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Abstract

With the important development of computer architectures, bus emulation becomes a very important tool. In this paper, methods for bus
emulation are generally studied. We present several actual systems using this approach and introduce a new practical application. This
application permits a PC-compatible system with an ISA BUS to control an embedded system originally based on a MC68000 micro-
processor. This paper demonstrates the easy use of bus emulation techniques to modernize obsolete industrial controllers. © 1998 Published

by Elsevier Science B.V.
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1. Introduction

Bus emulation [1,2], as is considered in this paper, can be
loosely defined as the techniques used to make a machine
(Substitute System) with a particular native bus look,
from the point of view of an external device, as if it also
includes a bus that is characteristic of another system
(Target System).

Bus emulation can thus serve two main objectives:

1. it can be used as a means of interfacing with a standard
bus; and

2. it can be used to increase the performance of obsolete
systems.

Before going into the details of these two objectives it is
important to point out the two main approaches to bus
emulation:

1. The address space of the target system is included as part
of the substitute system’s address space. We shall refer to
this technique as address inclusion.

2. The address space of the target system is generated by a
state machine that is considered as a peripheral by the
substitute system.

These methods are related to the objectives above but
they are also strongly influenced by the characteristics of
the target and substitute buses.

* Corresponding author.

2. Bus emulation as an interface to a standard bus

Considering now the motivations for bus emulation, if we
want to have a standard bus in a system with a new pro-
cessor with few support chips, it might be simpler to emu-
late the bus of a popular processor and use the interface
chips that are available for it rather than implementing the
standard bus specifications directly. This has two important
side advantages:

e other peripherals for the emulated processor can also be
used; and

e the target bus only has to be emulated to the accuracy
required by the chips that are interfaced to it.

This second consideration is especially interesting
because it means that only the signals that are really used
in the system have to be emulated and that the timing
requirements are imposed by those chips. These timing
requirements are usually much simpler to meet than the
strict ones imposed by standard buses. Some buses like
Future bus, MultiBusll, EISA or PCI are very difficult to
implement without specific VLSI support.

Thus it is not strange that several manufacturers of Risc
based computers have emulated 1486 or Pentium buses in
order to be able to use one of the standard EISA or PCI chip
sets. As an example, the DEC2000/300 [3] (which uses the
DECchip 21064 Alpha AXP 64 bit processor) implements
the EISA bus in this way. As this is an ARM compliant
machine (required to run Windows NT) it shares much of
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its I/O subsystem with a standard high-end PC and, thus, it
makes strong use of the emulated bus (SCSI controllers,
Video and LAN adapters).

The techniques used in emulation, as well as the perform-
ance of the interface circuits, should depend clearly on the
fraction of system V/O accesses and the part of these that
go to the emulated bus. We introduce the following nota-
tion: f = access fraction (exact meaning depending on the
subscript), t, = access time, f, = interface delay and s, =
write buffer hit rate.

We shall also use the following subscripts: r (for read
access), w (for write access), m (for memory access), io
(for 1/O access), n (for native bus), 7 (for target bus) and s
(for standard bus).

With this notation system the access time can be calcu-
lated as in [4]. It is given by

1, :fr'zar +fw'tl.'w (1)
Lyr ::fm'[urm +.fm'tari() (2)

(3)

Lario =fn'tai(m +ﬁ [ldl +f;n'zaimn +fl\ (tds + tui(}/.\') B

For write accesses with a write buffer:
L = hw'thh + (1 - hw) . (fm'tuwm +f;'n'tuwin) {4)

where 7,.,, is usually very similar to £,

Considering Egs. (3) and (4) it is clear that the per-
formance of this type of systems depends greatly on the
fraction of I/O access, the fraction of these that are to
the target and standard buses and the delays imposed by

the translation. Thus in a system where the fractions of

access to the buses are naturally high like in the DEC
2000/300, the only way to preserve performance is to
keep translation delays as low as possible.

In the whole of the above discussion we have maintained
that an access to the target system, or even to a standard bus.
maps to a single access in the substitute system. This is the
case when address inclusion is used. This technique maps
the address space of the target subsystem to a region (or a set
of regions) in the address space of the substitute processor.
Thus, in the case of read accesses, the substitute processor
must wait until the emulated bus cycle ends. All high-per-
formance processors use posted writes and, thus, they do not
affect processor performance unless they represent a large
fraction of the accesses. This is not usually the case in real-
world systems. The address inclusion solution gives optimal
performance when the speeds of the target and substitute
buses are of the same order of magnitude.

When the emulated bus is much slower than the substitute
sysiem bus then it is better to use the state machine techni-
que. In this case the target system is considered as a periph-
eral by the substitute system. The emulated bus cycles are
generated by using a set of state machines |2]. With this
approach at least two substitute accesses are used for each

target bus access (one to start the access, one to collect the
data and maybe some to check if access is finished). In this
case we can start an access and do something else while it is
going on. If we use address inclusion, external processor
activity is usually blocked while the access takes place. In
some systems (like 1960 RP [5]) a split access technique is
used where, in read accesses, the first read starts the access
and a second read, to the same position, captures the data.

3. Bus emulation as a solution for obsolete systems

Two very different important cases exist here: replace-
ment of obsolete CPUs in compatible PCs and industrial I/O
controllers.

Other systems might be studied but we think that only in
the two cases above can bus emulation techniques be
economically efficient. The reasons for this are completely
different in each case but the basis is that, for bus emulation
to be justified, either a large market must exist for the adap-
tation or we must find systems where the 1/O peripherals are
the most expensive and hardest-to-replace part of the
system.

PC replacement processors appear in three different
flavours:

¢ Daughterboards that use a standard current-generation
processor. In this case the address inclusion method is
always used (usually address spaces are equal). An
example of this type of board is the 1BM designed
“*SLC now”’, which replaces an 1386 by an IBM
486SLC.

e Chips designed as replacement processors like the
CYRIX M1 486 DLC, SLC and DRX2. In this case
the processor’s external native bus is the older processor
external bus. If we consider this as a bus emulation we
could as well say that every processor nowadays emu-
lates its external bus.

e Boards that include a socket for a next-generation pro-
cessor. The idea is that when the current processor
becomes obsolete or is not powerful enough for the
user, a new processor can be inserted in the free socket
to substitute for the original one without actually remov-
ing it from the system. This method is used by Intel
overdrive processors.

The case of industrial controllers is very different. In
order to make a CPU replacement based on bus emulation
attractive, several conditions must hold:

¢ the process interface hardware must be much more
expensive than the processor (or processors) used;

e the performance of the interface hardware is adequate
and thus it is not necessary to replace it;

e it is not necessary to maintain software compatibility
with the old system (if it were necessary, the substitute
processor would have to be software-compatible with
the old one); and
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e no processor upgrade option had originally been
designed into the system.

4. MC68000 emulation on an ISA bus PC

To show the trade-ins that appear in this type of emula-
tion we shall use an example system that is quite typical of
what we can find in an industrial controller. The actual
system we consider is a Hitachi A4010S Scara Robot.
This is an industrial assembly robot which uses an 8 MHz
MC68000 microprocessor in its control unit. The emulation
requirements are very similar to those found in many other
M68000 embedded systems.

The original objectives of this project were to increase the
communication capabilities of the robot so that it could be
integrated easily into a multiple robot system [6] and to
experiment with adaptive controllers. Neither of these
goals could be met with the original microprocessor and
thus we had three different choices:

e build a custom robot control unit;

e use a commercial ‘‘open’’ robot control unit like those
available from Adept; or

+ emulate the M68000 processor bus.

The first solution is the most expensive, both in terms of
labour and final cost. The second is very attractive but, in
our case (and this is not infrequent for sophisticated indus-
trial controllers), we could not find a commercial system
with the required specs. Thus bus emulation became a
natural choice.

An important problem is to select a microprocessor that is
adequate to meet the objectives of the substitution project,
In our example we are fortunate because there have been
several studies (e.g., [2,7]) of processor performance
requirements for robot applications. On the other hand,
performance is not the only requirement that must be met
by the substitute system: the difficulty of implementation
and the availability of development tools are equally as
important.

Thus we consider a substitute system which meets the
performance requirements, is easy to design with and has
good development tool support. This is the Pentium based
PC-compatible computer. The Pentium microprocessor has
a much higher process speed than the MC68000 micro-
processor for several reasons. The most important are the
internal superscalar architecture, greater bus bandwidth
(64 bits), the higher clock rate (over 200 MHz) and the
inclusion of the maths coprocessor and memory cache on
the same chip. Of course, the same interface circuit is valid
for a Pentium Pro (or any other processor) based PC if an
ISA bus is available. In the rest of this paper we shall refer to
the Pentium, as this is the processor we actually used in our
system.

Because the substitute processor is not sottware-
compatible with the original one this means that the control

software must be rewritten. In our example, Control and
Trajectory Generation Algorithms were rewritten for the
PC, which can access the devices in the Robot Control
Unit memory map by means of the interface device.

The Hitachi A4010S Robot Controller, like many other
MC68000 based embedded systems. uses an address space
of only 64 kB, where we can find the system memory and
the I/O devices. In the PC real address mode it is not easy to
find enough space to easily include even this reduced 64 kB
target address space, and therefore it has to be included in
the Extended Memory address space, which cannot be
accessed easily under DOS.

Therefore, the system software is easier to implement if
we design using a state machine that generates MC68000
bus cycles. Thus, we have an ISA bus expansion card pro-
grammable by means of a small number of 1/0 ports, which
are available in any PC. From the point of view of the
substitute microprocessor, the interface device is simply a
peripheral.

4.1. ISA and MC68000 buses

In this section we shall examine the ISA and the M68000
buses by considering only those signals that are usually
required to implement processor substitution in the most
usual embedded controllers. The most common case in
industrial M68000 based systems are boards with reduced
address spaces (usually 64k) and self-vectored interrupts.

Thus, from all the ISA bus signals [8], we only use those
that are necessary in order to design the interface:

1. Signals to control user registers, which are used to pro-
gram the interface. These are: Data Bus (D0)...D15),
Address Bus (A0...A9) and those to allow 8 and 16 bit
read/write accesses (see Fig. 1).

2. Clock signal CLK (8 MHz) to synchronize state
machines and RESET DRV signal to initialize them.

3. The IRQ lines, through which the interface device can
communicate with the PC. These allow the PC to serve
interrupts requested by the target device.

From the MC68000 bus [9] only those aspects most
usually found in embedded controllers will be emulated.
These are:

1. Asynchronous bus cycle: used to access memory,
M68000 peripherals and fast custom I/O devices.

2. Synchronous bus cycle: used by M68XX peripherals and
some synchronous custom [/O.

3. Autovectored interrupts: used by M68XX and custom
/0.

In this example vectored interrupts are not supported
because they are not present in many embedded systems.
However, we shall discuss a simple extension to support this
type of interrupts.

Provided that the target system address space size is
64 kB, only lines Al...Al5 will be considered (line AQ
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Fig. 1. Bus PC AT with bus MC68000 interfacing.

exists for software only). Likewise, the data bus size
will be 16 bits (DO...D15) in order to allow 8 and 16 bit
transfers.

Fig. 1 shows a general scheme of the interface device and
Fig. 2 shows a functional diagram.

4.2. User registers

As we have indicated in previous sections, the interface
device consists of an ISA bus expansion card which is pro-
grammable by means of a reduced set of 1/O ports [10].
Therefore, it is a device with a peripheral configuration
where the user registers are mapped into these 1/O ports.

In order to carry out a MC68000 cycle bus, the user must

write an access address into the Address Register. If it is a
write cycle, previously the user would have to put data into
Data Registers. Finally, the transfer direction (read or write)
and size (8 or 16 bits) is written into the Status Register to
start a bus cycle.

When the Status Register indicates the end of the current
bus cycle, the interface device will be able to carry out a
new one. If it was a read operation, the PC will capture read
data accessing the Data Registers.

If a target system device requests an interrupt, the PC will
be able to obtain its priority level by accessing the Interrupt
Control Register. Questions about interrupt handling will be
treated in the corresponding section.

Finally, a write access to P6 1/0 position resets interface

USER PC - MC68000
>
REGISTERS INTERFACE
USER BUS INTERRUPTS
REGISTERS CYCLE
DECODING EMULATION HANDLING
SYNCHRONOUS ASYNCHRON.
BUS CYCLE BUS CYCLE
EMULATION EMULATION

Fig. 2. Interface device functional diagram.
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Fig. 3. State machine A.

device State Machines and activates a #RESET signal. This
initializes the target system.

PO ADDRESS REGISTER A[0...15] (W)

P2 DATA REGISTERS D[0...15] (R)

P2 DATA REGISTER D{0...7] (R)

P3 DATA REGISTER DI8...15] (R)

P4 STATUS REGISTER (R.W)

P5 INTERRUPT CONTROL REGISTER (R, W)

P6 CLEAR PREVIOUS IRQ (R)
#RESET SIGNAL ACTIVATION (W)

where ‘‘R’’ denotes a read access and **W’’ denotes a write
access.

4.3. State machines

In order to carry out asynchronous and synchronous bus
cycle emulation, two State Machines have been designed.

The first, called state machine A (Fig. 3), implements
the E signal (Enable). It is simply a 10-state ring counter:
in the first six states the E signal is set to zero (low), whereas
in the last four states it is set to one (high).

The second, called state machine B (Fig. 4), is more
complex and carries out the proper asynchronous or syn-
chronous bus cycle emulation. In order to execute the
synchronous bus cycle, synchronization with state machine

A becomes necessary since M6800 family peripherals use
the E signal as a clock to carry out their bus cycles.

Motorola’s M6800 peripherals [9] are directly compatible
with the MC68000 microprocessor. In order to interface the
synchronous M6800 peripherals with the asynchronous
MC68000, the original microprocessor modifies its bus
cycle to meet the M6800 cycle requirements whenever a
M6800 device address is detected. This is possible since
both microprocessors use memory-mapped 1/O.

When an M6800 device is being accessed, the decode
circuit answers activating a #VPA (Valid Peripheral
Address) signal instead of a #DTACK signal. Thus, when
this happens, state machine B executes the Synchronous
Cycle, in which evolution of an E signal must be considered.
First, it is necessary to wait until the E signal reaches the
fifth subcycle (AT PC clock cycle) of its low subperiod,
because then state machine B activates the #VMA signal.
Finally, the latter waits until the last (fourth) subcycle of the
E signal because a high subperiod occurs, where synchro-
nous bus cycle ends capturing data in the case of a read
access.

4.4. Interrupt processing

MC68000 microprocessor can serve two different types
of interrupt: vectored and autovectored [9]. In the first case,
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Fig. 4. State machine B.

the microprocessor fetches the interrupt vector number
from the interrupting device. In autovectored interrupts,
the MC68000 internally generates a vector number which
is determined by the interrupt priority level number.
MC6800 family devices can only request autovectored
interrupts.

In our example target system, as in many others, all the
interrupts — periodic, system error and serial transmission
(MC6850 ACIA) — are autovectored.

In our design the Interrupt Control Register supports
read and write operations. When a target system device
requests an interrupt, it sends its priority level through
lines #IPLO...#IPL2. This interrupts the PC and so the
corresponding ISR should perform a read access to
the Interrupt Control Register in order to obtain the Target
interrupt priority level, and execute the corresponding
service routine.

Furthermore, at any time during its execution, the control
program can write a new value for the interrupt mask, which
consists of a 3 bit number. As Egs. (5)—(8) indicate, only
those interrupts whose priority level is greater than the inter-
rupt mask value will be considered by the interface device,
which corresponds to the behaviour of a real M68000 based
system. Note that interrupt level seven is always served
regardless of the interrupt mask value. Therefore, it plays

s
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INP? 1/6.5 H =
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INPS 1,0.7 =+

INP1D 1/0.8 43

INP11 INPL3 [ =

INP12
85C224 DECODER1
4

Uz
8 2fa 2R Llfrweisoik
Al S182 BA1 2 %ﬁ;g
az 21 a3
% A4 | INP4
= — e =il elines
Az INP?
— as = INPS
GND__ 19 —ReseT 1] INP2
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e 1lpIR INP1L
745245
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BDS 131gof e -2 DS i3 e ag -2 _Dlo
=R - — 2155 &5 =2
=) iiBs a8 L7 ligs a8
G pl2 —BUFFEN g b9 —BUFFEN
DIR DIR
JAaLS245 743245

Fig. 5. Deccdification of /O ports (PC AT bus).
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Fig. 6. User registers.

the role of Non Maskable Interrupt (NMI) from the interface
point of view. Of course, this interrupt can always be
masked by the interrupt controller in the PC chip set.

IPLO: =NOT IPLO (5)
IPL1 : =NOT IPLI (6)
IPL2 : =NOT IPL2 (7N

IRQ : =(PLO, IPL1, IPL2) > (QIPLO, QIPL1, QIPL2)
OR (IPLO, IPL1, IPL2)=(1, 1, 1) (8)

where the notation *‘(a, b, ¢)’’ means that bits a, b and ¢
make up a 3 bit binary number. QIPLO, QIPL1 and QIPL2
indicate the interrupt mask value, which is stored in the
Interrupt Control Register.

4.5. Physical implementation of interface device
The physical implementation of the interface device

can be done in many different ways. The choice will
depend mostly on the expected demand on the product.

In the case of industrial controllers this demand is usually
very low. In many cases we may need to update a few
systems and, in such cases, the usual alternative is to use
a mix of commercial fixed function and programmable
devices.

The whole interface logic can be implemented in a Xilinx
XC7354 CPLD, an AMD MATCH 130 or four generic
22V10. Originally Intel 85C224 PLD were used but
currently we are using the commonplace 22V10. Any
other type of flexible PLD can also be used for this design.

User register decoder (Figs. 5 and 6) has been implemen-
ted by using two 22V 10 devices. Two further devices were
used for the two State Machines (Fig. 7). In this case, for
reasons of circuit optimization, one PLD contains the
synchronous sequential circuits, whereas the other one has
been programmed with combinatory functions, which
depend directly on the states, generated by the first PLD.

Data registers (Fig. 7) are two 74AS652 transcetvers.
They are very fast devices, which guarantees that read and
write data operations performed by the interface device
during MC68000 bus cycles meet the allowed maximum
response times.

In order to synchronize the signals that enter the
State Machines which perform bus emulation (#DTACK
and #VPA mainly), a 74F175 IC is used. A 74F74 IC
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Fig. 7. Data registers and bus MC68000 emulation (Sequential Synchronous Circuit).

(containing two D flip-flops) is used for other functions. The
remaining ICs, whose response time requirements are not so
severe, belong to S and LS subfamilies.

On the expansion card there are two connectors from
which cables transmit emulated MC68000 bus signals to
the socket where the original MC68000 microprocessor
was inserted. Use of this technique requires no modification
of the rest of the target system.

4.6. Target system control software

Once that correct operation of the target system has been
checked with adequate software routines, we must write the
control SW for the host processor. In the case of our
example a program has been developed in order to evaluate
the robot’s performance.

The program is written in C and runs under MS DOS
with uC/OS Real Time Kernel [11]. The uC/OS is a very
small, portable, pre-emptive kernel that eases the design
of real-time control systems in PC and several other
environments. Thus it is a good choice when using the PC
as a replacement processor in outdated control systems. This
kernel incorporates:

e task creation, deletion, and priority change;

¢ Mailbox and Queue task communication; and
e semaphores for shared resource control.

There are many other real-time kernels for the PC or even
full featured RT/OSs. We chose uC/OS mainly because it
fits our requirements and several versions are freely avail-
able on the Internet.

Our Robot Control Unit example, in addition to commu-
nicating with the operator, performs two important tasks:
Trajectory Generation (high-level low-priority task) and
Position/Speed Control (low-level high-priority task).

5. Conclusions

1. We have established a set of scenarios where bus emula-
tion is an attractive design alternative. The performance
penalty incurred by this type of emulation has also been
analysed.

2. Bus emulation techniques have been applied to obtain an
Open Control Unit based on a Pentium PC for a fairly
standard, M68000 based embedded controller. For this
purpose, an interface device that emulates original sys-
tem bus cycles from the substitute system bus (ISA) has
been developed by using a State Machine approach.
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3. We can consider that a double bus emulation is present in [10] J.M. Rodriguez Corral, Disefio y evaluacién de una unidad de control

this type of system. First, PC motherboard circuits emu-
late the ISA bus with a Pentium microprocessor local
bus. Then, an expansion card emulates the MC68000
bus.

4. The use of real-time kernels that work on PC-compatible
hardware has been proposed as a very useful tool when
converting old controllers to PC architecture.

. As a good example of our approach we have converted
an old Hitachi A4010S Scara Robot into an open system
that can be used now as a platform to test new control and
trajectory generation algorithms. Programs developed
with this purpose will be able to use all PC resources,
as well as its processor speed and memory capacity.
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