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Abstract: A computational approach for comparing qualitative shape descriptions

(QSDs) of objects within digital images is presented. First, the dissimilarity of qual-

itative features of shape is measured: (i) intuitively using conceptual neighborhood

diagrams; and (ii) mathematically using interval distances. Then, a similarity measure

between QSDs is defined and tested using images of different categories of the MPEG-

7-CE-Shape-1 library, images of tiles used to build mosaics, and a collection of Clipart

images. The results obtained show the effectiveness of the similarity measure defined,

which is invariant to translations, rotations and scaling, and which implicitly manages

deformation of shape parts and incompleteness.

Keywords: qualitative representation, shape, conceptual neighborhood diagrams, in-
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1. INTRODUCTION

Shape is probably the single most significant property that people perceive

about an object. By knowing the shape, the perceiver can predict more facts

about that object (what kind of object it is, what it is used for and so on)

than by knowing any other property (Palmer, 1999).

Formally, the shape of an object can be described by the properties of

the object’s boundary. A purely quantitative representation of that boundary

could be a set of mathematical functions of the coordinate space, such as a

circumference is represented mathematically by x2C y2 D r2. However, the

more complex the shape is, the more complicated is the numerical function

that describes its boundary. In these cases, piecewise interpolation methods
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are typically used; i.e., the shape of the object is described by approximation

using a set of small parts, such as straight lines or flat surfaces, for which

numerical functions may be found. The set of all the functions represents

the quantitative description of the object’s shape. A widely used alternative

to this method is to make a quantitative representation of the object’s shape

as a function of the pixels in the object image (Forsyth & Ponce, 2003). In

this case, however, the result is coarser or finer depending on the resolution

used, because some pixels may be only partly occupied, and it may also vary

considerably if the object is rotated or in different positions in the pixel grid.

Because of the numerical properties of digital images, most of the image

processing in computer vision has been carried out by applying mathematical

models and other quantitative techniques to describe and identify the shape

of the objects contained in an image. However, qualitative representations

of a shape (i.e., based on linguistic terms such as circle, curve, acute, etc.)

are most useful for applications of AI that involve user communication, as

Gottfried (2008) mentions:

“Interestingly, imprecise descriptions are frequently sufficient, and in particular,

frequently related to the human’s visual system, who can comprehend such

qualitative, imprecise features better than precise quantitative measurements.”

that is a human user can understand more easily what an obtuse angle is

rather than what an angle of 156.74ı means.

Qualitative shape descriptions focus on the relevant and invariant features

of shape that are considered most important within a particular context,

including how many concavities a shape has, whether it has any lines of

symmetry, if it is rectilinear or curvilinear, or if it has any holes, etc. (Galton &

Meathrel, 1999). Taking a broader view, the origin of qualitative descriptions

is probably obtaining a high-level description of low level inputs. Some

of the most relevant works in qualitative shape description are those by:

Schlieder (1994); Cohn (1995); Damski and Gero (1996); Clementini and

Di Felice (1997); Gero (1999); Galton and Meathrel (1999); Leyton (2004);

Museros (2006); Gottfried (2009). All these works provide evidence for the

effectiveness of using qualitative information to describe shapes (for a detailed

comparison of these works with our approach see Museros et al. (2011)).

In this article, shape description is tackled from a qualitative perspective,

in which a set of values related to a feature of shape is represented with only

a qualitative tag. The idea of this proposal is to abstract the numerical values,

as has previously been done by Lesher et al. (2000); Lin et al. (2003) and

Robinson (2007) using the discretization1 of continuous values. The approach

used here for qualitative shape description of silhouettes of two-dimensional

objects was first outlined in Falomir et al. (2008) and Falomir et al. (2011)

1Discretization is a process of transforming continuous attribute values into a

finite number of intervals and associating a discrete value with each interval.



as an extension of the model by Museros and Escrig (2007) and Museros

et al. (2011) used to describe the shape of the edges of the tiles that were

automatically assembled into a ceramic mosaic by a robot arm. That earlier

model was improved by Falomir et al. (2008) to reduce the ambiguity in

describing all existing 2D objects (not only tiles) and then it was used in

Falomir et al. (2011) to describe the shape of the objects appearing in any

digital image captured by a robot camera. Here, the approach by Falomir

et al. (2008) is defined in a general way that allow adaptation according to

the given application and the AMEVA algorithm (González-Abril et al., 2009)

is used to discretize our qualitative features of shape.

After processing the low level inputs and abstracting them to qualitative

or high level descriptions, an important problem is to obtain a method that

quantifies the resemblance or closeness between these descriptions. Usually

these methods are based on exact matching of descriptions, which can only

determine if both descriptions are equally the same or not, or approximate

matching, which can obtain a degree of similarity between both descriptions

although they are not equal. The approach Museros et al. (2011) applied exact

matching to find a correspondence of qualitative shape descriptions. Later,

the improved shape description model by Falomir et al. (2008) was tested on

tiles in mosaic assembling by approximate matching using a simple definition

of shape similarity based on conceptual neighborhood diagrams (Falomir

et al., 2010). Here, that earlier similarity method is improved an tested

on different kinds of 2D objects (not only tiles) and an alternative method

based on interval distances is presented and compared to the previous one.

Therefore, an approach for shape similarity calculus is presented in this article

which determines the similarity of qualitative features of shape: (i) intuitively

from conceptual neighborhood graphs and (ii) mathematically from interval

distances. Then this approach is tested on some image categories from the

MPEG-7 CE Shape-1 library, images of tiles used to build mosaics and on

Clip-art images, showing the flexibility and adaptability of our approach.

The main of our approach is to obtain a similarity degree between shapes

from a cognitive perspective, that is, which approximates to the human shape

similarity assessment, and analysis of our results dealing with this issue are

presented through the article.

The rest of this article is structured as follows. Section 2 reviews the

literature on shape similarity methods. In Section 3, the qualitative model

used for shape description is presented. A new approach for shape similar-

ity calculus is developed in Section 4. Section 5 presents an experimental

evaluation. Finally, conclusions are drawn in Section 6.

2. LITERATURE REVIEW

Shape similarity has been widely studied. In the literature works can be

found that define similarity measures between shapes that are represented



by: (i) quantitative information (Super, 2004; Ling & Jacobs, 2007; Attalla

& Siy, 2005; Latecki & Lakamper, 2000; Bai et al., 2008; Gdalyahu &

Weinshall, 1998; Mori et al., 2001); (ii) mixed quantitative and qualitative

information (Shokoufandeh et al., 2002; Berretti et al., 2000; Siddiqi et al.,

1998; Macrini et al., 2008; Sebastian et al., 2001, 2002) and (iii) qualitative

information (Gottfried, 2008; Kuijpers et al., 2006; Schuldt et al., 2006).

Approaches to shape similarity calculus based on quantitative represen-

tations can be classified into:

� approaches that match points of the shape boundary: Super (2004) de-

fines critical points of high curvature on boundaries and normalizes the

shape to a reference frame for rotation and scaling before calculating a

distance measure used in the matching process; whereas Ling and Ja-

cobs (2007) consider the inner-distance, or the length between landmark

points within the shape silhouette to define shape descriptors invariant to

articulation, which improved the classification of articulated shapes of 2D

objects.

� approaches that match segments of the shape boundary: (i) shapes are

segmented at multiple resolutions and a similarity is defined by elastic

matching of shape segments in the work by Attalla and Siy (2005); (ii) a

similarity measure between shapes based on the correspondence of visual

parts where partial matching can be performed when the scale is known

is presented by Latecki and Lakamper (2000) and then it is used for

detection and recognition of contour parts in digital images by Bai et al.

(2008); (iii) multiscale random fields are used by Latecki et al. (2008)

for contour grouping and recognizing shapes when the scale is unknown;

and, (iv) a local curve matching algorithm is described by Gdalyahu and

Weinshall (1998) that extracts points of high curvature and calculates a

distance between them using efficient alignment.

� approaches that match the context of the shapes: Mori et al. (2001) define

a shape feature descriptor vector that is used to represent general shape

contour.

Approaches to shape similarity that mix quantitative and qualitative rep-

resentations are those based on graphs/trees that usually describe the spa-

tial arrangement of the shape parts between them but also contain some

measurable properties of each shape part in their edges/nodes. For example:

(i) Shokoufandeh et al. (2002) divide the coarse shape of an object into blobs

and geometric relationships between them are organised into a graph, which is

used for shape comparing; (ii) a shape is divided into tokens, according to its

protrusions, and arranged into an M-tree, which is used to calculate distances

between tokens and to obtain a dissimilarity measure between the M-trees of

two shapes by Berretti et al. (2000); (iii) shocks (singularities) of a curve on

bounding contours are organized into a graph for shape matching by Siddiqi



et al. (1998) and evolve to skeletons2 and bone graphs for object recognition

in the work by Macrini et al. (2008); finally, (iv) a distance between shock

graphs is defined and used for recognition of shapes in the work by Sebastian

et al. (2001) and for retrieval of similar shapes in large databases in the work

by Sebastian et al. (2002).

The most representative approaches to shape similarity based on quali-

tative representation can be generally classified as:

� based on qualitative shape descriptors: (i) bipartite arrangements defined

by Gottfried (2008) that relate line segments of a contour of an object

to other parts of that same contour and then a similarity measure be-

tween these qualitative descriptions of shape is given; (ii) matrices of

qualitative concepts developed by Kuijpers et al. (2006) using the double-

cross orientation model by Freksa (1992) to describe polylines and to

find a similarity measure between polygons; and finally, (iii) polygons are

described qualitatively by their scope (calculated as their relative position

with respect to one of their line segments where the double-cross grid

described by Freksa (1992) is located) and scope histograms generated

and used for shape comparing by Schuldt et al. (2006).

� theoretical approaches: (i) the recognition-by-components theory by Bie-

derman (1987) in which any object can be generated from a set of genera-

lized-cone components, called geons; (ii) the relational modelling technique

by Shapiro et al. (1980) which decomposes objects into sticks, plates and

blobs; and finally, (iii) the codons by Richards and Hoffman (1985) that

are simple primitives for describing closed 2D shapes.

Finally, it is worth mentioning that some invariant feature descriptors

and detectors methods (such as SIFT by Lowe (2004), SURF by Bay et al.

(2006), SIFT C Vocabulary Tree by Csurka et al. (2004), Harris-Affine and

Hessian-Affine by Mikolajczyk et al. (2005), MSER by Matas et al. (2002),

etc.), which address the problem of comparing two digital images, have been

applied to object detection, where the key image contains an object and the

other image is an scene with that object within it. They have become very

popular because they can obtain an object hypothesis location within the

scene image in a fast an scalable way by analyzing all the pixels of both raw

PGM images and doing mathematical operations on them. However, they

obtain false positives in images containing few textures (that is, images with

simple object shapes, such as web icons, Clip-art images, etc.) or images

containing repetitive patterns. And finally, they do not describe and compare

object shapes at all and they cannot obtain a similarity index between shapes,

as all the previous mentioned works do.

2A skeleton or axis is a two-dimensional arc reflecting some global or local

symmetry or regularity within a shape.



3. A QUALITATIVE SHAPE DESCRIPTION

When people describe the shape of an object, we usually distinguish between

straight sides and curved ones, describe angles and their convexity, compare

the lengths of the sides of the object, etc. Hence, these features are the most

relevant ones, from an intuitive point of view, for describing shapes and

this is the main reason why we use them, after they were formally defined

in Falomir et al. (2008). Accordingly, this approach called QSD (Qualitative

Shape Description), which is based on how intuitively human beings describe

shapes, is used in this article.

Given a digital image containing a two-dimensional object, our approach

for Qualitative Shape Description (QSD) automatically extracts the closed

boundary of this object applying an image segmentation method (i.e., the

color segmentation method by Felzenszwalb and Huttenlocher, 2004, or the

well-known segmentation method by Canny, 1986).

From all the points that define the boundary (N ), a set of relevant points

(RPSet) of the shape is extracted as described in Algorithm 1. The points of

a boundary that are considered consecutive are those separated by a pre-

established granularity step (k). If the slope between a point Pi and its

consecutive point PiCk , denoted by s1, and the slope between Pi and PiC2k ,

termed s2, are equal, then Pi , PiCk and PiC2k belong to the same straight

segment. If s1 and s2 are not equal, Pi , PiCk and PiC2k belong to different

straight segments or to a curved segment. This process is repeated for a new

point PiC3k and the process stops when all the consecutive points of the

boundary are visited. P is considered a relevant point if it is the point at

which the slope stops being constant or it is the point at which the slope

changes its sign. Note that the granularity step is set by experimentation as

a function of the edge length of the described object: if the edges are long,

the granularity step will have a larger value; if they are short, the granularity

step will have a smaller value.

Algorithm 1. Extraction of the relevant points of the shape from all the pixels of the

boundary of a 2D object.

N  number of points of the boundary;

k  granularity step;

for i D 0 to N � 2k; i D i C k do

s1 slope.Pi ; PiCk/

s2 slope.Pi ; PiC2k/

if s1 D s2 then

SameSegment SameSegment [ fPi ; PiCk ; PiC2kg

else

RPSET  RPSET [ fPiCkg

end if

end for



Figure 1. Characterization of Pj , a point of curvature.

Finally, a set of relevant points, denoted by {P0, P1,..., Pn}, determines

the shape of the object. Each of those relevant points P is described by a set

of four features, which are defined below:

hECp; ApjTCp; Lp ; Cpi

The first feature is the Edge Connection (denoted by EC) and it indicates

the connection occurring at the relevant point P. This feature is described by

the following tags:

� line-p-Line (lpL), if the point P connects two straight lines;

� line-p-Curve (lpC), if P connects a line and a curve;

� curve-p-Line (cpL), if P connects a curve and a line;

� curve-p-Curve (cpC), if P connects two curves; or,

� curve-p (cp) or p-Curve (pC), if P is a point of curvature of a curve.

If the EC is a line-p-Line, line-p-Curve, curve-p-Line or curve-p-Curve,

the second feature to consider is the Angle (denoted by A) at the relevant

point. The angle is a quantitative feature that is discretized using the Angle

Reference System or ARS D ı, ALAB , AINT } where, degrees (ı) indicates

the unit of measurement of the angles; ALAB refers to the set of labels for

the angles; and AINT refers to the values in degrees ı related to each label:

ALAB = {A1, A2, : : : , AKA}, and AINT = {[0, a1], (a1, a2], : : : , (aKA�1 ,

180]} where KA is the number of labels.3

On the other hand, if the EC is a curve-p or a p-Curve, the second feature

is the Type of Curvature (denoted by TC) at P, which is defined by the Type

of Curvature Reference System or TCRS D ı, TCLAB , TCINT }. As it is

shown in Figure 1, the Type of Curvature at Pj is determined by calculating

first the point c, which is the half-point of the line between Pj �1 (initial

point of the curve) and Pj C1 (final point of the curve). Next, the distance

between Pj �1 and c, named da, and the distance between Pj and c, named

db, are calculated, and finally, the angle that determines the TC is obtained by

Angle.P / D 2�atan2.da=db/�180=� in degrees (ı). In TCRS, TCLAB refers

3The number of labels in this feature and in the other features must be defined

in each situation as it can be seen in Section 5.1.



to the set of labels for curvature; and TCINT refers to the values of degrees

(ı) related to each label: TCLAB = { TC1, TC2, : : : , TCKT C }, and TCINT = {

[0, tc1], (tc1, tc2], : : : , (tcKT C �1, 180] } where KTC is the number of labels.

The third feature considered is the compared length (denoted by L) which

is defined by the Length Reference System or LRS = {UL, LLAB , LINT },

where UL or Unit of compared Length refers to the relation between the

length of the first edge and the length of the second edge connected by P,

that is, ul = (length of 1st edge)/(length of 2nd edge); LLAB refers to the set of

labels for compared length; and LINT refers to the values of UL related to

each label: LLAB = { L1, L2, : : : , LKL }, and LINT = { [0, l1], (l1, l2], : : : ,

(lKL�1, lKL] } where KL is the number of labels and lKL is the maximum

value of the feature L.

The last feature to be considered is the Convexity (denoted by C) at point

P, which is obtained from the oriented line built from the previous point to

the next point and by ordering the relevant points of the shape clockwise.

If point Pj is on the left of the segment defined by Pj �1 and Pj C1, then Pj

is convex; otherwise Pj is concave. For example, as Figure 2 shows: Pj is

characterized as convex, whereas Pj C1 is characterised as concave. Note that

mathematically Pj cannot be within the oriented line from Pj �1 to Pj C1,

otherwise it will not be a relevant point of the shape.

Therefore, the complete description of the shape of a 2D object is given

from a set of qualitative features as follows:

ŒEC1; A1jTC1; L1; C1�; ŒEC2; A2jTC2; L2; C2�; : : : ;

ŒECn; AnjTCn; Ln; Cn�

where n is the total number of relevant points of the object, ECi describes

the Edge Connection that occurs at the point Pi , Ai | TCi describes the angle

or the type of curvature at Pi , Li describes the compared length of the edges

connected at Pi and finally, Ci describes the convexity at Pi . The first relevant

point to be described (denoted by P0) is always the one closest to the upper-

left corner of the image and the rest of the relevant points are described

cyclically in a clockwise direction. An example of the general QSD of an

object is shown in Table 1.

Figure 2. Characterization of Pj as convex and Pj C1 as concave.



Table 1. Qualitative description of a 2D object containing straight segments and 
curves

Shape Qualitative description

QualitativeShapeDesc(Figure)D[

A: [line-p-line, right, sl, convex],

B1: [line-p-curve, obtuse, sl, concave],

B2: [curve-p, acute, sl, convex],

B3: [curve-p-line, obtuse, absh, concave],

C: [line-p-line, right, abl, convex],

D: [line-p-line, right, msh, convex],

E: [line-p-line, right, ml, convex]].

From a cognitive point of view, shape is defined in the MIT Encyclopedia

of Cognitive Science by Wilson and Keil (1999) (see Shape Perception entry)

as:

“An aspect of a stimulus that remains invariant despite changes in size, position

and orientation.”

Therefore, it is important to note that the QSD presented here is:

� invariant to scaling (expansions and contractions in size). If a shape is

scaled, then all the edges are expanded or contracted in the same proportion,

and therefore the features of shape obtained in both situations are the

same. If a shape is expanded or contracted until an edge disappears, then

our approach considers that the original shape is transformed into another

different one because they have different quantity of edges.

� invariant to translations (changes in position), because an object description

is always started at the point closest to the upper-left corner of the image,

and therefore does not depend on where the object is located in the image.

Clearly, the QSD is not invariant to rotations (changing orientation);

however, the comparison of two shapes would be invariant to rotation if both

shape descriptions were compared considering each point as the possible

starting point of the (cyclic) description. This is one constraint that must

be considered when defining a cognitive similarity measure between shapes

described by our QSD.

4. SIMILARITY BETWEEN QSDs

With the aim of defining a similarity measure between two QSDs correspond-

ing to two objects, it is necessary to work through three stages:



� defining a similarity measure between the qualitative features (related to

the shape features Edge Connection (EC), Angle (A), Type of Curvature

(TC), compared Length (L) and Convexity (C)) that describe the relevant

points of each QSD of the objects compared (Section 4.1);

� obtaining a similarity measure between a pair of relevant points: each one

corresponding to the QSD of each compared object (Section 4.2);

� defining a similarity measure between the QSDs of both objects by estab-

lishing a correspondence of pairs of relevant points (Section 4.3).

4.1. Similarity of Qualitative Features

To compare the qualitative tags defined for each feature of shape (Edge

Connection (EC), Angle (A), Type of Curvature (TC), compared Length (L)

and Convexity (C)), matrices of dissimilarity values are built:

� for features EC, A, TC, L and C, from a qualitative and cognitive perspec-

tive, using conceptual neighborhood diagrams (Section 4.1.1); and

� for features A, TC and L (defined using a reference system based on

intervals) from a quantitative perspective, using interval distances that are

richer mathematically (Section 4.1.2).

4.1.1. Building Dissimilarity Matrices Using Conceptual Neighborhood Di-

agrams (CNDs). The possible transformations between two labels that de-

scribe a feature can be defined from its corresponding CND. The term

conceptual neighborhood was first considered by Freksa (1991) in his analysis

of the 13 interval relations defined in the temporal logic defined by Allen

(1981):

“Two relations between pairs of events are conceptual neighbors if they can be

directly transformed one into another by continuous deformation (i.e., shorten-

ing or lengthening) of the events.”

Conceptual neighborhood relations can be found between the qualitative

tags defined for each feature of shape in the QSD model. For example, when

dealing with angles, the qualitative names acute and right can be considered

conceptual neighbors because a quantitative extension of the angle acute leads

to a direct transition to the angle right. However, angles acute and obtuse are

not conceptual neighbors, because a transition between them must go through

the angle right first.

In general, CNDs can be described as diagrams or graphs containing:

(i) nodes that map to a set of individual relations defined on regions or

intervals and (ii) paths or edges connecting pairs of adjacent nodes that

map to continuous transformations between them. From the CNDs defined,

a dissimilarity matrix between qualitative tags represented in each CND can

be calculated as the minimal path between them.



Figure 3. CND for feature Edge Connection (EC).

Table 2. Dissimilarity matrix for EC using a CND

EC lpL lpC cpL cpC cp/pC

lpL 0 1 1 2 2

lpC 1 0 2 1 1

cpL 1 2 0 1 1

cpC 2 1 1 0 1

cp/pC 2 1 1 1 0

Figure 4. CND for feature Convexity (C).

Figure 3 presents the CND for the feature Edge Connection (EC) ac-

cording to a bending continuous deformation, in which the qualitative tags

that are conceptual neighbors are those that represent only a change from

a curve to a line or vice versa. If a line is changed for a curve and also

a curve is changed for a line the dissimilarity between concepts is 2. The

dissimilarity matrix defined for this CND is shown in Table 2. Note that this

dissimilarity measure corresponds to Levenshtein (1966)’s distance between

the abbreviations of the qualitative tags defined for EC. Levenshtein’s distance

(LD) is an editing distance that measures the amount of differences between

two strings. It is defined as the minimum cost (number of edits) needed to

transform one string into another with the allowable operations: insertion,

deletion or substitution of a single character. For instance, in the case of EC

abbreviations, the LD between lpL and cp is 2, because 1 substitution and 1

insertion are needed, the LD between cpC and lpC is 1 because 1 substitution

operation is needed, whereas the LD between lpL and cpC is 2 because two

substitution operations are needed.

The CND for the feature Convexity (C) according to a smashing contin-

uous deformation is shown in Figure 4 and the dissimilarity matrix defined

for this CND is shown in Table 3.

As the features of shape Angle (A), Type of Curvature (TC) and com-

pared Length (L) are defined on continuous intervals of values, the general



Table 3. Dissimilarity matrix for C using a CND

Convexity Concave Convex

Concave 0 1

Convex 1 0

CNDs for them according to a shortening or lengthening continuous defor-

mation correspond to those shown in Figures 5, 6 and 7. Their corresponding

dissimilarity matrices are calculated in general from (1), (2) and (3) based

on the minimal path between the nodes of the CND.

d.Ai ; Aj / D ji � j j where i; j D 1 : : : KA (1)

d.T Ci ; T Cj / D ji � j j where i; j D 1 : : : KT C (2)

d.Li ; Lj / D ji � j j where i; j D 1 : : : KL (3)

Finally, it is our belief that employing CNDs in this way is plausible and

intuitive.

4.1.2. Building Dissimilarity Matrices Using Interval Distances. To define

the dissimilarity matrices for the features angle (A), type of curvature (TC)

and compared length (L), an ordinal scale has been used in Section 4.1.1.

However, these features are defined from intervals of values in their Reference

Systems. Therefore, we can take advantage of this by not considering dissimi-

larity matrices but instead, distance matrices, which are richer mathematically,

because the concept of distance is stricter than the concept of dissimilarity.

Let us introduce the concept of interval distance. Given an open interval

(analogously for another kind of interval) of finite dimension, there are two

main ways to represent it: from the extreme points as (a,b) (classical notation)

Figure 5. CND for feature Angle (A).

Figure 6. CND for feature Type of Curvature (TC).

Figure 7. CND for feature compared Length (L).



or as an open ball Br (c) (Borelian notation) where c D .a C b/=2 (center)

and r D .b � a/=2 (radius). Given two intervals, I1 = (a1,b1) = Br1(c1) and

I2 = (a2,b2) = Br2(c2), a family of distances between intervals was defined

by (Gonzalez-Abril, Velasco, Angulo, Ortega, & Ruiz, 2004), which depends

on three parameters as follows:

d 2.I1; I2/ D . �c �r /A

�

�c

�r

�

(4)

where �c D c2 � c1, �r D r2 � r1 and A is a symmetrical 2�2 matrix

of weights, which must be a positive definite matrix. From the A matrix,

the weights given to the position of the intervals and to the radius can be

controlled.

In this article we will use the most natural choice for the A matrix, which

is the identity matrix that provides the next distance:

d 2.I1; I2/ D
p

�2c C�2r D
p

.c2 � c1/2 C .r2 � r1/2 (5)

Hence, new dissimilarity matrices can be built for the features angle, type of

curvature and length considering interval distances.

4.2. A Similarity Between Relevant Points

As previously mentioned, the shape of an object is qualitatively described

by means of all its relevant points. Therefore, to define a similarity measure

between shapes, first a similarity measure between relevant points must be

obtained. Hence, given two relevant points, denoted by RPA and RPB ,

belonging to the shapes of the objects A and B respectively, a similarity

measure between them, denoted by Sim.RPA; RPB/, is defined as:

Sim.RPA; RPB/ D 1 �
X

i2fEC;A;T C;C;Lg

wi

ds.i/

Ds.i/
(6)

where ds.feature/ denotes the dissimilarity between relevant points with re-

spect to the feature obtained from the dissimilarity matrix previously defined.

Ds.feature/ denotes the maximum dissimilarity in the dissimilarity matrix

related to the feature considered at the relevant point. Hence, by dividing

ds.feature/ and Ds.feature/ the proportion of dissimilarity related to feature

of RPA and RPB is obtained, which is between 0 and 1. Moreover, the

parameter wfeature is the weight assigned to this feature, and it holds that

wEC C wA C wL C wC D 1, wA D wT C and wfeature � 0 for each feature.

In this article, with the aim of giving the same importance to all features

in (6), all the weights have the same value: 1
4
. Clearly, these weights can be

tuned if a researcher needs to give more importance to one feature over the

others. Furthermore, in (6) the dissimilarity value is subtracted from 1 with

the aim of providing a similarity measure.



Hence, 0 � Sim.RPA; RPB/ D Sim.RPB ; RPA/ � 1 and for each

RPA and RPB . Furthermore, if Sim.RPA; RPB/ D 0 this means that

ds.feature/ D Ds.feature/, that is, both relevant points have the maximum

dissimilarity for all features and thus, both relevant points are as different as

possible.

On the other hand, if Sim.RPA; RPB/ D 1, then this means that

ds.feature/ D 0 for all the features of the relevant points, and hence, these

two relevant points have the same QSD. In this case, both relevant points are

considered equivalent (a relation of equivalence is established between them).

If one relevant point is a point of curvature (cp or pC in EC) and the

other compared relevant point is not, the type of curvature (feature TC) of

the first relevant point will be compared to the angle (feature A) of the

second relevant point. For instance, in Table 1, if the relevant point A of the

shape is compared to the relevant point B2, the corresponding Angle at A

(Angle.A/) will be compared with the corresponding type of curvature (TC)

at B2 (T C.B2/). However, this is not a problem for our approach because it

can compare angles with types of curvature because both features correspond

to the same concept, that is, the angular amplitude at the relevant point, and

both can be defined by the same values in degrees.

In Section 5.1, the chosen parameters for each feature of shape are given

and all these concepts are exemplified.

4.3. Similarity Between QSDs

To compare two shapes A and B whose QSDs have the same number of

relevant points (denoted by n), the similarity between A and B is calculated

from (6) as an arithmetic mean of the similarity between relevant points of

both shapes cyclically in a clockwise direction. Thus, the calculation of the

similarity can start each time at a different relevant point of any of the shapes.

When all the possible similarities between relevant points are obtained, the

similarity between A and B is the highest value of all of them.

Let us clarify this similarity calculus with an example. Let T1 and T2

be two triangles, with QSDs given by {RPT 1.0/, RPT 1.1/, RPT 1.2/} and

{RPT 2.0/, RPT 2.1/, RPT 2.2/} respectively. In this case, three similarities

can be considered (for simplifying, we denote Sim.RPT 1.i/; RPT 2.j // as

Sim.i; j /):

Sim1.T1; T 2/ D
1

3
.Sim.0; 0/C Sim.1; 1/C Sim.2; 2//

Sim2.T1; T 2/ D
1

3
.Sim.1; 0/C Sim.2; 1/C Sim.0; 2//

Sim3.T1; T 2/ D
1

3
.Sim.2; 0/C Sim.0; 1/C Sim.1; 2//



and, the final similarity between both triangles will be the maximum of these

three.

It is important to note that this final similarity provides us with a corre-

spondence between relevant points of two shapes that will be useful further

on. Thus, for instance, if the final similarity between the triangle T1 and T2

is given from the Sim2 (T1, T2), then the correspondence obtained is:

RPT 1.1/! RPT 2.0/; RPT 1.2/! RPT 2.1/; RPT 1.0/! RPT 2.2/

On the other hand, if two shapes A and B whose QSDs have a different

number of relevant points are compared, then there are some relevant points

of one shape with no corresponding points in the other shape. In this case,

the points with no corresponding pairs in the other shape are compared with

a new relevant point, the void point, and the similarity between both points

is zero.

Let us suppose that the number of relevant points of the shapes A and

B are n and m respectively, and without loss of generality that n � m. In

this case, n-m relevant points of A are compared with the void point, and the

rest are compared with the relevant points of B in the same way as in the

previous case.

Figure 8 shows two objects, A and B, with 4 and 5 relevant points

respectively. When comparing A and B all the possible correspondences

between the relevant points of these two objects are the following:

f.0; void/; .1; 0/; .2; 1/; .3; 2/; .4; 3/g; f.0; void/; .1; 1/; .2; 2/; .3; 3/; .4; 0/g

f.0; void/; .1; 2/; .2; 3/; .3; 0/; .4; 1/g; f.0; void/; .1; 3/; .2; 0/; .3; 1/; .4; 2/g

f.0; 0/; .1; void/; .2; 1/; .3; 2/; .4; 3/g; f.0; 1/; .1; void/; .2; 2/; .3; 3/; .4; 0/g

f.0; 2/; .1; void/; .2; 3/; .3; 0/; .4; 1/g; f.0; 3/; .1; void/; .2; 0/; .3; 1/; .4; 2/g

f.0; 0/; .1; 1/; .2; void/; .3; 2/; .4; 3/g; f.0; 1/; .1; 2/; .2; void/; .3; 3/; .4; 0/g

f.0; 2/; .1; 3/; .2; void/; .3; 0/; .4; 1/g; f.0; 3/; .1; 0/; .2; void/; .3; 1/; .4; 2/g

f.0; 0/; .1; 1/; .2; 2/; .3; void/; .4; 3/g; f.0; 1/; .1; 2/; .2; 3/; .3; void/; .4; 0/g

f.0; 2/; .1; 3/; .2; 0/; .3; void/; .4; 1/g; f.0; 3/; .1; 0/; .2; 1/; .3; void/; .4; 2/g

f.0; 0/; .1; 1/; .2; 2/; .3; 3/; .4; void/g; f.0; 1/; .1; 2/; .2; 3/; .3; 0/; .4; void/g

f.0; 2/; .1; 3/; .2; 0/; .3; 1/; .4; void/g; f.0; 3/; .1; 0/; .2; 1/; .3; 2/; .4; void/g

Figure 8. Examples of shapes with different quantities of relevant points.



For the objects in Figure 8, Sim.A; B/ is given from the correspondence

{(0,0), (1,1), (2,void), (3,2), (4,3)}. Therefore, our approach provides addi-

tional information about the shape: RP 2 in object B has no corresponding

RP in object A.

Thus, the similarity for each one of all possible correspondences between

the relevant points of A and B by considering the void point is obtained as:

Sim�.A; B/ D
1

n

m
X

iD1

Sim.RPA�.i/; RPB .i// (7)

where � denotes a cyclic correspondence of the relevant point of object A

and the relevant point of object B.

Note that only m similarities between relevant points must be considered

because the similarity between a relevant point of A and the void point is

always zero. From here, the final similarity between the shapes A and B,

called SimQSD.A; B/, is the maximum value of these similarities, that is,

SimQSD.A; B/ D max�2C .Sim� .A; B// (8)

where C denotes the set of all possible correspondences between relevant

points of A and B.

In Algorithm 2, the process followed to calculate the similarity value

between two qualitative shape descriptions (QSD) is described in pseudocode.

The main properties of this final similarity are:

� Symmetry: SimQSD.A; B/ D SimQSD.B; A/.

� Invariance to rotation, translation and scale transformations;

� Upper and lower bounds, that is,

0 � SimQSD.A; B/ �
m

n
� 1

for any shapes A and B, because the difference between the number of

relevant points of shapes penalises the final similarity.

At this point, note that, according to Wilson and Keil (1999), our ap-

proach describes and compares shapes in a cognitive way as it takes into

account most of the conditions under which people perceive two distinct

objects as having the same shape, that is, invariance to changes in size,

position and orientation.

In terms of the computational cost (CC), two cases can be distinguished:

� if both shapes have the same number of relevant points (n), the cost of the

algorithm is O(n2), because the starting point of the comparison can be

any point of the second shape.



Algorithm 2. Similarity calculus between two QSDs.

Object AŒRPA.0/::RPA.N /�; Object BŒRPB.0/::RPB .M/�

DisCND.EC; C/IDisCND.A; T C; L/IDisINT .A; T C; L/I

SimQSDAB  Sim� AB  SimRP  0

if N ¤M then

VoidRPs.v/ BuildVectorVoidRPsŒ0::N �M�

MaxSize max.N; M/

end if

CyclicCorrespondencesŒ1::C � BuildCorrespondences.N; M/

for � in CyclicCorrespondencesŒ1::C � do

for i; j in � do

if i D void or j D void then

SimRP  0

VoidRP s.v/ AnotateVoidComparison.i; j /

else

if UsingIntervalDistances then

SimRP  Sim.RPA.i/; RPB .j /; DisCND.EC; C/;

DisINT.A; T C; L//

else

SimRP  Sim.RPA.i/; RPB .j /; DisCND.EC; C/;

DisCND.A; T C; L//

end if

end if

Sim� AB  SimRP C Sim� AB

end for

Sim�AB  Sim�AB=MaxSize

if Sim� AB > SimQSDAB then

SimQSDAB  Sim� AB

end if

end for

Return SimQSDAB

� if the difference in the number of relevant points between both shapes is

n�m, the number of possibilities for choosing n�m points to be compared

with the void point is a simple combinatory number

�

n

n �m

�

D

�

n

m

�

and considering that the starting point of the comparison can be any point

of the shape with the highest number of relevant points, the possible cost

is

�

n

m

�

m, which can be calculated to two different ways, that is,



�

n

m

�

m D
nŠ

.n�m/Š mŠ
m D

n.n � 1/ � � � .mC 1/

.n �m/Š
m D O.nn�mC1/

�

n

m

�

m D
nŠ

.n �m/Š mŠ
m D

n.n � 1/ � � � .n �mC 1/

mŠ
m D O.nmC1/

and, therefore, the final cost is:

C D minfO.nn�mC1/; O.nmC1/g D O.nminfm;n�mgC1/ � O.nn=2C1/ (9)

since minfm; n�mg � n=2.

Clearly, the computational cost (CC) peaks when two shapes with a high

number of relevant points are compared and one of them has twice the number

of relevant points than the other.

However, as this approach is focused on finding a similarity relation

between two shapes, not a dissimilarity one, comparisons between shapes

with a high difference in relevant points can be assigned a low similarity a

priori and the calculation of the exact similarity value can be avoided.

Finally, note that our approach obtains all the correspondences of the

relevant points and extracts those points that are compared to the void point,

which detects the location of the difference in the shape. The cost of obtaining

these correspondences is high and this is the reason why our approach

obtains a high computational cost. This is its advantage with respect to other

polynomial-time approaches (Gottfried, 2008; Latecki & Lakamper, 2000;

Bai et al., 2008; Latecki et al., 2008), which have some cognitive motivation,

but which are not able to obtain such explanatory information among the

shapes compared.

5. EXPERIMENTATION AND RESULTS

In our experimentation, first the features composing our QSD approach are

parameterized by experts as described in Section 5.1. Then the SimQSD

is used on some images of the Bone category extracted from the MPEG-

7 CE Shape-1 library4 (Latecki et al., 2000) and the similarity values as-

signed from CNDs or interval distances and the correspondences of rele-

vant points obtained are presented in Section 5.2. Moreover, the SimQSD

approach is used to compare the shape of objects from: (i) all the cate-

gories of the MPEG-7 CE Shape-1 library (Section 5.3), (ii) images of tiles

used to build mosaics (Section 5.4), and (iii) Clip-art images (Section 5.5).

4http://www.cis.temple.edu/�latecki/TestData/mpeg7shapeB.tar.gz



Finally, an analysis of the general results of our experimentation is given in

Section 5.6.

5.1. Parameters Selection

To determine the qualitative tags defined for describing the Angles (A), Types

of Curvature (TC) and compared Lengths (L) of a shape and its corresponding

interval values, some experts in the implementation area were consulted. First,

they were shown some examples of tiles and they were asked to name the

corresponding items of each category: angles, types of curvature and lengths.

After the sampling objects finished, the number of items/classes selected for

each category was that used most by the experts. Then, each tag was related

with the real value in degrees and the AMEVA algorithm (González-Abril

et al. 2009) was applied. This method discretizes by maximizing the contin-

gency coefficient matrix and therefore it is robust to noisy data, as proved

by González-Abril et al. (2009). Finally, the AMEVA algorithm provided the

classes of the intervals, which were rounded afterwards in order to obtain the

same sets of intervals used in the final application.

For the Angle Reference System or ARS = {ı, ALAB , AINT }, the chosen

granularity was 5 and the set of labels for the qualitative angles and the values

of degrees (ı) related to each label were:

ALAB D fvery_acute; acute; right; obtuse; very_obtuseg

AINT D fŒ0; 40�; .40; 85�; .85; 95�; .95; 140�; .140; 180�g

and in Borelian notation these are:

ABr.c/ D fB20.20/; B22:5.62:5/; B5.90/; B22:5.117:5/; B20.160/g

For the Type of Curvature Reference System or TCRS = {ı, TCLAB ,

TCINT }, the chosen granularity was also 5 and the set of labels for the type

of curvature and the values of degrees (ı) related to each label were:

TCLAB D fvery_acute; acute; semicircular; plane; very_planeg

TCINT D fŒ0; 40�; .40; 85�; .85; 95�; .95; 140/; Œ140; 180�g

and in Borelian notation these are:

TCBr.c/ D fB20.20/; B22:5.62:5/; B5.90/; B22:5.117:5/; B20.160/g

For the Length Reference System or LRS D {UL, LLAB , LINT }, the

chosen granularity was 7, the set of labels related to compared length and



the values related to each label were:

LLAB D fmuch_shorter.msh/; half _length.hl/; a_bit_shorter.absh/;

similar_length.sl/; a_bit_longer.abl/; double_length.dl/;

much_longer.ml/g

LINT D f.0; 0:4�; .0:4; 0:6�; .0:6; 0:9�; .0:9; 1:1�; .1:1; 1:9�;

.1:9; 2:1�; .2:1; 10�g

and in Borelian notation these are:

LBr.c/ D fB0:2.0:2/; B0:1.0:5/; B0:15.0:75/; B0:1.1:0/; B0:4.1:5/;

B0:1.2:0/B3:95.6:05/g

After parameterizing the features of shape Angle (A), Type of Curvature

(TC) and Length (L), an example is shown in Table 1.

The considered labels for each feature of shape were tested in experi-

mental studies carried out in our labs that described: (i) the shape of the edges

of the tiles that were automatically assembled into a ceramic mosaic by a

robot arm (Falomir et al., 2010) and (ii) the shape of all the relevant color

regions of any digital image captured by a mobile robot webcam (Falomir

et al., 2011).

In accordance with this parameter selection, the CNDs obtained for the

features of shape Angle (A), Type of Curvature (TC) and compared Length

(L) are shown in Figures 9, 10 and 11 and the corresponding dissimilarity

matrices are obtained from (1), (2) and (3).

Figure 9. CND for feature Angle (A) determined by experts.

Figure 10. CND for feature Type of Curvature (TC) determined by experts.

Figure 11. CND for feature compared Length (L) determined by experts:

much_shorter (msh), half_length (hl), a_bit_shorter (absh), similar_length (sl),

a_bit_longer (abl), double_length (dl), much_longer (ml).



Table 4. Distance matrix for TC and A using interval distances.

TC or A Very acute Acute

Semicircular

or right

Plane or

obtuse

Very plane

or very

obtuse

Very acute 0.0 42.6 71.6 97.5 140.0

Acute 42.6 0.0 32.6 55.0 97.5

Semicircular or right 71.6 32.6 0.0 32.6 71.6

Plane or obtuse 97.5 55.0 32.6 0.0 42.6

Very plane or 140.0 97.5 71.6 42.6 0.0

very obtuse

Moreover, the distance (dissimilarity) matrices for the features of shape

Angle (A), Type of Curvature (TC) and compared Length (L) obtained when

applying the interval distances are shown in Tables 4 and 5. Note that,

although the features Type of Curvature (TC) and Angle (A) contain different

qualitative concepts, their dissimilarity matrices have been defined in exactly

the same way because the units and intervals are the same.

Considering the dissimilarity built from the CND for the feature Angle

(calculated from (1)), the dissimilarity between the interval [0,40] (corre-

sponding to very-acute) and the interval (40,85] (corresponding to acute)

is 1; and the dissimilarity between the interval [0,40] and the interval (85,

95] (corresponding to right) is 2. Mathematically speaking, it is not accurate

to say that the second dissimilarity is double the first dissimilarity because

proportional values cannot be calculated on an ordinal scale. Nevertheless,

considering the dissimilarity matrix built from interval distances for the

feature Angle (Table 4), the distance between the interval [0,40] and the

interval (40,85] is 42.6; and the distance between the interval [0,40] and the

interval (85,95] is 71.6. Hence, using the proportional scale, it is absolutely

accurate to compare both distances from their ratio (71.6/42.6), obtaining

Table 5. Distance matrix for qualitative compared length using interval distances

Length msh hl qsh sl ql dl ml

msh 0.00 0.32 0.55 0.81 1.32 1.80 6.95

hl 0.32 0.00 0.25 0.50 1.04 1.50 6.75

qsh 0.55 0.25 0.00 0.25 0.79 1.25 6.52

sl 0.81 0.50 0.25 0.00 0.58 1.00 6.35

ql 1.32 1.04 0.79 0.58 0.00 0.58 5.77

dl 1.80 1.50 1.25 1.00 0.58 0.00 5.59

ml 6.95 6.75 6.52 6.35 5.77 5.59 0.00



that one is 1.7 times the other, which can be rounded up to 2 (the same

dissimilarity obtained from CNDs, which proves its suitability).

Furthermore, the value
ds.i/

Ds.i/
in (6) can be seen as the importance of

changes in each feature of shape. Hence, from the dissimilarity matrices

obtained from CNDs, the following maximums (Ds.i/) are obtained: for

convexity (C), 1; for edge connection (EC), 2; for angle (A) and type of

curvature (TC), 4; and for length (L), 6. As the value assigned to each change

is 1, this means that each change in each feature has a different importance

(I) in (6) and the following priorities among features are given:

I.C/D 1>I.EC/D
1

2
>I.A/DI.T C/D

1

4
>I.L/D

1

6

For the interval distance matrices, the maximums (Ds.i/) for each feature

are: for angle (A) and type of curvature (TC), 140; and for length (L), 6.95.

The mean value of change between the qualitative concepts of the distance

matrix for angle and type of curvature is approximately 35 for each line and

row (as the dissimilarity matrix is symmetric), which gives us an importance

of change of 35/140 or 1/4. Moreover, the value of change between the tags

of the distance matrix for Length is approximately 1.18 for each line and

row, which gives us an importance of change in the feature of 1.18/6.95 or

17/100. Hence, it is calculated that

I.C/D1>I.EC/D
1

2
>I.A/DI.T C/D

1

4
>I.L/D

17

100

Therefore, the priorities given when considering dissimilarities from

matrices built from CNDs or from interval distances have the same order

and approximately equal values of importance.

These priorities can be justified as being suitable for comparing shapes

intuitively. In Figure 12 five shapes are shown (S1, S2, S3, S4 and S5)

that exemplify these priorities. The Convexity (C) is the feature that has the

greatest priority because, when it changes, not only the boundary of the object

changes, but also its interior (i.e., compare shapes S1 to S2 in which only

the convexity of relevant point 2 changes). The Edge Connection (EC) is

the second most important feature because it differentiates between curves

and straight lines, which is also an important difference. For example, if we

compare shapes S1 to S3 in which only the EC of relevant point 2 changes,

Figure 12. Examples of shapes for explaining the intuitive priorities obtained for C,

EC, A, TC and L.



we will see that they are more similar than S1 and S2 and than S2 and S3

in which both the EC and the C of 2 is different. The next most important

feature is the angle or type of curvature because it characterises the shape

of an object in a more significant way than the lengths of the edges, which

usually depend on the angle they define. If we compare S3 and S4, the most

perceptible difference is that the Angle of 2 is different, but the compared

length between relevant points 3-4 and 4-0 is also different in both shapes and

this is less perceptible. Finally, note that it is also true that the more similar

the number of relevant points between shapes, the higher the similarity, since

S1-S4 are more similar to each other than any of them are to S5, which has

a relevant point less than them.

5.2. Similarity Values and Correspondences of Points Between

Shapes of the Bone Category of MPEG-7 Library

In this section, the SimQSD is tested on the images of the Bone category

extracted from the MPEG-7 CE Shape-1 library. This category was selected

because it has images with interesting aspects to study (deformations, incom-

pleteness and large differences in the quantity of relevant points) that enable

us to test the suitability of the obtained correspondence of relevant points

between shapes.

Figure 13 shows that this approach intuitively detects the “extra” relevant

points of a shape. Given the shapes Bone-1 and Bone-7, the calculation of

the SimQSD provides the following results:

� The SimQSD is started at relevant point 1 of Bone-1 and at relevant point

0 of Bone-7, which correspond to one another;

� The relevant points of Bone-7 with no correspondence in Bone-1 are 6 and

16, which are easily identified to the human vision; and,

� The SimQSD between shapes is 0.88 using CNDs and 0.9 using interval

distances. A high similarity is obtained by both methods because Bone-7

is exactly the same as Bone-1 with a bend in it.

Some other shapes extracted from the MPEG-7 CE Shape-1 library (see

Figure 13) have been used to calculate the SimQSD between all shapes

and to study the obtained correspondence of relevant points. First, using

dissimilarity matrices built from CNDs (see Table 6) and secondly, using

dissimilarity matrices built from CNDs for the features edge connection (EC)

and Convexity and using dissimilarity matrices built from interval distances

for the features of angle (A), type of curvature (TC) and length (L) (see

Table 7).

In Tables 6 and 7, each cell indicates the SimQSD between the shapes,

the starting points of the similarity calculus and the relevant points without

correspondence. For example, in Table 6 the SimQSD between “Bone-1



Figure 13. Images from MPEG-7 CE Shape-1 library used for testing our approach.

The starting point of the QSD is shown by the number 0.

and Bone-6” is 0.88, starting the comparison by point 0 of Bone-1 and point

15 of Bone-6 (note that both points have the same location in the images)

obtaining that relevant points 10 and 11 of Bone-1 (the shape with the greatest

number of relevant points) are compared to the void point, that is they have

no correspondence with relevant points in Bone-6. In Table 7 the SimQSD

between “Bone-1 and Bone-6” is 0.89, starting the comparison by point 0 of

Bone-1 and point 8 of Bone-6 (another possible alternative) obtaining that

relevant points 1 and 2 of Bone-1 are compared to the void point.

It can be noticed in Tables 6 and 7 that the similarities obtained using

CNDs or interval distances are very similar. Only a few of the similarity

values calculated (marked in bold) are different. Therefore, from now on, in

the article only the results of our approach using CNDs and interval distances

will be shown because the weights assigned to the CNDs can be considered

a particular case of the interval distances obtained.
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Finally, it is important to note that our approach obtains a high similarity

value between nearly symmetrical shapes (such as Bone-7 and Bone-8) and

it also tackles the problem of deformations and incomplete shapes implicitly.

Bone-18 can be considered as Bone-1, but incomplete, because the top of

the bone that appears in all the other images does not appear in Bone-18.

Furthermore, Bone-7, Bone-8 and Bone-17 can be considered as Bone-1,

but broken or deformed in the middle. Moreover, the relevant points of one

shape that do not have a correspondence in the other shape show where

the deformation or the incomplete part of the other shape is. Therefore, our

approach can obtain suitable similarities between instances of the same shape

that are deformed or incomplete and give an approximate location of such

deformation or incompleteness.

5.3. Similarity Values Between Different Shape Categories

of MPEG-7 Library

In this section, the bulls-eye test5 for shape retrieval was performed using the

SimQSD on the images of the MPEG-7 CE Shape-1 library. In this test,

every shape in the database is compared to all other shapes, and the number

of shapes from the same class among the 40 most similar shapes is reported.

The bull’s-eye retrieval rate is the ratio of the total number of shapes from

the same class to the highest possible number. Thus, the best possible rate is

100%. For image segmentation and closed contour extraction, the method by

(Felzenszwalb & Huttenlocher, 2004) was used.

Table 8 shows the categories that obtained a highest bull’s-eye score

whereas Table 9 shows the results of the 10 categories with the worst bull’s-

eye score. Both tables have the following structure: (i) name and bull’s-eye

score of the category; (ii) image of the key shape; and, (iii) images of the

MPEG-7 arranged according to the obtained similarity value.

In Table 8, the most shapes retrieved belong to the same category or

they are cognitively similar. For example: (i) the pencil retrieved in the Bottle

category have nearly the same shape as any of the bottles; (ii) the device-star

retrieved in the Bone category can be built joining the two ends of Bone-12;

(iii) the apples retrieved in the Pocket category have the same boundary shape

as the clocks, etc. Moreover, analyzing the results obtained, it can be deduced

that the SimQSD approach is:

i. invariant to rotations, proved by the Hammer, Pencil and Spoon cate-

gories;

ii. invariant to translations, proved by the Brick category;

iii. invariant to scaling, proved by the Bone and Pocket categories;

iv. invariant to mirror-image reflections, proved by the Hammer category;

5http://www.dabi.temple.edu/˜shape/MPEG7/results.html



Table 8. The Top 10 results of testing SimQSD on all the categories from MPEG-7

Shape Library using CNDs and interval distances

v. influenced by the quantity of relevant points contained by the compared

shapes: the more difference in relevant points (or the more relevant points

compared to the void point) the lower the similarity.

If both shapes have an approximate number of relevant points, the fea-

tures of shape of each relevant point (i.e., the edge connection, the angle,

the convexity, the type of curvature, etc.) are the ones that influences the

similarity more, according to the priorities exemplified in Figure 12. For

example, objects retrieved as similar are those whose:

i. shapes have a lot of legs (concavities and convexities) proved by Teddy

and Chopper categories;



Table 9. The Bottom 10 results of testing SimQSD on all the categories from 
MPEG-7 Shape Library using CNDs and interval distances

ii. shapes have round handles or queues proved by Cup and Pocket cate-

gories;

iii. shapes have similar curves proved by Heart and Pocket categories;

iv. shapes have similar curves and convexities proved by Comma and Spoon

categories.

Note that the SimQSD is intended to calculate a similarity measure

between shapes and it has not been designed for object recognition. One

aspect to take into account in object retrieval from a database is the similarity

of the objects compared, not only the similarity of the shape of its boundary.

To improve the bull’s-eye test score, the SimQSD should be combined with

a similarity measure for comparing sizes, for example.



5.4. Similarity Values Between Tile Images Used to Build Mosaics

The SimQSD approach is also used to compare the shapes of tile images

captured by an industrial camera AVT-Guppy F033C located on a platform

from which a robot arm picks and places tile pieces for building tile mosaics

(Figure 14). The closed boundary of the objects within these BMP or JPEG

images is extracted using the well-known segmentation method by (Canny,

1986).

Table 10 shows the similarity values obtained for tile images which were

used to build the mosaic in Figure 14. This table shows: (i) image of the

Table 10. Results of testing SimQSD on tile images used to build mosaics



Figure 14. Scenario where automatic assembling of tile mosaics are carried out. (a)

Industrial camera located on a platform. (b) Image obtained. (c) Mosaic to assemble

(color figure available online).

tile key shape; (ii) images of the rest of the tiles arranged according to the

obtained similarity value. Note that the key shapes are arranged in this table

by the number of relevant points. Moreover, as the tile shapes have straight

edges with convex relevant points, it is easy to notice the decrease in the

similarity value according to the difference in the number of relevant points

of both shapes.

Finally, it is also important to realize that the SimQSD approach deals

with color images and that the color of the objects is not taken into account

for calculating the similarity value between their shapes.

5.5. Similarity Values Between a Collection of Clip-art Images

Clip-art images refer to pre-made images composed of illustrations (created

by hand or by computer software) which are used commonly in both personal

and commercial projects and are easily found on the Web as icons. The Clip-

art images used in this comparison are BMP images that contain color or

black-and-white objects. The closed boundary of those objects is extracted by

using the color segmentation method by Felzenszwalb and Huttenlocher (2004).

Table 11 presents the similarity values obtained for a collection of Clip-

art images showing: (i) Clip-art image with the key shape; and (ii) Clip-art

images arranged according to the obtained similarity value.

From Table 11, it can be noticed that images which could be considered

to belong to the same category have obtained a high similarity value (i.e., the

Clip-art images of chess pieces or animals), but other images that would be

not included in the same category are obtaining high similarity values because

they have similar number of relevant points, similar number of curves, similar

number of concavities, etc. (i.e., the arrangements obtained for the club, heart

and arrow). However, it is important to note that cognitive similarities can be

found between the shapes of different objects, as for example: (i) the shape

of a card club could be similar to the shape of a cloverleaf, or to the shapes



Table 11. Results of testing SimQSD on some Clipart images

of other leafs, or to the shape of other card symbols such as a spade; (ii) the

shape of a heart could be similar to the shape of a leaf, to the shape of a

rotated card spade or to the shape of a drop; and (iii) the shape of an arrow

could be similar to the shape of a card spade and it is also sharp pointed as

a card diamond.

5.6. Summary of the Results

After the experimental evaluation, the advantages of our approach are sum-

marized here:

� it provides a similarity value between two shapes but also a set of points

with no correspondence in the compared shapes;



� it obtains nearly the same similarity values either using CNDs or interval

distances;

� it obtains a similarity value between instances of the same shape that are

deformed or incomplete and it also gives an approximate location of such

deformation or incompleteness because the relevant points of one shape

that do not have a correspondence in the other shape show where the

deformation or the incomplete part of the other shape is;

� it obtains a high similarity value between translated, rotated, scaled and

symmetrical shapes;

� it can compare color or black-and-white images and it does not require any

special boundary extraction technique (i.e., Canny, 1986; Felzenszwalb &

Huttenlocher, 2004; etc.).

From a cognitive point of view, the problem of shape equivalence in-

volves understanding the conditions under which people perceive two distinct

objects as having the same shape. In addition to the cognitive definition of

shape perception by Wilson and Keil (1999), Palmer (1989) (see Representing

Shape and Structure Chapter) considers that two objects have the same

objective shape even after they have undergone spatial transformations such

as translations (changing position), rotations (changing orientation), scaling

(expanding and contracting in size), mirror-image reflections (changing direc-

tion) and combinations of these transformations. However, if spatial transfor-

mations such as squashing, stretching or deforming in any way are needed to

bring two objects into exact correspondence, then they have different objective

shapes, although they can be perceived as very similar. According to this,

our approach has proved to fulfill the requirements of a cognitive perception

of shape, because it is invariant to translations, rotations and scaling and

also obtains a high similarity value between mirror-image reflections or

symmetrical shapes.

6. CONCLUSIONS

A generalization of the qualitative model for shape description (QSD) for-

mulated by Falomir et al. (2008) has been presented in this article. Then,

an approach for calculating a similarity value between two QSDs has been

presented (SimQSD). This approach works in three steps: (1) comparing

qualitative tags related to the same feature of shape by building dissimilarity

matrices using: (a) conceptual neighborhood diagrams (CNDs); and (b) in-

terval distances; (2) calculating a similarity measure between relevant points;

and finally, (3) obtaining a similarity measure between the QSD of the objects

by cyclically comparing their relevant points.

Both methods for obtaining dissimilarity matrices for qualitative features

of shape (CNDs and interval distances) provide similarity measures that are

suitable for our case of study, because there is only a very small difference



between them. Furthermore, it is clear that obtaining dissimilarity matrices

between qualitative concepts built from CNDs is more intuitive and simpler to

calculate. In contrast, dissimilarity matrices between qualitative concepts built

from interval distances are more accurate from a mathematical point of view.

The SimQSD approach has been tested using all the images of different

categories of the MPEG-7 CE-Shape-1 library, images of tiles used to build

mosaics, and a collection of Clip-art images. It is proved to be able to compare

color or black-and-white images and it is independent of the segmentation

method used for extracting the boundary of the shape of the object in the

image. Moreover, the results obtained show that: (1) the similarity values

obtained are invariant to rotations, translations, scaling and mirror-image

changes of shapes and also combinations of these; (2) a similarity value can

be obtained between deformed or incomplete shapes and the approximate

location of the deformation or cut is determined by locating the relevant

points with void correspondence; and (3) the similarity values obtained by

our approach are coherent and cognitive because the lower the difference in

shape to the human vision, the higher the similarity.
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