better (CBS,

W, OLDO) in five out of eight datasets. ORCT is generally better than OCT-H MIO except for

CA. With respect to OCT-H LS, ORCT outperforms or is comparable in four out of eight data

sets (W, PID, SPGC, OLDO). Finally, RF tends to lead in performance among all one-single-

tree-based methods we have tested. Nevertheless, ORCTs are comparable to RFs in some data

sets (PID, OLDO) and even competitive in others (W). In terms of the average performance

across all data sets, ORCT is superior to CART, OC1 and OCT-H MIO, and is comparable

to oblique.tree. Although OCT-H LS has a higher average accuracy across all data sets than

ORCT, they both have the same average rank. RF presents the best average accuracy as well as

rank.

We continue by discussing the results for D = 2 in Table 2.3 and Figure 2.6. The out-

of-sample accuracy has improved for both CA and MGT, in comparison with D = 1, but the

same conclusions as in Table 2.2 can be drawn for two-class problems when comparing ORCT

with CART and OCT-H MIO. The outperformance of ORCT against CART and OCT-H MIO

is also clear for I, W, S and CE. This is not the case for TDAT, in which ORCT is comparable

to OCT-H MIO although CART outperforms these two methods. Compared to OC1, ORCT is

comparable (I) or outperforms (the rest except for SB, TDAT and CE) in ten out of the thirteen

data sets. With respect to oblique.tree, ORCT is comparable (CA, PID, I, W, S) or outperforms

(CBS, W, OLDO) in eight out of the thirteen data sets. Regarding to OCT-H LS, ORCT is

competitive (CBS) or outperforms (W, PID, SPGC, OLDO, I, W, S) in eight out of the thirteen

data sets. Finally, ORCT is again comparable to RF in some of the data sets (PID, OLDO) and
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Table 2.3: Results for D = 2 in terms of the out-of-sample accuracy.

Data set Out-of-sample accuracy Average time
CART OC1 oblique.tree OCT-H MIO OCT-H LS RF ORCT (in secs)

CBS 70.0(6) 70.8(5) 72.5(4) 70.0(6) 77.3(3) 83.1(1) 77.5(2) 27
W 92.0(7) 94.1(4) 93.7(5) 93.1(6) 94.8(3) 95.5(2) 96.2(1) 36
CA 85.7(4) 82.0(7) 83.5(6) 87.9(1) 86.0(3) 86.7(2) 84.2(5) 20
PID 74.2(4) 60.7(7) 76.0(2) 71.4(6) 73.1(5) 76.3(1) 76.0(2) 20
SPGC 72.1(4) 68.5(7) 73.8(2) 70.4(6) 72.1(4) 75.2(1) 72.8(3) 40
OLDO 95.6(5) 95.5(6) 92.9(7) 96.8(1) 96.2(4) 96.4(3) 96.7(2) 267
SB 89.2(6) 92.3(4) 92.7(3) 85.7(7) 94.2(2) 95.1(1) 89.8(5) 58
MGT 82.1(4) 78.8(6) 82.7(3) - 86.9(2) 87.7(1) 80.8(5) 551
I 92.7(7) 95.4(3) 96.8(1) 95.1(5) 94.6(6) 95.4(3) 95.9(2) 5
Wi 88.6(7) 90.9(6) 96.1(3) 91.1(5) 95.1(4) 98.6(1) 96.6(2) 9
S 90.2(7) 90.4(6) 94.2(1) 90.6(5) 91.7(4) 92.5(3) 94.2(1) 7
TDAT 99.1(2) 97.9(4) 97.7(5) 92.5(6) 99.7(1) 99.1(2) 92.2(7) 111
CE 88.1(5) 94.7(2) 93.9(3) 87.5(7) 97.8(1) 88.0(6) 89.8(4) 42
Average 86.1(5.2) 85.5(5.1) 88.1(3.5) 86.0(5.1) 89.2(3.2) 90.0(2.1) 87.9(3.2) 92

Figure 2.6: Comparison of ORCT at depth D = 2 and other tree-based methods in terms of the
out-of-sample accuracy.
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Table 2.4: Results for D = 3 in terms of the out-of-sample accuracy.

Data set Out-of-sample accuracy Average time
CART OC1 oblique.tree OCT-H MIO OCT-H LS RF ORCT (in secs)

CBS 70.0(7) 70.8(5) 72.5(4) 70.8(5) 77.3(2) 83.1(1) 77.1(3) 84
W 92.0(7) 94.1(4) 93.7(6) 94.0(5) 94.8(3) 95.5(2) 96.4(1) 107
CA 85.7(4) 82.0(7) 83.5(6) 87.9(1) 86.0(3) 86.7(2) 84.4(5) 62
PID 74.2(4) 60.7(7) 76.0(2) 71.4(6) 73.1(5) 76.3(1) 75.2(3) 73
SPGC 72.1(4) 68.5(7) 73.8(2) 71.0(5) 72.1(4) 75.2(1) 73.4(3) 116
OLDO 95.6(5) 95.5(6) 92.9(7) 96.8(1) 96.2(4) 96.4(3) 96.7(2) 918
SB 89.2(6) 92.3(4) 92.7(3) 86.6(7) 94.2(2) 95.1(1) 89.8(5) 572
MGT 82.1(5) 78.8(6) 82.7(4) - 86.9(2) 87.7(1) 82.9(3) 2018
I 92.7(7) 95.4(4) 96.8(1) 95.1(5) 94.6(6) 95.4(3) 95.7(2) 12
Wi 88.6(7) 90.9(6) 96.1(3) 92.9(5) 95.1(4) 98.6(1) 96.6(2) 26
S 90.2(7) 90.4(6) 94.2(1) 91.3(5) 91.7(4) 92.5(3) 94.0(2) 22
TDAT 99.1(2) 97.9(4) 97.7(5) 92.5(6) 99.7(1) 99.1(2) 92.5(7) 367
CE 88.1(5) 94.7(2) 93.9(3) 87.5(7) 97.8(1) 88.0(6) 91.7(4) 161
Average 86.1(5.4) 85.5(5.2) 88.1(3.6) 86.5(4.8) 89.2(3.1) 90.0(2.1) 88.2(3.2) 349

even competitive in others (W, I, Wi, S). On average across all data sets, RF is the best method

and ORCT is superior to CART and OCT-H MIO again, and is comparable to oblique.tree. A

slightly greater average rank is observed for ORCT at depth D = 2, although OCT-H LS still

produces a higher average accuracy.

Similar conclusions can be drawn for D = 3 and D = 4, see Tables 2.4 and 2.5, and

Figures 2.7 and 2.8, respectively. The out-of-sample accuracies of ORCT at depths D = 3

and 4 have not significantly changed in most cases except for CE and MGT. The out-of-sample

accuracies for both are already comparable to oblique.tree and superior to CART, respectively.

The comparisons between ORCT and OC1, ORCT and OCT-H LS, and ORCT and RF remain

the same. On average across all data sets, ORCT, while maintaing a slightly better average rank,

tends to close its gap with OCT-H LS regarding the average out-of-sample accuracy across all

data sets.

In summary, these numerical results illustrate that, in terms of accuracy, ORCT outperforms

CART, OC1 and OCT-H MIO, while ORCT is comparable to oblique.tree and manages to get

close to OCT-H LS and RFs. In contrast to these three latter heuristic approaches, ORCT has

a direct and effective control on critical issues such as cost-sensitiveness, as will be seen in

Section 2.3.3.

Regarding the computational time taken by ORCT, Tables 2.2, 2.3, 2.4 and 2.5 report low

running times, compared to OCT-H MIO, where a CPU time limit from 5 to 15 minutes was

imposed in Bertsimas and Dunn [2017]; excluding the computing time devoted to preprocess-

ing that involves the tuning of a parameter for which time limits of 60 seconds were imposed

to OCT-H MIO, which is not the case in ORCT. OCT-H LS also requires parameter tuning.

Although limited information about computing times is found in Dunn [2018], a large gain in

time is reported for a particular data set, compared to OCT-H MIO.
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Figure 2.7: Comparison of ORCT at depth D = 3 and other tree-based methods in terms of the
out-of-sample accuracy.

Table 2.5: Results for D = 4 in terms of the out-of-sample accuracy.

Data set Out-of-sample accuracy Average time
CART OC1 oblique.tree OCT-H MIO OCT-H LS RF ORCT (in secs)

CBS 70.0(7) 70.8(6) 72.5(4) 71.5(5) 77.3(2) 83.1(1) 76.5(3) 210
W 92.0(7) 94.1(4) 93.7(6) 94.0(5) 94.8(3) 95.5(2) 96.2(1) 351
CA 85.7(4) 82.0(7) 83.5(6) 87.9(1) 86.0(3) 86.7(2) 84.6(5) 203
PID 74.2(4) 60.7(7) 76.0(3) 70.3(6) 73.1(5) 76.3(1) 76.1(2) 208
SPGC 72.1(4) 68.5(7) 73.8(2) 71.0(6) 72.1(4) 75.2(1) 72.8(3) 415
OLDO 95.6(5) 95.5(6) 92.9(7) 96.8(1) 96.2(4) 96.4(3) 96.7(2) 3360
SB 89.2(6) 92.3(4) 92.7(3) 86.6(7) 94.2(2) 95.1(1) 89.8(5) 1717
MGT 82.1(5) 78.8(6) 82.7(4) - 86.9(2) 87.7(1) 84.3(3) 5603
I 92.7(7) 95.4(3) 96.8(1) 95.1(5) 94.6(6) 95.4(3) 96.2(2) 31
Wi 88.6(7) 90.9(6) 96.1(2) 91.6(5) 95.1(4) 98.6(1) 95.7(3) 69
S 90.2(7) 90.4(6) 94.2(1) 91.3(5) 91.7(4) 92.5(3) 93.1(2) 58
TDAT 99.1(2) 97.9(4) 97.7(5) 92.5(7) 99.7(1) 99.1(2) 93.1(6) 1051
CE 88.1(5) 94.7(2) 93.3(4) 87.5(7) 97.8(1) 88.0(6) 93.6(3) 468
Average 86.1(5.4) 85.5(5.2) 88.1(3.7) 86.3(5.0) 89.2(3.1) 90.0(2.1) 88.4(3.1) 1057
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Figure 2.8: Comparison of ORCT at depth D = 4 and other tree-based methods in terms of the
out-of-sample accuracy.

2.3.2 Results for variable importance measures via ORCTs

Measuring the importance of predictor variables in RFs has been thoroughly studied in the lite-

rature. In particular, the two most popular importance measures for forests are outlined in Biau

and Scornet [2016]: the Mean Decrease Impurity (MDI) and the Mean Decrease Accuracy

(MDA). The MDI takes advantage of the splitting criterion used for growing classic decision

trees: given an impurity measure, the predictor variable that maximizes the decrease of impu-

rity together with its corresponding splitting threshold are chosen. Thus, the MDI of predictor

variable j is the average over every tree built of the decrease in impurity of splits along that

variable, weighted with the fraction of individuals falling in the corresponding branch node.

The MDA is based on the following notion: if a predictor variable is not influential, permuting

the values it takes should not affect the prediction accuracy of the forest. Thus, the MDA of

predictor variable j is the average over every tree built of the difference in accuracy before and

after the permutation.

In our case we have two straightforward and inexpensive ways of measuring the importance

of predictor variables by analyzing the distribution of the absolute values of coefficients ajt.

The first metric to measure the importance of predictor variable j, j = 1, . . . , p, is to sum the

absolute values of the coefficients ajt for all branch nodes t ∈ τB , called hereafter the Sum

Importance Measure (SIM):

SIMj =
∑
t∈τB

|ajt|.

The second metric is the so-called Maximum Importance Measure (MIM), which takes instead
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Figure 2.9: ORCT variable importance measures for the Wine data set.

Figure 2.10: RF variable importance measures for the Wine data set.

the maximum among all the branch nodes t ∈ τB:

MIMj = max
t∈τB
|ajt|.

For illustrative purposes, these variable importance measures have been evaluated for the Wine

and Car-evaluation data sets in Table 2.1, see Figures 2.9 and 2.11. Both measures have been

evaluated over the resultant ORCT of the tenth run. The variable importance measures for RFs,

the MDA and the MDI using the Gini index as the impurity measure, are also depicted for the

aforementioned data sets. These can be found in Figures 2.10 and 2.12 and have been obtained

with the randomForest R package. The message conveyed by these plots is, in general,

in agreement. For instance, V8 in the Wine data set is not as important as V10. The same

conclusion can be drawn for the Car-evaluation data set.
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Figure 2.11: ORCT variable importance measures for the Car-evaluation data set.

Figure 2.12: RF variable importance measures for the Car-evaluation data set.
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2.3.3 Results for ORCT with constraints on expected performance

The Pima-indians-diabetes data set, from Lichman [2013], consists of a sample of 768 patients

of Pima Indian heritage in the USA, on which 8 predictor variables are measured. The target

variable is whether the patient shows signs of diabetes or not. Diabetics are the positive class

and represent the 35% of the entire sample. Firstly, we have run our ORCT without constraints

on expected performance by imposing a correct classification percentage over the positive class,

ρ+, equal to zero. See the first row in Table 2.6.

Table 2.6: Results with constraints on expected performance over the positive class in the
Pima-indians-diabetes data set.

Imposed TPR (ρ+) TPRtrain TPRtest TNRtrain TNRtest CCRtrain CCRtest

0 60.8 56.4 90.5 87.8 80.3 76.2

62.5 63.9 59.0 88.6 86.0 80.1 76.1

65.0 65.8 60.9 87.3 84.7 79.9 75.9

67.5 68.4 62.5 85.5 83.1 79.6 75.5

70.0 71.1 64.3 83.6 81.8 79.3 75.3

72.5 73.7 67.4 81.4 80.1 78.7 75.4

75.0 75.8 68.1 79.3 77.4 78.1 73.9

77.5 78.9 72.9 77.2 75.9 77.8 74.6

80.0 81.3 73.1 74.5 72.7 76.9 72.7

82.5 83.9 76.7 71.9 69.0 76.0 71.6

85 86.5 80.9 68.4 66.6 74.6 71.6

The positive class, diabetics, is the worst classified, with an average True Positive Rate

(TPR) of 60.8 over the ten training subsets and 56.4 over the ten test subsets. The negative

class, non-diabetics, presents an average True Negative Rate (TNR) of 90.5 and 87.8 over the

ten training and test subsets, respectively. In this setting, it is preferable to better classify dia-

betic patients, since diagnosing a diabetic as non-diabetic is more critical (in terms of missing

medical treatment) than the other way around.

In this regard, a performance constraint over the positive class has been added to the ORCT

for several values of the threshold ρ+. We have considered a grid of values for ρ+ varying from

62.5, a slightly higher value than the training TPR obtained with ρ+ = 0, to 85.0 in steps of

2.5 units. Note that constraints on expected performance (3.8) are imposed over the training

sample, so they might not be satisfied on an independent sample. Indeed, results in Table 2.6

show how these thresholds are fulfilled in the training subsets but this is not necessarily the

case in the test subsets; even so, we observe that the test TPR increases with ρ+. Figure 2.13

supports this observation, in which the TPRtrain and the TPRtest are depicted as a function of the

imposed TPR (ρ+). There, we can see that there exists a good linear fit. In fact, the regression
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Figure 2.13: TPRtrain and TPRtest drawn as a function of the imposed TPR (ρ+) for Pima-
indians-diabetes data set.

.

models’ coefficients and their corresponding coefficients of determination are the following:

TPRtrain = −0.36 + 1.02ρ+, R
2 = 0.9993,

TPRtest = −0.65 + 0.94ρ+, R
2 = 0.9754.

A clear overfitting, almost independent of the threshold imposed, is also detected; but it is pos-

sible to determine the required imposed TPR in order to obtain a successful TPRtest. There is a

price to pay for achieving such high TPRs: the TNRs decrease as we demand larger thresholds,

see Figure 2.14.

2.4 Conclusions

In this chapter, we have proposed a new optimization-based approach to build classification

trees. By replacing the binary decisions with randomized decisions, the resulting optimiza-

tion problem is smooth and only contains continuous decision variables, allowing one to use

gradient information. The computational experience reported shows that, with low running

times, we outperform recent benchmarks, getting closer to and sometimes better than the per-

formance of Random Forests. Moreover, we can model cost-sensitive constraints, having a

direct and effective control on the accuracy of critical classes.

Several extensions to our approach are attractive. First, if the user wants to improve both
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Figure 2.14: TNRtest depicted as a function of the imposed TPR (ρ+) for Pima-indians-
diabetes data set.

accuracy and computing times using deeper trees, at the expense of interpretability, then one

can develop a local-search procedure to embed our algorithm, as done successfully in Dunn

[2018] for the integer programming approach in Bertsimas and Dunn [2017]. Second, it is

difficult in classic decision trees to control the number of predictor variables used. Making our

approach sparse by means of regularizations, i.e., by using a lasso-type objective, is also an

interesting research question, which is handled in Chapter 3.
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In this chapter, we propose a continuous optimization approach that extends the metho-

dology in Chapter 2 and build sparse optimal classification trees, with the aim of using fewer

predictor variables in the cuts as well as along the whole tree. Both types of sparsity, namely

local and global, are modeled by means of regularizations with polyhedral norms, the `1-norm

and the `∞-norm, respectively. Theoretical results on the range of the sparsity parameters are

shown. The computational experience reported supports the usefulness of our methodology.

In all our data sets, local and global sparsity can be improved without harming classification

accuracy. Unlike greedy approaches, our ability to easily trade in some of our classification

accuracy for a gain in global sparsity is shown.

The chapter is organized as follows. In Section 3.1, we detail the construction of the Sparse

Optimal Randomized Classification Tree (S-ORCT). Some theoretical properties are given in

Section 3.2. In Section 3.3, our numerical experience is reported. Finally, conclusions and

possible extensions are provided in Section 3.4.

3.1 Sparsity in Optimal Randomized Classification Trees

3.1.1 Introduction

As in Chapter 2, we assume given a training sample {(xi, yi)}1≤i≤N , where xi represents the

p-dimensional vector of numerical predictor variables of individual i, and yi ∈ {1, . . . ,K}
indicates the class membership. Without loss of generality, we assume xi ∈ [0, 1]p , i =

1, . . . , N .

Sparse Optimal Randomized Classification Trees, addressed in this chapter, extend the

Optimal Randomized Classification Trees (ORCTs) in Chapter 2, briefly detailed below. An

ORCT is an optimal binary classification tree of a given depth D, obtained by minimizing the

expected misclassification cost over the training sample. Figure 3.1 shows the structure of an

Figure 3.1: (Sparse) Optimal Randomized Classification Tree of depth D = 2.
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ORCT of depth D = 2. Unlike classic decision trees, oblique cuts, on which more than one

predictor variable takes part, are performed. ORCTs are modeled by means of a Non-Linear

Continuous Optimization formulation. The usual deterministic yes/no rule at each branch node

is replaced by a smoother rule: a probabilistic decision rule at each branch node, induced by

a cumulative density function (CDF) F , is obtained. Therefore, the movements in ORCTs

can be seen as randomized: at a given branch node of an ORCT, a random variable will be

generated to indicate by which branch an individual has to continue. Since binary trees are

built, the Bernoulli distribution is appropriate, whose probability of success will be determined

by the value of this CDF, evaluated over the vector of predictor variables. More precisely, at

a given branch node t of the tree, an individual with predictor variables x will go either to the

left or to the right child nodes with probabilities F
(

1

p
aT·tx− µt

)
and 1− F

(
1

p
aT·tx− µt

)
,

respectively, where a·t and µt are decision variables. For further details on the construction of

ORCTs, the reader is referred to Chapter 2. Sparse ORCT, S-ORCT, minimizes the expected

misclassification cost over the training sample regularized with two polyhedral norms.

The following notation is needed:

Parameters

D depth of the binary tree,

N number of individuals in the training sample,

p number of predictor variables,

K number of classes,

{(xi, yi)}1≤i≤N training sample, where xi ∈ [0, 1]p and yi ∈ {1, . . . ,K} ,
Ik set of individuals in the training sample belonging to class k, k = 1, . . . ,K,

Wyik misclassification cost incurred when classifying an individual i, whose class is

yi, in class k, yi, i = 1, . . . , N, k = 1, . . . ,K,

F (·) the smooth CDF of a univariate continuous random variable centered at zero,

used to define the probabilities for an individual to go to the left or the right

child node in the tree. We will assume that f is the density of such a continuous

random variable,

λL ≥ 0 local sparsity regularization parameter,

λG ≥ 0 global sparsity regularization parameter,

Nodes

τB set of branch nodes,

τL set of leaf nodes,

NL (t) set of ancestor nodes of leaf node t whose left branch takes part in the path from

the root node to leaf node t, t ∈ τL,

NR (t) set of ancestor nodes of leaf node t whose right branch takes part in the path

from the root node to leaf node t, t ∈ τL,
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Decision variables

ajt ∈ [−1, 1] coefficient of predictor variable j in the oblique cut at branch node t ∈ τB ,

with a being the p × |τB| matrix of these coefficients, a = (ajt)j=1,...,p, t∈τB .

The expressions aj· and a·t will denote the j-th row and the t-th column of a,

respectively,

µt ∈ [−1, 1] location parameter at branch node t ∈ τB , µ being the vector that comprises

every µt, i.e., µ = (µt)t∈τB ,

Ckt probability of being assigned to class label k ∈ {1, . . . ,K} for an indi-

vidual at leaf node t, t ∈ τL, being the K × |τL| matrix such that C =

(Ckt)k=1,...,K, t∈τL .

Probabilities

pit (a·t, µt) probability of individual i going down the left branch at branch node t. Its

expression is pit (a·t, µt) = F

(
1

p
aT·txi − µt

)
, i = 1, . . . , N, t ∈ τB ,

Pit (a,µ) probability of individual i falling into leaf node t. Its expression is Pit (a,µ) =∏
tl∈NL(t)

pitl (a·tl , µtl)
∏

tr∈NR(t)
(1− pitr (a·tr , µtr)) , i = 1, . . . , N, t ∈ τL,

g (a,µ,C) expected misclassification cost over the training sample. Its expression is

g (a,µ,C) =
1

N

N∑
i=1

∑
t∈τL

Pit (a,µ)
K∑
k=1

WyikCkt.

3.1.2 The formulation

With the previous parameters and decision variables, the S-ORCT is formulated as follows:

min g (a,µ,C) + λL
p∑
j=1

‖aj·‖1 + λG
p∑
j=1

‖aj·‖∞ (3.1)

s.t.
K∑
k=1

Ckt = 1, t ∈ τL, (3.2)∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K, (3.3)

ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB, (3.4)

µt ∈ [−1, 1] , t ∈ τB, (3.5)

Ckt ∈ [0, 1] , k = 1, . . . ,K, t ∈ τL. (3.6)

In the objective function we have three terms, the first being the expected misclassification cost

in the training sample, while the second and the third are regularization terms. The second term

addresses local sparsity, since it penalizes the coefficients of the predictor variables used in the
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cuts along the tree. Instead, the third term controls whether a given predictor variable is ever

used across the whole tree, thus addressing global sparsity. The `∞-norm is used as a group

penalty function, by forcing the coefficients linked to the same predictor variable to be shrunk

simultaneously along all branch nodes. Note that both local and global sparsities are equivalent

when dealing with depth D = 1, as there is a single cut across the whole tree.

In terms of the feasible region, for each leaf node t ∈ τL, Ckt represents the probability

that an individual at node t is assigned to class k ∈ {1, . . . ,K}. Constraints (3.2) force that

such probabilities sum to 1, while constraints (3.3) force the sum of the probabilities along all

leaf nodes t ∈ τB assigned to class k to be at least one.

Theorem 3.1 guarantees the existence of an optimal deterministic solution, i.e., such prob-

abilities Ckt will all be in {0, 1}, and thus (3.6) can be replaced by

Ckt ∈ {0, 1} , k = 1, . . . ,K, t ∈ τL. (3.7)

Constraints (3.6) and (3.7) will be used interchangeably when needed.

Theorem 3.1. There exists an optimal solution to Problem (3.1)-(3.6) such thatCkt ∈ {0, 1} , k =

1, . . . ,K, t ∈ τL.

Proof.

The continuity of the objective function (3.1), defined over a compact set, ensures the

existence of an optimal solution of the optimization problem (3.1)-(3.6), by the Weierstrass

Theorem. Let a∗ =
(
a∗jt

)
j=1,...,p, t∈τB

, µ∗ = (µ∗t )t∈τB , C
∗ = (C∗kt)k=1,...,K, t∈τB be an

optimal solution. Fixed a∗, µ∗, then C∗ is optimal to the following problem in the decision

variables Ckt, k = 1, . . . ,K, t ∈ τL:

min
1

N

N∑
i=1

∑
t∈τL

Pit (a∗,µ∗)
K∑
k=1

WyikCkt + λL
p∑
j=1

∥∥a∗j·∥∥1 + λG
p∑
j=1

∥∥a∗j·∥∥∞
s.t.

K∑
k=1

Ckt = 1, t ∈ τL,∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K,

Ckt ∈ [0, 1] , k = 1, . . . ,K, t ∈ τL.

This is a transportation problem, to which the integrality of an optimal solution is well-known

to hold, i.e., there exists C =
(
Ckt
)
k=1,...,K, t∈τL

∈ {0, 1} for all k, t such that
(
a∗,µ∗,C

)
is also optimal for (3.1)-(3.6).

Theorem 3.1 gives a new interpretation of constraints (3.2)-(3.3): if (3.7) is used instead of

(3.6), when Ckt takes the value 1, then all the individuals at node t ∈ τL are labelled as k; and

0, otherwise. Constraints (3.2) state that any leaf node t ∈ τL must be labelled with exactly
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one class label, and constraints (3.3) state that each class k has at least one node t with such

label.

Once the optimization problem is solved, the S-ORCT predicts the class of a new unlabeled

observation with predictor vector x with a probabilistic rule, namely, we estimate the probabil-

ity of being in class k as
∑
t∈τL

Ckt · Pxt (a,µ). If a deterministic classification rule is sought,

we allocate to the most probable class. Moreover, if prior probabilities Πk (x) are given, one

can also use the Bayes rule.

ORCTs were also shown to deal effectively with controlling the correct classification rate

on different classes in Chapter 2. This idea can also be applied to S-ORCTs. Hence, given

the classes k = 1, . . . ,K to be controlled and their corresponding desired performances ρk,

the expectation of achieving each performance guarantee can be computed with the ORCT

parameters, provided that the following set of constrainsts is added to the model:∑
i∈Ik

∑
t∈τL

Pit (a,µ)Ckt ≥ ρk|Ik|, k = 1, . . . ,K. (3.8)

With these constraints we have a direct control on the classification performance in each

class separately. This is useful when dealing with imbalanced data sets.

3.1.3 A smooth reformulation

Problem (3.1)-(3.6) is non-smooth due to the norms ‖·‖1 and ‖·‖∞ appearing in the objective

function. A smooth version is easily obtained by rewritting both regularization terms using

new decision variables. Since the first regularization term includes absolute values,

‖aj·‖1 =
∑
t∈τB

|ajt| , j = 1, . . . , p,

decision variables ajt ∈ [−1, 1] , j = 1, . . . , p, t ∈ τB , are split into their positive and

negative counterparts a+jt, a
−
jt ∈ [0, 1] , j = 1, . . . , p, t ∈ τB , respectively, holding ajt =

a+jt − a
−
jt and |ajt| = a+jt + a−jt. Similarly, we denote a+ =

(
a+jt

)
j=1,...,p, t∈τB

and a− =(
a−jt

)
j=1,...,p, t∈τB

. Regarding the second regularization term, new decision variables βj ∈
[0, 1] are needed:

‖aj·‖∞ = max
t∈τB
|ajt| = βj ∈ [0, 1] , j = 1, . . . , p,

and have to force βj ≥ |ajt| = a+jt + a−jt, j = 1, . . . , p, t ∈ τB .

We can now formulate S-ORCT as a smooth problem, thus solvable with standard contin-

uous optimization solvers, as considered in our computational section. Indeed, we have that
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problem (3.1)-(3.6) is equivalent to

min g
(
a+ − a−,µ,C

)
+ λL

p∑
j=1

∑
t∈τB

(
a+jt + a−jt

)
+ λG

p∑
j=1

βj (3.9)

s.t.
K∑
k=1

Ckt = 1, t ∈ τL, (3.10)∑
t∈τL

Ckt ≥ 1, k = 1, . . . ,K, (3.11)

βj ≥ a+jt + a−jt, j = 1, . . . , p, (3.12)

a+jt, a
−
jt ∈ [0, 1] , j = 1, . . . , p, t ∈ τB, (3.13)

βj ∈ [0, 1] , j = 1, . . . , p, (3.14)

µt ∈ [−1, 1] , t ∈ τB, (3.15)

Ckt ∈ [0, 1] , k = 1, . . . ,K, t ∈ τL. (3.16)

Observe that, if we are only concerned about global sparsity, and thus we set λL = 0, the

rewriting of the decision variables ajt, j = 1, . . . , p, t ∈ τB is no longer necessary and (3.4)

replaces (3.13), and (3.12) turns into

βj ≥ ajt, j = 1, . . . , p, t ∈ τB, (3.17)

βj ≥ −ajt, j = 1, . . . , p, t ∈ τB. (3.18)

3.2 Theoretical properties

This section discusses some theoretical properties enjoyed by the S-ORCT. Let us consider the

objective function of Problem (3.1)-(3.6). When taking λL and λG large enough, the first term

related to the performance of the classifier becomes negligible and therefore a will shrink to

0. The tree with a = 0 is the sparsest possible tree, though not the most promising one from

an accuracy point of view, since none of the predictor variables are used to classify. In this

case, the probability of an individual with predictor variables x being assigned to class k is

independent of x, and nothing more than the distribution of classes is available. In this section,

we derive upper bounds for the sparsity parameters, λL and λG, in the sense that above these

bounds the sparsest tree (with a∗ = 0) is a stationary point of the S-ORCT, that is, there exists

(a∗ = 0,µ∗,C∗) such that the necessary optimality condition with respect to a is satisfied.

This is proven in Theorems 3.2 and 3.3.

Theorem 3.2. Let σ ∈ [0, 1]. For

λL ≥ (1− σ) max
µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
∞ and
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λG ≥ σ max
µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
1
,

a∗ = 0 is a stationary point of the S-ORCT.

Proof.

Let σ, λL, λG be such that they satisfy the assumptions.

By Theorem 3.1, there exists (a∗,µ∗,C∗) optimal solution to Problem (3.1)-(3.6) satisfy-

ing C∗kt ∈ {0, 1} ∀k = 1, . . . ,K, t ∈ τL. In the following, we will show that (0,µ∗,C∗) is a

stationary point of the S-ORCT, i.e.,

−∇ag (0,µ∗,C∗) ∈ ∂a

λL p∑
j=1

‖aj·‖1 + λG
p∑
j=1

‖aj·‖∞

 (0) (3.19)

where ∂a is the subdifferential operator.

For every aj·, j = 1, . . . , p, we have that

∂aj·
(
‖aj·‖1

)
(0) = B∞ =

{
q ∈ R|τB | : ‖q‖∞ ≤ 1

}
∂aj·

(
‖aj·‖∞

)
(0) = B1 =

{
q ∈ R|τB | : ‖q‖1 ≤ 1

}
.

Hence,

−∇aj·g (0,µ∗,C∗) ∈ λL∂aj·
(
‖aj·‖1

)
(0) + λG∂aj·

(
‖aj·‖∞

)
(0) ,

if, and only if,

−∇aj·g (0,µ∗,C∗) ∈ λLB∞ + λGB1,

if, and only if, there exist qLj , q
G
j ∈ R|τB | such that

∥∥qLj ∥∥∞ ≤ 1,∥∥qGj ∥∥1 ≤ 1,

−∇aj·g (0,µ∗,C∗) = λLqLj + λGqGj ,

if, and only if, there exist q̃Lj , q̃
G
j ∈ R|τB | such that

∥∥q̃Lj ∥∥∞ ≤ λL,∥∥q̃Gj ∥∥1 ≤ λG,
−∇aj·g (0,µ∗,C∗) = q̃Lj + q̃Gj .

Let us consider

q̃Lj = − (1− σ)∇aj·g (0,µ∗,C∗) ,
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q̃Gj = − σ ∇aj·g (0,µ∗,C∗) ,

and check that the conditions are satisfied:

∥∥q̃Lj ∥∥∞ = (1− σ)
∥∥∇aj·g (0,µ∗,C∗)

∥∥
∞ ≤ (1− σ) max

µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
∞ ≤ λ

L,

∥∥q̃Gj ∥∥1 = σ
∥∥∇aj·g (0,µ∗,C∗)

∥∥
1
≤ σ max

µ∈[−1,1]|τB |

C∈{0,1}K×|τL|

max
j=1,...,p

∥∥∇aj·g (0,µ,C)
∥∥
1
≤ λG,

q̃Lj + q̃Gj = − (1− σ)∇aj·g (0,µ∗,C∗)− σ∇aj·g (0,µ∗,C∗) = −∇aj·g (0,µ∗,C∗) .

Therefore, the desired result follows.

A stronger result is proven for the S-ORCT of depth D = 1 and K = 2. Since local and

global sparsities are equivalent for the S-ORCT of depth D = 1, without loss of generality, we

can assume that λG = 0. Therefore, the objective function of the S-ORCT of depth D = 1 can

be written as:

g1 (a·1, µ1,C) = g (a·1, µ1,C) + λL ‖a·1‖1 ,

where

g (a·1, µ1,C) =
1

N

N∑
i=1

[
pi1 (a·1, µ1)

2∑
k=1

WyikCk2 + (1− pi1 (a·1, µ1))

2∑
k=1

WyikCk3

]

=
1

N

2∑
k=1

∑
i∈Ik

pi1 (a·1, µ1)
∑
k′ 6=k

Wkk′Ck′2 + (1− pi1 (a·1, µ1))
∑
k′ 6=k

Wkk′Ck′3


(3.20)

and

pi1 (a·1, µ1) = F

(
1

p
aT·1xi − µ1

)
, i = 1, . . . , N.

A technical lemma is needed to prove the desired result.

Lemma 3.1. For any allocation ruleC, the objective function of the S-ORCT of depth D = 1,

g1, is monotonic in µ1 when a·1 = 0.

Proof.

Fixed a·1 = (aj1)j=1,...,p, and C = (Ckt)k=1,2, t=2,3,

∂g1
∂µ1

∣∣∣∣
a·1=0

=
1

N

K∑
k=1

∑
i∈Ik

∑
k′ 6=k

Wkk′Ck′2 −
∑
k′ 6=k

Wkk′Ck′3

 ∂pi1 (a·1, µ1)

∂µ1

∣∣∣∣
a·1=0

,
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where

∂pi1 (a·1, µ1)

∂µ1
=

∂F

(
1

p
aT·1xi − µ1

)
∂

(
1

p
aT·1xi − µ1

) ∂

(
1

p
aT·1xi − µ1

)
∂µ1

= −f
(

1

p
aT·1xi − µ1

)
, i = 1, . . . , N,

and

∂pi1 (a·1, µ1)

∂µ1

∣∣∣∣
a·1=0

= −f (−µ1) , i = 1, . . . , N.

Thus,

∂g1 (a·1, µ1,C)

∂µ1

∣∣∣∣
a·1=0

=
1

N
f (−µ1)

∑
i∈I1

W12 (C23 − C22) +
∑
i∈I2

W21 (C13 − C12)


=

1

N
f (−µ1) (W12 (C23 − C22) |I1|+W21 (1− C23 − 1 + C22) |I2|)

=
1

N
f (−µ1) (C23 − C22) (W12|I1| −W21|I2|) .

Since f is a probability density function, the expression
∂g1 (a·1, µ1,C)

∂µ1

∣∣∣∣
a·1=0

will always

have the same sign for any value of µ1 and the desired result follows.

Theorem 3.3. For

λL ≥ 1

N
max
j=1,...,p

∣∣∣∣∣∣−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

∣∣∣∣∣∣ max
µ1∈{−1,1}

f (µ1) , (3.21)

a∗·1 = 0 is a stationary point of the S-ORCT of depth D = 1.

Proof.

Using the monotonicity of µ1 proven in Lemma 3.1 and Theorem 3.2 with σ = 0, we have

that for

λL ≥ max
µ1∈{−1,1}
C∈{0,1}2×2

max
j=1,...,p

∣∣∇aj1g (0, µ1,C)
∣∣

= max
µ1∈{−1,1}
C∈{0,1}2×2

‖∇a·1g (0, µ1,C)‖∞ , (3.22)

where g is as in (3.20), a∗·1 = 0 is a stationary point of the S-ORCT. The remainder of the

proof is devoted to rewriting (3.22) as in (3.21).

We proceed with the calculation of the gradient.



54 Chapter 3. Sparsity in Optimal Randomized Classification Trees

For j = 1, . . . , p:

∂g (0, µ1,C)

∂aj1
=
∂g (a·1, µ1,C)

∂aj1

∣∣∣∣
a·1=0

=
1

N

2∑
k=1

∑
i∈Ik

∑
k′ 6=k

Wkk′Ck′2 −
∑
k′ 6=k

Wkk′Ck′3

 ∂pi1 (a·1, µ1)

∂aj1

∣∣∣∣
a·1=0

,

where

∂pi1 (a·1, µ1)

∂aj1
=

∂F

(
1

p
aT1 xi − µ1

)
∂

(
1

p
aT1 xi − µ1

) ∂

(
1

p
aT1 xi − µ1

)
∂aj1

=
xij
p
f

(
1

p
aT1 xi − µ1

)
, i = 1, . . . , N.

and
∂pi1 (a·1, µ1)

∂aj1

∣∣∣∣
a·1=0

=
xij
p
f (−µ1) , i = 1, . . . , N.

Thus,

∂g (0, µ1,C)

∂aj1
=

1

Np
f (−µ1)

W12

∑
i∈I1

xij (C22 − C23) +W21

∑
i∈I2

xij (C12 − C13)

 .

Now, we look for the maximum λL among every possible allocation of the decision vari-

ables C, i.e.:

λLµ1 = max
C∈{0,1}2×2

‖∇a·1g (0, µ1,C)‖∞ = max
C∈{0,1}4×1

‖DC‖∞,

where

D =
1

Np
f (−µ1)


−W21

∑
i∈I2 xi1 W21

∑
i∈I2 xi1 −W12

∑
i∈I1 xi1 W12

∑
i∈I1 xi1

...
...

...
...

−W21
∑

i∈I2 xip W21
∑

i∈I2 xip −W12
∑

i∈I1 xip W12
∑

i∈I1 xip


and C = (C12, C13, C22, C23)

T .

max
C∈{0,1}4×1

‖DC‖∞ = max
C∈{0,1}4×1

max
{
|dT1 C|, . . . , |dTp C|

}
= max
C∈{0,1}4×1

max
{
dT1 C,−dT1 C, . . . , dTp C,−dTp C

}
= max

{
max

C∈{0,1}4×1
dT1 C, max

C∈{0,1}4×1
−dT1 C, . . . , max

C∈{0,1}4×1
dTp C, max

C∈{0,1}4×1
−dTp C

}
.

A finite number of transportation problems is to be solved, with the form:

z = max
C∈{0,1}4×1

{
±dTj C

}
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s.t. C12 + C22 = 1

C13 + C23 = 1

C12 + C13 ≥ 1

C22 + C23 ≥ 1,

for which the integrality property holds. Then, we only have as possible solutions: C =

(1, 0, 0, 1)T or C = (0, 1, 1, 0)T . Thus, the optimal objective is obtained as follows:

zopt = max
{
±dTj C

∣∣
C=(1,0,0,1)T

, ±dTj C
∣∣
C=(0,1,1,0)T

}
= max

 1

Np
f (−µ1)

−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

 ,
1

Np
f (−µ1)

W21

∑
i∈I2

xij −W12

∑
i∈I1

xij


=

1

Np
f (−µ1)

∣∣∣∣∣∣−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

∣∣∣∣∣∣ .
Let us define

λLµ1 =
1

Np
f (−µ1) max

j=1,...,p

∣∣∣∣∣∣−W21

∑
i∈I2

xij +W12

∑
i∈I1

xij

∣∣∣∣∣∣ ,
and the result holds when

λL ≥ max
{
λLµ1=−1, λ

L
µ1=1

}
.

3.3 Computational experiments

3.3.1 Introduction

The aim of this section is to illustrate the performance of our sparse optimal randomized classi-

fication trees S-ORCTs. We have run our model for a grid of values of the sparsity regular-

ization parameters λL and λG. The message that can be drawn from our experimental expe-

rience is twofold. First, we show empirically that our S-ORCT can gain in both local and

global sparsity, without harming classification accuracy. Second, we benchmark our approach

against CART, the classic approach to build decision trees, which considers orthogonal cuts

and therefore has the best possible local sparsity. We show that we are able to trade in some of

our classification accuracy, whilst still being superior to CART, in order to be comparable to

CART in terms of global sparsity.

The S-ORCT smooth formulation (3.9)-(3.16) has been implemented using Pyomo opti-
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mization modeling language [Hart et al., 2017, 2011] in Python 3.5 [Python Core Team, 2015].

As solver, we have used IPOPT 3.11.1 [Wächter and Biegler, 2006], and have followed a mul-

tistart approach, where the process is repeated 20 times starting from different random initial

solutions. For CART, the implementation in the rpart R package [Therneau et al., 2015] is

used. Our experiments have been conducted on a PC, with an Intelr CoreTM i7-2600 CPU

3.40GHz processor and 16 GB RAM. The operating system is 64 bits.

The remainder of the section is structured as follows. Section 3.3.2 gives details on the

procedure followed to test S-ORCT. In Sections 3.3.3 and 3.3.4, respectively, we discuss the

results for local and global sparsity separately, while in Section 3.3.5 we present results when

both sparsities are simultaneously taken into account. Finally, Section 3.3.6 statistically com-

pares S-ORCT versus CART in terms of classification accuracy and global sparsity.

3.3.2 Setup

An assorted collection of well-known real data sets from the UCI Machine Learning Repository

[Lichman, 2013] has been chosen for the computational experiments. Table 3.1 lists their

names together with their number of observations, number of predictor variables and number of

classes with the corresponding class distribution. In our pursuit of building small and, therefore,

less complex trees, the construction of S-ORCTs has been restricted to depth D = 1 for two-

class problems and depth D = 2 for three- and four- class problems.

Table 3.1: Information about the data sets considered.

Data set Abbrev. N p K Class distribution
Monks-problems-3 Monks-3 122 11 2 51% - 49%
Monks-problems-1 Monks-1 124 11 2 50% - 50%
Monks-problems-2 Monks-2 169 11 2 62% - 38%
Connectionist-bench-sonar Sonar 208 60 2 55% - 45%
Ionosphere Ionosphere 351 34 2 64% - 36%
Breast-cancer-Wisconsin Wisconsin 569 30 2 63% - 37%
Credit-approval Creditapproval 653 37 2 55% - 45%
Pima-indians-diabetes Pima 768 8 2 65% - 35%
Statlog-project-German-credit Germancredit 1000 48 2 70% - 30%
Banknote-authentification Banknote 1372 4 2 56% - 44%
Ozone-level-detection-one Ozone 1848 72 2 97% - 3%
Spambase Spam 4601 57 2 61% - 39%
Iris Iris 150 4 3 33.3%-33.3%-33.3%
Wine Wine 178 13 3 40%-33%-27%
Seeds Seeds 210 7 3 33.3%-33.3%-33.3%
Balance-scale Balance 625 16 3 46%-46%-8%
Thyroid-disease-ann-thyroid Thyroid 3772 21 3 92.5%-5%-2.5%
Car-evaluation Car 1728 15 4 70%-22%-4%-4%

Each data set has been split into two subsets: the training subset (75%) and the test subset
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(25%). The corresponding S-ORCT is built on the training subset and, then, accuracy, local and

global sparsity are measured. The out-of-sample accuracy over the test subset is denoted by

acc. Local sparsity is denoted by δL and reads as the average percentage of predictor variables

not used per branch node:

δL =
1

|τB|
∑
t∈τB

|{ajt = 0, j = 1, . . . , p}|
p

× 100.

Global sparsity, δG, is measured as the percentage of predictor variables not used at any of the

branch nodes, i.e., across the whole tree:

δG =
|{aj· = 0, j = 1, . . . , p}|

p
× 100.

Note that when D = 1, local and global sparsity are the same, since there is a single cut across

the whole tree. The training/testing procedure has been repeated ten times in order to avoid the

effect of the initial split of the data. The results shown in the tables represent the average of

such ten runs to each of the three performance criteria.

In what follows, we describe the choices made for the parameters in S-ORCT. Equal mis-

classification weights, Wyik = 0.5, k = 1, . . . ,K, k 6= yi, have been used for the experi-

ments. We have added the set of constraints (3.8) with ρk = 0.1, k = 1, . . . ,K. The logistic

CDF has been chosen for our experiments:

F (·) =
1

1 + exp (− (·) γ)
,

with a large value of γ, namely, γ = 512. The larger the value of γ, the closer the deci-

sion rule defined by F is to a deterministic rule. We will illustrate that a small level of ran-

domization is enough for obtaining good results. We have trained S-ORCT, as formulated

in (3.9)-(3.16), for 17 × 17 pairs of values for
(
λL, λG

)
starting from λL = 0 followed

by the grid
{

2r

p |τB|
, −12 ≤ r ≤ 3, r ∈ Z

}
, and, similarly, λG = 0 followed by the grid{

2r

p
, −12 ≤ r ≤ 3, r ∈ Z

}
. We start solving the optimization problem with

(
λL, λG

)
=

(0, 0), where the multistart approach uses 20 random initial solutions. We continue solving

the optimization problem for λL = 0 but with larger values of λG. Once all values of λG

are executed, we start the process all over again with the next value of λL in the grid. For

pair
(
λL, λG

)
, we feed the corresponding optimization problem with the 20 solutions resulting

from the problem solved for the previous pair. For a given initial solution, the computing time

taken by the S-ORCT typically ranges from 0.33 seconds (in Monks-1) to 22.27 seconds (in

Thyroid).

For CART, the default parameter setting in rpart is used.
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3.3.3 Results for local sparsity

Tables 3.2 and 3.3 present the results of the so-called local S-ORCT, i.e., when λG = 0 and

thus only local sparsity is taken into account. Figures 3.2 and 3.3 depict these results per data

set, by showing simultaneously δL (blue solid line) and acc (red dashed line) as a function of

the grid of the λL’s considered. As expected, the larger the λL, the larger the δL. The sparsest

tree is shown in most of the data sets for large values of the parameter λL, where the best

solution in terms of sparsity is obtained but the worst possible one in terms of accuracy. In

terms of accuracy, the best rates are sometimes achieved when not all the predictor variables

are included in the model. For instance, best performance is reached when sparsity is about

9− 25% for Pima, 30% for Monks-1, 32% for Monks-2, 44% for Germancredit, 47% for Car,

52−56% for Thyroid, 54% for Monks-3, 55−60% for Iris, 72−90% for Sonar, 81% for both

Wine and Seeds and 87% for Ionosphere. We highlight the Creditapproval data set, on which

one single predictor variable can already guarantee very good accuracy. For Ozone, accuracy

remains over 96% for the grid of λL’s considered. Accuracy might be slightly damaged but a

great gain in sparsity is obtained. This is the case for Banknote, Spam, Balance or Wisconsin,

which present a loss of accuracy lower than the 1 percentage point (p.p.), 4 p.p., 6 p.p. and 1

p.p. but 25%, 52%, 63% and 85% of local sparsity is reached, respectively.

3.3.4 Results for global sparsity

This section is devoted to the global S-ORCT, i.e., when λL = 0 and thus only global sparsity

is taken into account. We focus on depth D = 2, since for D = 1 global sparsity is equal

to local sparsity. Similarly to Subsection 3.3.3, Table 3.4 presents the results of the global

S-ORCT, while Figure 3.4 visualizes these results by showing simultaneously, per data set, δG

(blue solid line) and acc (red dashed line) as a function of the grid of the λG’s considered.

As for local sparsity, as λG grows, δG increases. For Iris and Seeds, a similar classification

accuracy to that with all of the predictor variables is obtained while removing 75% and 29% of

them, respectively. For Wine, the best rates of accuracy are obtained with 15%−23% of global

sparsity. A loss of less than 10 p.p. of accuracy is observed for Balance but 25% of predictor

variables are not being used, respectively. Car remains around the accuracy rate of 80% while

using half of the predictor variables. Thyroid, an imbalanced data set, is over 90% of accuracy

for the whole grid of λG’s considered.

3.3.5 Results for local and global sparsity

In this section, results enforcing local and global sparsity are presented by means of heatmaps,

as seen in Figure 3.5. The experiment has been conducted on data sets of K = 3 and 4 classes,

for which S-ORCTs of depth D = 2 are built. For each dataset, three heatmaps are depicted

as a function of the grid of the sparsity regularization parameters, λL and λG: the average out-

of-sample accuracy, acc, and the local and global sparsity, δL and δG, respectively, obtained
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over the ten runs performed. The color bar of each heatmap goes from light green to dark blue,

being the latter the maximum accuracy, local sparsity or global sparsity achieved, respectively.

As a general behavior, the best rates of accuracy are not always achieved only for
(
λL, λG

)
=

(0, 0), but also for other pairs of the chosen grid, i.e., the data set remains equally well explained

while needing less information. As before, according to local sparsity, for a fixed λG, δL has

a growing trend. A similar behavior is observed for δG when λL is fixed. It is also worth

mentioning that small changes of λL quickly lead to a gain in δL. Nevertheless, as expected,

the gain in δG is slower for the same range in λG.

Table 3.3: Results for the local S-ORCT of depth D = 2 as a function of λL, where δL

represents the average percentage of predictor variables not used per branch node in the tree
over the ten runs and acc, the average out-of-sample accuracy.

λL
Iris Wine Seeds Balance Thyroid Car

δL acc δL acc δL acc δL acc δL acc δL acc
0 8 95.9 15 96.6 10 94.4 33 96.6 57 92.8 20 92.7

2−12 42 95.9 51 98.6 33 93.8 58 92.0 61 92.7 36 91.5
2−11 42 95.9 54 98.4 38 93.8 60 91.1 59 92.9 33 91.9
2−10 42 96.2 54 97.3 38 94.0 65 91.0 64 92.6 36 91.5
2−9 42 95.9 56 97.5 43 93.8 67 91.2 62 92.7 36 91.4
2−8 42 95.9 56 96.8 48 93.2 60 91.9 65 92.5 36 91.4
2−7 42 95.9 59 96.8 48 91.3 60 91.7 70 92.1 36 91.3
2−6 42 95.9 59 96.8 52 94.0 65 92.2 72 92.1 38 91.6
2−5 42 95.4 59 96.8 52 94.4 58 92.6 74 92.2 40 91.3
2−4 42 95.9 59 97.3 57 93.8 58 92.4 79 92.2 42 91.1
2−3 42 93.2 62 97.5 67 94.6 63 91.1 83 92.1 40 91.7
2−2 50 89.7 62 97.7 67 94.4 65 90.6 87 92.3 47 90.4
2−1 50 92.7 64 98.2 71 93.6 67 89.2 90 92.0 51 90.2
20 58 90.0 69 96.8 76 93.6 71 88.1 91 91.9 64 87.6
21 67 90.5 77 95.2 81 90.2 75 87.2 92 92.0 71 85.4
22 75 91.1 82 89.5 81 88.5 77 82.6 95 91.8 80 80.8
23 83 88.6 90 76.4 91 73.6 83 77.3 100 92.2 91 68.2

3.3.6 Comparison S-ORCT versus CART

A statistical comparison between the proposed S-ORCT and CART, the classic approach to

build decision trees, is provided in this section. CARTs, as many other approaches that imple-

ment orthogonal cuts [Bertsimas and Dunn, 2017; Firat et al., 2019; Günlük et al., 2021], are

leaders in terms of local sparsity. Thus, the comparison S-ORCT versus CART is performed

in terms of accuracy and global sparsity. Tables 3.2 and 3.4 for S-ORCT have been considered

for the experiment.

CART has been trained and tested over the same ten runs as S-ORCT. For each pair S-

ORCT
(
λG
)

versus CART, two hypothesis tests for the equality of means of paired samples
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Figure 3.2: Graphical representation, for each data set, of the average percentage of predictor
variables per branch node, δL, together with the average out-of-sample accuracy obtained, acc,
as a function of the values of λL considered in the local S-ORCT construction.
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Figure 3.3: Graphical representation, for each data set, of the average percentage of predictor
variables per branch node, δL, together with the average out-of-sample accuracy obtained, acc,
as a function of the values of λL considered in the local S-ORCT construction.

Figure 3.4: Graphical representation, for each data set, of the average percentage of predictor
variables per tree, δG, together with the average out-of-sample accuracy obtained, acc, as a
function of the values of λG considered in the global S-ORCT construction.
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Table 3.4: Results for the global S-ORCT of depth D = 2 as a function of λG, where δG

represents the average percentage of predictor variables not used per tree over ten runs and acc,
the average out-of-sample accuracy.

λG
Iris Wine Seeds Balance Thyroid Car

δG acc δG acc δG acc δG acc δG acc δG acc
0 0 95.9 0 96.6 0 94.4 0 96.6 1 92.8 0 92.7

2−12 0 96.2 18 97.7 0 94.0 0 96.7 3 93.0 0 93.4
2−11 0 96.2 15 97.5 0 93.8 0 95.4 5 93.9 0 93.7
2−10 0 96.2 15 97.5 0 94.0 0 95.9 5 93.9 0 94.1
2−9 0 95.9 15 97.3 0 93.8 0 96.7 7 94.0 0 94.0
2−8 0 95.9 15 97.7 0 93.8 0 96.2 12 94.1 0 94.7
2−7 0 95.9 15 97.9 14 94.6 0 95.8 17 94.0 0 95.0
2−6 0 95.4 15 98.2 14 95.4 0 96.1 26 94.0 0 94.9
2−5 2 95.7 15 98.2 14 95.4 0 96.7 40 93.9 0 94.9
2−4 0 95.4 15 98.4 14 94.6 0 96.5 57 93.8 0 94.7
2−3 0 95.7 23 98.4 29 93.6 0 94.7 65 93.5 7 94.6
2−2 25 95.4 23 97.9 29 95.2 0 91.1 73 91.5 7 94.1
2−1 25 95.7 31 96.6 29 94.2 19 87.4 81 90.6 13 92.2
20 50 96.2 39 95.7 43 92.5 25 87.0 83 90.0 27 86.7
21 50 96.2 46 94.3 57 90.2 44 80.5 87 92.4 47 79.8
22 50 96.5 62 93.6 71 85.8 56 71.3 95 91.7 73 68.2
23 75 96.2 85 71.1 86 72.5 94 48.8 100 92.2 80 68.2

were carried out, one for accuracy and another for global sparsity, assuming normality, at a 5%

significance level. For this task, the t.test function in R has been used. Figure 3.6 depicts,

for each data set, the resulting confidence intervals (blue solid line) at the 95% confidence level

for the difference in average accuracy (on the left) and global sparsity (on the right) between

S-ORCT
(
λG
)

and CART. The red dashed horizontal line represents the null hypothesis in each

case. Except for Creditapproval and Thyroid, for the smaller values of λG, our approach is

significantly better than, or at least comparable to our approach, CART in terms of accuracy,

while CART is significantly better than, or at least comparable to, in terms of global sparsity.

For the larger values of λG, our approach starts to be comparable and then dominate CART in

terms of global sparsity at the cost of accuracy.

3.4 Conclusions

In this chapter, we have extended the methodology in Chapter 2 and proposed the Sparse

Optimal Randomized Classification Tree (S-ORCT), in which a compromise between good

classification accuracy and sparsity is pursued. Local and global sparsity in the tree are mod-

eled by including in the objective function regularizations, namely, `1 and `∞, respectively.

Our numerical results illustrate that our approach can improve both sparsities without harming

classification accuracy. Unlike CART, we are able to easily trade in some of our classification
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accuracy for a gain in global sparsity.

Several extensions to our approach are of interest. First, this metholodogy can be extended

to a regression tree counterpart, where the response variable is continuous, as considered in

Chapter 4. Second, categorical data is addressed in this chapter through the inclusion of dummy

predictor variables. For a given categorical predictor variable, and by means of an `∞-norm

regularization, one can link all its dummies across all the branch nodes in the tree, with the aim

of better modeling its contribution to the classifier.
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(a) Iris

(b) Wine

(c) Seeds

(d) Balance

(e) Thyroid

(f) Car

Figure 3.5: Heatmaps representation, for each data set, of the average out-of-sample accuracy,
acc, the average percentage of predictor variables not used per branch node, δL, and the average
percentage of predictor variables not used per tree, δG, respectively, as a funcion of the grid of
the sparsity parameters, λL and λG, considered in the S-ORCT of depth D = 2 construction.
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(a) Monks-3

(b) Monks-1

(c) Monks-2

(d) Sonar
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(e) Ionosphere

(f) Wisconsin

(g) Creditapproval

(h) Pima
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(i) Germancredit

(j) Banknote

(k) Ozone

(l) Spam
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(m) Iris

(n) Wine

(o) Seeds

(p) Balance
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(q) Thyroid

(r) Car

Figure 3.6: Graphical representation, for each data set, of the confidence intervals (blue solid
line) at the 95% for the difference in average accuracy (on the left) and global sparsity (on the
right) between S-ORCT

(
λG
)

and CART. The red dashed horizontal line represents the null
hypothesis in each case.
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In this chapter, the methodology proposed in the previous chapters is adapted to contruct

Sparse Optimal Randomized Regression Trees (S-ORRTs) to address regression problems. An

S-ORRT is an optimal regression tree modeled through a continuous optimization problem,

where a compromise between prediction accuracy and both types of sparsity, namely local

and global, is sought. Our approach can accommodate important desirable properties for the

regression task, such as cost-sensitivity and fairness. Thanks to the smoothness of the predic-

tions with respect to the features, we can derive local explanations on the continuous predictor

variables. The computational experience reported shows the outperformance of our approach

in terms of prediction accuracy against standard benchmark regression methods such as CART,

OLS and LASSO. Moreover, the scalability of our approach with respect to the size of the

training sample is illustrated.

The chapter is organized as follows. In Section 4.1, we introduce the S-ORRT and its

mathematical formulation, as well as the modeling of desirable properties. Some theoretical

properties of S-ORRT are discussed in Section 4.2. In Section 4.3, our computational expe-

rience is reported. We illustrate that S-ORRT outperforms the benchmark regression methods

CART, OLS and LASSO in terms of prediction accuracy. Moreover, we show our ability to

easily trade in prediction accuracy for a gain in local and global sparsity, as well as our favor-

able scalability with respect to the size of the training sample. Finally, conclusions and possible

extensions are provided in Section 4.4.

4.1 Sparse Optimal Randomized Regression Trees

4.1.1 Introduction

Let I be a given set of individuals. Each individual i ∈ I has associated a pair (xi, yi), where

xi represents the p-dimensional vector of numerical predictor variables of individual i, and

yi ∈ R indicates the value of the response variable.

A Sparse Optimal Randomized Regression Tree (S-ORRT) is an optimal binary regression

tree of a given depth D, obtained by controlling simultaneously prediction accuracy and local

and global sparsity. We briefly sketch here this randomized framework. For further details on

the construction of optimal randomized trees, the reader is referred to Chapters 2 and 3. Figure

4.1 shows the structure of an S-ORRT of depth D = 2. Unlike classic decision trees, oblique

cuts, on which more than one predictor variable is involved, are implemented. S-ORRTs are

modeled by means of a Non-Linear Continuous Optimization (NLCO) formulation. The usual

deterministic yes/no rule at each branch node is replaced by a smoother rule: a probabilistic

decision rule at each branch node, induced by a cumulative density function (CDF) F , is ob-

tained. Therefore, the movements in S-ORRTs can be seen as randomized: at a given branch

node of a S-ORRT, a random variable will be generated to indicate by which branch an indi-

vidual has to continue. Since binary trees are built, the Bernoulli distribution is appropriate,

whose probability of success will be determined by the value of this CDF, evaluated over the
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Figure 4.1: Sparse Optimal Randomized Regression Tree of depth D = 2.

vector of predictor variables. More precisely, at a given branch node t of the tree, an individual

with predictor variables xi will go either to the left or to the right child nodes with probabili-

ties F
(

1

p
aT·txi − µt

)
and 1−F

(
1

p
aT·txi − µt

)
, respectively, where a·t and µt are decision

variables of the optimization problem that needs to be solved to build the S-ORRT. In Figure

4.1, pi1, pi2, pi3 and their complement to one denote such probabilities for the three branch

nodes. With this, we have the probability of each individual in the sample falling into every

leaf node. In Figure 4.1, Pi4, Pi5, Pi6 and Pi7 denote such probabilities. To end, we need

to define how S-ORRT makes predictions. First, S-ORRT associates linear predictions to each

leaf node. Then, the estimated outcome value for each individual is defined as the summation

of these linear predictions, weighted by the probability of belonging to the corresponding leaf

node. This is denoted by ϕi4, ϕi5, ϕi6 and ϕi7 in Figure 4.1.

The following notation is required:

Parameters

D depth of the binary tree,

p number of predictor variables,

{(xi, yi)}i∈I training sample, where xi ∈ [0, 1]p and yi ∈ R, with cardinality |I|,
F (·) the smooth CDF of a univariate continuous random variable centered at zero,

used to define the probabilities for an individual to go to the left or the right

child node in the tree,

λL, λG local and global sparsity regularization parameters.
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Nodes

τB set of branch nodes,

τL set of leaf nodes,

NL (t) set of ancestor nodes of leaf node t whose left branch takes part in the path

from the root node to leaf node t, t ∈ τL,

NR (t) set of ancestor nodes of leaf node t whose right branch takes part in the path

from the root node to leaf node t, t ∈ τL.

Decision variables

ajt ∈ R coefficient of predictor variable j in the oblique cut at branch node t ∈ τB .

The expression a will denote the p × |τB|-matrix that involve these coeffi-

cients a = (ajt)j=1,...,p, t∈τB . The expressions aj· and a·t will denote the

j-th row and the t-th column of a, respectively,

µt ∈ R location parameter at branch node t ∈ τB . The expression µ will denote the

|τB|- vector that involves these coefficients µ = (µt)t∈τB ,

ãjt ∈ R coefficient of predictor variable j in the linear prediction at leaf node t ∈
τL. The expression ã will denote the p × |τL|-matrix that involves these

coefficients ã = (ãjt)j=1,...,p, t∈τL . The expressions ãj· and ã·t will denote

the j-th row and the t-th column of ã, respectively,

µ̃t ∈ R intercept of the linear prediction at leaf node t ∈ τL. The expression µ̃ will

denote the |τL|-vector that involves these coefficients µ̃ = (µt)t∈τL .

Probabilities

pit (a·t, µt) probability of individual i going down the left branch at branch node t. Its

expression is pit (a·t, µt) = F

(
1

p
a>·txi − µt

)
, i ∈ I, t ∈ τB ,

Pit (a,µ) probability of individual i falling into leaf node t. Its expression

is Pit (a,µ) =
∏

tl∈NL(t)
pitl (a·tl , µtl)

∏
tr∈NR(t)

(1− pitr (a·tr , µtr)) , i ∈

I, t ∈ τL.

Predictions

ϕit (ã·t, µ̃t) linear prediction of individual i at leaf node t. Its expression is ϕit (ã·t, µ̃t) =

ã>·txi − µ̃t, i ∈ I, t ∈ τL,

ϕi (a,µ, ã, µ̃) final prediction of individual i. Its expression is ϕi (a,µ, ã, µ̃) =∑
t∈τL

Pit (a,µ)ϕit (ã·t, µ̃t) , i ∈ I. In other words, for an individual i, its

prediction is a weighted average of the predictions ϕit along the different

leaf nodes, where the weights in such average depend on the individual i.
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4.1.2 The formulation

With these parameters and decision variables, the S-ORRT reads as the following unconstrained

NLCO problem:

min
a,µ,ã,µ̃

MSE(a,µ, ã, µ̃; I) + λL
p∑
j=1

‖(aj·, ãj·)‖1 + λG
p∑
j=1

‖(aj·, ãj·)‖∞

 ,

(4.1)

where

MSE (a,µ, ã, µ̃; I) =
1

|I|
∑
i∈I

(ϕi (a,µ, ã, µ̃)− yi)2 .

The first term, prediction accuracy, is equal to the mean squared error over the training sam-

ple between the actual response values and the predictions returned by S-ORRT. The second

term controls local sparsity, since it penalizes the `1-norm of the coefficients of the predictor

variables used in all the nodes of the tree. The third term addresses global sparsity, which is

modeled by the inclusion of a penalization term that controls whether a given predictor variable

is ever used across the whole tree. Recall that each predictor variable appears at both branch

(in the oblique cuts) and leaf (in the linear predictions) nodes. Then, the `∞-norm is used as a

group penalty function, by forcing all the coefficients linked to the same predictor variable to

be shrunk simultaneously along all branch and leaf nodes.

Since there are no decision variables directly relating to the number of individuals N , Pro-

blem (4.1) speaks favorably toward the scalability of S-ORRT with respect to the size of the

training sample. Hence, although the evaluation of the first term in the objective function be-

comes more time demanding with larger N , the number of decision variables of the problem to

be solved remains the same. This makes our approach scalable with respect to N , as illustrated

in Section 4.3.4.

Once the tree model is built, the prediction of future data is done as follows. Let (a∗,µ∗, ã∗, µ̃∗)

be the optimal solution to Problem (4.1). The expected outcome of individual i ∈ I is

ϕi (a∗,µ∗, ã∗, µ̃∗). For an incoming individual with predictor vector x, the expected outcome

returned by the randomized tree is equal to

x→ Π(x) := ϕx (a∗,µ∗, ã∗, µ̃∗) , (4.2)

where ϕx is defined similarly to ϕi with x replacing xi. Note that Π(·) is smooth in the

continuous predictor variables, since the CDF F is assumed to be a smooth function. This

means that even small changes in these variables will produce changes in Π(·). This is not the

case for deterministic tree models such as CART and RF, where there are no changes at all in
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the expected outcome when there are small changes in the continuous predictor variables. This

inherent property of our approach allows us to perform local explainability, as will be seen in

Section 4.1.4.

4.1.3 A smooth reformulation

Problem (4.1) is non-smooth due to the `1 and `∞ norms appearing in the objective function.

Recall that F is assumed to be continuously differentiable, therefore MSE inherits smoothness.

By rewriting both regularization terms using new decision variables, we can formulate S-ORRT

as a smooth problem, thus solvable with standard continuous optimization solvers, as done in

our computational section.

Regarding the first regularization term of Problem (4.1), decision variables a and ã are split

into their positive and negative counterparts, a+, ã+ =
(
a+jt

)
j=1,...,p, t∈τB

,
(
ã+jt

)
j=1,...,p, t∈τL

and a−, ã− =
(
a−jt

)
j=1,...,p, t∈τB

,
(
ã−jt

)
j=1,...,p, t∈τL

, respectively, such that ajt = a+jt − a
−
jt,

ãjt = ã+jt − ã
−
jt, |ajt| = a+jt + a−jt, |ãjt| = ã+jt + ã−jt and a+jt, a

−
jt, ã

+
jt, ã

−
jt ≥ 0, thus having

‖(aj·, ãj·)‖1 =
∑
t∈τB

|ajt|+
∑
t∈τL

|ãjt| =
∑
t∈τB

(
a+jt + a−jt

)
+
∑
t∈τL

(
ã+jt + ã−jt

)
, j = 1, . . . , p.

New decision variables β = (βj)j=1,...,p are used to model the second regularization term of

Problem (4.1):

‖(aj·, ãj·)‖∞ = max
(
{|ajt|}t∈τB ∪ {|ãjt|}t∈τL

)
= βj , j = 1, . . . , p,

where βj ≥ 0. We also need to impose βj ≥ ± ajt, j = 1, . . . , p, t ∈ τB , and βj ≥
± ãjt, j = 1, . . . , p, t ∈ τL. Hence, we have that Problem (4.1) is equivalent to the following

smooth reformulation:

min
(a+,a−,µ)∈R(2p+1)|τB |

(ã+,ã−,µ̃)∈R(2p+1)|τL|

β∈Rp

MSE
(
a+ − a−,µ, ã+ − ã−, µ̃; I

)
(4.3)

+ λL
p∑
j=1

(∑
t∈τB

(
a+jt + a−jt

)
+
∑
t∈τL

(
ã+jt + ã−jt

))
(4.4)

+ λG
p∑
j=1

βj (4.5)

s.t. βj ≥ a+jt + a−jt, j = 1, . . . , p, t ∈ τB, (4.6)

βj ≥ ã+jt + ã−jt, j = 1, . . . , p, t ∈ τL, (4.7)

a+jt, a
−
jt, ã

+
jt, ã

−
jt, βj ≥ 0, j = 1, . . . , p, t ∈ τB ∪ τL. (4.8)
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4.1.4 Desirable properties

As we show in this section, our approach can easily accommodate important desirable proper-

ties in the regression task, such as cost-sensitivity and fairness, as well as local explainability.

Cost-sensitivity As a regression method, S-ORRT seeks a rule yielding a good overall pre-

diction accuracy, although, at times, there are groups of individuals in which predicion errors

are more critical. It is then more adequate not only to focus on the overall prediction accuracy,

but also ensuring a certain level of performance in those groups. S-ORRT is flexible enough to

allow incorporating constraints on expected performance [Blanquero et al., 2021b; Günlük et

al., 2021] over critical groups. Let J1, . . . ,Jr be different samples, possibly subsamples of I.

Given a threshold value ρj for the desired performance on sample Jj , one can simply add the

following constraints to Problem (4.1):

MSE(a,µ, ã, µ̃;Jj) ≤ ρj , j = 1, . . . , r.

Fairness The increase in automatization in decision-making has evinced the bias present on

historical data, leading to models that may discriminate groups sharing sensitive features such

as gender or race. In this line, we seek for a model that avoids such discrimination and is fair

to a sensitive group [Aghaei et al., 2019; Obermeyer et al., 2019]. Let S ⊂ I be a group of

individuals to be protected against discrimination by Problem (4.1). There are different ways

to handle fairness. For instance, we may impose that the prediction errors for individuals in S
does not differ much from the prediction errors in the whole training sample I. This can be

modeled through the following constraint

|MSE(a,µ, ã, µ̃;S)−MSE(a,µ, ã, µ̃; I)| ≤ C,

for C ≥ 0 sufficiently small. Alternatively, we may impose that the average prediction for

individuals in S does not differ much from the average in the whole training sample I, i.e.,

|ϕ̄ (a,µ, ã, µ̃;S)− ϕ̄ (a,µ, ã, µ̃; I)| ≤ C, (4.9)

where ϕ̄ (a,µ, ã, µ̃;J ) =
1

|J |
∑
i∈J

ϕi (a,µ, ã, µ̃) and C ≥ 0 sufficiently small. Fairness as

in Equation (4.9) is illustrated for the Boston Housing data set [Harrison Jr and Rubin-

feld, 1978]. See Table 4.2 for a description of the response and predictor variables. Suppose

that our sensitive group S is composed by individuals above the third quartile of predictor

variable B, that is, those census tracts where there is a high proportion of black population.

The S-ORRT without fairness constraints, and λL = λG = 0, yields a mean squared error
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of 9.6462, with an average prediction on housing values over I equal to 22.5333. A lower

average value is obtained over S, 21.3263, producing an absolute difference of C0 = 1.2070.

See the first row in Table 4.1. The next rows represent the results when fairness constraints

Table 4.1: Results of S-ORRT without and with fairness constraints on S in the Boston
Housing data set, where C0 = 1.2070.

τ C = τ · C0 MSE (·; I) ϕ̄ (·; I) ϕ̄ (·;S)

- - 9.6462 22.5333 21.3263
0.75 0.9053 9.7586 22.5327 21.6275
0.5 0.6035 10.0282 22.5334 21.9298
0.25 0.3018 10.5051 22.5330 22.1312

0 0 11.2401 22.5332 22.5332

over S are added to the model for several values of the threshold C = τ ·C0, with τ varying in

{0.75, 0.5, 0.25, 0}. As shown, one can obtain a S-ORRT which is fair to our sensitive group

S, since ϕ̄ (a,µ, ã, µ̃; I) = ϕ̄ (a,µ, ã, µ̃;S), at the expense of slightly harming prediction

accuracy.

Local explainability The goal of local explainability [Lundberg et al., 2020; Lundberg and

Lee, 2017; Molnar et al., 2020; Ribeiro et al., 2016] is to identify the predictor variables that

have the largest impact on the individual predictions, found in Equation (4.2). For nonlinear

models one can make use of generic post-hoc approaches to build local explanations, such as

the so-called Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al., 2016].

Instead, and as advocated by Rudin [2019], one can work with models that derive local expla-

nations directly [Gevrey et al., 2003], as we do on the continuous predictor variables thanks

to the smoothness of Π. For simplicity, we consider a problem where all predictor variables

are continuous. For an individual with predictor variables x0, we analyze how sensitive Π is

to an infinitesimal change ∆ ∈ Rp, i.e., how large is the difference Π(x0 + ∆) − Π(x0). By

linearizing Π close to x0, we have

Π(x0 + ∆) ≈ Π(x0) +

p∑
j=1

∂Π

∂xj
(x0) ·∆j .

Thus, the vector of partial derivatives(
∂Π

∂xj
(x0)

)
j=1,...,p

(4.10)

gives full information on the sensitivity of the outcomes Π around x0. A positive value of

coordinate j of the vector of partial derivatives means a direct relationship between predictor

variable j and prediction of the response variable of individual x0; and an inverse relationship,

otherwise. As opposed to linear regression, where there is one single coefficient per predictor
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variable that indicates its impact in prediction for any individual equally, here we have different

impacts of each predictor variable tailored to each particular individual.

Local explainability is illustrated below for the Boston Housing data set in Table 4.2.

Table 4.2: Information about the Boston Housing data set, which consists of a collection
of 506 observations about housing values for census tracts of the Boston metropolitan area.

Variable Name Description

Predictor

CRIM crime rate by town
ZN proportion of residential land zoned for lots greater than 25,000 squared feet
INDUS proportion of nonretail business acres per town
CHAS 1 if tract bounds river; 0 otherwise
NOX nitrogen oxide concentration in parts per hundred million
RM average number of rooms in owner units
AGE proportion of owner units built prior to 1940
DIS weighted distances to five employment centers in the Boston region
RAD index of accessibility to radial highways
TAX full value property tax rate per ten thousands of dollars
PTRATIO pupil-teacher ratio by town school district
B black proportion of population
LSTAT proportion of population that is lower status

Response MEDV median value of owner-occupied homes in thousands of dollars

An S-ORRT with λL = 0 and λG =
22

13
was built on this data set, obtaining a mean squared

error and an R-squared equal to 15.5654 and 0.8156, respectively. Figure 4.2 depicts the local

explanations for all individuals in the dataset by means of parallel coordinates. Each predictor

variable is represented by a vertical parallel axis. Each individual is represented by a series of

lines connected across all the axes. The position each individual takes on each axis reflects the

impact the corresponding predictor variable has on its prediction, that is, each of the coordinates

of vector (4.10). The color that represents each individual in the parallel coordinates goes from

light pink to purple depending on the reliability of the prediction, measured as the ratio between

the individual squared error and the mean squared error. Thus, purple refers to the best reliable

predictions according to the model. All predictor variables were normalized before training

the model to the 0-1 interval, in such a way that a fair comparative analysis between them

could be performed. A larger absolute value on the axis represents a larger impact caused by

the corresponding predictor variable on the prediction. Since CRIM gauges the threat to well-

being that households perceive, it has a negative effect on housing values. A similar pattern

is observed for NOX, DIS, TAX, PTRATIO, as well as for LSTAT, which means that an area

with a high amount of lower status population would have less valuable households. Other

predictor variables have a positive effect on housing values. For instance, RM, which represents

spaciousness and it can be observed that it is directly related to a higher housing value.
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Figure 4.2: Local explainability for Boston Housing data set derived from the S-ORRT

with λL = 0 and λG =
22

13
and a mean squared error and an R-squared of 15.5654 and 0.8156,

respectively.

4.2 Theoretical properties

In this section, some theoretical properties enjoyed by S-ORRT, as formulated in Problem

(4.1), are analyzed. In particular, we pay attention to the sparsest tree, obtained when the

optimal solution of S-ORRT includes (a∗, ã∗) = 0, and thus no predictor variable is used

in the predictions. This is attained when the sparsity regularization parameters, λL and λG,

are taken large enough, and the first term related to the prediction accuracy of the regressor

becomes negligible. In the following, we study the optimal prediction returned by S-ORRT

with (a∗, ã∗) = 0, and derive upper bounds for λL and λG in the sense that above them the

sparsest tree (with (a∗, ã∗) = 0) is a stationary point of the S-ORRT, that is, there exists

(a∗ = 0, µ∗, ã∗ = 0, µ̃) such that the necessary optimality condition with respect to (a∗, ã∗)

is satisfied. In Section 4.3, we illustrate when these upper bounds are already reached, by

showing that above certain values of λL and λG, the highest levels of local and global sparsity,

respectively, are achieved. See in Figure 4.3 that for
(
λL, λG

)
=

(
22

120
,

22

40

)
, the sparsest

S-ORRT is already obtained, while not producing the best performance in terms of prediction

accuracy.

First, observe that, for any a, µ and ã fixed, Problem (4.1) can be easily reformulated as a

linear regression problem. Indeed, we have that the final prediction of each individual is

ϕi (a,µ, ã, µ̃) =
∑
t∈τL

Pit (a,µ)
(
ã>·txi − µ̃t

)
, i ∈ I,
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and thus, defining

ηi (a,µ, ã) =
∑
t∈τL

Pit (a,µ)
(
ã>·txi − yi

)
, i ∈ I,

the MSE term in Problem (4.1) can be rewritten as

1

|I|
∑
i∈I

(
ηi (a,µ, ã)−

∑
t∈τL

Pit (a,µ)µt

)2

,

or, in matrix form,
1

|I|
‖η (a,µ, ã)− P (a,µ) µ̃‖2 ,

where

η (a,µ, ã) = (ηi (a,µ, ã))i∈I

and

P (a,µ) =
[
Pit (a,µ)

]
i∈I, t∈τL

.

Then, minimizing MSE for a,µ, ã fixed amounts to finding the Ordinary Least Squares

solution with design matrix P (a,µ) and response vector η (a,µ, ã). With this, the following

is shown:

Proposition 4.1. For (a∗,µ∗, ã∗) fixed, µ̃∗ minimizes MSE (a∗,µ∗, ã∗, µ̃) if, and only if,

P> (a∗,µ∗)η (a∗,µ∗, ã∗) = P> (a∗,µ∗)P (a∗,µ∗) µ̃∗.

In particular, for the sparsest solution (a∗, ã∗) = 0, we have the following corollary.

Corollary 4.1. For any µ, the vector µ̃∗ =
(
−ȳ, · · · , −ȳ

)>
, with ȳ =

1

|I|
∑
i∈I

yi, mini-

mizes MSE (a∗ = 0,µ∗, ã∗ = 0, µ̃; I), and then the prediction isϕi (a∗ = 0,µ∗, ã∗ = 0, µ̃∗) =

ȳ for all i ∈ I.

Proof.

Observe that with (a∗, ã∗) = 0, by construction, Pit (0,µ∗) is independent of i. Hence,

P (0,µ∗) is a matrix with all its rows identical to a vector u (µ∗), with
∑
t∈τL

ut (µ∗) = 1.

Moreover, η (0,µ∗,0) = − (yi)i∈I , and thus, for a∗ = 0, µ∗ and ã∗ = 0, the vector

µ̃∗ =
(
−ȳ, · · · , −ȳ

)>
satisfies the system of linear equations in Proposition 4.1.

As stated, when λL and λG are taken large enough in Problem (4.1), the sparsest possible

tree (with (a∗, ã∗) = 0) is obtained though possibly not yielding the best prediction accuracy,

since none of the predictor variables is used to fit the model. As observed in Figure 4.3, it turns

out that the solution (a∗, ã∗) = 0 is not only the limit case when λL and λG tend to infinity,

but it is actually obtained already for finite values of them. This is shown in the following.
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Proposition 4.2. Let (a∗, ã∗) = 0, µ∗ ∈ R|τB |, and µ̃∗ =
(
−ȳ, · · · , −ȳ

)>
. Let σ ∈

[0, 1],

λl = (1− σ) max
j=1,...,p

∥∥∥∇(aj·,ãj·)MSE (0,µ∗,0, µ̃∗; I)
∥∥∥
∞

and

λg = σ max
j=1,...,p

∥∥∥∇(aj·,ãj·)MSE (0,µ∗,0, µ̃∗; I)
∥∥∥
1
.

Then, for any pair
(
λL, λG

)
such that λL ≥ λl and λG ≥ λg, (a∗,µ∗, ã∗, µ̃∗) is a stationary

point of Problem (4.1).

Proof.

First, let us consider the necessary optimality conditions for (a∗, ã∗). For λL ≥ λl and

λG ≥ λg, we have, by construction, that

λL ≥ (1− σ)
∥∥∥∇(aj·,ãj·)MSE (0,µ∗,0, µ̃∗; I)

∥∥∥
∞
, ∀j = 1, . . . , p,

λG ≥ σ
∥∥∥∇(aj·,ãj·)MSE (0,µ∗,0, µ̃∗; I)

∥∥∥
1
,∀j = 1, . . . , p.

Hence,

− (1− σ) ∇(aj·,ãj·)MSE (a∗,µ∗, ã∗, µ̃∗; I) ∈ λL∂(aj·,ãj·)
(
‖(aj·, ãj·)‖1

)∣∣∣
(aj·,ãj·)=0

, ∀j = 1, . . . , p,

−σ ∇(aj·,ãj·)MSE (a∗,µ∗, ã∗, µ̃∗; I) ∈ λG∂(aj·,ãj·)
(
‖(aj·, ãj·)‖∞

)∣∣∣
(aj·,ãj·)=0

,∀j = 1, . . . , p,

and thus, ∀j = 1, . . . , p,

−∇(aj·,ãj·)MSE (a∗,µ∗, ã∗, µ̃∗; I) ∈ λL∂(aj·,ãj·)
(
‖(aj·, ãj·)‖1

)∣∣∣
(aj·,ãj·)=0

+λG∂(aj·,ãj·)
(
‖(aj·, ãj·)‖∞

)∣∣∣
(aj·,ãj·)=0

,

having that,

−∇(a,ã)MSE (a∗,µ∗, ã∗, µ̃∗; I) ∈ λL∂(a,ã)

 p∑
j=1

‖(aj·, ãj·)‖1

∣∣∣∣∣∣
(a,ã)=(a∗,ã∗)

+λG∂(a,ã)

 p∑
j=1

‖(aj·, ãj·)‖∞

∣∣∣∣∣∣
(a,ã)=(a∗,ã∗)

,

i.e.:

0 ∈ ∂(a,ã)

MSE (a∗,µ∗, ã∗, µ̃∗; I) + λL
p∑
j=1

‖(aj·, ãj·)‖1 + λG
p∑
j=1

‖(aj·, ãj·)‖∞

∣∣∣∣∣∣
(a,ã)=(a∗,ã∗)

.

For (a∗, ã∗) = 0, Corollary 4.1 shows that the chosen µ̃∗ minimizes MSE, and is thus optimal

for Problem (4.1). As a consequence, µ̃∗ satisfies the necessary optimality conditions.
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Finally, let us analyze the optimality conditions for µ = µ∗. Observe that

∇µMSE (a,µ, ã, µ̃) =
1

|I|
∑
i∈I

2 (ϕi (a,µ, ã, µ̃)− yi)∇µϕi (a,µ, ã, µ̃) .

Since (a∗, ã∗) = 0,∇µϕi (a∗,µ∗, ã∗, µ̃∗) does not depend on i ∈ I, say∇µϕi (a∗,µ∗, ã∗, µ̃∗) =

v for all i ∈ I. Hence,

∇µMSE (a∗,µ∗, ã∗, µ̃∗) =
1

|I|
∑
i∈I

2 (ϕi (a∗,µ∗, ã∗, µ̃∗)− yi) v.

By Corollary 4.1, ϕi (a∗,µ∗, ã∗, µ̃∗) = ȳ, and thus
∑
i∈I

(ϕi (a∗,µ∗, ã∗, µ̃∗)− yi) = 0, imply-

ing

∇µMSE (a∗,µ∗, ã∗, µ̃∗) = 0,

and the desired result follows.

4.3 Computational experiments

The aim of this section is to illustrate the performance of our sparse optimal randomized regres-

sion tree (S-ORRT) using both real-world and synthetic data sets. Section 4.3.1 gives details

on the procedure followed to test our approach in the real-world data sets. In Section 4.3.2, we

discuss the prediction accuracy of S-ORRT, against several benchmark regression methods. In

Section 4.3.3, we illustrate our ability to trade in some of the prediction accuracy of S-ORRT

for a gain in local and global sparsity. Finally, in Section 4.3.4 we illustrate the scalability of

S-ORRT in terms of the number of individuals in the training sample, using a synthetic data

set.

4.3.1 Setup

A collection of well-known real-world data sets from the UCI Machine Learning Repository

[Lichman, 2013] has been chosen. Table 4.3 lists their names, the abbreviations used through-

out this section to refer to them, together with their number of observations and predictor

variables.

Each data set has been randomly split into two subsets: the training subset (75%) and the

test subset (25%). The corresponding tree model is built on the training subset and, then, three

performance criteria, namely prediction accuracy, local and global sparsity, are assessed. The

prediction accuracy is evaluated by the out-of-sample R-squared (R2) in the test subset:

R2 = 1− MSEtest

Vtest
,
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Table 4.3: Information about the real-world data sets considered.

Data set Abbreviation N p

Boston-housing BH 506 13
Red-wine RW 1599 11
White-wine WW 4898 11
Parkinson-motor PM 5874 16
Parkinson-total PT 5874 16
Ailerons A 7153 40
Cpu-act CA 8192 21
Cart-artificial CAr 40768 10
Friedman-artificial FA 40768 10

where MSEtest is the mean squared error obtained by the regression method in the test subset

and Vtest is the variance of the actual response vector in the test subset. The higher the R2, the

better the model in terms of prediction accuracy.

The control of local and global sparsity is one of the key features of S-ORRT, as has been

pointed out previously. Local sparsity, δL, is measured as the average percentage of predictor

variables not used per node:

δL =
1

p

p∑
j=1

|{ajt = 0, t ∈ τB}|+ |{ãjt = 0, t ∈ τL}|
|τB|+ |τL|

× 100.

Global sparsity, δG, is measured as the percentage of predictor variables not used at any of the

nodes, i.e., across the whole tree:

δG =
|{(aj·, ãj·) = 0, j = 1, . . . , p}|

p
× 100.

The higher δL and δG, the better the model in terms of local and global sparsity, respectively.

The training/testing procedure has been repeated ten times. The results shown in Table 4.4

and Figure 4.3 represent the average of such ten runs for the above-mentioned performance

criteria.

The logistic CDF has been chosen for our experiments:

F (·) =
1

1 + exp (− (·) γ)
,

with a large value of γ, namely, γ = 512. We will illustrate that this small level of randomiza-

tion is enough for obtaining good results.

The S-ORRT smooth formulation (4.3)-(4.8) has been implemented using the scipy.optimize

package [Virtanen et al., 2020] in Python 3.7 [Python Core Team, 2015]. As a solver, we have

used the SLSQP method [Kraft, 1988] that allows one to use gradient information. The predic-

tor variables have been previously normalized to the [0, 1] interval, and the decision variables
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a, µ, ã and µ̃ have been restricted to the [−1, 1] interval. Our experiments have been con-

ducted on a PC, with an Intelr CoreTM i7-9700 CPU 3.00 GHz processor (8 cores) and 64 GB

RAM. The operating system is 64 bits.

4.3.2 Comparison of prediction performance

In this section, we focus on illustrating the prediction accuracy of all the methods tested on

the real-world data sets. S-ORRT at depths D = 1, 2 and 3 with λL = λG = 0 is compared

against three types of benchmark regression methods. The first type corresponds to standard

regression methods, such as CART, the classic approach to build decision trees, with no re-

strictions on depth, and OLS. The second type is the leader regression method in terms of

sparsity, LASSO. Finally, in the third type we have two sophisticated tree-based regression

methods competitive in terms of prediction accuracy, such as ORT-H LS in Dunn [2018], a

Mathematical Programming based approach that employs a local-search heuristic for building

oblique trees with linear predictions at maximum depth D = 10; and Random Forest (RF),

an ensemble of CARTs using a boostrap aggregating scheme. Table 4.4 presents the average

out-of-sample prediction accuracy R2, while in parenthesis we show how the method ranks in

terms of its prediction accuracy. For a given data set, a rank of “1" indicates that the method is

the best in terms of out-of-sample R2 while a rank of “8" indicates that the method performed

the worst. The average R2 and rank of each method across all data sets are found at the bottom

of the table.

For S-ORRT, we have followed a multistart approach, where the process is repeated 1000

times starting from different random initial solutions. For a given initial solution, the computing

time taken by the S-ORRT typically ranges from 0.01 seconds (in BH for D = 1) to 2.08

seconds (in A and FA for D = 3). The default parameter setting in rpart [Therneau et

al., 2015], glmnet [Friedman et al., 2010] and randomForest [Liaw and Wiener, 2002]

R packages have been used for running CART, OLS and LASSO, and RF, respectively. For

ORT-H LS, the results are taken from Dunn [2018], since open-source implementations were

not available.

We start discussing the results for our S-ORRT with depth D = 3. S-ORRT outperforms

CART, OLS and LASSO, yielding increases in the R2 up to 34 percentage points (p.p.) with

respect to CART, and up to 24 p.p. with respect to OLS and LASSO, both with comparable

performance. Regarding ORT-H LS, S-ORRT presents an average prediction accuracy 2 p.p.

lower, however S-ORRT manages to be comparable in CAr and outperform in RW by 6 p.p.

Finally, although RF reports the best overall performance across all the methods, S-ORRT

is comparable to RF in A and CAr, while S-ORRT has the best prediction accuracy in FA.

With depth D = 2, the conclusions for S-ORRT are similar to those obtained using depth

D = 3. With depthD = 1, S-ORRT still manages to be powerful in some data sets, despite the

low complexity of the model. S-ORRT outperforms CART, OLS and LASSO in six of the data

sets considered, all except for BH, RW and CA. ORT-H LS generally outperforms S-ORRT
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Table 4.4: Comparison between S-ORRT with λL = λG = 0, CART, OLS, LASSO, ORT-H
LS and RF in terms of out-of-sample R-squared, R2, on real-world data sets in Table 5.1.

Data set
Out-of-sample average R2

CART OLS LASSO
ORT-H

RF
S-ORRT S-ORRT S-ORRT

LS D = 1 D = 2 D = 3

BH 0.7416(5) 0.7391(7) 0.7401(6) 0.8040(2) 0.8759(1) 0.5987(8) 0.7931(3) 0.7785(4)
RW 0.3055(7) 0.3619(3) 0.3605(5) 0.3040(8) 0.4874(1) 0.3482(6) 0.3730(2) 0.3613(4)
WW 0.2539(8) 0.2714(6) 0.2699(7) 0.3490(2) 0.5196(1) 0.3121(5) 0.3291(4) 0.3337(3)
PM 0.1020(6) 0.0878(8) 0.0900(7) 0.2810(2) 0.3426(1) 0.1878(5) 0.2121(4) 0.2400(3)
PT 0.1294(6) 0.0849(8) 0.0863(7) 0.3160(2) 0.3545(1) 0.1724(5) 0.1965(4) 0.2445(3)
A 0.6466(8) 0.8167(7) 0.8173(6) 0.8360(1) 0.8211(3) 0.8207(5) 0.8288(2) 0.8211(3)
CA 0.9324(5) 0.7272(8) 0.7273(7) 0.9840(1) 0.9829(2) 0.8282(6) 0.9535(4) 0.9540(3)
CAr 0.8771(6) 0.7045(7) 0.7045(7) 0.9480(1) 0.9425(5) 0.9480(1) 0.9480(1) 0.9480(1)
FA 0.6058(8) 0.7222(7) 0.7223(6) 0.9560(1) 0.9245(4) 0.8493(5) 0.9501(3) 0.9505(2)

Average 0.5105(6.5) 0.5017(6.7) 0.5020(6.4) 0.6420(2.2) 0.6946(2.1) 0.5628(5.1) 0.6205(3.0) 0.6257(2.8)

at depth D = 1, with the exception of CAr, where S-ORRT is comparable, and RW, where

S-ORRT is superior in 4 p.p. With respect to RF, S-ORRT is outperformed in general, but has

a comparable prediction accuracy in A and CAr.

In summary, these numerical results illustrate that, in terms of prediction accuracy, S-ORRT

with D = 2, 3 outperforms the standard benchmark regression methods (CART and OLS) and

the benchmark regression method in sparsity (LASSO). Regarding more sophisticated tree-

based approaches, ORT-H LS and RF show slightly better prediction accuracies, although S-

ORRT is competitive in some data sets. Unlike CART, ORT-H LS and RF, our approach has a

direct control on global desirable properties such as sparsity, cost-sensitivity and fairness.

4.3.3 Prediction accuracy and sparsity tradeoff

The aim of this section is to illustrate that, in contrast to sophisticated tree-based regression

methods that rely on greedy or local-search approaches, such as RF and ORT-H LS, our S-

ORRT is able to trade in some of its prediction accuracy for a gain in local and global sparsity.

For the sake of conciseness, we illustrate this in the Ailerons data set. We have solved Problem

(4.3)-(4.8) with depth D = 1 for the sparsity parameters λL and λG in a grid. We have taken

the grid {0} ∪ {2r, −12 ≤ r ≤ 5, r ∈ Z}, normalized by the number of predictor variables,

and in the case of λL by the number of nodes too. We start solving the optimization problem

with
(
λL, λG

)
= (0, 0). We continue with λL = 0 but for larger values of λG. Once all(

0, λG
)

are executed, we start the process all over again with the next value of λL in the grid.

The solutions found to Problem (4.3)-(4.8) for fixed
(
λL, λG

)
are given as initial solutions to

the next problem to be solved in the grid.

Figure 4.3 illustrates these results by means of three heatmaps: one for the prediction

accuracy, R2, another one for the local sparsity, δL, and the final one for the global sparsity,

δG. The color bar of each heatmap goes from light green to dark blue, the latter indicating the

best (maximum)R2, δL or δG achieved, respectively. By definition, the sparsest tree is obtained
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for large of values of λL, λG. We can observe that the best rates of prediction accuracy are not

only achieved for
(
λL, λG

)
= (0, 0). Clearly, theR2 remains almost constant for pair of values(

λL, λG
)

that verify λL ≤ λ̄L and λG ≤ λ̄G where
(
λ̄L, λ̄G

)
=

(
2−2

120
,
2−4

40

)
. In this range,

where we have the best prediction accuracy, we can dramatically enhance both the local and

the global sparsity. Indeed, the local sparsity improves from 1% to 84% and the global sparsity

from 0% to 52%. For larger values of λL and λG, our S-ORRT keeps improving sparsity but,

in this case, at the cost of diminishing R2.

Figure 4.4 reflects, against CART and RF, our ability to trade off prediction accuracy and

global sparsity in Ailerons data set. The value of both performance measures are drawn through

blue points for every pair of the sparsity regularization parameters
(
λL, λG

)
considered in the

S-ORRT construction. The values for CART and RF are depicted with a green diamond and an

orange cross, respectively. It can be seen that S-ORRT outperforms CART in both prediction

accuracy and global sparsity for several pairs of
(
λL, λG

)
. With respect to RF, S-ORRT is

comparable in terms of prediction accuracy, while improving global sparsity in 50%.

4.3.4 Scalability depending on the number of individuals: a simulation study

In this section we illustrate that S-ORRT scales up well with the size of the training sample N .

To this aim, we measure the computing time taken by S-ORRT to reach a solution with 30%

improvement on the mean squared error of CART.

We have designed a synthetic data set with p = 25 predictor variables and N taking values

in
{

105, 106, 107
}

. The first two predictor variables,X1 andX2, define two balanced groups of

individuals. They are generated following bivariate normal distributions,N (ηk,Σk), k = 1, 2.

η1 = (0.50, 0.75)> and Σ1 =

(
0.005 0

0 0.00375

)
for Group 1, and η2 = (0.25, 0.50)>

and Σ2 = Σ1 for Group 2. The remaining 23 predictor variables were generated following a

uniform distribution, U (0, 1). The response variable for Group 1 is equal to Y = X3 + 2X4 +

5 + ε while for Group 2 is equal to Y = −X5 − 2X6 − 5 + ε, where ε ∼ N (0, 0.5). Thus,

X7, . . . , X25 have no impact in the response variable. An S-ORRT tree of depth D = 1 with

λL = λG = 0 is built. We feed Problem (4.3)-(4.8) with an initial solution, obtained from a

heuristic procedure based on the RF variable importance measure. That is, in a first step we

solve Problem (4.3)-(4.8) with a multistart approach in which the predictor variables with low

RF variable importance, namely Xj , j = 3, . . . , 25, do not play a role. This heuristic solution

is given as the initial one to solve Problem (4.3)-(4.8) with the whole set of predictor variables.

The procedure has been repeated 10 times and average results are presented. Figure 4.5 shows,

as a function of N , the total computing time spent for the whole procedure. Both axes are on

logarithmic scale. We can see that for this simulation study, the computing times have a linear

trend with respect to the number of individuals.
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4.4 Conclusions

In this chapter, we have adapted the continuous optimization-based approach to build classi-

fication trees previously presented in Chapters 2 and 3 to consider regression trees. Local

explanations on the continuous predictor space can be derived thanks to the smoothness of the

predictions with respect to the features. Unlike CART and RF, we can directly model desir-

able properties such as sparsity, cost-sensitivity and fairness. The computational experience

reported shows that our method outperforms CART, as well as OLS and LASSO, in terms of

prediction accuracy. Finally, we show that our approach scales up well when the size of the

training sample grows.

Several extensions to our approach are attractive. First, the linear prediction made at each

leaf node can easily be extended to a non-linear one. This would be obtained by simply replac-

ing the linear functions ϕit with other functions, such as those in a Generalized Additive Model.

Second, in many applications, processes are continuously monitored over time, yielding data of

funcional nature. Adapting our approach to this kind of data is an interesting question, which

is addressed in Chapter 5.
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Figure 4.3: Heatmaps representation, for Ailerons data set, of the average R-squared obtained,
R2, the average percentage of predictor variables not used per node, δL, and the average per-
centage of predictor variables not used per tree, δG, respectively, as a function of the grid of
the sparsity regularization parameters, λL and λG, considered in the S-ORRT construction.
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Figure 4.4: Scatterplot representation, for Ailerons data set, of the average R-squared obtained,
R2, and the average percentage of predictor variables not used per tree, δG. Blue points refer
to the solution of every pair of the sparsity regularization parameters

(
λL, λG

)
considered in

the S-ORRT construction; the green diamond, to CART solution; and the orange cross, to RF
solution.

Figure 4.5: Scalability of S-ORRT in logarithmic scale, where the computing time is measured
in seconds as a function of N varying in

{
105, 106, 107

}
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In this chapter, we tailor sparse optimal randomized regression trees in Chapter 4 to handle

functional predictor variables, called hereafter S-ORRT-FD. In principle, one could directly

use the approach in Chapter 4 after discretizing the functions and converting them to vectors.

Yet, we would face the curse of dimensionality as well as the impossibility to fully exploit the

intrinsic characteristics of functional data. Whilst fitting S-ORRT-FD, the detection of a re-

duced number of intervals that are critical for prediction, as well as the control of their length,

is performed. In the degenerate case of intervals with length equal to zero, critical instants

would be detected instead. Similarly to previous chapters, local and global sparsities can be

modeled through the inclusion of LASSO-type regularization terms over the coefficients asso-

ciated to functional predictor variables. The resulting optimization problem is formulated as a

nonlinear continuous and smooth model with linear constraints. We illustrate the performance

of our approach on real-world and synthetic data sets.

The chapter is organized as follows. In Section 5.1, we introduce the S-ORRT-FD and its

mathematical formulation. Our computational experience is reported in Section 5.2. We illus-

trate that S-ORRT-FD is competitive with state-of-the-art regression benchmarks. Moreover,

we show our ability to trade off prediction accuracy and sparsity, in the form of controlling the

number of critical intervals and the proportion of the curves to be used for prediction. Finally,

conclusions and possible extensions are provided in Section 5.3.

5.1 Sparse Optimal Randomized Regression Trees for Functional
Data

5.1.1 Introduction

Let I be a given set of N individuals. Each individual i ∈ I is represented by a pair

(xi, yi). The first element xi ∈ Fp is composed by p functional predictor variables, i.e.,

xi = (xi1(·), . . . , xip(·)), where xij(·) : [s, s] → R, j = 1, . . . , p, belongs to the set F of

Riemann integrable functions in the interval [s, s]. Note that numerical predictor variables in

previous chapters are included by defining them as constant functions. The second element of

the pair, yi ∈ R, indicates the value of the response variable.

Sparse Optimal Randomized Regression Trees for Functional Data (S-ORRT-FD) is a gen-

eralization of the approach introduced in Chapter 4 for vectorial data. An optimal binary re-

gression tree of a given depth D is to be built, obtained by controlling simultaneously predic-

tion accuracy and some kind of sparsity. Figure 5.1 shows the structure of an S-ORRT-FD of

depth D = 2. S-ORRT-FDs are modeled by means of a Non-Linear Continuous Optimization

(NLCO) formulation. Oblique cuts are implemented at the set of branch nodes τB . Linear pre-

dictions are associated to the set of leaf nodes τL. The usual deterministic yes/no rule at each

branch node is replaced by a probabilistic decision rule, induced by a univariate continuously

differentiable cumulative density function (CDF) F , evaluated over the vector of functional
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Figure 5.1: Sparse Optimal Randomized Regression Tree of depth D = 2 for Functional Data
with {pit}t=1,2,3, {Pit}t=4,5,6,7 and {ϕit}t=4,5,6,7 defined in Equations (5.2), (5.3) and (5.4),
respectively.

predictor variables. With this, we have the probability of each individual in the sample falling

into every leaf node, that will represent the weights that the linear predictions will have in the

estimated outcome value.

In order to model oblique splits at branch nodes t ∈ τB , we need to define, for each

functional predictor variable j = 1, . . . , p and each t ∈ τB , the functional decision variables

ajt(·) : [s, s] → R that denote the coefficient functions, as well as the decision variables

µt, t ∈ τB as intercepts. Then, the probability of individual i = 1, . . . , N going down the left

branch at branch node t ∈ τB would be defined by:

F

1

p

p∑
j=1

∫ s

s
ajt(s)xij(s)ds − µt

 . (5.1)

It may happen that simply using a finite number of intervals [Blanquero et al., 2020a] in

the domain of the functional predictor variables is sufficient to produce an accurate analysis

of the whole curve, which is in turn more interpretable and saves both monitoring and storage

costs. With the aim of detecting critical intervals for prediction, we will assume that ajt(·), j =

1, . . . , p, t ∈ τB , are piecewise constant functions. Let H denote the number of pieces where

constants are different from zero, or critical intervals, and ajth ∈ R, j = 1, . . . , p, t ∈ τB, h =

1, . . . ,H , the decision variables representing the coefficient of functional variable j at branch
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node t in the critical interval h. New decision variables are to be defined to represent the

lower and upper ends of such intervals, namely [s2h−1, s2h] , h = 1, . . . ,H , where sh, h =

1, . . . , 2H , should belong to the interval [s, s]. In this way, each functional decision variable

turns into

ajt(s) =


ajth

s2h − s2h−1
, if s ∈ [s2h−1, s2h] , h = 1, . . . ,H

0, otherwise.

,

where coefficients ajth have been scaled according to the length of their corresponding critical

interval. See Figure 5.2 for an example of a piecewise constant function with H = 3 critical

intervals.

0.10.1 0.20.2 0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8 0.90.9 11

0.10.1

0.20.2

0.30.3

0.40.4

00

KK LL

Figure 5.2: Example of a piecewise constant function withH = 3 critical intervals and domain
[0, 1]

We have to add the constraints sh ≤ sh+1, j = 1, . . . , p, h = 1, . . . , 2H − 1, to ensure

that intervals are ordered and do not overlap.

Let a, µ and s denote the p × |τB| ×H-matrix, the |τB|-vector and the 2H-vector of the

coefficients a = (ajth)j=1,...,p, t∈τB , h=1,...,H , µ = (µt)t∈τB , and s = (sh)h=1,...,2H , respec-

tively. Then, the probability of individual i = 1, . . . , N going down the left branch at branch

node t ∈ τB , defined in Equation (5.1), turns into:

pit (a·t·, µt, s) = F

1

p

p∑
j=1

H∑
h=1

ajth
s2h − s2h−1

∫ s2h

s2h−1

xij(s)ds − µt

 . (5.2)

The expression a·t· denotes the p×H-matrix of the coefficients in a related to branch node t.

The probability of individual i = 1, . . . , N falling into leaf node t ∈ τL is:

Pit (a,µ, s) =
∏

tl∈NL(t)

pitl (a·tl·, µtl , s)
∏

tr∈NR(t)

(1− pitr (a·tr·, µtr , s)) , (5.3)
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where NL (t) and NR (t) are the sets of ancestor nodes of leaf node t whose left and right

branch, respectively, takes part in the path from the root node to leaf node t, t ∈ τL.

Similarly to oblique cuts, real decision variables ã = (ãjtk)j=1,...,p, t∈τL, h=1,...,H and µ̃ =

(µ̃t)t∈τL are to be defined in order to provide linear predictions at leaf nodes t ∈ τL for each

individual i = 1, . . . , N :

ϕit (ã·t·, µ̃t, s) =

p∑
j=1

H∑
h=1

ãjth
s2h − s2h−1

∫ s2h

s2h−1

xij(s)ds − µt, (5.4)

where coefficients ãjth have been scaled according to the length of their corresponding critical

interval. The expression ã·t· denotes the p × H-matrix of the coefficients in ã related to leaf

node t.

5.1.2 The formulation

With these parameters and decision variables, the S-ORRT-FD reads as the following NLCO

problem with linear constraints:

min
(a,µ)∈R(pH+1)|τB |

(ã,µ̃)∈R(pH+1)|τL|

s∈[s,s]2H

1

N

N∑
i=1

(∑
t∈τL

Pit (a,µ, s)ϕit (ã·t·, µ̃t, s)− yi
)2

(5.5)

+ λG
p∑
j=1

‖(aj··, ãj··)‖∞ (5.6)

+ λlength
H∑
h=1

(s2h − s2h−1) (5.7)

s.t. sh ≤ sh+1, h = 1, . . . , 2H − 1, (5.8)

where the expressions aj·· and ãj·· denote the |τB| × H- and the |τL| × H-matrices of the

coefficients in a and ã relating to funcional predictor variable j, respectively.

The first term, prediction accuracy, is equal to the mean squared error (MSE) over the

training sample between the actual response values and the predictions returned by S-ORRT-

FD, which are weighted averages of the linear predictions along the different leaf nodes, where

the weights in such average depend on the probability of individual i falling into such leaf node.

Note that the number of critical intervals allowed for prediction H is fixed in advance.

The second term, parametrized by λG, addresses global sparsity [Febrero-Bande et al.,

2019], which is modeled by the inclusion of a penalization term that controls whether a given

functional predictor variable is ever used across the whole tree. Recall that each functional

predictor variable may appear at either branch (in the oblique cuts) and leaf (in the linear

predictions) nodes. Then, the `∞-norm is used as a group penalty function, by forcing all the
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coefficients linked to the same functional predictor variable to be shrunk simultaneously along

all branch and leaf nodes.

It may occur that several functional predictor variables are related; for instance, one fun-

cional characteristic could appear together with its derivatives. In such cases, the corresponding

`∞-norm term will comprise the coeffcients of all of these series in order to force that all of

them shrink to zero at the same time.

The third term, parametrized by λlength, controls the proportion of the curves to be used in

the prediction returned by S-ORRT-FD. This is done by penalizing the length of the critical

intervals.

Remark 5.1. Note that if the length of a critical interval [s2h−1, s2h] tends to zero, a critical

instant [Aneiros and Vieu, 2014, 2016; Berrendero et al., 2019; Kong et al., 2016] would be

detected instead, thanks to the integral form of the mean value theorem. This situation occurs

for high enough values of λlength.

As in previous chapters, local sparsity can also be controlled by penalizing the `1-norm of

the coefficients of the predictor variables used in the cuts along the tree, that is, including in

the objective the following term:

λL
p∑
j=1

‖(aj··, ãj··)‖1 ,

where λL is the local sparsity parameter.

5.1.3 A smooth reformulation

Problem (5.5)-(5.8) is non-smooth due to the `∞-norm appearing in the objective function.

Recall that F is assumed to be continuously differentiable, therefore the MSE inherits smooth-

ness. By rewriting such regularization term using new decision variables, we can formulate S-

ORRT-FD as a smooth problem, thus solvable with standard continuous optimization solvers,

as done in our computational section. Let β = (βj)j=1,...,p, the regularization term of Problem

(5.5)-(5.8) can be rewritten as follows:

‖(aj··, ãj··)‖∞ = max
(
{|ajth|} t∈τB

h=1,...,H
∪ {|ãjth|} t∈τL

h=1,...,H

)
= βj , j = 1, . . . , p,

where βj ≥ 0. We also need to impose βj ≥ ± ajt, j = 1, . . . , p, t ∈ τB , and βj ≥
± ãjt, j = 1, . . . , p, t ∈ τL. Hence, we have that Problem (5.5)-(5.8) is equivalent to the

following smooth reformulation:

min
(a,µ)∈R(pH+1)|τB |

(ã,µ̃)∈R(pH+1)|τL|

s∈[s,s]2H , β∈Rp

1

N

N∑
i=1

(∑
t∈τL

Pit (a,µ, s)ϕit (ãt, µ̃t, s)− yi
)2

(5.9)
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+ λG
p∑
j=1

βj (5.10)

+ λlength
H∑
h=1

(s2h − s2h−1) (5.11)

s.t. sh ≤ sh+1, h = 1, . . . , 2H − 1, (5.12)

βj ≥ ±ajth, j = 1, . . . , p, t ∈ τB, h = 1, . . . ,H, (5.13)

βj ≥ ±ãjth, j = 1, . . . , p, t ∈ τL, h = 1, . . . ,H. (5.14)

5.2 Computational experiments

The aim of this section is to illustrate the performance of our sparse optimal randomized re-

gression trees for functional data. Section 5.2.1 gives details on the procedure followed to test

our approach. In Section 5.2.2, we discuss the prediction accuracy of our approach, against

several benchmark regression methods. Finally, in Section 5.2.3 we illustrate our ability to

trade in some of our prediction accuracy for a gain in sparsity.

5.2.1 Setup

Well-known publicly available functional data sets have been chosen for the computational

experiments. Table 5.1 lists their names together with their number of observations, the number

of points where the evaluations of the original functions are known and the domain, as well as

the source where they can be downloaded. All the data sets are univariate, that is, p = 1, and

coming from real-world applications, except for FHV which is simulated. See Figure 5.3 for a

graphical representation of them.

Table 5.1: Information about the functional data sets considered.

Data set N #points [s, s] Source
Tecator 215 100 [850, 1050] Febrero-Bande and de la Fuente [2012]
Sunflower 111 309 [0, 1] Picheny et al. [2019]
Sugar 268 571 [275, 560] Aneiros and Vieu [2014]
FHV 1500 100 [0, 2π] Ferraty et al. [2010]

Two performance criteria, namely prediction accuracy and sparsity, are assesed. The pre-

diction accuracy is evaluated either by the mean squared error (MSE), or by the sum of the

squared errors (SSE) for the sake of comparison with benchmarks. The lower the MSE or the

SSE, the better the model in terms of prediction accuracy. The sparsity is evaluated by δlength,

as follows:

δlength =

(
1− 1

s− s

H∑
h=1

(s2h − s2h−1)

)
× 100.
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Figure 5.3: Graphical representation, for each data set, of the evaluations of the original pre-
dictor variable function (Y-axis) known for a set of points in their domain (X-axis). Each
observation in the data set is colored according to the response variable. The higher the value
of the response variable, the colder the color.

The higher the δlength, the better the model in terms of sparsity.

A ten-fold cross-validation procedure has been applied in Section 5.2.2, and Table 5.2

represents the average results of such ten test subsets. In Section 5.2.3, the performance criteria

illustrated in Figure 5.4 are evaluated over the whole data set in the training phase.

The logistic CDF has been chosen for our experiments:

F (·) =
1

1 + exp (− (·) γ)
,

with a large value of γ, namely, γ = 512. We will illustrate that this small level of randomiza-

tion is enough for obtaining good results.

The formulation has been implemented using the scipy.optimize package [Virtanen

et al., 2020] in Python 3.7 [Python Core Team, 2015]. As solver, we have used the SLSQP

method [Kraft, 1988] that allows one to use gradient information. The response variable has

been normalized to the [−1, 1] interval. As seen in Table 5.3, in real-world applications, the

functional predictor variables are known for particular points of their domains. Hence, smooth-

ing techniques were applied as a preprocessing step so that an approximation to the original
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function can be obtained. In our study, each individual has been previously turned into a

smooth cubic spline approximation using the scipy.interpolate package, where the do-

main [s, s] has been shifted to [0, 1] w.l.g. For this reason, the decision variables s have been

restricted to the [0, 1] interval. The decision variables a and µ have been restricted to the

[−1, 1] interval for the sake of numerical stability with exponentials. Our experiments have

been conducted on a PC, with an Intelr CoreTM i7-7700 CPU 3.60GHz processor and 32 GB

RAM. The operating system is 64 bits.

5.2.2 Results for S-ORRT-FD

In this section, we focus on testing the prediction accuracy of our approach. S-ORRT-FD with

depths D = 1, 2 and H in the grid {1, . . . , 10} is compared against two benchmark regression

methods. The former is SVR-FD [Blanquero et al., 2020a], the state-of-the-art Machine Learn-

ing model for functional data based on Support Vector Regression. The same grid for H is

used in SVR-FD, as well as three different variants d = 0, 1, 2, which include, respectively, the

situations where just the information of the raw functional data, or their monotonicity, or both

their monotonicity and convexity are considered. The latter is Random Forest (RF) [Breiman,

2001], a sophisticated tree-based regression method competitive in terms of prediction accu-

racy. In contrast to S-ORRT-FD and SVR-FD, RF has no direct control on the domain of the

functional predictor variables being used. For comparison purposes with SVR-FD, Table 5.2

presents the average out-of-sample prediction accuracy SSE of all the methods.

For S-ORRT-FD, we have followed a multistart approach, where the process is repeated

500 times starting from different initial solutions. The solutions found for H are given as

initial solutions to the optimization problem for H + 1, starting with random initial solutions

for H = 1. The computing time taken by the S-ORRT-FD for a batch of ten values of H and

500 initial solutions typically ranges from 40 seconds (in Sunflower for D = 1) to 500 seconds

(in FHV for D = 2). For SVR-FD, the results are taken from Blanquero et al. [2020a]. They

are comparable since ten-fold cross-validation was also performed, and the response variable

was normalized to the [−1, 1] interval. The default parameter setting in randomForest

[Liaw and Wiener, 2002] R package has been used for running RF.

With respect to SVR-FD, S-ORRT-FD is competitive according to the results obtained in

Table 5.2 for the data sets considered. The best values of SSE for each value of H between

SVR-FD and S-ORRT-FD have been highlighted in bold. For Tecator, S-ORRT-FD outper-

forms SVR-FD for values of H ≥ 3. For Sunflower, S-ORRT-FD beats SVR-FD for values

of H ≤ 5. For Sugar, S-ORRT-FD tends to dominate in terms of prediction accuracy for each

value of H , while for FHV it is the other way around.

With respect to RF, S-ORRT-FD always manages to find a small number of critical intervals

H for which a better prediction accuracy is achieved for the data sets considered. This is the

case for Tecator withH = 1 andD = 1, Sunflower withH = 1 andD = 1, Sugar withH = 2

and D = 1, and FHV with H = 5 and D = 2.
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Table 5.2: Comparison between S-ORRT-FD, SVR-FD and RF in terms of out-of-sample av-
erage SSE.

Data set Method
Out-of-sample average SSE

H
1 2 3 4 5 6 7 8 9 10

Tecator

S-ORRT-FD D = 1 4.74 0.52 0.21 0.22 0.20 0.19 0.18 0.17 0.16 0.16
S-ORRT-FD D = 2 4.89 0.55 0.21 0.14 0.17 0.13 0.13 0.11 0.10 0.11

SVR-FD d = 0 0.25 0.23 0.24 0.29 0.41 0.40 0.45 0.45 0.49 0.50
SVR-FD d = 1 0.47 0.24 0.37 0.38 0.42 0.47 0.49 0.50 0.52 0.53
SVR-FD d = 2 0.23 0.36 0.39 0.43 0.47 0.55 0.58 0.60 0.61 0.61

RF 2.13

Sunflower

S-ORRT-FD D = 1 2.36 2.69 3.19 2.83 3.41 6.00 6.50 4.62 4.34 4.65
S-ORRT-FD D = 2 2.57 2.67 3.68 4.24 4.21 4.73 6.40 5.91 5.85 5.40

SVR-FD d = 0 4.69 3.90 4.12 4.19 4.09 4.01 3.99 3.99 3.92 3.98
SVR-FD d = 1 4.29 3.86 4.11 4.32 4.24 4.08 4.07 4.01 9.95 3.98
SVR-FD d = 2 3.83 3.86 3.80 3.92 4.03 3.91 3.93 3.96 4.11 3.94

RF 2.43

Sugar

S-ORRT-FD D = 1 1.66 0.87 2.12 2.06 2.44 1.32 1.34 1.30 1.09 1.12
S-ORRT-FD D = 2 1.76 1.26 1.36 2.28 1.50 1.58 1.85 1.44 3.74 2.75

SVR-FD d = 0 1.80 1.83 1.84 1.84 1.82 1.83 1.86 1.84 1.85 1.87
SVR-FD d = 1 2.08 1.81 1.82 1.88 1.84 1.88 1.85 1.83 1.82 1.84
SVR-FD d = 2 1.76 1.88 1.92 1.90 1.90 1.90 1.88 1.86 1.86 1.88

RF 1.21

FHV

S-ORRT-FD D = 1 3.95 2.59 1.12 0.86 0.71 0.61 0.47 0.35 0.37 0.34
S-ORRT-FD D = 2 3.62 2.50 0.89 0.60 0.46 0.44 0.44 0.42 0.41 0.38

SVR-FD d = 0 0.08 0.08 0.08 0.10 0.14 0.15 0.16 0.18 0.19 0.21
SVR-FD d = 1 0.23 0.12 0.11 0.13 0.15 0.17 0.17 0.18 0.18 0.18
SVR-FD d = 2 0.12 0.13 0.12 0.14 0.15 0.16 0.17 0.19 0.21 0.25

RF 0.51

In summary, these numerical results illustrate that S-ORRT-FD is competitive with the

state-of-the-art Machine Learning model tailored to functional data, SVR-FD, and outperforms

the standard benchmark regression method RF. Furthermore, our approach can easily control

global desirable properties such as sparsity, as seen in the next section.

5.2.3 Prediction accuracy and sparsity tradeoff

In the previous section, we have shown that considering a small number of critical intervals

H , good results for S-ORRT-FD are achieved in terms of prediction accuracy. Nevertheless,

the solution obtained could be not sparse, in the sense that the whole domain of the functional

predictor variables could have been used for prediction. In this section, we illustrate that S-

ORRT-FD is able to trade in some of its prediction accuracy for a gain in sparsity, measured

as the proportion of the curves not being used. For the sake of conciseness, we illustrate this

in the Tecator data set. We have solved Problem (5.9)-(5.14) with depth D = 1 and H = 10
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for the sparsity parameters λG = 0 and λlength in the grid {0} ∪ {2r, −10 ≤ r ≤ 10, r ∈ Z}.
We start solving the optimization problem with λlength = 0 for 500 random initial solutions,

and we continue for larger values of λlength. The solutions found for fixed λlength, are given as

initial solutions to the next problem to be solved in the grid.

Figure 5.4 illustrates the different solutions obtained for MSE and δlength in the grid of

λlength considered. Similarly to Figure 5.3, the functional predictor variable for Tecator data set

is represented, and each individual is colored depending on their value of the response variable.

In grey, critical intervals detected are represented. As expected, the larger the value of λlength,

the smaller the proportion of the curve to be used. Indeed, we can dramatically enhance sparsity

δlength from 17.9% to 95.8%, at the cost of slightly damaging the value of the MSE from 0.006

to 0.016. Notice that critical instants are being detected for large values of λlength, according to

Remark 5.1.

5.3 Conclusions

Many approaches on building optimal classification and regression trees for vectorial data have

been recently proposed in the literature. In this chapter, we tailor the continuous optimization

approach, proposed in previous chapters to construct a regression tree, in order to consider

functional data in addition. Critical intervals for prediction are detected simultaneously. While

being competitive in terms of prediction accuracy to benchmark methods, including RF, our

approach can directly control the desired number of critical intervals, as well as the number of

functional predictor variables and the proportion of the curves to be used along the tree.

Several extensions to our approach are of interest. First, the coefficient functions ajt (·)
and ãjt (·) defined at branch and leaf nodes, respectively, could be extended to more sophis-

ticated funcions rather than piecewise constant ones. Second, this metholodogy can be ex-

tended straightaway to a classification problem with functional predictor variables using Chap-

ters 2 and 3. Third, tailoring desirable properties introduced in Chapters 2 and 4, such as

cost-sensitivity, fairness or local explainability, to the context of FDA deserves further investi-

gation.
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Figure 5.4: Critical intervals detection for the Tecator data set as a function of λlength. Two
performance criteria, prediction accuracy and sparsity, are evaluated by the MSE and δlength,
respectively, where δlength represents the proportion of the curve not being used.
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The impressive advances in hardware and software in the last decades have allowed the

development of more powerful versions of classification and regression trees. In this PhD

dissertation, we propose Continuous Optimization formulations and numerical solutions ap-

proaches to build optimal classification and regression trees that scale up well with the size of

the training sample and are competitive in terms of prediction accuracy against benchmarks.

We illustrate how these powerful formulations enhance the flexibility of tree models, being

better suited to incorporate desirable properties such as sparsity, cost-sensitivity, explainability,

and fairness, and to deal with complex data, such as functional data.

The research addressed in this PhD dissertation poses new challenges to be considered as

future work, as detailed below.

First, tailoring optimal trees to other kinds of complex data that are not captured appropri-

ately by standard implementations of these models such as time series data [Barrow and Crone,

2016; Carrizosa et al., 2013; Saha et al., 2021], spatial data [Georganos et al., 2021], text data

[Carrizosa et al., 2018a; Martens and Provost, 2014; Ramon et al., 2020], image data [Affonso

et al., 2017; Liu et al., 2018; Qing et al., 2020; Wang et al., 2021] or network data [Óskarsdóttir

et al., 2022] is an interesting research avenue.

Second, while a (weighted) sum of squared residuals has been used as loss function in

our regression models, other losses, such as the mean absolute error [Giloni et al., 2006] or

quantile regression [Koenker and Hallock, 2001; Kriegler and Berk, 2010] can be considered,

yielding optimization problems which deserve further analysis. Indeed, these losses need to

be rewritten, in a similar fashion as for regularization terms, to ensure the smoothness of the

objective function. For these losses, none of the decision variables is directly associated with

the individuals, and therefore the dimension of the optimization problem behind regression still

does not depend on the size of the training sample.

Third, one can address the problem of building, for any individual, a counterfactual ex-

planation [Fernández et al., 2020; Lucic et al., 2022; Mothilal et al., 2020]. See Karimi et

al. [2020]; Sokol and Flach [2019]; Verma et al. [2020] for recent surveys on counterfactual

explanations. This is an explanation about how predictor variables need to change in order

to obtain a different prediction. Finding counterfactuals amounts to solving (mixed-integer)

global optimization problems, whose structure needs to be exploited to obtain fast algorithms,

a must if counterfactuals are to be obtained for large data sets.

Fourth, it is known that bagging trees tends to enhance accuracy. An appropiate bagging

scheme of our approach, where a collection of trees is built in order to have a global control on

certain desirable properties, is also an interesting open question. A parallelization framework

would be suitable to make the training of the collection of trees tractable.

Fifth, theoretical properties on the asymptotic performance of tree models need to be stud-

ied. Assuming data to be a random sample from a given distribution, an important question

is to identify the statistical convergence of the random sequence of optimal trees and optimal

values (e.g. optimal expected squared error in a regression tree) when the size of the training set
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goes to infinity. Very limited results are available in the literature, making strong assumptions

on the structure of the tree models. The reader is referred to Biau et al. [2008]; Denil et al.

[2013]; Scornet [2016]; Scornet et al. [2015] for some results in this line.

Finally, the role of Mathematical Optimization in Machine Learning [Gambella et al., 2021]

has been evinced through this dissertation. Nevertheless, the inverse problem has gained inter-

est lately [Bengio et al., 2021; Lodi and Zarpellon, 2017; Václavík et al., 2018]. In this sense,

one could use the optimal trees developed in this thesis to aid the resolution of Mathematical

Optimization problems, as done in Bertsimas and Oztürk [2022].
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Birbil, S., Edali, M., and Yüceoğlu, B. (2020). Rule covering for interpretation and boosting.

arXiv preprint arXiv:2007.06379.

Blake, C. and Merz, C. (1998). UCI Repository of Machine Learning Databases.

http://www.ics.uci.edu/∼mlearn/MLRepository.html. University of California, Irvine, De-

partment of Information and Computer Sciences.

Blanquero, R., Carrizosa, E., Jiménez-Cordero, A., and Martín-Barragán, B. (2020a). Selection

of time instants and intervals with support vector regression for multivariate functional data.

Computers & Operations Research, 123:105050.



120 References

Blanquero, R., Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2020b). Sparsity

in optimal randomized classification trees. European Journal of Operational Research,

284(1):255 – 272.

Blanquero, R., Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2022a). Sparse op-

timal randomized regression trees in functional data analysis. Technical report, Institute of

Mathematics of the University of Seville.

Blanquero, R., Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2021a). Optimal

randomized classification trees. Computers & Operations Research, 132:105281.

Blanquero, R., Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2022b). On sparse

optimal regression trees. European Journal of Operational Research, 299(3):1045–1054.

Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., and Sillero-Denamiel, M. R. (2021b). A cost-

sensitive constrained lasso. Advances in Data Analysis and Classification, 15:121–158.

Bottou, L., Curtis, F., and Nocedal, J. (2018). Optimization methods for large-scale machine

learning. SIAM Review, 60(2):223–311.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and regression

trees. CRC Press.

Brodley, C. and Utgoff, P. (1995). Multivariate decision trees. Machine Learning, 19(1):45–77.

Brooks, J. P. (2011). Support vector machines with the ramp loss and the hard margin loss.

Operations Research, 59(2):467–479.

Carrizosa, E., Guerrero, V., Hardt, D., and Romero Morales, D. (2018a). On building online

visualization maps for news data streams by means of mathematical optimization. Big Data,

6(2):139–158.

Carrizosa, E., Guerrero, V., and Romero Morales, D. (2018b). Visualizing data as objects by

DC (difference of convex) optimization. Mathematical Programming, Series B, 169:119–

140.

Carrizosa, E., Guerrero, V., Romero Morales, D., and Satorra, A. (2020). Enhancing inter-

pretability in factor analysis by means of mathematical optimization. Multivariate Behav-

ioral Research, 55(5):748–762.

Carrizosa, E., Kurishchenko, K., Marín, A., and Romero Morales, D. (2022a). Interpreting

clusters via prototype optimization. Omega, 107:102543.



References 121

Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2021a). Mathematical optimization

in classification and regression trees. TOP, 29(1):5–33.

Carrizosa, E., Mortensen, L., Romero Morales, D., and Sillero-Denamiel, M. (2022b). The

tree based linear regression model for hierarchical categorical variables. Expert Systems

with Applications, 203:117423.

Carrizosa, E., Nogales-Gómez, A., and Romero Morales, D. (2017). Clustering categories in

support vector machines. Omega, 66:28–37.

Carrizosa, E., Olivares-Nadal, A., and Ramírez-Cobo, P. (2013). Time series interpolation

via global optimization of moments fitting. European Journal of Operational Research,

230(1):97–112.

Carrizosa, E., Restrepo, M. G., and Romero Morales, D. (2021b). On clustering categories

of categorical predictors in generalized linear models. Expert Systems with Applications,

182:115245.

Carrizosa, E. and Romero Morales, D. (2013). Supervised classification and mathematical

optimization. Computers & Operations Research, 40(1):150–165.

Casalicchio, G., Molnar, C., and Bischl, B. (2019). Visualizing the feature importance for

black box models. In Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., and Ifrim, G., eds.,

Machine Learning and Knowledge Discovery in Databases, pages 655–670, Cham. Springer

International Publishing.

Chaovalitwongse, W. A., Fan, Y.-J., and Sachdeo, R. C. (2008). Novel optimization models for

abnormal brain activity classification. Operations Research, 56(6):1450–1460.

Cohen, S., Dror, G., and Ruppin, E. (2007). Feature selection via coalitional game theory.

Neural Computation, 19(7):1939–1961.

Cousins, C. and Riondato, M. (2019). CaDET: interpretable parametric conditional density

estimation with decision trees and forests. Machine Learning, 108(8-9):1613–1634.

Csárdi, G. and Truong, A. (2012). oblique.tree. https://github.com/cran/

oblique.tree.

Cuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal

of Statistical Planning and Inference, 147:1–23.

Cui, Z., Chen, W., He, Y., and Chen, Y. (2015). Optimal action extraction for random forests

and boosted trees. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 179–188.

https://github.com/cran/oblique.tree
https://github.com/cran/oblique.tree


122 References

Dash, S., Günlük, O., and Wei, D. (2018). Boolean decision rules via column generation. In

Advances in Neural Information Processing Systems, pages 4655–4665.

Demiriz, A., Bennett, K., and Shawe-Taylor, J. (2002). Linear programming boosting via

column generation. Machine Learning, 46:225–254.
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