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Abstract. In this paper we consider the singularly nonautonomous evolution
problem

ut +A(t)u = f(t), τ < t < τ + T ; u(τ) = u0 ∈ X,
associated with a family of uniformly almost sectorial linear operators A(t) :

D ⊂ X → X, that is, a family for which a sector of the complex plane is
contained in the resolvent of −A(t) and satisfies ‖(λ + A(t))−1‖L(X) ≤ C

|λ|α ,

for some α ∈ (0, 1), uniformly in t. Under a proper condition on the value

of α we prove that the linear process associated to the family A(t), t ∈ R, is
strongly differentiable and that the singularly nonautonomous problem has a

strong solution. An example of a singularly nonautonomous reaction-diffusion

equation in a domain with a handle illustrates the abstracts results obtained.

1. Introduction. In this paper we consider the following singularly nonautonom-
ous evolution problem

ut +A(t)u = f(t), τ < t < τ + T ; u(τ) = u0 ∈ X, (1)

and its associated homogeneous problem

ut +A(t)u = 0, t > τ ; u(τ) = u0 ∈ X. (2)

The term singularly nonautonomous expresses the fact that the linear operator
A(t) is time-dependent. We assume that X is a Banach space and A(t) : D(A(t)) ⊂
X → X, t ∈ R, is a family of unbounded linear operators satisfying:

(P1) A(t) : D(A(t)) ⊂ X → X is closed, densely defined and its domain is time-
independent, that is, D(A(t)) = D = X1, for all t ∈ R. Moreover, D2 =
D(A(t)2) is dense in X.
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(P2) There exist constants ϕ ∈
(
π
2 , π

)
, C > 0 and α ∈ (0, 1), independent of

t ∈ R, such that, if Σϕ represents the sector Σϕ := {λ ∈ C; |argλ| ≤ ϕ}, then
Σϕ ∪ {0} ⊂ ρ(−A(t)) and∥∥(λ+A(t))−1

∥∥
L(X)

≤ C

|λ|α
, ∀λ ∈ Σϕ. (3)

We refer to this property as the family A(t), t ∈ R, being uniformly almost
sectorial or being α−uniformly almost sectorial if we intend to emphasize the
constant of almost sectoriality α.

(P3) There are constants C > 0 and 0 < δ ≤ 1 such that, for any t, τ, s ∈ R,

‖[A(t)−A(τ)]A−1(s)‖L(X) ≤ C|t− τ |δ. (4)

To express this fact we say that the function R 3 t 7→ A(t)A−1(s) ∈ L(X) is
uniformly Hölder continuous or δ−uniformly Hölder continuous if we intend
to emphasize the Hölder exponent δ.

Under those conditions, our goal is to prove the existence of strong solution for
(1) and this is achieved by a thoughtful study of the associated linear homogeneous
problem (2). This problem has already been satisfactorily answered in the context
where A(t) is uniformly sectorial, that is, A(t) satisfies the same properties (P1),
(P2) and (P3) with α = 1 in (P2).

For the sectorial case, Sobolevskĭı in [15] and Tanabe in [18, 19, 20] proved
the existence of a two parameter family of bounded linear operators {U(t, τ) ∈
L(X); t ≥ τ, τ ∈ R} that provides the solution of the homogeneous problem (2),
that is, u(t) = U(t, τ)u0 and ut(t) = −A(t)u(t) = −A(t)U(t, τ)u0.

This family U(t, τ) was called linear process and several properties of U(t, τ)
were established by the authors mentioned before and other references (as [17, 21]
or [6] for an approach with fractional powers and critical nonlinearities). Some of
those properties are:

(U1) U(t, t) = I, where I is the identity in X, and U(t, τ)U(τ, s) = U(t, s), for all
s ≤ τ ≤ t.

(U2) The family U(t, τ) is strongly continuous, that is, (t, s, x) 7→ U(t, s)x is con-
tinuous for t ≥ s and for all x ∈ X.

(U3) ‖U(t, τ)‖L(X) ≤ C, for all t ≥ τ .
(U4) U(t, τ) : X → D has its image in D = D(A(t)).
(U5) The family is strongly differentiable, that is, for each x ∈ X, (τ,∞) 3 t 7→

U(t, τ)x ∈ X is differentiable and ∂tU(t, τ)x = −A(t)U(t, τ)x.
(U6) The derivative ∂tU(t, τ) is a bounded linear operator in X,

∂tU(t, τ) = −A(t)U(t, τ) and ‖∂tU(t, τ)‖L(X) ≤ C(t− τ)−1.

The family U(t, τ) not only recovers the solution of (2), but it is also an important
tool to solve the nonhomogeneous problem ut + A(t)u = f(t), τ < t < τ + T ;
u(τ) = u0 ∈ X. This problem is seen as a perturbation of the homogeneous
problem and, under suitable conditions on f , a solution for it is obtained through
the variation of constants formula:

u(t) = U(t, τ)u0 +

∫ t

τ

U(t, s)f(s)ds. (5)

A function u(t) given by (5) satisfies

(S1) u(·) ∈ C([τ, τ + T ), X) ∩ C1((τ, τ + T ), X), u(τ) = u0 and u(t) ∈ D, for
τ < t < τ + T ,
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(S2) ut = −A(t)u+ f(t), for all t ∈ (τ, τ + T ),

as proved in Theorem 4 of [15]. A function that satisfies (5) is called a mild solution
whereas a function u(·) that satisfies (S1) and (S2) is called a strong solution. In
the context of sectorial operators, mild solution and strong solution for (1) are
equivalent.

It was not up until recently that nonautonomous problems (as (1) and (2)) with
uniformly almost sectorial operators were studied. Those operators usually emerge
when we consider elliptic operators defined in more regular phase spaces, as the
space of Hölder continuous functions. For example, the second order differential
operator

L(t, x)u :=

n∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj

for x in a bounded smooth domain Ω and assuming Dirichlet boundary conditions
for u, generates a family of uniformly almost sectorial operators in the phase space
X = Cµ0 (Ω) (the space of µ−Hölder continuous function, µ > 0, vanishing at ∂Ω)
given by A(t) : D(A(t)) ⊂ Cµ0 (Ω)→ Cµ0 (Ω), A(t)u := L(t, x)u, for all u ∈ D(A(t)) =

D = {v ∈ C2+µ(Ω) : v = 0 in ∂Ω} (see [5, Section 4.1] for more details on this
example or [14, Example 2.3] for the autonomous case aij(t, x) = aij(x)).

Uniformly almost sectorial operators also emerge when we are dealing with equa-
tions in certain singular domains, as a domains with a handle. We explore this
example in Section 6.

Hoping to develop an abstract theory for singularly nonautonomous problems in
which features almost sectorial operators, the authors in [5] extended for the almost
sectorial case some of the theory established by Sobolevskĭı [15] and Tanabe [19].
They proved the existence of a two parameters family of linear operators U(t, τ)
associated to the family A(t), t ∈ R, satisfying (P1), (P2) and (P3) with α ∈ (0, 1).
This family U(t, τ) obtained by them satisfies properties (U1) and (U3) mentioned
above, but in this case the presence of 0 < α < 1 causes a change in the estimate
(U3), that is,

‖U(t, τ)‖L(X) ≤ C(t− τ)α−1.

This estimate expresses the fact that there might exists x ∈ X such that (τ,∞) 3
t 7→ ‖U(t, τ)x‖X is not bounded as t → τ+. In particular, property (U2) is not
satisfied for general x ∈ X and U(t, τ) is called a linear process of growth 1 − α.
The family U(t, τ) was then used to provide mild solutions for (1), that is, functions
u(t) given by the integral formulation (5).

However, there are no studies so far in the literature that deals with differen-
tiability properties of U(t, τ) or of the mild solution u(t) for (1) in the context of
almost sectorial operators. Our goal in this work is to address this matter and to
provide conditions under which properties (U4), (U5) and (U6) of the process are
verified and conditions to ensure that the mild solution u(t) for the nonhomoge-
neous problem (1) is also a strong solution (that is, satisfies (S1) and (S2)). We
also establish conditions on x ∈ X and on α ∈ (0, 1) such that [τ,∞) 3 t 7→ U(t, τ)x
is continuous/continuously differentiable at t = τ .

The presence of the singularity at the initial time, given by (t − τ)α−1, is what
makes this type of analysis interesting. Several of the convergence arguments pre-
sented by Sobolevskĭı [15] and Tanabe [18, 19, 20] to obtain differentiability of
the solutions fail to take place due to this singularity. The novelties in our work
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revolve around providing alternative tools to analyze those convergences and the
differentiability of the solution.

This problem was also studied by Yagi in [22, 23]. To overcome the difficulty
generated by the almost sectoriality, the author considered Yosida’s approximation
An(t) of the family A(t) and instead of working with the integral equation for
U(t, s) directly, they approximate this equations by the integral equations where
the evolution process generated by An(t) features. Those approximations An(t) are
bounded linear operators and the process they generate Un(t, s) have the desired
differentiable properties which is transferred to the original problem.

In our approach, we work directly with the integral formulation for the evolution
operator (which we define in (9)), adapting the well established strategy used for
the sectorial case in [13, 15, 18], finding ways to overcome the singularities that
appear in the integral due to the almost sectorial case. With this approach, we are
able to understand precisely the behavior around the singularities at initial time
and the situations where the semigroup and process might diverge. Furthermore,
we work towards the direction of obtaining sharper intervals for the exponent of
almost sectoriality, α, and the exponent of Hölder continuity, δ, for which we can
obtain existence of mild/strong solution. For instance, whereas Yagi restricts the
interval for α to (1− δ

3 , 1], we allow α to be in (1− δ, 1], for mild solutions, and in

(
√
δ2+4
2 − δ

2 , 1], for strong solutions, which is larger than the one provided earlier in
the literature and is sharper to ensure existence of solutions.

Yagi also consider the case where the domain of A(t) can depend of t. However,
in order to treat this case, rather then working with a family A(t) uniformly Hölder
continuous, the author asks for A(·)−1 to be strongly continuously differentiable,
which is a stronger condition. We shall focus on the case where D(A(t)) is fixed
and A(t) is Hölder continuous, and we derive properties such as differentiability in
the initial time and sharper intervals allowed for the exponent α and δ.

To attend our goal, this paper is structured in the following manner: In Section 2
we present the preliminaries results, which contemplates the definition of semigroup
of growth 1 − α, properties for this semigroup and a briefly overview on how to
construct the linear process of growth 1 − α, U(t, τ). Moreover, we enunciate in
this section the main results of this work: Theorem 2.13 that provides conditions to
ensure differentiability of U(t, τ), and Theorem 2.16 that ensures the existence of
strong solution for the nonhomogeneous problem (1). Section 3 is dedicated to some
technical results. In Section 4 we prove Theorem 2.13 and some other properties of
the linear process U(t, τ) and in Section 5 we prove Theorem 2.16 on the existence
of strong solution for the nonhomogeneous problem. We apply those results to a
singularly nonautonomous reaction-diffusion equation in a domain with a handle in
Section 6.

2. Preliminaries and main results. The integrals featuring in this work are
integrals of functions that take values in a Banach space. Those are called Bochner
integral and we assume familiarity with their operational properties, which can be
found in [7, Section 2.1]. Two functions will constantly appear, they are Beta,
B : (0,∞)× (0,∞)→ R, and Gamma, Γ : (0,∞)→ R, functions, given by

B(a, b) =

∫ 1

0

ua−1(1− u)b−1du and Γ(a) =

∫ ∞
0

e−uua−1du.

and we will also use the following result to ensure differentiability of a function.
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Lemma 2.1. [13, p.43] Let φ : [a, b)→ X be continuous and differentiable from the

right on [a, b). If d
dt

+
φ is continuous in [a, b), then φ is continuously differentiable

in [a, b).

Moreover, in the following calculations, we will represent any constant that ap-
pears in an estimate by C. It does not mean that the same constant features in all
estimates.

2.1. Singularly nonautonomous problems. Let A(t), t ∈ R, be a family of
linear operators satisfying (P1), (P2) and (P3). In this section we present two
families of linear operators associated to A(t) that play an important role in solving
evolutions problems like (1).

Some immediate consequences of properties (P1), (P2) and (P3) are: if τ = s,
then it follows from (4) that A(t)A(s)−1 is a bounded linear operator in X and, for
(t, s) in a compact set K ⊂ R2,∥∥A(t)A(s)−1

∥∥
L(X)

≤ C. (6)

From the fact that 0 ∈ ρ(−A(t)) and from the continuity of the resolvent map
ρ(−A(t)) 3 λ 7→ (λ+A(t))−1 ∈ L(X) in the uniform topology, (3) is equivalent to∥∥(λ+A(t))−1

∥∥
L(X)

≤ C

1 + |λ|α
, ∀λ ∈ Σϕ ∪ {0}.

Still from (3) and the resolvent equality, we obtain∥∥A(t)(λ+A(t))−1
∥∥
L(X)

≤ 1 + C|λ|1−α, ∀λ ∈ Σϕ ∪ {0}.

If we fix τ ∈ R, the linear operator A(τ) enjoys the properties (P1) and (P2)
stated above. The constant α ∈ (0, 1) that features in estimate (3) prevents us from
concluding that −A(τ) generates a C0−semigroup, since Hille-Yosida’s necessary
conditions are not fulfilled. However, this almost sectorial operator generates a
special type of semigroup, called semigroup of growth 1 − α that we introduce in
the sequel.

2.2. Autonomous linear evolution equation. Almost sectorial operators have
a close connection with generation of semigroups of growth. These semigroups were
first introduced by Da Prato in [8] and its properties were studied by several other
authors, like [11, 12, 16, 24].

Definition 2.2. [12, Definition 1.1] Let X be a Banach space and α ∈ (0, 1). A
family {T (t) ∈ L(X) : t > 0} is a semigroup of growth 1− α if

1. T (t)T (s) = T (t+ s), for all t, s > 0.
2. There exist M,γ > 0 such that

∥∥t1−αT (t)
∥∥
L(X)

≤M , for all 0 ≤ t ≤ γ.

3. If T (t)x = 0 for every t > 0 then x = 0.
4. X0 =

⋃
t>0 T (t)[X] is dense X.

It was proved in [5] that, for a fixed τ ∈ R, the operator −A(τ) generates a
semigroup of growth 1− α, T−A(τ)(t), t > 0, by considering

T−A(τ)(t) =
1

2πi

∫
Γ

eλt(λ+A(τ))−1dλ, (7)

where Γ is the contour of the sector Σϕ given in (P2), that is, Γ = {re−iϕ : r >
0} ∪ {reiϕ : r > 0} and it is orientated with increasing imaginary part.
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Proposition 2.3. [3]. Let τ, ξ ∈ R. If T−A(τ)(t), t > 0, is the family defined in
(7), then:

(1) Each operator T−A(τ)(t) is bounded and
∥∥T−A(τ)(t)

∥∥
L(X)

≤ Ctα−1, for all

t > 0.
(2) The semigroup has its image in D, T−A(τ)(t) : X → D, and A(ξ)T−A(τ)(t)

is a bounded linear operator satisfying
∥∥A(ξ)T−A(τ)(t)

∥∥
L(X)

≤ Ctα−2, for all

t > 0.

The semigroup defined in (7) provides strong solution for the autonomous prob-
lem

ut +A(τ)u = 0, t > 0; u(0) = u0 ∈ X, (8)

by considering the function u(t) = T−A(τ)(t)u0.

Lemma 2.4. ([3, Lemma 2.1 and Lemma 2.4]) Let T−A(τ)(t) be the linear operator
defined in (7). The mapping T−A(τ)(t) : (0,∞)→ L(X) is differentiable and

d

dt
T−A(τ)(t) = −A(τ)T−A(τ)(t) =

1

2πi

∫
Γ

λeλt(λ+A(τ))−1dλ.

That is, for u0 ∈ X, d
dtT−A(τ)(t)u0 + A(τ)T−A(τ)(t)u0 = 0, for all t > 0, and

u(t) = T−A(τ)(t)u0 is a strong solution of (8).

The estimate available for semigroups of growth 1−α obtained in Proposition 2.3
- (1) does not allow us to obtain strong continuity for this family at t = 0, that is,∥∥T−A(τ)(t)x− x

∥∥
X

might not vanish as t→ 0+. However, for any initial condition

in D, the continuity at t = 0 holds, as we will see next. Moreover, if x ∈ D2, more
regularity can be derived.

Lemma 2.5. Let T−A(τ)(t), t > 0, be the semigroup of growth 1 − α obtained by
−A(τ).

(1) If x ∈ D, then
∥∥T−A(τ)(t)x− x

∥∥
X
→ 0 when t→ 0+.

(2) If x ∈ D, then A(τ)T−A(τ)(t)x = T−A(τ)(t)A(τ)x.

(3) If x ∈ D2, then limt→0+

T−A(τ)(t)x− x
t

= −A(τ)x.

(4) If x ∈ D2, then T−A(τ)(t)x is continuously differentiable in [0,∞) (including
t = 0) and

d

dt
T−A(τ)(t)x =

{
−A(τ)T−A(τ)(t)x, if t > 0,

−A(τ)x, if t = 0.

(5) Given any x ∈ X and 0 < s1 < s2,

T−A(τ)(s2)x− T−A(τ)(s1)x = −
∫ s2
s1
A(τ)T−A(τ)(s)xds.

If s1 = 0, then equality holds only for x ∈ D2.

Proof. First statement is proved in [3, Proposition 2.6]. Second follows from closed-
ness of A(τ)

A(τ)T−A(τ)(t)x = 1
2πi

∫
Γ
eλtA(τ)(λ+A(τ))−1xdλ = 1

2πi

∫
Γ
eλt(λ+A(τ))−1A(τ)xdλ

= T−A(τ)(t)A(τ)x.
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Third statement is proved in [3, Proposition 2.7] and from this one it follows
that, for x ∈ D2,

d

dt
T−A(τ)(t)x =

{
−A(τ)T−A(τ)(t)x, t > 0,

−A(τ)x, t = 0.

Continuity for t > 0 is already known (Lemma 2.4). To prove continuity at t = 0,
we note that

d

dt
T−A(τ)(t)x = −A(τ)T−A(τ)(t)x = −T−A(τ)(t)A(τ)x→ −A(τ)x,

since x ∈ D2 and A(τ)x ∈ D. Last statement follows from the fact that the map
(0,∞) 3 t 7→ d

dtT−A(τ)(t)x = −A(τ)T−A(τ)(t)x is continuous. If x ∈ D2, this map
is continuous at t = 0.

2.3. The nonautonomous linear associated problem. In the same way that
almost sectorial operators and semigroups of growth 1−α are closed related, when
we consider a family A(t), t ∈ R, of α−uniformly almost sectorial and δ−uniformly
Hölder continuous operators, there is a two parameter family of linear operators
U(t, τ) closed related to A(t), t ∈ R, that we define in the sequel.

Definition 2.6. Let X be a Banach space and α ∈ (0, 1). A family {U(t, s) ∈
L(X); t > s} is a process of growth 1− α if

1. U(t, τ)U(τ, s) = U(t, s), for all s < τ < t.
2. There exist M,γ > 0 such that ‖(t− s)1−αU(t, s)‖L(X) ≤M , ∀s < t < s+ γ.
3. (t, s, x)→ U(t, s)x is continuous for t > s and for all x ∈ X.

As mentioned in the Introduction, the authors in [5] constructed this family
U(t, τ) associated to A(t), t ∈ R, by adapting the ideas developed in [15, 19].
This family U(t, τ) is obtained through an argument of fixed point and we briefly
present in the sequel the computation and ideas involved in the construction of
U(t, τ). Since the goal is to find a family that recovers the solution of

ut +A(t)u = 0, t > τ ; u(τ) = u0 ∈ X,

we assume that there exists U(t, τ) satisfying ∂tU(t, τ) = −A(t)U(t, τ). Also, as-
sume that there exists another family Φ(t, τ) such that U(t, τ) is obtained trough
the integral equation below

U(t, τ) = T−A(τ)(t− τ) +

∫ t

τ

T−A(s)(t− s)Φ(s, τ)ds. (9)

Differentiating in t, adding A(t)U(t, τ) and using ∂tU(t, τ) +A(t)U(t, τ) = 0, we
deduce

0 = Φ(t, τ)− [A(τ)−A(t)]T−A(τ)(t− τ)−
∫ t

τ

[A(s)−A(t)]T−A(s)(t− s)Φ(s, τ)ds.

If we denoted

ϕ1(t, τ) = [A(τ)−A(t)]T−A(τ)(t− τ), (10)

then Φ(t, τ) would have to satisfy

Φ(t, τ) = ϕ1(t, τ) +

∫ t

τ

ϕ1(t, s)Φ(s, τ)ds (11)

and it would be a fixed point of the map S(Ψ)(t) = ϕ1(t, τ) +
∫ t
τ
ϕ1(t, s)Ψ(s)ds.
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If we had a family Φ(t, τ) that satisfied (11), then we could proceed in the reverse
way to obtain U(t, τ). Therefore, existence of U(t, τ) relies on the existence of Φ(t, τ)
and this is the procedure for the construction of U(t, τ).

Lemma 2.7. [5, Section 2] The family {ϕ1(t, τ) ∈ L(X); t > τ} given by (10) is
continuous in the uniform operator topology, that is, {(t, τ) ∈ R2; t > τ} 3 (t, τ) 7→
ϕ1(t, τ) ∈ L(X) is continuous, and its norm can be estimated by ‖ϕ1(t, τ)‖L(X) ≤
C(t − τ)α+δ−2, where α is the constant of almost sectoriality and δ the Hölder
exponent.

Theorem 2.8. [5, Section 2] Let A(t), t ∈ R, be a family of linear operators sat-
isfying (P1), (P2) and (P3), and assume α + δ > 1. Then there exists a unique
two parameters family {Φ(t, τ) ∈ L(X); t > τ} satisfying (11) with the following
properties:

1. {(t, τ) ∈ R2; t > τ} 3 (t, τ) 7→ Φ(t, τ) ∈ L(X) is continuous in the uniform
topology.

2. ‖Φ(t, τ)‖L(X) ≤ C(t − τ)α+δ−2, for t > τ , where α is the constant of almost
sectoriality and δ the Hölder exponent.

Corollary 2.9. Under the conditions of Theorem 2.8, there exists a unique two
parameter family U(t, τ) given by (9) with the following properties:

1. {(t, τ) ∈ R2; t > τ} 3 (t, τ) 7→ U(t, τ) ∈ L(X) is continuous in the uniform
topology.

2. ‖U(t, τ)‖L(X) ≤ C(t− τ)α−1, for t > τ .

Remark 2.10. Corollary 2.9 does not guarantee that U(t, s)U(s, τ) = U(t, τ),
s < τ < t. However, this property will follow from the uniqueness of solution for
(2), once we prove that u(t) = U(t, τ)u0 is a strong solution for this problem. Also,
the existence of such family depends on the condition α + δ > 1. In the sectorial
case this is trivially satisfied (α = 1).

As a consequence of the existence of U(t, τ) when α + δ − 1 > 0, we can state
the following result on existence of local mild solution for the problem.

Corollary 2.11. Let A(t), t ∈ R, be a family of linear operators satisfying (P1),
(P2) and (P3), and assume that α+ δ > 1 and f ∈ L1((τ, τ + T ], X), then (1) has
a local mild solution u : (τ, τ + T ]→ X, given by

u(t) = U(t, τ)u0 +

∫ t

τ

U(t, s)f(s)ds. (12)

2.4. Main results. Most of the properties presented by the semigroup T−A(τ)(t)
concerning strong continuity and strong differentiability can be extended to the
linear process U(t, τ), provided that the constant of almost sectoriality α and the
exponent of Hölder continuity of δ satisfy certain conditions. We enunciate those
results in this section and we prove them throughout this paper.

As it happens for the semigroup T−A(τ)(t), the family U(t, τ) is also strongly
continuous at the instant t = τ for elements in the domain of the operators, D.

Proposition 2.12. If x ∈ D and α+ δ
2 > 1, then U(t, τ)x

t→τ+

−−−−→ x.

Proof. It follows from estimating the difference ‖U(t, τ)x− x‖X by using expression
(9) for U(t, τ) and the estimates given in Proposition 2.3 - (1) and Theorem 2.8.
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Next result states differentiability of the linear process of growth 1−α. It provides
conditions for which we can obtain (U4), (U5) and (U6) to this case. Its proof is
postponed to Section 4.

Theorem 2.13. Let A(t), t ∈ R, be a family of linear operators in X satisfying
(P1), (P2) and (P3), α ∈ (0, 1) the constant of almost sectoriality and δ ∈ (0, 1] the
exponent of Hölder continuity. For a given τ ∈ R, if α2 +αδ− 1 > 0 and U(t, τ) is
the linear process of growth 1− α associated to A(t), t ∈ R, then

(1) U(t, τ) : X → D, for any τ < t.
(2) (τ,∞) 3 t 7→ U(t, τ) ∈ L(X) is strongly differentiable, that is, for each x ∈ X,

(τ,∞) 3 t 7→ U(t, τ)x ∈ X is differentiable.
(3) ∂tU(t, τ) is a bounded linear operator, strongly continuous on τ < t <∞ and

satisfies:

∂tU(t, τ) +A(t)U(t, τ) = 0, ∀t > τ, (13)

‖∂tU(t, τ)‖L(X) = ‖A(t)U(t, τ)‖L(X) ≤ C(t− τ)α−2, ∀t > τ, (14)∥∥A(t)U(t, τ)A(τ)−1
∥∥
L(X)

≤ C(t− τ)α−1, ∀t > τ. (15)

Remark 2.14. For the sectorial case (α = 1), any δ > 0 ensures that α2 + αδ − 1 > 0

and the differentiability of U(t, τ) holds, which agrees with the results in [15, The-
orems 1 and 2].

Moreover, condition α2 + αδ − 1 > 0 is more restrictive than α + δ > 1 or even

α+ δ
2 > 1. Indeed, α2 + αδ − 1 > 0 implies that α >

√
δ2+4
2 − δ

2 > 1− δ
2 > 1− δ.

The differentiability properties stated in Lemma 2.5 for the semigroup hold for
the process, as we see in the sequel and whose prove is postponed.

Proposition 2.15. Let α2 + αδ − 1 > 0 and x ∈ D2. Then,

1
h [U(τ + h, τ)x− x]

h→0+

−−−−→ −A(τ)x.

Furthermore, U(·, τ)x : [τ,∞) → X is continuously differentiable (including at
t = τ) and

d

dt
U(t, τ)x =

{
−A(t)U(t, τ)x, t > τ,

−A(τ)x, t = τ.
(16)

Consider the nonhomogeneous linear problem (1). If we impose further conditions
on f , we can prove that this mild solution obtained is Corollary 2.11 is actually a
strong solution for the equation. We enunciate this result in the sequel and postpone
its proof to Section 5.

Theorem 2.16. Let A(t), t ∈ R, be a family of linear operators in the Banach space
X satisfying (P1), (P2) and (P3), α ∈ (0, 1) the constant of almost sectoriality and
δ ∈ (0, 1] the exponent of Hölder continuity. Suppose α2 +αδ−1 > 0 and let U(t, τ)
be the strongly differentiable process of growth 1−α associated to A(t), t ∈ R. Also,
assume f : (τ, τ + T ]→ X is continuous and

‖f(t)− f(s)‖X ≤ C(t− s)θ(s− τ)−ψ, for any τ < s < t < τ + T, (17)

‖f(t)‖X ≤ C(t− τ)−ψ, for any τ < t < τ + T, (18)

where θ and ψ are positive constants satisfying θ > 1− α, 0 < ψ < 1.
Then, for each u0 ∈ X, the mild solution (12) is a strong solution for (1), that

is,
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1. u(·) ∈ C1((τ, τ + T ), X), u(τ) = u0 and u(t) ∈ D, for all τ < t < τ + T .
2. The equation d

dtu(t) = −A(t)u(t) + f(t), τ < t < τ + T , is satisfied in the
usual sense.

Moreover, if u0 ∈ D, then u(·) is continuous at t=τ and u(·) ∈ C([τ, τ + T ], X) ∩
C1((τ, τ + T ], X).

In particular, if f is defined in (τ,∞), we obtain global existence of solution for
the problem.

Corollary 2.17. Assume that conditions of Theorem 2.16 hold.

1. If f : (τ,∞) → X, then (1) has a strong solution u : [τ,∞) → X globally
defined.

2. If f : R → X satisfies (17) and (18) for any τ ∈ R (with θ and ψ possibly
depending on τ), then given any (τ, u0) ∈ R×X, there exists a global strong
solution of (1) and we can define the process Sf (t, τ) : X → X associated to
the solution of (1) by setting Sf (t, τ)u0 = u(t, τ, u0), where u(t, τ, u0) denotes
the solution of (1).

3. Hölder continuity. In order to prove the results in the next sections, it is
necessary to obtain a Hölder continuity property for the maps t 7→ ϕ1(t, τ) and
t 7→ Φ(t, τ), t > τ . We dedicate this section for these technical results. We first
consider how the Hölder continuity of the family A(t), t ∈ R, is transferred to the
semigroup T−A(t)(s) generated by this family.

Lemma 3.1. [5, Lemma 2.2] Let A(t), t ∈ R, be a family satisfying (P1),(P2) and
(P3). Given t, s ∈ R, we have

‖T−A(t)(τ)− T−A(s)(τ)‖L(X) ≤ Cτ−2+2α(t− s)δ, τ > 0. (19)

In other words, R 3 t 7→ T−A(t)(·) is Hölder continuous with exponent δ.

In order to study the Hölder continuity of the families h 7→ ϕ1(t + h, τ) and
h 7→ Φ(t+h, τ), where t > τ , the following estimate for A(τ)2T−A(τ)(t) is necessary.

Proposition 3.2. For τ ∈ R, the family T−A(τ)(t), t > 0 defined in (7), satisfies:

‖A(τ)2T−A(τ)(t)‖L(X) ≤ Ctα−3, t > 0. (20)

Proof. It follows from Lemma 2.4 that

A(τ)2T−A(τ)(t) = −A(τ)
d

dt
T−A(τ)(t) = − 1

2πi
A(τ)

∫
Γ

λeλt(λ+A(τ))−1dλ.

If λ = reiϕ, r ∈ [0,∞), is the parametrization of the branch of Γ with positive
imaginary part and λ = re−iϕ the parametrization of the negative branch, we obtain∥∥∥∥ 1

2πi

∫
Γ

λeλtA(τ)(λ+A(τ))−1dλ

∥∥∥∥
L(X)

≤ C
∫ ∞

0

er cos(ϕ)tr‖A(τ)(λ+A(τ))−1‖L(X)dr

≤ C
∫ ∞

0

er cos(ϕ)trdr + C

∫ ∞
0

er cos(ϕ)tr2−αdr

≤ C
∫ ∞

0

e−u
u

t cos(ϕ)

1

cos(ϕ)t
du+ C

∫ ∞
0

e−u
u2−α

t2−α cos2−α(ϕ)

1

cos(ϕ)t
du

≤ Ct−2Γ(2) + Ctα−3Γ(3− α) ≤ C max{t−2, tα−3},

where we used the fact that cos(ϕ) < 0, since ϕ ∈ (π2 , π).
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Therefore, from the closedness of A(τ) added to the existence of the integral
estimated above,

A(τ)

∫
Γ

λeλt(λ+A(τ))−1dλ =

∫
Γ

λeλtA(τ)(λ+A(τ))−1dλ

and (20) follows.

Next we study how the Hölder continuity of A(t), t ∈ R, reflects on the maps
R 3 t 7→ ϕ1(t, ·) and R 3 t 7→ Φ(t, ·), defined in (10) and (11), respectively.

Lemma 3.3. Given any 0 < η < α(α+ δ − 1), τ < θ < t,

‖ϕ1(t, τ)− ϕ1(θ, τ)‖L(X) ≤ C(t− θ)η(θ − τ)α+δ−2− ηα . (21)

Furthermore, α+ δ − 2− η
α ∈ (−1, 0).

Proof. From Lemma 2.7, it follows that

‖ϕ1(t, τ)− ϕ1(θ, τ)‖L(X)

≤ ‖[A(τ)−A(t)]T−A(τ)(t− τ)‖L(X) + ‖[A(τ)−A(θ)]T−A(τ)(θ − τ)‖L(X)

≤ (t− τ)δ+α−2 + C(θ − τ)δ+α−2 ≤ C(θ − τ)δ+α−2.

(22)

On the other hand, by adding and subtracting A(θ)T−A(τ)(t−τ) at the difference,
we obtain

ϕ1(t, τ)− ϕ(θ, τ)

= −[A(t)−A(θ)]T−A(τ)(t− τ)− [A(θ)−A(τ)][T−A(τ)(t− τ)− T−A(τ)(θ − τ)].
(23)

Note that the first term of (23) can be estimated by∥∥[A(t)−A(θ)]T−A(τ)(t− τ)
∥∥
L(X)
≤
∥∥[A(t)−A(θ)](A(τ))−1A(τ)T−A(τ)(t− τ)

∥∥
L(X)

≤ C(t− θ)δ(t− τ)α−2,
(24)

and a positive exponent of (t− θ) emerges. As for the second term∥∥[A(θ)−A(τ)][T−A(τ)(t− τ)− T−A(τ)(θ − τ)]
∥∥
L(X)

≤ C(θ − τ)δ(t− τ)α−2 + C(θ − τ)δ(θ − τ)α−2

≤ C(θ − τ)α+δ−2.

(25)

Therefore, [A(θ) − A(τ)][T−A(τ)(t − τ) − T−A(τ)(θ − τ)] is a bounded operator.
We will provide an alternative estimate for it, one that features the difference (t−θ)
with a positive exponent.

From Lemma 2.5, if x ∈ D2, then ξ 7→ T−A(τ)(ξ)A(τ)T−A(τ)(θ − τ)x is con-

tinuously differentiable in [0,∞), with derivative −T−A(τ)(ξ)A(τ)2T−A(τ)(θ − τ)x.

Hence, for x ∈ D2,

[A(θ)−A(τ)][T−A(τ)(t− τ)− T−A(τ)(θ − τ)]x

= [A(θ)−A(τ)]A(τ)−1
{

[T−A(τ)(t− θ)− I]A(τ)T−A(τ)(θ − τ)]x
}

= [A(θ)−A(τ)]A(τ)−1

∫ t−θ

0

d

dt

{
T−A(τ)(ξ)A(τ)T−A(τ)(θ − τ)x

}
dξ

= −[A(θ)−A(τ)]A(τ)−1

∫ t−θ

0

T−A(τ)(ξ)A(τ)2T−A(τ)(θ − τ)xdξ.
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We obtain from (4), Proposition 2.3 - (1) and (20)

‖[A(θ)−A(τ)][T−A(τ)(t− τ)− T−A(τ)(θ − τ)]x‖X

≤ ‖[A(θ)−A(τ)]A(τ)−1‖L(X)

{∫ t−θ
0
‖T−A(τ)(ξ)‖L(X)dξ

}
‖A(τ)2T−A(τ)(θ − τ)x‖X

≤ C(θ − τ)δ
{∫ t−θ

0
ξα−1dξ

}
(θ − τ)α−3‖x‖X ≤ C(t− θ)α(θ − τ)α+δ−3‖x‖X .

(26)

The positive exponent of (t − θ) appeared, but at the downside (θ − τ) has an
exponent in the negative interval (−2,−1), which is not fitted when convergence of
integrals is being considered. Interpolating (25) and (26) with exponents ψ ∈ [0, 1]
and (1− ψ), we obtain

‖[A(θ)−A(τ)][T−A(τ)(t− τ)− T−A(τ)(θ − τ)]‖L(X) ≤ C(t− θ)αψ(θ − τ)α−2+δ−ψ. (27)

Therefore, (24) and (27) implies

‖ϕ1(t, τ)− ϕ1(θ, τ)‖L(X)≤ C(t− θ)δ(t− τ)α−2 + C(t− θ)αψ(θ − τ)α−2+δ−ψ

≤ C[(t− θ)δ + (t− θ)αψ][(θ − τ)α−2 + (θ − τ)α−2+δ−ψ].
(28)

Note that if ψ approaches 1, we have larger exponents for (t − θ), whereas α −
2+ δ−ψ decreases. However, the improvement on the Hölder continuity of the first
term cannot exceed the power δ. Therefore, it is pointless to consider any ψ > δ

α ,
since it will not cause any improvement in the Hölder exponent of (t − θ). We
assume ψ ≤ δ

α and rewrite (28), for any ψ ∈
[
0,max

{
1, δα

}]
, as

‖ϕ1(t, τ)− ϕ1(θ − τ)‖L(X) ≤ C(t− θ)αψ[(θ − τ)α−2 + (θ − τ)α−2+δ−ψ].

On the other hand, (θ−τ)α−2 delimits the improvement on the blow-up at initial
time. Note that it is pointless to consider any ψ ≤ δ, since it will not cause any
improvement on the term involving (θ − τ), but it will decrease the exponent of
(t − θ)αψ. Therefore, we restrict the possible values of ψ one more time and we
obtain for any ψ ∈

[
δ,max

{
1, δα

}]
,

‖ϕ1(t, τ)− ϕ1(θ − τ)‖L(X) ≤ C(t− θ)αψ(θ − τ)α−2+δ−ψ. (29)

Finally, (29) and (22) provide two estimates for the difference ϕ1(t, τ)−ϕ1(θ, τ).

An interpolation of them with exponents
η

αψ
and 1− η

αψ
, η ∈ [0, αψ], provides

‖ϕ1(t, τ)− ϕ1(θ, τ)‖L(X) ≤ C(t− θ)η(θ − τ)α+δ−2− ηα .

Moreover, as α+ δ − 2− η
α > −1 then η < α(α+ δ − 1). Since α(α+ δ − 1) < αδ ≤ αψ,

it does not matter the value that ψ assumes on the interval
[
δ,max

{
1, δα

}]
.

Remark 3.4. The auxiliary constant η that features in Lemma 3.3 establishes a
range of possible estimates for the difference ϕ1(t, τ)−ϕ1(θ, τ). It plays an essential
role when proving differentiability of the linear process U(t, τ), as we will see in the
next section.

Lemma 3.5. Given 0 < η < α(α + δ − 1) and τ < θ < t, there exists a constant
C > 0 such that

‖Φ(t, τ)− Φ(θ, τ)‖L(X) ≤ C(t− θ)η(θ − τ)α+δ−2− ηα ,

with α+ δ − 2− η
α ∈ (−1, 0).

Proof. Note that
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Φ(t, τ)− Φ(θ, τ) = [ϕ1(t, τ)− ϕ1(θ, τ)] +

∫ t

θ

ϕ1(t, s)Φ(s, τ)ds+

∫ θ

τ

[ϕ1(t, s)− ϕ1(θ, s)]Φ(s, τ)ds.

Using (21) alongside with the properties of the families ϕ1(t, s) and Φ(t, s) ob-
tained in Lemma 2.7 and Theorem 2.8, we have

‖Φ(t, τ)− Φ(θ, τ)‖L(X) ≤ C(t− θ)η(θ − τ)α+δ−2− ηα + C(θ − τ)α+δ−2(t− θ)α+δ−1

+ C(t− θ)η(θ − τ)2α+2δ−2− ηα−1B(α+ δ − 1− η
α , α+ δ − 1)

and this estimate holds if α+ δ−1− η
α > 0, that is, η < α(α+ δ−1). Furthermore,

(θ − τ)2α+2δ−2− ηα−1 = (θ − τ)α+δ−2− ηα (θ − τ)α+δ−1 ≤ C(θ − τ)α+δ−2− ηα .

We deduce

‖Φ(t, τ)− Φ(θ, τ)‖L(X) ≤ C[(t− θ)η + (t− θ)α+δ−1](θ − τ)α+δ−2− ηα

≤ C(t− θ)η(θ − τ)α+δ−2− ηα ,

and in the last inequality we used that η < α(α+ δ − 1) < α+ δ − 1.

4. Strong differentiability of U(t, τ). In this section we prove Theorem 2.13 and
Proposition 2.15. Note that, given any γ > 0 and t0 > τ + γ, it is enough to prove
the strong differentiability of U(t, τ) for t ∈ [τ + γ, t0]. From the arbitrariness of γ
and t0, the result will follow. Therefore, given u0 ∈ X, consider

U(t, τ)u0 = T−A(τ)(t− τ)u0 +

∫ t

τ

T−A(s)(t− s)Φ(s, τ)u0ds, t ∈ [τ + γ, t0].

If we tried to evaluate the derivative of U(t, τ)u0 directly from the expression
above, we would face a problem of convergence in the integral, since the expected
value for the derivative inside the integral would be −A(s)T−A(s)(t − s)Φ(s, τ)u0

and ‖A(s)T−A(s)(t− s)Φ(s, τ)‖L(X) ≤ C(t− s)α−2(s− τ)α+δ−2.
To overcome this problem, we consider the auxiliary family of bounded linear

operators {Uρ(t, τ); t ∈ [τ + γ, t0]} given by

Uρ(t, τ) = T−A(τ)(t− τ) +

∫ t−ρ

τ

T−A(s)(t− s)Φ(s, τ)ds, t ∈ [τ + γ, t0],

where 0 < ρ < γ is small enough so that t − ρ ≥ τ + (γ − ρ) > τ , that is, t − ρ is
far from τ as t runs in the interval [τ + γ, t0]. This slightly retreat in the domain of
integration implies that the integrand is continuously differentiable in (τ, t− ρ] and
[τ + γ, t0] 3 t 7→ Uρ(t, τ)u0 ∈ X is continuously differentiable, with derivative given
by

d

dt
Uρ(t, τ)u0 = −A(τ)T−A(τ)(t− τ)u0 + T−A(t−ρ)(ρ)Φ(t− ρ, τ)u0

+

∫ t−ρ

τ

−A(s)T−A(s)(t− s)Φ(s, τ)u0ds

(30)

We prove in the sequel the following:

(1) Uρ(·, τ)u0 converges as ρ→ 0 to U(·, τ)u0 in C([τ + γ, t0], X).

(2) d
dtUρ(·, τ)u0 converges as ρ→ 0 to −A(·)U(·, τ)u0 in C([τ + γ, t0], X).
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Then, differentiability of t 7→ U(t, τ)u0 for t ∈ [τ + γ, t0] follows from C1([τ + γ, t0], X)

being a complete metric space. Moreover, d
dtU(·, τ)u0 = −A(·)U(·, τ)u0. Item (1)

is easily obtained: for each t ∈ [τ + γ, t0] we have

‖Uρ(t, τ)− U(t, τ)‖L(X) =

∥∥∥∥∫ t

t−ρ
T−A(s)(t− s)Φ(s, τ)ds

∥∥∥∥
L(X)

≤ C(γ − ρ)α+δ−2ρα
ρ→0−→ 0+.

Item (2), on the other hand, is a more delicate matter. Ideally, we would like
to rearrange the expression (30) for ∂tUρ(t, τ) in a way that becomes visible its
convergence to

−A(t)U(t, τ)u0= −A(t)T−A(τ)(t− τ)u0 −A(t)

∫ t

τ

T−A(s)(t− s)Φ(s, τ)u0ds

= −A(t)T−A(τ)(t− τ)u0 −A(t)

∫ t

τ

T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds

−A(t)

∫ t

τ

T−A(s)(t− s)Φ(t, τ)u0ds.

(31)

However, the expression above might not make sense, since it is not proved
yet that U(t, τ) : X → D or that the integrals on the right side belong to D.
Nonetheless, we will use it as a target of what we wish to achieve when we make
ρ → 0 in the expression of ∂tUρ(t, τ). We will rearrange (30) in a form that it
approximates the most from the expression on the right side of our idealized equality
(31).

Lemma 4.1. The function [τ + γ, t0] 3 t 7→ ∂tUρ(t, τ) can also be given as

∂tUρ(t, τ)u0 =−A(t)T−A(τ)(t− τ)u0 −
∫ t−ρ

τ

A(t)T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds

−
∫ t−ρ

τ

A(t)T−A(s)(t− s)Φ(t, τ)u0ds

+

∫ t

t−ρ
ϕ1(t, s)Φ(s, τ)u0ds+ [T−A(t−ρ)(ρ)− I]Φ(t, τ)u0

+ T−A(t−ρ)(ρ)[Φ(t− ρ, τ)− Φ(t, τ)]u0.

(32)

Proof. Rearranging (30) and taking into account the expressions (10) and (11) for
ϕ1(t, τ) and Φ(t, τ), respectively, we obtain expression (32).

Remark 4.2. For the sectorial case, third and fourth line of equality (32) vanish
as ρ→ 0.

First line of (32) is already suited to our purpose and converges to the first line
of the right side in equality (31) as we can see in the next lemma.

Lemma 4.3. Assume that the constants α and δ satisfy the inequality α2 + αδ − 1 > 0.

The integral
∫ t
τ
T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds belongs to D and

A(t)
∫ t−ρ
τ

T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds
ρ→0−→ A(t)

∫ t
τ
T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds,

uniformly for t ∈ [τ + γ, t0] in the norm of X.
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Proof. If we prove that
∫ t
τ
A(t)T−A(s)(t− s)[Φ(s, τ)−Φ(t, τ)]ds converges, then the

result follows. From Lemma 3.5, there exists 0 < η < α(α+ δ − 1) such that∥∥∥∥∫ t

τ

A(t)T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds

∥∥∥∥
L(X)

= C(t− τ)(α+η−1)+(α+δ−1− ηα )−1B(α+ η − 1, α+ δ − 1− η
α )

and the entries on the function B(·, ·) are positive, provided that

1− α < η < α2 + αδ − α.

The existence of a suitable η relies on the constants α and δ to satisfy

α2 + αδ − α > 1− α, that is, α2 + αδ − 1 > 0.

Remark 4.4. Until Lemma 4.3 we only had upper bounds for η (see Lemma 3.5).
Now we must have 1− α < η < α(α+ δ − 1), and the existence of such η happens
only if α2 + αδ − 1 > 0.

For the remaining terms in (32), we will adopt a different strategy. Rather than
evaluating what happens to them as ρ→ 0, we first study the existence of

A(t)

∫ t

τ

T−A(s)(t− s)xds

for an arbitrary x ∈ X, and then we relate the outcome of this analysis to the
remaining terms of (32).

If T (t) is a C0−semigroup with inifnitesimal generator A, an important feature

of T (t) is the fact that given any x ∈ X,
∫ t

0
T (s)xds ∈ D(A) and

A

(∫ t

0

T (s)xds

)
= T (t)x− x.

The next results prove that
∫ t
τ
T−A(s)(t− s)xds ∈ D, for any x ∈ X, when A(t),

t ∈ R, is almost sectorial, and a characterization of A(t)
(∫ t

τ
T−A(s)(t− s)xds

)
that

extends the one we have for C0−semigroups is obtained.

Lemma 4.5. Let α2+αδ−1 > 0 and consider the linear operator H(t, τ) : D2 → X,

t > τ , given by H(t, τ)w = A(t)
∫ t
τ
T−A(s)(t− s)wds. Then H(t, τ) is a well defined

operator, it is bounded in D2, satisfies

‖H(t, τ)w‖X ≤ C(t− τ)α−1‖w‖X , ∀w ∈ D2,

and admits a bounded extension to X.

Proof. The fact that H(t, τ) is well defined in D2 follows from the estimate∥∥∥∥∫ t

τ

A(t)T−A(s)(t− s)wds
∥∥∥∥
X

≤ C
∫ t

τ

(t− s)α−1ds ‖A(t)w‖X <∞.

We prove in the sequel that there exists a constant C > 0 such that, for all
w ∈ D2, ‖H(t, τ)‖X ≤ C(t− τ)α−1‖w‖X . In Proposition 2.5 we proved that for any
y ∈ D2, the function t 7→ T−A(τ)(t)y is continuously differentiable in [0,∞) and

A(t)

∫ t

τ

T−A(t)(t− s)yds =

∫ t

τ

d

ds

[
T−A(t)(t− s)y

]
ds = y − T−A(t)(t− τ)y. (33)
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Also, u 7→ T−A(t)(t− s− u)T−A(s)(u)w is continuously differentiable in [0, t− s]
and

d

du

[
T−A(t)(t− s− u)T−A(s)(u)w

]
= T−A(t)(t−s−u)[A(t)−A(s)]T−A(s)(u)w. (34)

Therefore, (34), a change of variable and Fubini’s theorem ([9, Theorem 2.39])
imply

H(t, τ)w = A(t)

∫ t

τ

T−A(s)(t− s)wds

= A(t)

∫ t

τ

T−A(t)(t− s)wds+A(t)

∫ t

τ

[T−A(s)(t− s)− T−A(t)(t− s)]wds

(34)
= A(t)

∫ t

τ

T−A(t)(t− s)wds+A(t)

∫ t

τ

[∫ t−s

0

T−A(t)(t− s− u)[A(t)−A(s)]T−A(s)(u)wdu

]
ds

= A(t)

∫ t

τ

T−A(t)(t− s)wds+A(t)

∫ t

τ

[∫ t

s

T−A(t)(t− ξ)[A(t)−A(s)]T−A(s)(ξ − s)wdξ
]
ds

= A(t)

∫ t

τ

T−A(t)(t− s)wds+A(t)

∫ t

τ

T−A(t)(t− ξ)

[∫ ξ

τ

[A(t)−A(s)]T−A(s)(ξ − s)wds

]
dξ

= A(t)

∫ t

τ

T−A(t)(t− s)wds−A(t)

∫ t

τ

T−A(t)(t− ξ)
[∫ t

τ

[A(s)−A(t)]T−A(s)(t− s)wds
]
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)
[∫ t

τ

[A(s)−A(t)]T−A(s)(t− s)wds
]
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)

[∫ ξ

τ

[A(t)−A(s)]T−A(s)(ξ − s)wds

]
dξ.

In the last equality for H(t, τ)w, the first two terms are in the form

A(t)
∫ t
τ
T−A(t)(t− s)yds, where y ∈ D2,

and we can use these expressions (33) for those terms. Therefore, we obtain

H(t, τ)w= w − T−A(t)(t− τ)w −
∫ t

τ

ϕ1(t, s)wds+ T−A(t)(t− τ)

∫ t

τ

ϕ1(t, s)wds

+A(t)

∫ t

τ

T−A(t)(t− ξ)
[∫ t

τ

ϕ1(t, s)wds

]
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)[A(t)−A(ξ)]A(ξ)−1

[
A(ξ)

∫ ξ

τ

T−A(s)(ξ − s)wds

]
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)

[∫ ξ

τ

−ϕ(ξ, s)wds

]
dξ

= [I − T−A(t)(t− τ)]

[
w −

∫ t

τ

ϕ1(t, s)wds

]
+ A(t)

∫ t

τ

T−A(t)(t− ξ)

[∫ ξ

τ

ϕ1(t, s)wds

]
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)
[∫ t

ξ

ϕ1(t, s)wds

]
dξ−A(t)

∫ t

τ

T−A(t)(t− ξ)

[∫ ξ

τ

ϕ1(ξ, s)wds

]
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)[A(t)−A(ξ)](A(ξ))−1H(ξ, τ)wdξ
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= [I − T−A(t)(t− τ)]

[
w −

∫ t

τ

ϕ1(t, s)wds

]
+A(t)

∫ t

τ

T−A(t)(t− ξ)

{∫ t

ξ

ϕ1(t, s)wds+

∫ ξ

τ

[ϕ1(t, s)w − ϕ1(ξ, s)w]ds

}
dξ

+A(t)

∫ t

τ

T−A(t)(t− ξ)[A(t)−A(ξ)](A(ξ))−1H(ξ, τ)wdξ.

Using estimates in Proposition 2.3 - (1) for the semigroup, (4) for the Hölder
continuity of A(t), (10) for the operators ϕ1(·, ·) and (21) for the Hölder continuity
of t 7→ ϕ1(t, ·), we obtain (switching the order of second and third term to best fit
the page)

‖H(t, τ)w‖X

≤ C
(
1 + (t− τ)α−1

)(
1 +

∫ t

τ

(t− s)α+δ−2ds

)
‖w‖X +

∫ t

τ

(t− ξ)α+δ−2 ‖H(ξ, τ)w‖X ds

+C

∫ t

τ

(t− ξ)α−2

[∫ t

ξ

(t− s)α+δ−2ds+

∫ ξ

τ

(t− ξ)η(ξ − s)α+δ−2− ηα ds

]
dξ‖w‖X

≤ C
(
1 + (t− τ)α−1

) (
1 + (t− τ)α+δ−1

)
‖w‖X +

∫ t

τ

(t− ξ)α+δ−2 ‖H(ξ, τ)w‖X ds

+C

[∫ t

τ

(t− ξ)(α−2)+(α+δ−1)dξ + (t− τ)(α+η−1)+(α+δ−1− ηα )B(α+ η − 1, α+ δ − η

α
)

]
‖w‖X

≤ C(t− τ)α−1 ‖w‖X +

∫ t

τ

(t− ξ)α+δ−2 ‖H(ξ, τ)w‖X ds

+ C
[
(t− τ)2α+δ−2 + (t− τ)(α+η−1)+(α+δ−1− ηα )B(α+ η − 1, α+ δ − η

α)
]
‖w‖X

≤ C(t− τ)α−1 ‖w‖X +

∫ t

τ

(t− ξ)α+δ−2 ‖H(ξ, τ)w‖X ds.

The arguments used in the above estimates only hold provided that 2α+δ−2 > 0
and 1− α < η < α2 + αδ − α, that is, α > 1− δ

2 and α2 + αδ > 1. The second
one is more restrictive (see Remark 2.14). Finally, applying a generalized version
of Gronwall inequality (see [10, p.190]) we have, for w ∈ D2,

‖H(t, τ)w‖X ≤ C(t− τ)α−1 ‖w‖X .

Therefore, H(t, τ) can be extended to a bounded linear operator in X, which we
denote the same.

The fact that H(t, τ) is bounded allows us to prove the following result.

Lemma 4.6. Let α2+αδ−1 > 0 and w ∈ X. Then
∫ t
τ
T−A(s)(t−s)wds belongs to D

and we can obtain an expression for A(t)
∫ t
τ
T−A(s)(t−s)wds: for any 0 < ρ < t−τ ,

A(t)

∫ t

τ

T−A(s)(t− s)wds = w − T−A(t−ρ)(ρ)w −
∫ t

t−ρ
ϕ1(t, s)wds+A(t)

∫ t−ρ

τ

T−A(s)(t− s)wds.

(35)
Furthermore, ∥∥∥A(t)

∫ t
τ
T−A(s)(t− s)ds

∥∥∥
L(X)

≤ C(t− τ)α−1. (36)

Proof. Let (wn) be a sequence in D2 such that wn → w. Since
∫ t
τ
T−A(s)(t− s)ds is a

bounded linear operator inX, it follows that
∫ t
τ
T−A(s)(t− s)wnds→

∫ t
τ
T−A(s)(t− s)wds.
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The extension H(t, τ) is also a bounded linear operator and

A(t)

∫ t

τ

T−A(s)(t− s)wnds = H(t, τ)wn → H(t, τ)w.

From the closedness of A(t), we obtain
∫ t
τ
T−A(s)(t− s)wds ∈ D and

A(t)
∫ t
τ
T−A(s)(t− s)wds = lim

n→∞
A(t)

∫ t

τ

T−A(s)(t− s)wnds

= lim
n→∞

{
A(t)

∫ t−ρ

τ

T−A(s)(t− s)wnds+A(t)

∫ t

t−ρ
T−A(s)(t− s)wnds

}
= A(t)

∫ t−ρ

τ

T−A(s)(t− s)wds

+ lim
n→∞

{∫ t

t−ρ
A(s)T−A(s)(t− s)wnds+

∫ t

t−ρ
[A(t)−A(s)]T−A(s)(t− s)wnds

}
= A(t)

∫ t−ρ

τ

T−A(s)(t− s)wds+ lim
n→∞

{
wn − T−A(t−ρ)(ρ)wn −

∫ t

t−ρ
ϕ1(t, s)wnds

}
= w − T−A(t−ρ)(ρ)w −

∫ t

t−ρ
ϕ1(t, s)wds+A(t)

∫ t−ρ

τ

T−A(s)(t− s)wds,

where in the fourth line we used Proposition 2.5 - (5). The estimate in (36) follows
immediately from the one obtained for H(t, τ) and the fact the A(t)

∫ t
τ
T−A(s)(t− s)ds

is the extension of this operator.

From the results above, we can obtain all the properties enumerated in Theorem
2.13, as we see next. But prior to those conclusions, we compare such result with the
existent theory for sectorial operator. At that case, to conclude the differentiability
of the process, we prove that

A(t)

∫ t−ρ

τ

T−A(τ)(t− s)xds
ρ→0−→ A(t)

∫ t

τ

T−A(τ)(t− s)xds, (37)

and this comes as consequence of ‖A(t)
∫ t−ρ
τ

T−A(τ)(t− s)ds‖ ≤ C.
For the almost sectorial case, (37) does not necessarily occur. As we can see

from (35), this convergence will only happen if T−A(t−ρ)(ρ)x
ρ→0−→ x, which we know

is not necessarily true for an arbitrary x ∈ X. Moreover, the order from which

A(t)
∫ t−ρ
τ

T−A(τ)(t − s)ds diverges from A(t)
∫ t
τ
T−A(τ)(t − s)ds is the same of the

semigroup of growth 1 − α, T−A(τ)(t), at the initial instant t = 0. This is rein-

forced by the fact ‖A(t)
∫ t−ρ
τ

T−A(τ)(t − s)ds‖ ≤ C(t − τ)α−1. We gather those
considerations in the following corollary:

Corollary 4.7. Let α2 + αδ − 1 > 0 and w ∈ X. Then

A(t)

∫ t

t−ρ
T−A(s)(t− s)wds = w − T−A(t−ρ)(ρ)w −

∫ t

t−ρ
ϕ1(t, s)wds

and A(t)
∫ t
t−ρ T−A(s)(t − s)wds does not vanish as ρ → 0+. In particular, the

expression A(t)
∫ t−ρ
τ

T−A(s)(t−s)wds does not converge to A(t)
∫ t
τ
T−A(s)(t−s)wds,

as ρ→ 0.
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We are finally in conditions to return to the derivative ∂tUρ(t, τ)u0 whose last
characterization was given in (32). Note that the second and third line are exactly
the right side of (35) for w = Φ(t, τ)u0 (with a negative sign) and we obtain

∂tUρ(t, τ)u0 =−A(t)T−A(τ)(t− τ)u0 −
∫ t−ρ

τ

A(t)T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]u0ds

−A(t)

∫ t

τ

T−A(s)(t− s)Φ(t, τ)u0ds

+T−A(t−ρ)(ρ)[Φ(t− ρ, τ)− Φ(t, τ)]u0.

Lemma 4.1 already proved the uniform (for t ∈ [τ + γ, t0]) convergence of the

second term to
∫ t
τ
A(t)T−A(s)(t−s)[Φ(s, τ)−Φ(t, τ)]u0ds. The fourth term, the last

remaining, converges uniformly to zero, since∥∥T−A(t−ρ)(ρ)[Φ(t− ρ, τ)− Φ(t, τ)]
∥∥
L(X)

≤ Cρα+η−1(t− ρ− τ)α+δ−2− ηα ρ→0−→ 0,

provided that α+ η − 1 > 0 (which is satisfied since 1− α < η < α2 + αδ − α).
This allows us to conclude the uniform convergence of ∂tUρ(t, τ)u0 to

−A(t)[T−A(τ)(t− τ)u0 +
∫ t
τ
T−A(s)(t− s)Φ(s, τ)u0ds] = −A(t)U(t, τ).

Hence,

sup
t∈[τ+γ,t0]

{‖Uρ(t, τ)u0 − U(t, τ)u0‖+ ‖∂tUρ(t, τ)u0 +A(t)U(t, τ)u0‖}
ρ→0−−−→ 0

and items (1) and (2) in Theorem 2.13 are verified, as well as (13). The other
estimates in item (3) we prove in the sequel.

Remark 4.8. Once it is proved that U(t, τ) recovers strong solutions for the equa-
tion ut + A(t)u = 0, the property U(t, τ) = U(t, r)U(r, τ), τ < r < t, follows from
the uniqueness of solution for the equation. Therefore, all conditions on Definition
2.6 are satisfied for the family U(t, τ) and we can address it as a linear process
growth 1− α.

4.1. Estimates for A(t)U(t, τ) and A(t)U(t, τ)A(τ)−1. Inequality (14), that is,

‖∂tU(t, τ)‖L(X) = ‖A(t)U(t, τ)‖L(X) ≤ C(t− τ)α−2,

is obtained from (36). Indeed,

‖A(t)U(t, τ)‖L(X)

≤
∥∥A(t)T−A(τ)(t− τ)

∥∥
L(X)

+

∥∥∥∥A(t)

∫ t

τ

T−A(s)(t− s)[Φ(s, τ)− Φ(t, τ)]ds

∥∥∥∥
L(X)

+

∥∥∥∥A(t)

∫ t

τ

T−A(s)(t− s)Φ(t, τ)ds

∥∥∥∥
L(X)

≤ C(t− τ)α−2 + C(t− τ)(α+η−1)+(α+δ−1− ηα ) + C(t− τ)α−1+(α+δ−2)

≤ C(t− τ)α−2,

and for the second and third term at the right side of first line, we used the estimate
obtained in the proof of Lemma 4.3, while in the last inequality, we used the fact
that (α+ η− 1), (α+ δ− 1− η

α ) and α+ δ− 1 > 0 are all positive, implicating that
α− 2 is the exponent in (t− τ) that causes the greatest values for the estimate.

To prove (15) in Theorem 2.13, we will provide an alternative characterization
for the process when this one is restricted to D. This characterization is suitable in
situations where it is necessary to use Gronwall’s inequality.
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Proposition 4.9. Let α2 + αδ − 1 > 0. The process U(t, τ) can be given as

U(t, τ)A(τ)−1 = T−A(t)(t− τ)A(τ)−1 −
∫ t

τ

T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds.

(38)

Proof. Consider the operator [τ, t] 3 s 7→ w(s) = −T−A(t)(t − s)U(s, τ)A(τ)−1.

Since A(τ)−1 has its image in D, it follows that [τ,∞) 3 s 7→ U(s, τ)A(τ)−1 is
continuous (Proposition 2.12). Also, U(s, τ)A(τ)−1 has its image in D and [τ, t] 3
s 7→ T−A(t)(t − s)U(s, τ)A(τ)−1 is continuous (Lemma 2.5). Therefore w(·) is
continuous in [τ, t] and differentiable in (τ, t) with derivative

d

ds
w(s) = T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1.

For 0 < h < t−τ
2 ,

w(t− h)− w(τ + h) =

∫ t−h

τ+h

d

ds
w(s)ds

=

∫ t−h

τ+h

T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds.

(39)

As h→ 0, from the continuity of w(·) in [τ, t], the left side converges to

w(t)− w(τ) = −U(t, τ)A(τ)−1 + T−A(t)(t− τ)A(τ)−1.

The right side demands more attention. Note that,∫ t

τ

T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds

=

∫ t∗

τ

T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds

+

∫ t

t∗
T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds,

for any τ < t∗ < t. The first integral on the right side is finite, since the integrand
is continuous in [τ, t∗]. For the second one, from (4), Proposition 2.3 - (1) and (14),
we have the following estimative∥∥∥∥∫ t

t∗
T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds

∥∥∥∥
L(X)

≤ C
∫ t

t∗
(t− s)α+δ−1‖A(s)U(s, τ)‖L(X)‖A(τ)−1‖L(X)ds

≤ C
∫ t

t∗
(t− s)α+δ−1(s− τ)α−2ds ≤ (t∗ − τ)α−2

∫ t

t∗
(t− s)α+δ−1ds <∞.

Since,
∫ t
τ
T−A(t)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1ds exists, the right side of (39)

converges to it and (38) follows.

We can use equality (38) to prove (15). We deduce

‖A(t)U(t, τ)A(τ)−1‖L(X)

≤
∥∥A(t)T−A(t)(t− τ)A(τ)−1

∥∥
L(X)

+

∥∥∥∥A(t)

∫ t

τ

T−A(t)(t−s)[A(s)−A(t)]U(s, τ)A(τ)−1ds

∥∥∥∥
L(X)

≤ C(t− τ)α−1 +
∫ t
τ
(t− s)α+δ−2‖A(s)U(s, τ)A(τ)−1‖L(X)ds.
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Applying Gronwall’s inequality [10, p.190], we obtain

‖A(t)U(t, τ)A(τ)−1‖ ≤ C(t− τ)α−1,

and the proof of Theorem 2.13 is now complete.

4.2. Further properties on the family U(t, τ). The linear process of growth
1− α, U(t, τ), obtained earlier is given by

U(t, τ) = T−A(τ)(t− τ) +

∫ t

τ

T−A(s)(t− s)Φ(s, τ)ds. (40)

Since the integral is a linear operator that usually regularizes the integrand, from
the above equality, we expect that the process U(t, τ) has a similar behavior to the
semigroup T−A(τ)(t − τ). In Proposition 2.12 we have already given conditions to
ensure strong continuity of the linear process of growth 1 − α. In the sequel we
prove Proposition 2.15, which was stated in Section 2 and provides conditions to
ensure continuity of ∂tU(t, τ)x at t = τ .

However, rather than using (40), we use an equivalent formulation for the linear
process U(t, τ), one that is obtained by noticing that the difference {U(t, τ) −
T−A(τ)(t− τ); t > τ} is the solution operator associated to the equation

ut +A(t)u = −[A(t)−A(τ)]T−A(τ)(t− τ), t > τ ;

u(τ) = 0 ∈ L(X), τ ∈ R.
Hence we obtain

U(t, τ) = T−A(τ)(t− τ) +

∫ t

τ

U(t, s)[A(τ)−A(s)]T−A(τ)(s− τ)ds. (41)

Proof of Proposition 2.15: For t > τ , Theorem 2.13 implies d
dtU(t, τ)x =

−A(t)U(t, τ)x. It only remains to check differentiability at t = τ . Consider the
differential quotient

U(τ + h, τ)x− x
h

=
T−A(τ)(h)x− x

h
+

1

h

∫ τ+h

τ

U(τ + h, s)[A(τ)−A(s)]T−A(τ)(s− τ)xds.

Recall that x ∈ D2 and Lemma 2.5 implies 1
h

[
T−A(τ)(h)x− x

] h→0+

−−−−→ −A(τ)x.
As for the second term, we have∥∥∥∥∥ 1
h

∫ τ+h

τ

U(τ + h, s)[A(τ)−A(s)]T−A(τ)(s− τ)xds

∥∥∥∥∥
X

≤ h−1

∫ τ+h

τ

∥∥U(τ + h, s)[A(τ)−A(s)]A(s)−1A(s)T−A(τ)(s− τ)A(τ)−1
∥∥
L(X)

‖A(τ)x‖X ds

≤ Ch−1

∫ τ+h

τ

(τ + h− s)α−1(s− τ)α+δ−1ds ‖A(τ)x‖X ds = h2α+δ−2B(α, α+ δ)
h→0−−−→ 0,

since 2α+ δ − 2 = 2
(
α+ δ

2 − 1
)
> 0 (see Remark 2.14).

Therefore,

d

dt
U(t, τ)x =

{
−A(t)U(t, τ)x, t > τ,

−A(τ)x, t = τ.

To verify the continuity at t = τ ,

‖ −A(t)U(t, τ)x−A(τ)x‖X = ‖ −A(t)U(t, τ)A(τ)−1A(τ)x−A(τ)x‖X
= ‖A(t)T−A(t)(t− τ)A(τ)−1A(τ)x−A(τ)x‖X
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+
∥∥∥A(t)

∫ t
τ
T−A(s)(t− s)[A(s)−A(t)]U(s, τ)A(τ)−1A(τ)xds

∥∥∥
X

≤ ‖ −A(t)T−A(t)(t− τ)x+A(τ)T−A(t)(t− τ)x‖X
+‖ −A(τ)T−A(t)(t− τ)x+A(τ)T−A(τ)(t− τ)x‖X+‖ −A(τ)T−A(τ)(t− τ)x−A(τ)x‖X

+
∫ t
τ
(t− s)α−2‖[A(s)−A(t)]A(τ)−1‖L(X)‖A(τ)U(s, τ)A(τ)−1‖L(X)‖A(τ)x‖Xds

≤ ‖[A(τ)−A(t)]A(τ)−1‖L(X)‖T−A(t)(t− τ)‖L(X)‖A(τ)x‖X
+‖T−A(t)(t− τ)− T−A(τ)(t− τ)‖L(X)‖A(τ)x‖X + ‖ −A(τ)T−A(τ)(t− τ)x−A(τ)x‖X

+
∫ t
τ
(t− s)α+δ−2(s− τ)α−1‖A(τ)x‖Xds

≤ (t− τ)α+δ−1‖A(τ)x‖X + (t− τ)2α+δ−2‖A(τ)x‖X + ‖ −A(τ)T−A(τ)(t− τ)x−A(τ)x‖X
+C(t− τ)2α+δ−2B(α+ δ − 1, α)‖A(τ)x‖X ,

where we used (38) to go from the second equality to the third, to pass from the
third (in)equality to the fourth we used (P3), estimated ‖A(τ)U(t, s)A(τ)−1‖ with
(3) and, at the last inequality, we used (4), Proposition 2.3 - (1) for the first term
and (19) for the second term. Note that all the terms above approaches zero as
t→ τ+. �

Before we treat the nonhomogeneous case, we present a version of Lemma 4.6 to
U(t, τ).

Lemma 4.10. Let α2 + αδ − 1 > 0 and x ∈ X. Then
∫ t
τ
U(t, s)xds belongs to D

and

A(t)

∫ t

τ

U(t, s)xds = A(t)

∫ t

τ

T−A(s)(t− s)
{
x+

∫ t

τ

Φ(t, ξ)xdξ

}
ds

+A(t)

∫ t

τ

T−A(ξ)(t− ξ)

{∫ ξ

τ

[Φ(ξ, s)− Φ(t, s)]xds

}
dξ

−A(t)

∫ t

τ

T−A(ξ)(t− ξ)
{∫ t

ξ

Φ(t, s)xds

}
dξ.

Furthermore,
∥∥∥A(t)

∫ t
τ
U(t, s)ds

∥∥∥
L(X)

≤ C(t− τ)α−1, for t > τ .

Proof. The characterization of the linear process obtained in Corollary 2.9 and an
application of Fubini’s theorem [9, Theorem 2.37] yield∫ t

τ

U(t, s)xds =

∫ t

τ

T−A(s)(t− s)xds+

∫ t

τ

T−A(ξ)(t− ξ)

[∫ ξ

τ

Φ(ξ, s)xds

]
dξ

=

∫ t

τ

T−A(s)(t− s)xds+

∫ t

τ

T−A(ξ)(t− ξ)

[∫ ξ

τ

[Φ(ξ, s)− Φ(t, s)]xds

]
dξ

+

∫ t

τ

T−A(ξ)(t− ξ)

[∫ ξ

τ

Φ(t, s)xds

]
dξ

=

∫ t

τ

T−A(s)(t− s)xds+

∫ t

τ

T−A(ξ)(t− ξ)

[∫ ξ

τ

[Φ(ξ, s)− Φ(t, s)]xds

]
dξ

+

∫ t

τ

T−A(ξ)(t− ξ)
[∫ t

τ

Φ(t, s)xds

]
dξ
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−
∫ t

τ

T−A(ξ)(t− ξ)
[∫ t

ξ

Φ(t, s)xds

]
dξ

=

∫ t

τ

T−A(s)(t− s)
{
x+

∫ t

τ

Φ(t, ξ)xdξ

}
ds (42)

+

∫ t

τ

T−A(ξ)(t− ξ)

[∫ ξ

τ

[Φ(ξ, s)− Φ(t, s)]xds

]
dξ (43)

−
∫ t

τ

T−A(ξ)(t− ξ)
[∫ t

ξ

Φ(t, s)xds

]
dξ. (44)

From Lemma 4.6 the expression (42) belongs to D and with the aid of Theorem
2.8, we obtain∥∥∥∥A(t)

(∫ t

τ

T−A(s)(t− s)
{
x+

∫ t

τ

Φ(t, ξ)xdξ

}
ds

)∥∥∥∥
X

≤ C(t− τ)α−1‖x‖X + C(t− τ)α−1

∥∥∥∥∫ t

τ

Φ(t, ξ)xdξ

∥∥∥∥
X

≤ C(t− τ)α−1‖x‖X + C(t− τ)α−1(t− τ)α+δ−1‖x‖X
≤ C(t− τ)α−1‖x‖X .

(45)

We prove that (43) is in D by proving that

∫ t
τ
A(t)T−A(ξ)(t− ξ)

[∫ ξ
τ

[Φ(ξ, s)− Φ(t, s)]xds
]
dξ

converges. In fact, from Lemma 3.5,∥∥∥∥∥
∫ t

τ

A(t)T−A(ξ)(t− ξ)

[∫ ξ

τ

[Φ(ξ, s)− Φ(t, s)]xds

]
dξ

∥∥∥∥∥
X

≤ C
∫ t

τ

(t− ξ)α−2

[∫ ξ

τ

[(t− ξ)η(ξ − s)α+δ−2− ηα ]ds

]
dξ‖x‖X

≤ C
∫ t

τ

(t− ξ)α+η−2(ξ − τ)α+δ−1− ηα dξ‖x‖X

≤ C(t− τ)(α+η−1)+(α+δ−1− ηα ) ≤ C‖x‖X ,

(46)

since η > 1 − α and α + δ − 1 − η
α > 0 (condition α2 + αδ − 1 > 0 ensures the

existence of η in 1−α < η < α2 +δα−α). Furthermore, the above estimate implies∥∥∥∥∥A(t)

∫ t

τ

T−A(ξ)(t− ξ)

[∫ ξ

τ

[Φ(ξ, s)− Φ(t, s)]xds

]
dξ

∥∥∥∥∥
X

≤ C‖x‖X .

Using the same strategy, we deduce for (44) that∥∥∥∥∫ t

τ

A(t)T−A(ξ)(t− ξ)
[∫ t

ξ

Φ(t, s)xds

]
dξ

∥∥∥∥
X

≤ C
∫ t

τ

(t− ξ)α−2

[∫ t

ξ

(t− s)α+δ−2ds

]
dξ‖x‖X

≤ C
∫ t

τ

(t− ξ)α−2(t− ξ)α+δ−1dξ‖x‖X ≤ C(t− τ)(α−1)+(α+δ−1)‖x‖X ,
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and recall that 2α+ δ − 2 > 0 (it follows from α2 + αδ − 1 > 0, see Remark 2.14).
The above estimates imply∥∥∥∥A(t)

∫ t

τ

T−A(ξ)(t− ξ)
[∫ t

ξ

Φ(t, s)xds

]
dξ

∥∥∥∥
X

≤ C‖x‖X . (47)

Therefore,
∫ t
τ
U(t, s)xds ∈ D and the estimate for A(t)

(∫ t
τ
U(t, s)ds

)
follows

from (45), (46) and (47).

5. Regular solution for ut+A(t)u = f(t). In this section we prove Theorem 2.16
with a similar strategy to the one we adopted in Section 4 to treat differentiability
of U(t, τ). If we tried to evaluate the derivative directly in

u(t) = U(t, τ)u0 +

∫ t

τ

U(t, s)f(s)ds,

the first term would not pose any problem, that is, ∂tU(t, τ)u0 = −A(t)U(t, τ)u0.
However, the expression given by the integral would be troublesome, since the ex-
pected value inside the integral is−A(t)U(t, s)f(s) and we cannot prove convergence
of the integral with such integrand (recall that ‖A(t)U(t, τ)‖L(X) ≤ (t−τ)α−2). We
denote this term as v(t), that is,

v(t) =

∫ t

τ

U(t, s)f(s)ds.

To overcome the problem mentioned above, we consider, for small ρ > 0, the
approximations

[τ + γ, t0] 3 t 7→ vρ(t) =

∫ t−ρ

τ

U(t, s)f(s)ds,

where γ > 0 is arbitrary, t0 ∈ (τ + γ, τ + T ] and ρ is small enough such that
t− ρ > τ + γ. With this slight retreat in the domain of integration, the integrand
becomes continuously differentiable in (τ, t− ρ] and we obtain the following result:

Lemma 5.1. The function vρ : [τ + γ, t0]→ X is continuously differentiable in X
and

v′ρ(t) = U(t, t− ρ)f(t− ρ)−A(t)

∫ t−ρ

τ

U(t, s)f(s)ds. (48)

Once we know vρ is differentiable, we prove:

(1) vρ(·) converges as ρ→ 0 to v(·) in C([τ + γ, t0], X).
(2) v′ρ(·) converges as ρ→ 0 to −A(·)v(·) + f(·) in C([τ + γ, t0], X).

Then, the differentiability of t 7→ v(t) for t ∈ [τ + γ, t0] follows and v′(t) =
−A(t)v(t)+f(t). From the arbitrariness of γ > 0 and t0, we have the differentiability
in (τ, τ + T ). After these two steps, Theorem 2.16 will be proved, since

u′(t) = −A(t)U(t, τ)u0 +
d

dt

∫ t

τ

U(t, s)f(s)ds = −A(t)U(t, τ)u0 + v′(t)

= −A(t)u(t) + f(t).

Item (1) is easily obtained: for each t ∈ [τ + γ, t0] we have

‖vρ(t)− v(t)‖X =

∥∥∥∥∫ t

t−ρ
U(t, s)f(s)ds

∥∥∥∥
X

≤
∫ t

t−ρ
C(t− s)α−1(s− τ)−ψds

≤ C(t− ρ− τ)−ψρα
ρ→0−→ 0.
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Item (2) on the other hand demands more attention. We first prove that v(t) ∈ D.

Lemma 5.2. Let f : (τ, τ + T ] → X satisfies (17) with θ > 1 − α. For any
t ∈ [τ + γ, t0], v(t) ∈ D and

−A(t)v(t) = −A(t)

∫ t

τ

U(t, s)[f(s)− f(t)]ds−A(t)

∫ t

τ

U(t, s)f(t)ds.

Proof. It follows from Lemma 4.10 that
∫ t
τ
U(t, s)f(t)ds ∈ D. Furthermore, from

(17) with θ > 1− α, we conclude that
∫ t
τ
A(t)U(t, s)[f(s)− f(t)]ds converges.

To prove item (2), we must check that v′ρ(·) given by (48) converges to −A(·)v(·)+
f(·) which is also given by:

−A(t)v(t) + f(t) = f(t)−A(t)

∫ t

τ

U(t, s)[f(s)− f(t)]ds−A(t)

∫ t

τ

U(t, s)f(t)ds.

(49)

We rearrange (48) in a way that it approaches the most the expression (49) above,
that is,

v′ρ(t) = U(t, t−ρ)f(t−ρ)−A(t)

∫ t−ρ

τ

U(t, s)[f(s)−f(t)]ds−A(t)

∫ t−ρ

τ

U(t, s)f(t)ds.

(50)
The second term of (50) converges as we see in the sequel.

Lemma 5.3. If f : (τ, τ + T ] → X satisfies (17) with θ > 1 − α, then, for any
t ∈ [τ + γ, t0],

A(t)

∫ t−ρ

τ

U(t, s)[f(s)− f(t)]ds
ρ→0−→ A(t)

∫ t

τ

U(t, s)[f(s)− f(t)]ds,

and the convergence is uniform for t in this interval.

Proof. This follows readily from the existence of
∫ t
τ
A(t)U(t, s)[f(s)−f(t)]ds proved

in Lemma 5.2. Note that θ > 1− α was necessary to ensure such existence.

For the other terms in (50), note that the discontinuity of the process at the
initial time allow situations in which

U(t, t− ρ)f(t− ρ) 9 f(t) and A(t)

∫ t−ρ

τ

U(t, s)f(t)ds9 A(t)

∫ t

τ

U(t, s)f(t)ds,

as ρ → 0. Therefore, we cannot work them separately and, in order to obtain the
desired convergence, we have to find an alternative to overcome this situation. We

will provide a way to write A(t)
∫ t
τ
U(t, s)xds in terms of A(t)

∫ t−ρ
τ

U(t, s)xds, for a
given ρ > 0 and x ∈ X. This is done in next lemma.

Lemma 5.4. Let α2 + αδ − 1 > 0. Given any 0 < ρ < t − τ and x ∈ X, the
following holds:

A(t)

∫ t

τ

U(t, s)xds = A(t)

∫ t−ρ

τ

U(t, s)xds+

{
x− T−A(t−ρ)(ρ)x−

∫ t

t−ρ
ϕ1(t, s)xds

}
+A(t)

∫ t
t−ρ T−A(ξ)(t− ξ)

{∫ ξ
t−ρ[Φ(ξ, s)− Φ(t, s)]xds

}
dξ (51)

+A(t)

∫ t

t−ρ
T−A(ξ)(t− ξ)

{∫ t

t−ρ
Φ(t, s)xds

}
dξ (52)
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−A(t)

∫ t

t−ρ
T−A(ξ)(t− ξ)

{∫ t

ξ

Φ(t, s)xds

}
dξ. (53)

Moreover, the terms (51), (52) and (53) vanish as ρ→ 0+.

Proof. The expression (9) for U(t, τ) and the result on Corollary 4.7 imply that

A(t)

∫ t

t−ρ
U(t, s)xds

= A(t)

∫ t

t−ρ
T−A(s)(t− s)xds+A(t)

∫ t

t−ρ

{∫ t

s

T−A(ξ)(t− ξ)Φ(ξ, s)xdξ

}
ds

=

{
x− T−A(t−ρ)(ρ)x−

∫ t

t−ρ
ϕ1(t, s)xds

}
+A(t)

∫ t

t−ρ

{∫ t

s

T−A(ξ)(t− ξ)Φ(ξ, s)xdξ

}
ds.

Moreover, since
∫ t
τ
U(t, s)xds ∈ D,

A(t)
∫ t
τ
U(t, s)xds= A(t)

∫ t−ρ
τ

U(t, s)xds+A(t)
∫ t
t−ρ U(t, s)xds

= A(t)
∫ t−ρ
τ

U(t, s)xds+
{
x− T−A(t−ρ)(ρ)x−

∫ t
t−ρ ϕ1(t, s)xds

}
+A(t)

∫ t
t−ρ

{∫ t
s
T−A(ξ)(t− ξ)Φ(ξ, s)xdξ

}
ds. (54)

and we already obtain the first line of the desired inequality. An application of
Fubini’s theorem and some algebraic manipulation on (54) yield

A(t)

∫ t

t−ρ

{∫ t

s

T−A(ξ)(t− ξ)Φ(ξ, s)xdξ

}
ds = A(t)

∫ t

t−ρ
T−A(ξ)(t− ξ)

{∫ ξ

t−ρ
Φ(ξ, s)xds

}
dξ

= A(t)

∫ t

t−ρ
T−A(ξ)(t− ξ)

{∫ ξ

t−ρ
[Φ(ξ, s)− Φ(t, s)]xds

}
dξ

+A(t)

∫ t

t−ρ
T−A(ξ)(t− ξ)

{∫ t

t−ρ
Φ(t, s)xds

}
dξ

−A(t)

∫ t

t−ρ
T−A(ξ)(t− ξ)

{∫ t

ξ

Φ(t, s)xds

}
dξ

= I1(ρ) + I2(ρ) + I3(ρ).

The first statement of the lemma is already proved, it only remains to prove that
I1(ρ), I2(ρ) and I3(ρ) vanish as ρ→ 0+. From Lemma 3.5, we obtain

‖I1(ρ)‖X≤ C
∫ t
t−ρ(t− ξ)

α−2
{∫ ξ

t−ρ(t− ξ)
η(ξ − s)α+δ−2− ηα ‖x‖Xds

}
dξ

≤ C
∫ t
t−ρ(t− ξ)

α+η−2(ξ − (t− ρ))α+δ−1− ηα ‖x‖Xdξ

≤ Cρ(α+η−1)+(α+δ−1− ηα )‖x‖X
ρ→0→ 0.

For I2(ρ), if wρ =
∫ t
t−ρ Φ(t, s)xds, then ‖wρ‖X

ρ→0+

−→ 0 and we have

I2(ρ) = A(t)
∫ t
t−ρ T−A(ξ)(t− ξ)wρdξ

= A(t)
∫ t
τ
T−A(ξ)(t− ξ)wρdξ −A(t)A(t− ρ)−1A(t− ρ)

∫ t−ρ
τ

T−A(ξ)(t− ξ)wρdξ

= H(t, τ)wρ −A(t)A(t− ρ)−1H(t− ρ, τ)wρ.

Since H(·, ·) is a bounded linear operator (Lemma 4.5), it follows that

‖I2(ρ)‖X ≤ C(t− τ)α−1‖wρ‖X + C(t− ρ− τ)α−1‖wρ‖X
ρ→0→ 0.
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For the third term, we have

‖I3(ρ)‖X≤ C
∫ t

t−ρ
(t− ξ)α−2

{∫ t

ξ

(t− s)α+δ−2ds

}
dξ

≤ C
∫ t

t−ρ
(t− ξ)α−2(t− ξ)α+δ−1dξ ≤ Cρ2α+δ−2 ρ→0→ 0,

since α+ δ
2 − 1 > 0 (as a consequence of α2 + αδ − 1 > 0).

Equality provided in Lemma 5.4 suits well our purpose. We use the result of this
lemma to rewrite equation (50) for v′ρ. If I1(ρ), I2(ρ) and I3(ρ) represent the terms
(51), (52) and (53) with x = f(t) (all of them vanishing as ρ→ 0), we obtain

v′ρ(t) =

= U(t, t− ρ)f(t− ρ)−A(t)
∫ t−ρ
τ

U(t, s)[f(s)− f(t)]ds−A(t)
∫ t−ρ
τ

U(t, s)f(t)ds

= T−A(t−ρ)(ρ)f(t− ρ) +
∫ t
t−ρ T−A(s)(t− s)Φ(s, t− ρ)f(t− ρ)ds

−A(t)
∫ t−ρ
τ

U(t, s)[f(s)− f(t)]ds

−A(t)
∫ t
τ
U(t, s)f(t)ds+

{
f(t)− T−A(t−ρ)(ρ)f(t)−

∫ t
t−ρ ϕ1(t, s)f(t)ds

}
+I1(ρ) + I2(ρ) + I3(ρ)

= f(t)−A(t)
∫ t−ρ
τ

U(t, s)[f(s)− f(t)]ds−A(t)
∫ t
τ
U(t, s)f(t)ds (55)

+T−A(t−ρ)(ρ)[f(t− ρ)− f(t)] +
∫ t
t−ρ T−A(s)(t− s)Φ(s, t− ρ)f(t− ρ)ds−

∫ t
t−ρ ϕ1(t, s)f(t)ds

+I1(ρ) + I2(ρ) + I3(ρ).

First line in the last equality converges to f(t) − A(t)v(t), as needed (and uni-
formly for t ∈ [τ + γ, t0]), due to Lemma 5.3. We prove in the sequel that the
remaining terms vanish as ρ → 0+. Note that the θ−Hölder continuity of f(·)
given in (17) is extremely important in the convergence analysis below, as well its
controlled discontinuity at initial time (given by the exponent ψ ∈ (0, 1)) and the
fact that 1− α < η < α(α+ δ − 1). We obtain

‖T−A(t−ρ)(ρ)[f(t− ρ)− f(t)]‖X ≤ Cρα−1ρθ = Cρα+θ−1(t− ρ− τ)−ψ
ρ→0→ 0,∥∥∥∫ tt−ρ T−A(s)(t− s)Φ(s, t− ρ)f(t− ρ)ds

∥∥∥
X

≤ C
∫ t
t−ρ(t− s)

α−1(s− t− ρ)α+δ−2(t− ρ− τ)−ψds

≤ C(t− ρ− τ)−ψ
∫ t
t−ρ(t− s)

α−1(s− t− ρ)α+δ−2ds

≤ C(t− ρ− τ)−ψρα+α+δ−2B(α, α+ δ − 2)

≤ C(t− ρ− τ)−ψρ2α+δ−2 ρ→0→ 0

and∥∥∥∫ tt−ρ ϕ1(t, s)f(t)ds
∥∥∥
X
≤ C

∫ t
t−ρ(t− s)

α+δ−2(t− τ)−ψds ≤ C(t− τ)−ψρα+δ−1 ρ→0→ 0.

Consequently, in the expression obtained for v′ρ(·) we have (55) converging to
f(t) − A(t)v(t) whereas the remaining terms converge to zero, which allow us to
conclude

sup
t∈[τ+γ,T ]

∥∥∥∥v′ρ(t)− [f(t)−A(t)

∫ t

τ

U(t, s)f(s)ds

]∥∥∥∥
X

ρ→0+

−−−−→ 0

and Theorem 2.16 is proved.
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6. Application. Let Ω ⊂ RN be a bounded smooth domain formed by two disjoint
components: Ω = ΩL ∪ ΩR, ΩL ∩ ΩR = ∅. Attached to this Ω, consider the line
segment R0 given by R0 = {(r, 0) ∈ R × RN−1; r ∈ [0, 1]}. We assume that Ω and
R0 are connected by the points (0, 0) ∈ R× RN−1 and (1, 0) ∈ R× RN−1 and that
there exists a cylinder centered in the line segment R0 that only intersects Ω in
its bases. Figure 1 bellow illustrate this set. We denote Ω0 = Ω ∪ R0 and in this
domain and we consider the following system:

Ω Ω

R0

Figure 1. Domain Ω0
wt − div(a(t, x)∇w) + w = f(t), x ∈ Ω, t > τ,

∂nw = 0, x ∈ ∂Ω,

vt − ∂r(a(t, r)∂rv) + v = f(t), r ∈ R0, t > τ,

v(p0) = w(p0) and v(p1) = w(p1),

(56)

where p0 = (0, 0, ..., 0) ∈ RN and p1 = (1, 0, ..., 0) ∈ RN are the junction points
between the sets Ω and R0. An autonomous version of equation (56) was studied
in [2, 3, 4] and the authors developed a functional setting suitable to treat this
problem, which we reproduce in the sequel. The singularly nonautonomous version
was studied in [5], where existence of local mild solution was proved. We prove that
this mild solution is a strong solution of the problem. Assume that:

(A1) Ω ⊂ RN is a bounded domain with smooth boundary (C2) formed by two
disjoint components: ΩL and ΩR, with p0 ∈ ∂ΩL and p1 ∈ ∂ΩR.

(A2) The function a : R×Ω0 → R+ is continuously differentiable, that is, a ∈ C1(R×
Ω0,R+) and has its image in a closed interval [a0, a1] ⊂ (0,∞). Moreover,
a(·, ·) is Hölder continuous in the first variable with Hölder exponent δ ∈ (0, 1]:

|a(t, x)− a(s, x)| ≤ C|t− s|δ.

The phase space is U0
p = Lp(Ω) × Lp(0, 1), with norm ‖(w, v)‖U0

p
= ‖w‖Lp(Ω) +

‖v‖Lp(0,1). In this case, (U0
p , ‖ · ‖U0

p
) is Banach and equation (56) originates the

following abstract problem:

(w, v)t +A0(t)(w, v) = f(t), t > τ ; (w, v)(τ) = (w0, v0) ∈ U0
p , (57)

where A0(t) : D(A0(t)) ⊂ U0
p → U0

p is the linear operator given by

D(A0(t))=D=
{
(w, v)∈W 2,p(Ω)×W 2,p(0, 1):∂nw = 0 in ∂Ω and v(pi)=w(pi), i = 1, 2

}
, (58)

A0(t)(w, v) = (−div(a(t, x)∇w) + w,−∂r(a(t, r)∂rv) + v) , for (w, v) ∈ D. (59)



EQUATIONS WITH ALMOST SECTORIAL OPERATORS 29

We will also assume that f : R→ U0
p and it is Lipschitz continuous, that is, there

exists C > 0 such that, for all t, s ∈ R,

‖f(t)− f(s)‖U0
p
≤ C(t− s). (60)

Remark 6.1. Condition (58) imposed on p0 and p1 only makes sense if w ∈ C(Ω).
Therefore, the restriction p > N

2 must be required, which ensures W 2,p(Ω)↪→C(Ω)
[1, Theorem 5.4].

Proposition 6.2. [3, Proposition 3.1] The linear operator A0(t) satisfies:

1. A0(t) is a closed and densely defined linear operator.
2. A0(t) has compact resolvent and the semigroup T−A0(t)(s) is compact.

3. There exists ϕ ∈
(
π
2 , π

)
and C > 0, independent of t ∈ R, such that Σϕ ⊂

ρ(−A0(t)) and, for N
2 < p, λ ∈ Σϕ ∪ {0}, we have, for 0 < α < 1− N

2p < 1,

‖(λ+A0(t))−1‖L(U0
p ) ≤

C

|λ|α + 1
.

Remark 6.3. The operator A0(t), t ∈ R, given in (59) differs from the operators
considered in [3, 5]. In [3] the authors work with an autonomous version of the

linear operator given by A0(w, v) = (−∆ + I,− d2

dr2 + I), whereas [5] deals with a

nonautonomous version A0(t)(w, v) = (−a(t, x)∆ + I,−a(t, r) d
2

dr2 + I).
Despite the difference, the proof of each statement above is exactly the same as

the one presented in [3], since it only depends on the sectoriality of the operator

−∆ + I in Ω, on the sectoriality of − d2

dr2 + I (with Dirichlet boundary condition)
in R0, and on Sobolev embeddings.

In order for the problem to be well defined, we require p > N
2 (see Remark 6.1).

Moreover, the operator A0(t) is α−almost sectorial with α being any real number
satisfying

0 < α < 1− N

2p
=: α+,

To establish existence of local mild solution for general initial condition (w0, v0) ∈
U0
p , we must ensure that there exists α ∈ (0, α+) such that α > 1 − δ. This will

happen if α+ = 1− N
2p > 1− δ, that is,

p >
N

2δ
=: p∗. (61)

On the other hand, to ensure that the mild solution obtained is strong, we must
guarantee the existence of α ∈ (0, α+) such that α2 + αδ − 1 > 0.

Lemma 6.4. Let N
2 < p. There exists 0 < α < 1− N

2p such that α2 + αδ − 1 > 0 if

and only if

p >
N(
√

4 + δ2 + δ + 2)

4δ
=: p∗∗. (62)

Proof. It is enough to obtain a condition on p such that (α+)2 + (α+)δ − 1 > 0,
that is, (

1− N
2p

)2

+
(

1− N
2p

)
δ − 1 > 0. (63)

The left side of this inequality has only two roots for p ∈ (0,∞) given by the
second order polynomial P (p) = (4δ)p2 − 2N(δ + 2)p+N2, which are
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p− = N(−
√

4+δ2+δ+2)
4δ and p+ = N(

√
4+δ2+δ+2)

4δ .

Those two roots satisfy p− <
N
2 < p+ and the behavior of

(
1− N

2p

)2

+
(

1− N
2p

)
δ − 1

in terms of p is given by

p|
p+

|
p−

Figure 2. Graph of P (p) when N = 3 and δ = 3
4 .

Therefore, the range of possible values of p for which (63) holds is given by
p > p+.

If follows from the consideration above and from Theorem 2.16:

Proposition 6.5. Assume that p > N
2 , X = U0

p , , a : R× Ω0 → R+ satisfies (A2)

and f(t) ∈ U0
p satisfies (60). If p > N

2δ , then (57) has a mild solution (w, v)(·) :

(τ,∞)→ U0
p given by

(w, v)(t) = U0(t, τ)(w0, v0) +

∫ t

τ

U0(t, s)f(s)ds.

Moreover, if p > N(
√

4+δ2+δ+2)
4δ , then (w, v)(·) is a strong solution for the (57),

that is:

1. (w, v)(·) ∈ C1((τ,∞), X), (w, v)(τ) = (w0, v0) and (w, v)(t) ∈ D, for all τ <
t <∞.

2. The equation d
dt (w, v)(t) = −A0(t)(w, v)(t) + f(t), τ < t <∞, is satisfied in the

usual sense.

For (w0, v0) ∈ D, (w, v)(·) is continuous at t = τ , that is,

(w, v)(·) ∈ C([τ,∞), X) ∩ C1((τ,∞), X).

If we plot the values of α+ in terms of p, we obtain
We can interpret the results on Proposition 6.5 in terms of Figure (3). To obtain

mild solution, α+ must be above the horizontal line corresponding to 1− δ. In this
case, given N and δ, we can calculate p∗ given in (61) and for p > p∗, problem (57)
admits mild solution.

On the other hand, in order to guarantee the existence of strong solution, α+ must

be above the horizontal line
√
δ2+4
2 − δ

2 , which is obtained by solving α2 +αδ−1 = 0
in the variable α. In this case, we can calculate p∗∗ given in (62) and for p > p∗∗,
problem (57) admits strong solution. For instance, if N = 3 and δ = 3

4 , then
the problem has mild solution provided p > p∗ = 2 and it has strong solution if
p > p∗∗ ≈ 4, 9.
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p

α+11

1− δ

Mild solution Strong solution

√
δ2+4
2 − δ

2

p∗∗p∗N
2

Figure 3. Graphic of α+ = 1− N
2p
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