
This is a repository copy of Distributed Model Predictive Control based on Dual

Decomposition with Neural-Network-based Warm Start in the Depósito de Investigación

de la Universidad de Sevilla.

Version: Accepted Paper.

Citation: P. Chanfreut, A. Sánchez-Amores, J. M. Maestre and E. F. Camacho,

"Distributed Model Predictive Control based on Dual Decomposition with Neural-

Network-based Warm Start," 2021 European Control Conference (ECC), Delft,

Netherlands, 2021, pp. 1969-1974, doi: 10.23919/ECC54610.2021.9655150.

To cite this publication, please use the final published version (if applicable). Please check

the document version above.

Copyright: © 2023 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Takedown policy: Please contact us (idus@us.es) and provide details if you believe this

document breaches copyrights. We will remove access to the work immediately and

investigate your claim.

mailto:idus@us.es

Distributed Model Predictive Control based on
Dual Decomposition with Neural-Network-based Warm Start

P. Chanfreut, A. Sánchez-Amores, J. M. Maestre, and E. F. Camacho

Abstract— This work deals with the application of neural
networks to speed up the convergence of a distributed model
predictive control (DMPC) algorithm based on dual decomposi-
tion. While dual decomposition methods are known to converge
to the centralized MPC solution, numerous iterations may be
required before convergence is attained, thus increasing com-
putation and communication burden. In this paper, a database
containing system states and optimal Lagrange multipliers is
created offline to train a neural network, which is incorporated
into the online operation of the distributed system. Numerical
results on an input-coupled 16 tanks benchmark are provided.

I. INTRODUCTION

Over the past years, the resolution of optimization prob-
lems using distributed model predictive control (MPC) has
drawn the attention of the research community [1], [2].
In this context, the global system is divided into several
coupled subsystems that communicate to optimize an MPC
subproblem. The distributed approach can preserve central-
ized performance, presenting significant benefits regarding
flexibility and scalability [3], [4]. In this regard, distributed
MPC results are particularly suitable when working with
large-scale applications, as shown in [5]–[8]. However, non
centralized architectures must limit to a minimum the amount
of data shared [9], but a lack of coordination may notably
decrease global performance in case of strong subsystems
interactions. At the same time, distributed strategies can
be broadly classified into non-cooperative and coopera-
tive algorithms [2]. In non-cooperative approaches, such as
communication-based MPC [10], each agent optimizes a
local objective function that does not consider the control
goals of the rest of the plant. Conversely, cooperative algo-
rithms like feasible cooperation-based MPC in [11], or dual
decomposition methods [12], reach the centralized optimum
at convergence.

By using dual decomposition, the centralized MPC so-
lution is computed in a distributed fashion following an
iterative procedure where a set of auxiliary variables, the
so-called Lagrange multipliers, are introduced to enforced
constraints satisfaction [12], [13]. Nowadays, the applica-
tion of dual decomposition techniques into network systems
with numerous agents has become very popular [3], [14].
However, a major drawback of this approach is its slow

This work is supported by the Spanish Training Program for Academic
Staff (FPU17/02653), the European Research Council Advanced Grant
OCONTSOLAR (SI-1838/24/2018), and the Spanish MINECO Project
C3PO (DPI2017-86918-R).

P. Chanfreut, A. Sánchez-Amores, J. M. Maestre and
E. F. Camacho are with the Department of Systems and
Automation Engineering, University of Seville, Spain, e-mails:
{pchanfreut,asamores,pepemaestre,efcamacho}@us.es.

convergence rate, which can involve high computation and
communication burden. See for example [15], where the au-
thors provide a quadratic approximation of the dual function,
aiming at improving this rate.

With the recent rise of machine learning and artificial
intelligence, the implementation of neural networks in com-
plex engineering optimization problems has become widely
used. Artificial neural networks present many possibilities to
deal with large amounts of data, with multiple successful
implementations in engineering optimization problems. In
this regard, works such as [16], [17] introduce a neural
network model predictive controller (NNMPC), where the
neural networks are used to predict the dynamic model of
the systems. A similar goal is pursued in [18], where instead
of modeling the process, neural networks are employed
for predicting the state vector over the prediction horizon.
Furthermore, in [19], [20], the authors propose to use directly
neural networks to minimize a quadratic cost function and
obtain the control law. In this paper, neural networks will
be trained to predict optimal Lagrange multipliers for a
distributed MPC scheme based on dual decomposition. In
particular, each agent optimizes a function where Lagrange
multipliers enforce an agreement on coupled actions that
affect local dynamics. The neural network models are incor-
porated into the distributed control scheme so as to provide
an initialization of the Lagrange prices at each time instant.
As will be seen, this start results in solutions close to
the centralized outcome. Consequently, online computational
burden will be reduced, speeding up the convergence of a
distributed MPC based on dual decomposition.

The rest of the paper is organized as follows. In Section II,
the model of the system is presented and the global con-
trol problem is formulated. Section III describes the dual-
decomposition algorithm and how Lagrange multipliers are
learnt. In Section IV, the idea is tested using a simulated 16
tanks benchmark. Finally, concluding remarks are given in
Section V.

II. PROBLEM FORMULATION

Consider a global system partitioned into a set N =
{1, 2, ..., N} of input-coupled subsystems with LTI dynam-
ics:

x+
i = Aiixi +Biiui + wi, with wi =

∑
j∈Ni

Bijuj , (1)

where xi ∈ Rnxi and ui ∈ Rnui are respectively the state
and input vectors of subsystem i ∈ N for each time instant k,
and wi ∈ Rnxi captures the input coupling effect among

subsystem i and its set of neighbors, i.e., Ni = {j ∈ N \
{i} : Bij 6= 0}, where 0 is the null matrix of corresponding
size. Also, matrices Aii ∈ Rnxi

×nxi and Bij ∈ Rnxi
×nuj

are the state transition and the input-to-state matrices for all
i, j ∈ N . Hereafter, we consider that vectors ui concatenate
a subset of the overall inputs, i.e., ui = [vm]m∈Vi , with vm
being the input m of the global system and Vi the subset
of inputs associated with subsystem i. For example, for a
system of two agents with four inputs and V1 = {1, 2} and
V2 = {3, 4}, one would have u1 = [v1, v2]T and u2 =
[v3, v4]T. Also, it is assumed that the N subsystems are
individually governed by a set of local MPC controllers that
can exchange information to determine their control actions.

By defining the overall state and input vectors as the
succession of every xi and ui, i.e., xN = [xi]i∈N ∈ Rnx

and uN = [ui]i∈N ∈ Rnu , the overall system dynamics can
be modeled as

x+
N = ANxN +BNuN , (2)

where AN and BN aggregate Aii and Bij for all i, j ∈
N into single matrices. Note that all subsystem interactions
defined by wi are implicitly considered by matrix BN in (2).

A. Centralized control problem

At each time instant k, the N local agents seek to optimize
in a distributed manner the following global MPC control
problem:

min
[Ui]i∈N

Np−1∑
n=0

∑
i∈N

`i(n)

s.t. xi(0) = xi(k), (3a)
xi(n+ 1) = Aiixi(n) +Biiui(n) + wi(n), (3b)
Gxixi(n+ 1) ≤ gxi , (3c)
Gvmvm(n) ≤ gvm , ∀m ∈ [1, nu], (3d)
ui(n) = [vm(n)]m∈Vi , (3e)

∀i ∈ N , (3f)
n = 0, ..., Np − 1, (3g)

where the time index n between brackets indicates the step
time of the prediction horizon, e.g., xi(n) is the prediction
on subsystem i state for instant k + n. The stage cost of
subsystem `i(·) is defined as

`i(n) = xT
i (n+ 1)Qixi(n+ 1) + uT

i (n)Riui(n). (4)

for all i ∈ N , with Qi ≥ 0 and Ri > 0 being weighting
matrices. Also, Gxi

, gxi
, Gvm and gvm are matrices and

vectors defining the constraints on subsystem i states and
inputs, and Ui is its sequence of actions for a time horizon
of Np steps, i.e., Ui = [ui(0)T, ui(1)T, ..., ui(Np − 1)T]T.

III. DUAL DECOMPOSITION WITH NEURAL-NETWORK
BASED WARM START

A. Dual decomposition

In what follows, we consider the dual decomposition
algorithm described in [12](Procedure 1), which allows to

compute the solution of global problem (3) in a distributed
way. In particular, we assume that each agent i ∈ N
optimizes not only its vector ui, but also neighboring system
inputs with impact on its dynamics, leading to a shared
optimization of variables connecting coupled subsystems.
Convergence to the centralized solution is achieved using an
iterative negotiation procedure in which Lagrange multipliers
are used to coordinate shared variables. Hereon, let Va

i denote
the augmented set of inputs that affect the dynamics of agents
i, i.e., Va

i = Vi ∪ {m ∈ [1, nu] : Bm
ij 6= 0, j ∈ Ni} where

Bm
ij is the subblock of matrix Bij mapping input vm into

state xi. Notice that although agent j ∈ Ni, some inputs in
vector uj may not influence subsystem i dynamics, hence
Va
i ⊆ ∪j∈{i}∪Ni

Vj . Also, let us define ui = [vm]m∈Va
i

and

`i(n) = xT
i (n+ 1)Qixi(n+ 1) + uT

i (n)Riui(n), (5)

where matrix Ri is built to guarantee that the sum of
all local indexes leads to the centralized objective in (3),
i.e.,

∑
i∈N `i(n) =

∑
i∈N `i(n). Considering this, the local

objective function of agent i becomes
∑Np−1

n=0 `i(n).

It is well known that dual decomposition enforces con-
straint satisfaction by incorporating Lagrange multipliers into
local objective functions. In this regard, let vim = Mm

i ui

contain the components of ui associated with input vm,
where Mm

i is a mapping matrix defined accordingly. Then,
we consider equality constraints

vim − vjm = 0, with m ∈ Va
i ,m ∈ Va

j . (6)

Notice that (6) implies that the solution of agent i for a
certain input vm must be equal to the solution of other
agent j for the same input, with vm being a shared variable
for agents i and j. Additionally, let λm be the Lagrange
multiplier associated with constraint (6). Then, problem (3)
can be rewritten as

max
[Λm]m∈S

min
[Ui]i∈N

J(xN (k), [Λm]nu
t=1, [Ui]i∈N) (7)

with

J(xN (k), [Λm]nu
t=1, [Ui]i∈N) =

Np−1∑
n=0

∑
i∈N

`i(n)+

Np−1∑
n=0

∑
i,j∈N

∑
m∈Va

i ,

m∈Va
j

λm(n)(Mm
i ui(n) −Mm

j uj(n)).

(8)

subject to (3a) to (3g). The sequences of variables ui and La-
grange multipliers λm along the time horizon are respectively
represented by Ui = [ui(0)T ui(1)T . . . ui(Np−1 − 1)T]T

and Λm = [λm(0) λm(1) . . . λm(Np−1−1)]. The objective
function in (7) can be broken up into N functions depending
just on variables xi, Ui and the corresponding Lagrange
multipliers, which allows us to distribute the global MPC
problem between the N local controllers. In particular, each
iteration p, agents i ∈ N first solve the following MPC
optimization problem to find the optimal sequence Up

i for
some fixed prices Λp

m = [λpm(n)]
Np−1
n=0 :

Up
i = arg min

Ui

Ji(xi(k),Ui) =

Np−1∑
n=0

`i(n)±
Np−1∑
n=0

∑
m∈S,
m∈Va

i

λpm(n)Mm
i ui(n)

s.t. xi(0) = xi(k), (9a)

xi(n+1)=Aiixi(n) +Biiui(n)+
∑
j∈Ni

Bijuj(n), (9b)

Gxi
xi(n+ 1) ≤ gxi

, (9c)
Gvmvm(n) ≤ gvm , ∀m ∈ Va

i , (9d)
ui(n) = [vm(n)]m∈Vi , (9e)

ui(n) = [vm(n)]m∈Va
i
, (9f)

n = 0, ..., Np − 1, (9g)

where the sign ± is set according to (7), i.e.,
∑

i∈N Ji(·) =
J(·), and set S groups all shared inputs, i.e.,

S = {m ∈ [1, nu] : m ∈ Va
i ,m ∈ Va

j , with i, j ∈ N , i 6= j}.

Subsequently, the agents update the values of Λp+1
m according

to the solutions obtained for Ui, i.e.,

Λp+1
m = Λp

m + γ(Up
i −Up

j), with m ∈ Va
i ,m ∈ Va

j , (10)

and γ > 0 being the step size. The process is repeated iter-
atively until convergence to the optimal solution is attained.
Note that the nature of the algorithm is cooperative since all
agents coordinate their decisions to optimize the plant-wide
objective function in (3).

B. Warm start based on Neural Networks
The objective of this paper is to exploit the predictive

ability of neural networks to provide an optimal warm start
for Lagrange multipliers, say Λ∗ = [Λ∗m]m∈S , for any
system state xN . In case of perfect prediction, local con-
trollers would just need to solve problem (9) once per time
step, leading to a notable reduction of cooperation efforts.
Moreover, only local states would need to be exchanged to
compute the corresponding Λ∗, thus reducing also the overall
communication load.

To create the neural network model, a data base DB
gathering a set of D global state points and their associated
optimal multipliers Λ∗m is generated offline, i.e.,

DB = {xdN , [Λ∗dm]m∈S}d∈[1,D]. (11)

where superscript d is used to index each of the data
base entries. To this end, the dual decomposition algo-
rithm in [12](Procedure 1) is repeatedly simulated until
convergence is attained for the D states in DB, and the
optimal multipliers are correspondingly stored. From (11),
it is possible to derive a model

Λ∗m = fm(xN) (12)

for any m ∈ S , by training a neural network with features
DBx = {xdN }d∈[1,D] and target DBΛm = {Λ∗dm }d∈[1,D].

Likewise, by simply aggregating (12) for all m, i.e., Λ∗1
Λ∗2
...


︸ ︷︷ ︸

Λ∗

=

 f1(xN)
f2(xN)

...


︸ ︷︷ ︸

f(xN)

(13)

one can derive a model Λ∗ = f(xN) that directly predicts
the optimal values of all Lagrangian prices. Alternatively, it
is possible to train directly a single neural network consid-
ering Λ∗ as target, with the drawback of dealing with Np|S|
target variables, i.e., the number of shared variables |S|
multiplied by the prediction horizon Np.

Considering the above, once the training process is com-
pleted, models (12) are introduced in the distributed control
scheme for its online use. In particular, Algorithm 1 shows
the pseudo-code with the steps followed by the local agents
at each time step k.

Algorithm 1 Control Scheme
At each sample time k, starting with p = 0, the system
proceed as follows:

1: if ‖∆xN ‖ ≤ ε then
2: The agents use as initial guess the final value of the

multipliers obtained at instant k − 1.
3: else
4: The agents share their state and compute initial

guess Λ0
m = fm(xN) for all shared inputs m ∈ S.

5: end if
6: All agents i ∈ N solve problem (9) and find optimal

sequences Up
i .

7: Update Lagrange prices, i.e., Λp+1
m = Λp

m+γ(Up
i −Up

j)
for all m ∈ S.

8: Set p ← p + 1 and go to Step 6 until convergence is
attained or a maximum number of iterations p̄ is reached.

9: Each agent i ∈ N implements the first component of the
agreed input sequences and updates xi according to (1).

Note that if the change in xN between consecutive time
instants is not significant, e.g., when the system reaches the
steady state, then a warm start based on the previous step
may also provide a suitable initial guess for the Lagrange
prices. That is, if at instant k, ‖xN −x−N ‖ ≤ ε, then, instead
of using model (13), one may choose Λ0 = Λ∗−, where x−N
and Λ∗− are respectively the system state and the optimal
Lagrangian prices of the previous instant k− 1, and ε is the
threshold.

Also, from (11), it is possible to assess the impact of
each subsystem state on the Lagrange multipliers so as
to improve models (12). For example, if a multiplier Λ∗m
is almost independent from some subsystem states, then a
reduced model Λ̂∗m = f̂m(xCm) can be generated, where xCm
aggregates the subsystem states with a notable effect on
price Λ∗m, with Cm ⊆ N . The latter allows for a distributed
initialization of the Lagrange multipliers, i.e., if Λm appears
in agents i and j control problems, then i and j just need
to know the states in xCm to find Λ0

m. By using the same

reasoning, if Cm ⊂ N for all m ∈ S, then the all-to-all data
exchange may not be required for the prices initialization.

IV. SIMULATION RESULTS

The proposed algorithm has been simulated on the 16
tanks shown in Figure 1. We assume that each of the
tanks represents a subsystem, hence, N = {1, . . . , 16}, with
dynamics modeled as

x+
i = xi +

Ts
Ai

∑
m∈Ii

vm −
Ts
Ai

∑
m∈Oi

vm, (14)

where xi is the relative water level to the operating point in
tank i, vm is the flow through pipe m, and Ii and Oi contain
respectively the set of inlet and outlet pipes of tank i. Also,
Ai = 2πr2

i is the cross section of tank i, where ri denotes
the radius, and Ts represents the sample time.

Hereafter, we use Figure 1, e.g., I1 = {1} and O1 =
{2, 3}. Note that model (14) can be rewritten as (1) for a
proper definition of vector ui. In this regard, we consider
Table I, assuming that each agent i ∈ N can manipulate the
flow through its outlet pipes and pump water into its neigh-
bouring tanks. On the other hand, the inflows of each tank
i are seen as coupling disturbances for all i > 2. Note that
agent 1 also manipulates the inflow through pipe 1, which is
an external flow source. Vectors ui, which contain the control
actions considered in the local optimization problems, are
defined accordingly as ui = [vm]m∈Ii∪Oi

for any i ∈ N .
Therefore, if tanks i and j are connected by pipe m, then
inputs sequences Ui = [ui(n)]

Np−1
n=0 and Uj = [uj]

Np−1
n=0

should satisfy vim = vjm on the flow through a given
pipe m through the entire prediction horizon. This generates
a set of 19 equality constraints that can be formulated as
Mm

i um
i (n) − Mm

j um
j (n) = 0, with n = 0, ..., Np − 1,

and that are distributed using dual decomposition in the
corresponding local MPC control problems.

The goal is to regulate the 16 tanks towards the operating
point while satisfying the following constraints:

|xi| ≤ 1 ∀i ∈ N , (15a)
0 ≤ vm ≤ 0.5 ∀m ∈ S, and (15b)
0 ≤ v1, v20 ≤ 1. (15c)

To this end, stage cost (4) with weighting matrices Qi = 1
and Ri = 0.2 · Inui

for all i ∈ N is used, where Inui
is the

identity matrix of dimensions nui
× nui

. Other parameters
used in the simulations are Np = 3, Ts = 0.2 and ri = 0.5.

Neural networks have been generated using Matlab®

Deep Learning Toolbox, specifically the Levenberg-
Marquardt algorithm with 25 hidden layer neurons, in
a 1.8 GHz quad-core Intel® CoreTM i7/8 GB RAM computer.
To this end, a data base DB with 3500 states and optimal
Lagrange multipliers was previously created. The simulation
results obtained are summarized below.

Figure 2 illustrates the performance of Algorithm 1 when
the initial state is xN = [0.6,−0.7, 0.5, 0.6,−0.3,−0.5,
− 0.9, 0.8,−0.8, 0.7,−0.8,−0.6, 0.5, 0.7,−0.9, 0.8]T,
and a maximum number of iterations p̄ = 1 is considered.

Fig. 1. Scheme of the 16 tanks system.

TABLE I
DEFINITION OF THE SUBSYSTEMS INPUT VECTORS ui AND

OPTIMIZATION VARIABLES ui FOR EACH AGENT i.

i uT
i uT

i i uT
i uT

i

1 [v1, v2, v3] [v1, v2, v3] 9 [v12, v13] [v8, v12, v13]
2 [v4] [v2, v4] 10 [v14] [v12, v14]
3 [v5] [v4, v5] 11 [v15] [v14, v15]
4 [v6] [v5, v6] 12 [v16] [v11, v15, v16]
5 [v7, v8] [v3, v7, v8] 13 [v17] [v13, v17]
6 [v9] [v7, v9] 14 [v18] [v17, v18]
7 [v10] [v9, v10] 15 [v19] [v18, v19]
8 [v11] [v6, v10, v11] 16 [v20] [v16, v19, v20]

Also, parameter ε has been set to 0 in this case, i.e., at
each time instant, the agents implement directly the first
component of the solutions obtained with Λ0 = f(xN),
according to Step 4 in Algorithm 1. Note that if ε = 0, the
condition in Step 1, i.e., ‖∆xN ‖ ≤ 0, is not satisfied unless
there are no state changes between consecutive instants.
In particular, solid lines represent subsystems’ state and
inputs evolution when Algorithm 1 is applied and dashed
lines show the results corresponding to centralized MPC.
As can be seen, state and inputs trajectories follow closely
the centralized solution despite not allowing the agents to
iterate. However, if the agents negotiation is stopped before
convergence, state constraint (15a) may be violated. To avoid
any loss of feasibility, state restrictions have been introduced
as soft constraints in each subsystem local problem.

Table II provides the overall cumulative cost for different
values of parameter p̄ when the step γ is set to 5E − 2
and ε = 0. This performance index has been computed as
the cumulative sum of state cost (4), i.e.,

∑T
k=1

∑
i∈N `i(k),

being T is the simulation length. Table II shows that even
using p̄ = 1, the loss of performance is just a 3.33%
with respect to centralized operation, which indicates that
the Lagrange multipliers provided by the neural networks
are close to be optimal. Also, for this value of γ, a few
iterations allow for a further improvement, e.g., for p̄ =
10, performance loss decreases to 0.3%. Also, when no
limitation in p̄ is considered and ‖Up−1 −Up‖2 ≤ 5E − 4
is used as convergence condition, being U the overall input
sequence, the system performance practically matches that
of the centralized results (29.9232).

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1
x

1
,

x
2

0 2 4 6

Time (s)

0

0.2

0.4

0.6

x
3
,

x
4

0 5

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

x
5
,

x
6

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
7
,

x
8

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
9
,

x
1

0

0 2 4 6

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

x
1

1
,

x
1

2

0 2 4 6

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

x
1

3
,

x
1

4

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
1

5
,

x
1

6

(a) Subsystems state

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
1
,
v

2

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
3
,
v

4

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
5
,
v

6

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
7
,
v

8

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
9
,
v

1
0

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
1

1
,
v

1
2

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
1

3
,
v

1
4

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
1

5
,
v

1
6

2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

v
1

7
,
v

1
8

2 4 6

Time (s)

0

0.5

1

v
1

9
,
v

2
0

(b) Transferred flows

Fig. 2. Evolution the subsystems state and transferred flows between
tanks. The solid lines shows the result when the neural network models
are incorporated into the control scheme and a maximum number of p̄ = 1
iterations is allowed, and the dashed lines represent the centralized MPC
solution.

TABLE II
COMPARISON OF THE OVERALL CUMULATIVE PERFORMANCE COST FOR

DIFFERENT VALUES OF p̄.

Cumulative cost
p̄ = 1 30.9123
p̄ = 5 30.2270
p̄ = 10 30.0063
Centralized MPC 29.9156

2 4 6 8 10 12 14 16 18 20

Simulations

0

50

100

150

C
u
m

u
la

ti
v
e
 c

o
s
t

Centralized

Algorithm 1

Decentralized

Fig. 3. Cumulative performance costs in 20 simulations starting from
different random states. The cost of Algorithm 1 with p̄ = 1 and ε = 0 is
compared with the centralized and decentralized MPC approaches.

For a better performance assessment, 20 random initial
system states satisfying |xi| ≤ 1 have been generated, and
the performance of Algorithm 1 (with p̄ = 1 and ε = 0) has
been compared with centralized and decentralized MPC (see
Figure 3). In the decentralized case, each agent i measures
its state xi and optimizes function

∑Np−1
n=0 `i(n) in terms

of the variables it can manipulate, i.e., the sequence of
inputs ui. In this respect, the predicted inflows from neigh-
boring controllers are set to zero in the local optimizations,
and state constraint (15a) is introduced as a soft constraint.
Again, the neural network approach leads to costs that
barely differ from the centralized outcome. However, when
the decentralized approach is implemented, just those tanks
starting with xi ≥ 0 regulate their state to the origin, but
those with xi < 0 cannot reach the setpoint unless some of
the neighboring agents send water to them due to an excess
in their own tanks (see Figure 4). This causes a notable
increase of the costs, which, in turn, highlights the benefits
of coordination.

Finally, Figure 5 compares the number of iterations re-
quired each time step for satisfying convergence condi-
tion ‖Up−1 − Up‖2 ≤ 5E − 4. The blue line shows
the result when a warm start based on the previous time
instant is always considered, and the red line shows the
number of iterations obtained when using the neural network
but switching to a previous-step based warm start when
‖∆xN ‖2 ≤ 0.04. Notice that the former approach shows a
good performance when the system state reaches the steady
state, but requires greater iterations during the first simulation
steps, where the neural network allows to speed up the
negotiation.

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
1
,

x
2
,

x
3
,

x
4

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
5
,

x
6
,

x
7
,

x
8

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
9
,

x
1
0
,

x
1
1
,

x
1
2

0 2 4 6

Time (s)

-1

-0.5

0

0.5

1

x
1
3
,

x
1
4
,

x
1
5
,

x
1
6

Fig. 4. Subsystem state when the system is controlled in a decentralized
manner.

5 10 15 20 25 30 35

Time step

10

15

20

25

30

35

40

45

50

55

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Previous step based warm start

Neural networks/previous step based warm start

Fig. 5. Number of iterations per time instant obtained with a previous step
based warm start and when the latter is combined with the neural network
initialization model.

V. CONCLUSION

In this paper, we deal with a distributed system where
dual decomposition is used to coordinate a set of local
agents, with a neural network predicting the value of the
Lagrange multipliers at each time step as a function of
the overall system state. The results on a 16-tanks system
show that these initial prices provide performance close to
the centralized one. Moreover, at expense of higher offline
computation costs derived from the neural network model
generation, this approach can reduce the online computation
and communication demands associated with the iterative
negotiation procedure that the agents must perform to find
the control actions.

Further research will study how this idea can be applied
to more realistic systems where also disturbances come into
play and analyze its scalability. Additionally, we will train
the neural network with control actions as features rather
than the overall state, that is, the Lagrange multipliers will
be modeled as a function on the last optimal inputs, thus
avoiding the need of sharing states. In this regard, future
work should provide a sensitivity analysis to investigate the
effect of different input parameters on the neural network
output, and of the type and structure of the network itself.
Finally, we plan to provide a suboptimality bound on the

loss of performance caused by using directly the predicted
Lagrangian prices for computing the implemented inputs.

REFERENCES

[1] R. R. Negenborn and J. Maestre, “Distributed model predictive control:
An overview and roadmap of future research opportunities,” IEEE
Control Systems Magazine, vol. 34, no. 4, pp. 87–97, 2014.

[2] P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu,
“Distributed model predictive control: A tutorial review and future
research directions,” Computers & Chemical Engineering, vol. 51, pp.
21–41, 2013.

[3] M. Razzanelli, E. Crisostomi, L. Pallottino, and G. Pannocchia,
“Distributed model predictive control for energy management in a
network of microgrids using the dual decomposition method,” Optimal
Control Applications and Methods, vol. 41, no. 1, pp. 25–41, 2019.

[4] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright,
“Distributed MPC strategies with application to power system au-
tomatic generation control,” IEEE Transactions on Control Systems
Technology, vol. 16, no. 6, pp. 1192–1206, 2008.

[5] P.-D. Moroşan, R. Bourdais, D. Dumur, and J. Buisson, “Building
temperature regulation using a distributed model predictive control,”
Energy and Buildings, vol. 42, no. 9, pp. 1445–1452, 2010.

[6] J. Alejandro, A. Arce, and C. Bordons, “Combined environmental and
economic dispatch of smart grids using distributed model predictive
control,” International Journal of Electrical Power & Energy Systems,
vol. 54, pp. 65–76, 2014.

[7] F. Garcia-Torres, C. Bordons, and M. A. Ridao, “Optimal economic
schedule for a network of microgrids with hybrid energy storage
system using distributed model predictive control,” IEEE Transactions
on Industrial Electronics, vol. 66, no. 3, pp. 1919–1929, 2018.

[8] M. Moradzadeh, R. Boel, and L. Vandevelde, “Voltage coordination
in multi-area power systems via distributed model predictive control,”
IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 513–521,
2012.

[9] A. Bemporad and D. Barcelli, “Decentralized model predictive con-
trol,” in Networked Control Systems. Springer, 2010, pp. 149–178.

[10] J. B. Rawlings and B. T. Stewart, “Coordinating multiple optimization-
based controllers: New opportunities and challenges,” Journal of
process control, vol. 18, no. 9, pp. 839–845, 2008.

[11] A. N. Venkat, J. B. Rawlings, and S. J. Wright, “Stability and
optimality of distributed model predictive control,” in Proceedings of
the 44th IEEE Conference on Decision and Control. IEEE, 2005,
pp. 6680–6685.

[12] F. Farokhi, I. Shames, and K. H. Johansson, “Distributed MPC via
dual decomposition and alternative direction method of multipliers,”
in Distributed model predictive control made easy. Springer, 2014,
pp. 115–131.

[13] P. Giselsson, M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer,
“Accelerated gradient methods and dual decomposition in distributed
model predictive control,” Automatica, vol. 49, no. 3, pp. 829–833,
2013.

[14] B. Hou, Y. Zheng, and S. Li, “A dual decomposition based dMPC
for networked systems with varying topology,” in 2019 Chinese
Automation Congress (CAC). IEEE, 2019, pp. 4541–4546.

[15] P. Giselsson, “Improved dual decomposition for distributed model
predictive control,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
1203–1209, 2014.

[16] K. O. Temeng, P. D. Schnelle, and T. J. McAvoy, “Model predictive
control of an industrial packed bed reactor using neural networks,”
Journal of Process Control, vol. 5, no. 1, pp. 19–27, 1995.

[17] S. Chen, Z. Wu, D. Rincon, and P. Christofides, “Machine learning-
based distributed model predictive control of nonlinear processes,”
American Institute of Chemical Engineers (AIChE) journal, vol. 66,
no. 11, 06 2020.

[18] P. Kittisupakorn, P. Thitiyasook, M. Hussain, and W. Daosud, “Neural
network based model predictive control for a steel pickling process,”
Journal of Process Control, vol. 19, no. 4, pp. 579–590, 2009.

[19] B. M. Åkesson and H. T. Toivonen, “A neural network model
predictive controller,” Journal of Process Control, vol. 16, no. 9, pp.
937–946, 2006.

[20] S. Liu and J. Wang, “A simplified dual neural network for quadratic
programming with its kwta application,” IEEE Transactions on Neural
Networks, vol. 17, no. 6, pp. 1500–1510, 2006.

