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1. Introduction

Let Ω ⊂ R
3 be an open bounded set with regular

boundary Γ, and consider the Navier–Stokes equa-
tions (NSE) on Ω with a homogeneous Dirichlet
boundary condition



∂u

∂t
− ν∆u+ (u · ∇)u+ ∇p = f(t)

in (0,+∞) × Ω,

∇ · u = 0 in (0,+∞) × Ω,

u = 0 on (0,+∞) × Γ,

u(0, x) = u0(x), x ∈ Ω,

(1)

where ν > 0 is the kinematic viscosity, u is the
velocity field of the fluid, p the pressure, u0 the
initial velocity field, and f(t) a given external
force field.

There have been many modifications of the
Navier–Stokes equations, starting with Leray and
mostly involving the nonlinear term, see the review
paper [Constantin, 2003]. A system, called the glob-
ally modified Navier–Stokes equations (GMNSE),
which was introduced recently by Caraballo et al.
[2006] will be considered here.

We define FN : R
+ → R

+ by

FN (r) := min
{

1,
N

r

}
, r ∈ R

+,
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for some N ∈ R
+ and will consider the following system of globally modified Navier–Stokes equations

(GMNSE ) 


∂u

∂t
− ν∆u+ FN (‖u‖)[(u · ∇)u] + ∇p = f(t) in (0,+∞) × Ω,

∇ · u = 0 in (0,+∞) × Ω,

u = 0 on (0,+∞) × Γ,

u(0, x) = u0(x), x ∈ Ω,

(2)

The GMNSE (2) are indeed globally modified —
the modifying factor FN (‖u‖) depends on the norm
‖u‖ = ‖∇u‖(L2(Ω))3×3 , which in turn depends on ∇u
over the whole domain Ω and not just at or near
the point x ∈ Ω under consideration. Essentially, it
prevents large gradients dominating the dynamics
and leading to explosions. It violates the basic laws
of mechanics, but mathematically the GMNSE (2)
are a well-defined system of equations, just like the
modified versions of the NSE of Leray and others
with other mollifications of the nonlinear term, see
the review paper [Constantin, 2003]. It is worth
mentioning that a global cut off function involving
the D(A1/4) norm for the two-dimensional stochas-
tic Navier–Stokes equations is used in [Flandoli &
Maslowski, 1995], and a cut-off function similar
to the one we will use here was considered in
[Yoshida & Giga, 1984].

As we have already mentioned, the GMNSE (2)
has been introduced and studied in [Caraballo et al.,
2006] (see also [Caraballo et al., 2008; Kloeden
et al., 2007; Romito, 2009; Kloeden et al., 2009b;
Kloeden & Valero, 2007] and the review paper
[Kloeden et al., 2009a]).

However, there are many situations in which
one can consider that the model is better described
if we allow some delay in the equations. These sit-
uations may appear, for instance, when we want to
control the system by applying a force which takes
into account not only the present state of the sys-
tem but the history of the solutions. Therefore, in
this paper we are interested in the case in which
terms containing finite delays appear. Namely, we
consider the following version of GMNSE (we will
refer to it as GMNSED):



∂u

∂t
− ν∆u+ FN (‖u‖)[(u · ∇)u] + ∇p = G(t, u(t− ρ(t))) in (τ,+∞) × Ω,

∇ · u = 0 in (τ,+∞) × Ω,

u = 0 on (τ,+∞) × Γ,

u(τ, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t− τ, x), in (τ − h, τ) × Ω,

(3)

where τ ∈ R is an initial time, the term G(t, u(t −
ρ(t))) is an external force depending eventually on
the value u(t − ρ(t)), ρ(t) ≥ 0 is a delay function
and φ is a given velocity field defined in (−h, 0),
with h > 0 a fixed time such that ρ(t) ≤ h.

In the next section, we state some preliminaries
and establish the framework for our problem. Sec-
tion 3 is devoted to the existence and uniqueness of
weak and strong solutions of our problem. In Sec. 4,
we analyze the asymptotic behavior of solutions,
which is completed in the final section by proving
the existence of pullback attractor for our model.

It is worth mentioning that as the delay model
is nonautonomous, the classical theory of global
attractors is not appropriate to handle this problem,
unless the nonautonomous term possesses a special
form. However, the theory of pullback attractors
allows for more general nonautonomous terms.

2. Preliminaries

To set our problem in the abstract framework, we
consider the following usual abstract spaces (see
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[Lions, 1969] and [Temam, 1977, 1995]):

V = {u ∈ (C∞
0 (Ω))3 : div u = 0},

H = the closure of V in (L2(Ω))3 with inner prod-
uct (·, ·) and associate norm | · |, where for u, v ∈
(L2(Ω))3,

(u, v) =
3∑

j=1

∫
Ω
uj(x)vj(x)dx,

V = the closure of V in (H1
0 (Ω))3 with scalar

product ((·, ·)) and associate norm ‖ · ‖, where for
u, v ∈ (H1

0 (Ω))3,

((u, v)) =
3∑

i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injec-
tions are dense and compact. Finally, we will use
‖ · ‖∗ for the norm in V ′ and 〈·, ·〉 for the duality
pairing between V and V ′.

Now we define the trilinear form b on V × V ×
V by

b(u, v,w) =
3∑

i,j=1

∫
Ω
ui
∂vj

∂xi
wj dx, ∀u, v,w ∈ V,

and we denote

bN (u, v,w) = FN (‖v‖)b(u, v,w), ∀u, v,w ∈ V.

The form bN is linear in u and w, but it is non-
linear in v. Evidently we have bN (u, v, v) = 0, for
all u, v ∈ V. Moreover, from the properties of b (see
[Robinson, 2001] or [Temam, 1977]), and the defi-
nition of FN , one easily obtains the existence of a
constant C1 > 0 only dependent on Ω such that

|bN (u, v,w)| ≤ NC1‖u‖‖w‖, ∀u, v,w ∈ V.

Thus, if we denote

〈BN (u, v), w〉 = bN (u, v,w), ∀u, v,w ∈ V,

we have

‖BN (u, v)‖∗ ≤ NC1‖u‖, ∀u, v ∈ V. (4)

We also consider A :V → V ′ defined by
〈Au, v〉 = ((u, v)). Denoting D(A) = (H2(Ω))3 ∩ V,
then Au = −P∆u,∀u ∈ D(A), is the Stokes
operator (P is the ortho-projector from (L2(Ω))3

onto H).

We recall (see [Temam, 1977]) that there
exists a constant C2 > 0 depending only on Ω such
that

|b(u, v,w)| ≤ C2‖u‖1/2|Au|1/2‖v‖|w|, (5)

for all u ∈ D(A), v ∈ V,w ∈ H, and

|b(u, v,w)| ≤ C2‖u‖‖v‖|w|1/2‖w‖1/2, (6)

for all u, v,w ∈ V. (See [Romito, 2009] for the proof
of (6)).

Moreover, we assume G : R × H → H is such
that

(c1) G(·, u) : R → H is measurable, ∀u ∈ H,
(c2) there exists non-negative function g ∈ Lp

loc(R)
for some 1 ≤ p ≤ +∞, and a nondecreasing
function L : (0,∞) → (0,∞), such that for all
R > 0 if |u|, |v| ≤ R, then

|G(t, u) −G(t, v)| ≤ L(R)g1/2(t)|u− v|,

for all t ∈ R, and
(c3) there exists a non-negative function f ∈

L1
loc(R), such that for any u ∈ H,

|G(t, u)|2 ≤ g(t)|u|2 + f(t), ∀ t ∈ R.

Finally, we suppose φ ∈ L2p′(−h, 0;H) and
u0 ∈ H, where (1/p) + (1/p′) = 1.

In this situation, we consider a delay function
ρ ∈ C1(R) such that 0 ≤ ρ(t) ≤ h for all t ∈ R, and
there exists a constant ρ∗ satisfying

ρ′(t) ≤ ρ∗ < 1 ∀ t ∈ R. (7)

Definition 2.1. Let τ ∈ R, u0 ∈ H and φ ∈
L2p′(−h, 0;H) be given. A weak solution of (3) is
a function

u ∈ L2p′(τ − h, T ;H) ∩ L2(τ, T ;V ) ∩ L∞(τ, T ;H)

for all T > τ , such that


d
dt
u(t) + νAu(t) +BN (u(t), u(t))

= G(t, u(t− ρ(t))) in D′(τ,+∞;V ′),

u(τ) = u0,

u(t) = φ(t− τ) t ∈ (τ − h, τ),
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or equivalently

(u(t), w) + ν

∫ t

τ
((u(s), w))ds

+
∫ t

τ
bN (u(s), u(s), w)ds

= (u0, w) +
∫ t

τ
(G(s, u(s − ρ(s))), w)ds, (8)

for all t ≥ τ and all w ∈ V , and coincides with φ(t)
in (τ − h, τ).

Remark 2.2. If u is a weak solution of (3) and we
define g̃(t) = g ◦ θ−1(t), where θ : [τ,+∞) →
[τ − ρ(τ),+∞) is the differentiable and strictly
increasing function given by θ(s) = s − ρ(s), we
obtain∫ T

τ
|G(t, u(t − ρ(t)))|2dt

≤
∫ T

τ
g(t)|u(t − ρ(t))|2dt+

∫ T

τ
f(t)dt

≤ 1
1 − ρ∗

∫ T−ρ(T )

τ−ρ(τ)
g̃(t)|u(t)|2dt+

∫ T

τ
f(t)dt

≤ 1
1 − ρ∗

∫ T

τ−ρ(τ)
g̃(t)|u(t)|2dt+

∫ T

τ
f(t)dt,

and therefore, taking into account that g̃ ∈ Lp(τ −
ρ(τ), T ) for all T > τ , we have that G(t, u(t−ρ(t)))
belongs to L2(τ, T ;H) for all T > τ .

Thus, if u ∈ L2(τ, T ;V ) for all T > τ and sat-
isfies the equation

d
dt
u(t) + νAu(t) +BN (u(t), u(t))

= G(t, u(t − ρ(t))),

in D′(τ,+∞;V ′), then, as a consequence of (4),
(d/dt)u(t) ∈ L2(τ, T ;V ′), and consequently (see
[Temam, 1995]) u ∈ C([τ,+∞);H) and satisfies the
energy equality, for all τ ≤ s ≤ t,

|u(t)|2 − |u(s)|2 + 2ν
∫ t

s
‖u(r)‖2dr

= 2
∫ t

s
(G(r, u(r − ρ(r))), u(r))dr. (9)

We will prove the existence of (strong) solu-
tions in the next section. First, we will prove the

uniqueness of weak solutions for our model in a simi-
lar way as [Romito, 2009] did for the model without
delay. We will only include the detailed estimates
which involve the delay term.

Theorem 2.3. Under the preceding assumptions,
there exists at most a weak solution u of (3).

The proof is similar to, but a bit more compli-
cated than in the 2D-NSE case and depends on the
following lemma.

Lemma 2.4 [Romito, 2009]. For every u, v ∈ V, and
each N > 0,

(1) 0 ≤ ‖u‖FN (‖u‖) ≤ N,
(2) |FN (‖u‖) − FN (‖v‖)| ≤ (1/N)FN (‖u‖) ×

FN (‖v‖)‖u − v‖.
Proof of Theorem 2.3. Let u, v be two weak solutions
with the same initial conditions and set w = v − u.
Then, using the energy equality, we obtain

1
2

d
dt

|w|2 + ν‖w‖2 + 〈NL(u, v), w〉

= (G(t, v(t − ρ(t))) −G(t, u(t − ρ(t))), w),
(10)

where we have set 〈NL(u, v), w〉 = FN (‖u‖)b(u, u,
w) − FN (‖v‖)b(v, v, w). From the properties of the
trilinear form b, it easily follows that

〈NL(u, v), w〉 = FN (‖u‖)b(w, u,w)

+ (FN (‖u‖) − FN (‖v‖))b(v, u,w)

+FN (‖v‖)b(v,w,w). (11)

Now using Lemma 2.4, formula (6) and Young’s
inequality (see [Romito, 2009] for the details) there
exists a constant C3 > 0, which depends on C2 and
ν, such that,

〈NL(u, v), w〉 ≤ ν‖w‖2 + C3N
4|w|2. (12)

Consequently, we obtain

d
dt

|w|2 ≤ 2C3N
4|w|2 + 2(G(t, v(t − ρ(t)))

−G(t, u(t − ρ(t))), w). (13)

Let us now estimate the last term in (13). For a fixed
T > τ , we know that u and v belong to C([τ, T ];H),
thus there exists RT > 0 such that |u(s)| ≤ RT and
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|v(s)| ≤ RT , for all s ∈ [τ, T ]. Consequently, by (c2)
and the fact that w = 0 in (τ − h, τ), it is not
difficult to obtain

2
∫ t

τ
(G(s, v(s − ρ(s))) −G(s, u(s − ρ(s))), w(s))ds

≤ 2L(RT )
(1 − ρ∗)1/2

∫ t

τ
(g̃(s) + 1)|w(s)|2ds, (14)

for all t ∈ [τ, T ].
Thus we obtain

d

dt
|w|2 ≤

[
2C3N

4 +
2L(RT )

(1 − ρ∗)1/2
(g̃(t) + 1)

]
|w|2,

in [τ, T ], and the result follows from the Gronwall
lemma, since |w(0)|2 = 0. �

3. Existence and Uniqueness of
Weak and Strong Solutions

In the previous section, we proved the uniqueness
of weak solutions for our model. In the following
theorem, we will prove the existence (and therefore
uniqueness) of weak and/or strong solutions.

Theorem 3.1. Under the conditions (c1 )–(c3 ) in
the previous section, assume that τ ∈ R, u0 ∈ H
and φ ∈ L2p′(−h, 0;H) are given. Then, there exists
a unique weak solution u of (3) which is, in fact, a
strong solution in the sense that

u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)), (15)

for all T − τ > ε > 0.
Moreover, if u0 ∈ V, then

u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)), (16)

for all T > τ.

Proof. For simplicity, and without loss of general-
ity, we assume τ = 0.

Consider the Galerkin approximations for the
GMNSED, given by


dum

dt
+ νAum + PmBN (um, um)

= PmG(t, um(t− ρ(t))),

um(0) = Pmu
0, um = Pmφ in (−h, 0),

(17)

where um =
∑m

j=1 um,jej , Aum =
∑m

j=1 λjum,jej .
Here the λj and ej are the corresponding eigenval-
ues and orthonormal eigenfunctions of the operator
A and Pm is the projection onto the subspace of H
spanned by {e1, . . . , em}. Then

‖um‖2 =
m∑

j=1

λju
2
m,j , |Aum|2 =

m∑
j=1

λ2
ju

2
m,j .

In addition

|um|2 =
m∑

j=1

u2
m,j,

which can be interpreted as either the Euclidean
norm of um ∈ R

m or the L2-norm of um ∈ H.
From the assumptions on A, BN and G, we

know that there exists a local solution um of (17)
defined in [0, tm), with 0 < tm ≤ +∞ (see for exam-
ple [Hale & Lunel, 1993]). The uniqueness of solu-
tion of (17) can be proved as in Theorem 2.3, and
the fact that the local solution is a global one is a
consequence of the estimate (18) below.

Let us fix 0 < T < tm. It is standard that
if we take the inner product of the Galerkin ODE
(17) with um and use that b(um, um, um) = 0, we
obtain

1
2

d
dt

|um|2 + ν‖um‖2 = (G(t, um(t− ρ(t))), um),

and taking into account (c3) and that λ1|um|2 ≤
‖um‖2,

d
dt

|um|2 + ν‖um‖2

≤ 1
νλ1

(g(t)|um(t− ρ(t))|2 + f(t)). (18)

Consequently, integrating between 0 and t, t ≤ T ,
and using the function g̃ defined in Remark 2.2, we
obtain

|um(t)|2 + ν

∫ t

0
‖um(s)‖2ds

≤ |u0|2 +
1
νλ1

∫ t

0
(g(s)|um(s− ρ(s))|2 + f(s))ds

≤ KT +
1

νλ1(1 − ρ∗)

∫ t

0
g̃(s)|um(s)|2ds,

(19)
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for all t ∈ [0, T ], where

KT = |u0|2 +
1

νλ1(1 − ρ∗)

∫ 0

−ρ(0)
g̃(s)|φ(s)|2ds

+
1
νλ1

∫ T

0
f(s)ds.

Thus, by the Gronwall lemma,

|um(t)|2 ≤ KT exp
(

1
νλ1(1 − ρ∗)

∫ T

0
g̃(s)ds

)
= CT ,

(20)
for all t ∈ [0, T ],m ≥ 1.

From (19) and (20), one determines that tm =
+∞, and the existence of a

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∀T > 0,

and a subsequence of {um}m∈N which converges
weak-star to u in L∞(0, T ;H) and weakly to u
in L2(0, T ;V ) for all T > 0. By the compactness
Theorem 5.1 in Chapter 1 of [Lions, 1969], one can
then deduce that a subsequence, in fact, converges
strongly to u in L2(0, T ;H) and a.e. in (0, T )×Ω for
all T > 0. But the weak convergence in L2(0, T ;V )
is not enough to ensure that

‖um‖ → ‖u‖
or at least

FN (‖um(t)‖) → FN (‖u(t)‖) for a.a. t.

Thus, we need to find a stronger estimate. We
now take the inner product of the Galerkin ODE
(17) with Aum and obtain

1
2

d
dt

‖um‖2 + ν|Aum|2 + bN (um, um, Aum)

= (G(t, um(t− ρ(t))), Aum). (21)

Obviously,

|(G(t, um(t− ρ(t))), Aum)|

≤ ν

4
|Aum|2 +

|G(t, um(t− ρ(t)))|2
ν

.

By (5) and Young’s inequality, it follows

|bN (um, um, Aum)| ≤ N

‖um‖ C2‖um‖3/2|Aum|3/2

= NC2‖um‖1/2|Aum|3/2

≤ ν

4
|Aum|2 + CN‖um‖2,

with CN = ((27(NC 2)4)/4ν3).

Thus (21) simplifies to

d

dt
‖um‖2 + ν|Aum|2 ≤ 2

ν
|G(t, um(t− ρ(t)))|2

+ 2CN‖um‖2. (22)

Let us assume now that u0 ∈ V . Then, from
(22) and the fact that

‖um(0)‖ = ‖Pmu
0‖ ≤ ‖u0‖,

by the choice of the basis {ej} of H, one eas-
ily obtains that the sequence {um} is bounded in
L∞(0, T ;V ) and in L2(0, T ;D(A)) for all T > 0.

Then, observe that for any w ∈ H,
|bN (um, um, w)| ≤ NC3|Aum||w|, and in conse-
quence, the sequence {PmBN (um, um)} is bounded
in L2(0, T ;H) for all T > 0.

Therefore, from the equation

dum

dt
= −νAum − PmBN (um, um)

+PmG(t, um(t− ρ(t))),

it follows that the sequence {dum/dt} is also
bounded in L2(0, T ;H).

Consequently, as D(A) ⊂ V ⊂ H with compact
injection, by Theorem 5.1 in Chapter 1 of [Lions,
1969], there exists an element u ∈ L∞(0, T ;V ) ∩
L2(0, T ;D(A)) for all T > 0, and a subsequence of
{um}, that we will also denote by {um}, such that



um → u strong in L2(0, T ;V ),

um → u a.e. in (0, T ) × Ω,

um ⇀ u weak in L2(0, T ;D(A)),

um
∗
⇀ u weak-star in L∞(0, T ;V ),

dum

dt
⇀

du
dt

weak in L2(0, T ;H),

(23)

for all T > 0.
Also, as um converges to u in L2(0, T ;V ) for all

T > 0, we can assume, possibly extracting a sub-
sequence, that

‖um(t)‖ → ‖u(t)‖ a.e. in (0,+∞),

and therefore

FN (‖um(t)‖) → F (‖u(t)‖) a.e. in (0,+∞).
(24)

From (23) and (24) we can take limits in (17)
and we obtain that u is a solution of (3) satis-
fying (16). In fact, this can be done reasoning as in
[Caraballo et al., 2006] for the case without delays
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(see also [Lions, 1969] for the case of the Navier–
Stokes system).

Assume now that u0 ∈ H\V . Then, integrating
in (22) between s and t, for all 0 ≤ s ≤ t ≤ T , we
obtain that

‖um(t)‖2 ≤ ‖um(s)‖2

+
2
ν

∫ T

0
|G(r, um(r − ρ(r)))|2dr

+ 2CN

∫ T

0
‖um(r)‖2dr

≤ ‖um(s)‖2

+
2

ν(1 − ρ∗)

∫ 0

−ρ(0)
g̃(r)|φ(r)|2dr

+
2

ν(1 − ρ∗)

∫ T

0
g̃(r)|um(r)|2dr

+
2
ν

∫ T

0
f(r)dr + 2CN

∫ T

0
‖um(r)‖2dr.

(25)

Thanks to (19) and (20), we know that um is
bounded in L2(0, T ;V ) ∩ L∞(0, T ;H) and, conse-
quently, there exists K̃T > 0 such that

2
ν(1 − ρ∗)

∫ 0

−ρ(0)
g̃(r)|φ(r)|2dr

+
2

ν(1 − ρ∗)

∫ T

0
g̃(r)|um(r)|2dr

+
2
ν

∫ T

0
f(r)dr + 2CN

∫ T

0
‖um(r)‖2dr

≤ K̃T ,

for all integer m ≥ 1.
Integrating now inequality (25) with respect to

s in the interval [0, t], we have

t‖um(t)‖2 ≤
∫ T

0
‖um(s)‖2ds+ TK̃T

≤ sup
m≥1

(∫ T

0
‖um(s)‖2ds

)
+ TK̃T

:= K̂T ,

whence

‖um(t)‖2 ≤ 1
ε
K̂T , (26)

for all t ∈ [ε, T ], and all 0 < ε < T.
From (19), (26) and (22), we immediately

obtain that the sequence {um} is bounded in
L∞(0, T ;H), in L2(0, T ;V ), in L∞(ε, T ;V ), and in
L2(ε, T ;D(A)), for all T > ε > 0.

Reasoning as before (i.e. when u0 ∈ V ), we
see that the sequence {dum/dt} is also bounded in
L2(ε, T ;H) for all T > ε > 0. Hence, there exists
an element

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

∩L∞(ε, T ;V ) ∩ L2(ε, T ;D(A))

for all T > ε > 0, and a subsequence of {um}, that
we will also denote by {um}, such that



um ⇀ u weak in L2(0, T ;V ),

um
∗
⇀ u weak-star in L∞(0, T ;H),

um → u strong in L2(ε, T ;H),

um → u a.e. in (0, T ) × Ω,

um → u strong in L2(ε, T ;V ),

um ⇀ u weak in L2(ε, T ;D(A)),

um
∗
⇀ u weak-star in L∞(ε, T ;V ),

dum

dt
⇀

du

dt
weak in L2(ε, T ;H),

(27)

for all T > ε > 0.
Also, as um converges to u in L2(ε, T ;V ) for

all T > ε > 0, we can assume, eventually extract-
ing a subsequence, that (24) is also satisfied in
this case. From (27) and (24) we can take limits
in (17) and we obtain that u is a solution of (3)
satisfying (15). �

4. Asymptotic Behavior of Solutions

In this section, we obtain a result about the asymp-
totic behavior of the solutions of problem (3) when
t goes to +∞.

Let us suppose that (c1)–(c3) hold with g ∈
L∞(R), assume also that

ν2λ2
1(1 − ρ∗) > |g|∞,
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where |g|∞ := ‖g‖L∞(R), and let us denote by ε > 0
the unique solution of

ε− νλ1 +
|g|∞eεh

νλ1(1 − ρ∗)
= 0. (28)

We can now formulate the following result.

Theorem 4.1. Under the previous assumptions, for
any (u0, φ) ∈ H ×L2(−h, 0;H), and any τ ∈ R, the
corresponding solution u(t; τ, u0, φ) of problem (3)
satisfies

|u(t; τ, u0, φ)|2 ≤
(
|u0|2 +

|g|∞eεh
νλ1(1 − ρ∗)

×
∫ 0

−h
eεs|φ(s)|2ds

)
eε(τ−t)

+
e−εt

νλ1

∫ t

τ
eεsf(s)ds, (29)

for all t ≥ τ.
In particular, if

∫∞
τ eεsf(s)ds < ∞, then every

solution u(t; τ, u0, φ) of (3) converges exponentially
to 0 as t→ +∞.

Proof. Let u(t) = u(t; τ, u0, φ) be the solution
of problem (3) corresponding to the initial data
τ, u0, φ. From

1
2

d
dt

|u|2 + ν‖u‖2 = (G(t, u(t − ρ(t))), u),

we obtain,

d
dt

(eεt|u(t)|2) = εeεt|u(t)|2 − 2νeεt‖u(t)‖2

+ 2eεt(G(t, u(t − ρ(t))), u)

≤ (ε− νλ1)eεt|u(t)|2

+
1
νλ1

eεt|G(t, u(t − ρ(t)))|2.
(30)

Now, observe that for any t ≥ τ ,∫ t

τ
eεs|G(s, u(s − ρ(s)))|2ds

≤ |g|∞
∫ t

τ
eεs|u(s− ρ(s))|2ds

+
∫ t

τ
eεsf(s)ds, (31)

and ∫ t

τ
eεs|u(s− ρ(s))|2ds

≤ eεh

1 − ρ∗

∫ t

τ
eεs|u(s)|2ds

+
eεh

1 − ρ∗

∫ τ

τ−h
eεs|φ(s − τ)|2ds

=
eεh

1 − ρ∗

∫ t

τ
eεs|u(s)|2ds

+
eε(h+τ)

1 − ρ∗

∫ 0

−h
eεs|φ(s)|2ds. (32)

Integrating in (30), from (28), (31) and (32), we
easily obtain (29). �

5. Pullback Attractors

5.1. Preliminaries on pullback
attractors

We now recall some results on the theory of pull-
back attractors as developed in [Crauel et al., 1995;
Kloeden & Stonier, 1998; Kloeden & Schmalfuß,
1997]. It is a well-known fact in dealing with nonau-
tonomous problems, that the initial time is as
important as the final one, yielding to the necessity
of considering a two-parameter semigroup, a cocy-
cle or a skew-product semiflow to set the problem in
a suitable framework. We will use the framework of
two-parameter semigroups or evolution processes.

Definition 5.1. Let X be a metric space. A family
of mappings {U(t, τ) : X → X : t, τ ∈ R, t ≥ τ} is
said to be a process (or a two-parameter semigroup,
or an evolution semigroup) in X if

U(t, r)U(r, τ) = U(t, τ) for all t ≥ r ≥ τ,

U(τ, τ) = Id for all τ ∈ R.

The process U(·, ·) is said to be continuous if the
mapping x → U(t, τ)x is continuous on X for all
t, τ ∈ R, t ≥ τ .

Recall that dist(A,B) denotes the Hausdorff
semidistance between the sets A and B, which is
given by

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), for A,B ⊂ X.
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Definition 5.2. Let U(·, ·) be a process in the met-
ric space X. A family of compact sets {A(t)}t∈R is
said to be a (global) pullback attractor for U(·, ·) if,
for every t ∈ R, if follows

(i) U(t, τ)A(τ) = A(t) for all τ ≤ t (invariance),
and

(ii) limτ→−∞ dist(U(t, τ)D,A(t)) = 0 (pullback
attraction) for all bounded subset D ⊂ X.

The concept of pullback attractor is related to
that of pullback absorbing set.

Definition 5.3. The family of subsets {B(t)}t∈R of
X is said to be pullback absorbing with respect to
the process U(·, ·) if, for every t ∈ R and all bounded
subset D ⊂ X, there exists τD(t) ≤ t such that

U(t, τ)D ⊂ B(t), for all τ ≤ τD(t).

In fact, as happens in the autonomous case,
the existence of compact pullback attracting sets is
enough to ensure the existence of pullback attrac-
tors. The following result can be found in [Crauel
et al., 1995; Schmalfuß, 1992] (see also [Caraballo &
Real, 2004]).

Theorem 5.4. Let U(·, ·) be a continuous process
on the metric space X. If there exists a family
of compact pullback attracting sets {B(t)}t∈R, then
there exists a pullback attractor {A(t)}t∈R, with
A(t) ⊂ B(t) for all t ∈ R, given by

A(t) =
⋃

D⊂X
bounded

ΛD(t),

where

ΛD(t) =
⋂
n∈N

⋃
τ≤t−n

U(t, τ)D.

5.2. Existence of the pullback
attractor for the GMNSED
model

We can now apply the theory of pullback attractors
to analyze the asymptotic behavior of our model (3)
under appropriate assumptions.

5.2.1. Construction of the associated
process

Now we will apply the theory in the previous sec-
tion to prove the existence of an attractor for our
nonautonomous GMNSE model with delay. To this

end, we will consider that G : R ×H → H satisfies
(c1)–(c3) with g ∈ L∞(R). Thus, without loss of
generality we can assume that G satisfies (c2) with
g ≡ 1, and there exists a non-negative constant a
such that

|G(t, u)|2 ≤ a|u|2 + f(t) ∀ (t, u) ∈ R ×H. (33)

Under these assumptions, for each initial time
τ ∈ R, and any φ ∈ C(−h, 0;H), Theorem 3.1
ensures that if we take u0 = φ(0), problem (3) pos-
sesses a unique solution

u(·; τ, φ) = u(·; τ, φ(0), φ),

which belongs to the space C([τ − h, T ];H) ∩
L2(τ, T ;V ) ∩ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A))
for all T > τ + ε > τ.

Now, we proceed to construct the evolution
process which can help us in the analysis of the
long-time behavior of our model. We define a pro-
cess in the phase space CH = C([−h, 0];H) with
sup norm, ‖φ‖CH

= sups∈[−h,0] |φ(s)|, as the family
of mappings U(t, τ) : CH → CH given by

U(t, τ)φ = ut(·; τ, φ), (34)

for any φ ∈ CH , and any τ ≤ t, where ut(·; τ, φ) ∈
CH is defined by

ut(s; τ, φ) = u(t+ s; τ, φ) ∀ s ∈ [−h, 0]. (35)

Now we will prove that U(·, ·) is a continuous
process.

Proposition 5.5. Assume that G satisfies (c1), (c2)
with g = 1, and that (33) also holds. Then, the
family of mappings U(τ, t), τ ≤ t, defined by (34)
and (35) is a continuous process on CH , and more
exactly, for any pair φ,ψ ∈ CH such that ‖φ −
ψ‖CH

≤ 1, it follows

‖U(t, τ)φ − U(t, τ)ψ‖2
CH

≤
(

1 +
h

1 − ρ∗
L2(R(t, τ, ‖φ‖CH

))
)
‖φ− ψ‖2

CH

× exp
{(

2C3N
4 + 1

+
L2(R(t, τ, ‖φ‖CH

))
1 − ρ∗

)
(t− τ)

}
, (36)

for all t ≥ τ, where C3 > 0 is a constant only de-
pendent on ν and the constant C2 appearing in (6),
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and R(t, τ, ‖φ‖CH
) is given by

R(t, τ, ‖φ‖CH
)

=
{(

2 +
ah

νλ1(1 − ρ∗)

)
(1 + ‖φ‖2

CH
)

+
1

2νλ1

∫ t

τ
f(s)ds

}1/2

× exp
{

a(t− τ)
4νλ1(1 − ρ∗)

}
. (37)

Proof. The uniqueness of solutions obviously
implies that U(·, ·) is process.

We consider φ ∈ CH and τ ∈ R fixed. Let
ψ ∈ CH such that ‖φ − ψ‖CH

≤ 1. Denote by
u(·) = u(·; τ, φ) and v(·) = u(·; τ, ψ) the correspond-
ing solutions to (3).

Firstly, by (33) we have

d
dt

|v(t)|2 + 2ν‖v(t)‖2

= 2(G(t, v(t − ρ(t))), v(t))

≤ 2νλ1|v(t)|2 +
1

2νλ1
(a|v(t− ρ(t))|2 + f(t)),

and therefore

|v(t)|2 ≤ |ψ(0)|2

+
1

2νλ1

(
ah

1 − ρ∗
‖ψ‖2

CH
+
∫ t

τ
f(s)ds

)

+
a

2νλ1(1 − ρ∗)

∫ t

τ
|v(s)|2ds

≤
(

2 +
ah

νλ1(1 − ρ∗)

)
(1 + ‖φ‖2

CH
)

+
1

2νλ1

∫ t

τ
f(s)ds

+
a

2νλ1(1 − ρ∗)

∫ t

τ
|v(s)|2ds,

for all t ≥ τ.
From this last inequality and Gronwall’s

lemma, we obtain

|u(t; τ, ψ)|2 ≤ R2(t, τ, ‖φ‖CH
) ∀ t ≥ τ, (38)

and all φ and ψ such that ‖φ− ψ‖CH
≤ 1.

If we set w = u− v and proceed as in the proof
of Theorem 2.3, we have that there exists a con-
stant C3 > 0 which depends on C2 and ν, such
that,

d
dt

|w(t)|2 ≤ (2C3N
4 + 1)|w(t)|2 + |G(t, u(t− ρ(t)))

−G(t, v(t − ρ(t)))|2. (39)

Let us fix T > τ . By (38) we know that |u(t)| ≤
R(T, τ, ‖φ‖CH

), and |v(t)| ≤ R(T, τ, ‖φ‖CH
), for all

t ∈ [τ, T ], and by (37) it is clear that ‖φ‖CH
≤

R(T, τ, ‖φ‖CH
) and ‖ψ‖CH

≤ R(T, τ, ‖φ‖CH
). Con-

sequently, by (c2), one obtains that∫ t

τ
|G(s, u(s − ρ(s))) −G(s, v(s − ρ(s)))|2ds

≤ L2(R(T, τ, ‖φ‖CH
))

1 − ρ∗

×
(
h‖φ− ψ‖2

CH
+
∫ t

τ
|w(s)|2ds

)
, (40)

for all t ∈ [τ, T ].
From (39), (40) and Gronwall’s lemma, one can

deduce

|u(t; τ, φ) − u(t; τ, ψ)|2

≤
(

1 +
h

1 − ρ∗
L2(R(t, τ, ‖φ‖CH

))
)
‖φ− ψ‖2

CH

× exp
{(

2C3N
4 + 1

+
L2(R(t, τ, ‖φ‖CH

))
1 − ρ∗

)
(t− τ)

}
, (41)

for all t ≥ τ .
Now, inequality (36) is an easy consequence of

inequality (41), and the fact that for fixed τ and φ,
the right-hand member of this inequality is a non-
decreasing function of t.

Finally, the continuity of U(t, τ) on CH is a
direct consequence of (36). �

5.2.2. Existence of absorbing families of
sets in CH

Now, we will prove that, under suitable assump-
tions, there exists a family of bounded pullback
absorbing sets in CH for the process U(t, τ).

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

0.
20

:2
86

9-
28

83
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

02
/2

3/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



October 13, 2010 19:48 WSPC/S0218-1274 02742

Modified Navier–Stokes Equations 2879

Assume that G satisfies (c1), (c2) with g = 1,
(33), and

ν2λ2
1(1 − ρ∗) > a. (42)

Let us denote ε > 0 the unique solution of

ε− νλ1 +
aeεh

νλ1(1 − ρ∗)
= 0, (43)

suppose that ∫ 0

−∞
eεrf(r)dr <∞, (44)

and define

ρH(t) = 1 +
eε(1+h−t)

νλ1

∫ t

−∞
eεrf(r)dr t ∈ R.

(45)

We can now prove the following result.

Theorem 5.6. Under the previous assumptions, the
process U(τ, t), τ ≤ t, defined by (34) and (35),
satisfies

‖U(t, τ)φ‖2
CH

≤ ρH(t) (46)

for all τ ≤ t− TD, and all φ ∈ D, for any bounded
D ⊂ CH , where TD is defined by

TD = 1 + h+
1
ε

log

[(
1 +

aeεh

ενλ1(1 − ρ∗)

)

×
(

1 + sup
φ∈D

‖φ‖2
CH

)]
. (47)

As a consequence, the family of closed balls
{BCH

(0, ρ1/2
H (t))}t∈R is pullback absorbing for the

process U(t, τ).

Proof. With the same procedure as in the proof of
Theorem 4.1, we obtain

|u(t; τ, φ)|2 ≤
(
|φ(0)|2 +

aeεh

νλ1(1 − ρ∗)

×
∫ 0

−h
eεr|φ(r)|2 dr

)
eε(τ−t)

+
e−εt

νλ1

∫ t

τ
eεrf(r)dr,

and therefore

|u(t; τ, φ)|2 ≤
(

1 +
aeεh

ενλ1(1 − ρ∗)

)
‖φ‖2

CH
eε(τ−t)

+
e−εt

νλ1

∫ t

−∞
eεrf(r)dr, (48)

for all t ≥ τ and any φ ∈ CH .
From (48) one deduces that

|u(s; τ, φ)|2

≤
(

1 +
aeεh

ενλ1(1 − ρ∗)

)
‖φ‖2

CH
eε(1+h+τ−t)

+
eε(1+h−t)

νλ1

∫ t

−∞
eεrf(r)dr, (49)

for all t − 1 − h ≥ τ , s ∈ [t − h − 1, t], and any
φ ∈ CH .

From (49) we immediately obtain (46). �

As a direct consequence of the preceding result,
we get the existence of the family of bounded
absorbing sets in CH .

5.2.3. Existence of an absorbing family of
bounded sets in CV

We now prove the existence of an absorbing fam-
ily of bounded sets in CV = C([−h, 0];V ) and a
necessary bound on the term

∫ t+θ2

t+θ1
|Au(r)|2dr. We

proceed in a similar way as we have already done in
the previous subsection.

Theorem 5.7. Under the assumptions in Theo-
rem 5.6, there exist two positive functions ρV , F ∈
C(R) such that for any bounded set D ⊂ CH and
for any t ∈ R,

‖u(t; τ, φ)‖2 ≤ ρV (t) ∀ τ ≤ t− TD, ∀φ ∈ D,

(50)

and ∫ t+θ2

t+θ1

|Au(r; τ, φ)|2dr ≤ F (t)

∀ τ ≤ t− TD − h, ∀ θ1 ≤ θ2 ∈ [−h, 0], ∀φ ∈ D,

(51)

where TD is given by (47 ).

Proof. Let us fix a bounded set D ⊂ CH , φ ∈
D, t ∈ R, and τ ≤ t − TD (observe that in par-
ticular τ ≤ t− 1 − h).
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Let us denote

u(r) = u(r; τ, φ), ∀ r ∈ [t− 1 − h, t].

Evidently, we have

d
dt

|u(r)|2 + 2ν‖u(r)‖2

= 2(G(r, u(r − ρ(r))), u(r))

≤ νλ1|u(r)|2

+
1
νλ1

|G(r, u(r − ρ(r)))|2

≤ ν‖u(r)‖2 +
1
νλ1

(a|u(r − ρ(r))|2 + f(r)),

and therefore, integrating between t−1 and t, we get

|u(t)|2 + ν

∫ t

t−1
‖u(r)‖2dr

≤ |u(t− 1)|2 +
a

νλ1(1 − ρ∗)

∫ t

t−1−h
|u(r)|2dr

+
1
νλ1

∫ t

t−1
f(r)dr.

From this inequality, taking into account (46), we
obtain that∫ t

t−1
‖u(r; τ, φ)‖2dr ≤ IV (t),

∀ τ ≤ t− TD, ∀φ ∈ D, (52)

where

IV (t) =
(

1 +
a(h+ 1)

νλ1(1 − ρ∗)

)
ρH(t)

+
1
νλ1

∫ t

t−1
f(r)dr. (53)

On the other hand, from the equality

d
dt

‖u(r)‖2 + 2ν|Au(r)|2 + 2bN (u(r), u(r), Au(r))

= 2(G(r, u(r − ρ(r))), Au(r)),

and the inequalities

|2bN (u(r), u(r), Au(r))|

≤ 2NC2‖u(r)‖1/2|Au(r)|3/2

≤ ν

2
|Au(r)|2 +C(N)‖u(r)‖2,

with C(N) = 27N4C4
2 (2ν3)−1, and

|2(G(r, u(r − ρ(r))), Au(r))|

≤ ν

2
|Au(r)|2 +

2
ν
(a|u(r − ρ(r))|2 + f(r)),

we get

d
dt

‖u(r)‖2 + ν|Au(r)|2

≤ C(N)‖u(r)‖2 +
2
ν

(a|u(r − ρ(r))|2 + f(r)).

(54)

From this last inequality we obtain

‖u(t)‖2 ≤ ‖u(s)‖2 + C(N)

∫ t

t−1
‖u(r)‖2dr

+
2a

ν(1 − ρ∗)

∫ t

t−1−h
|u(r)|2dr

+
2
ν

∫ t

t−1
f(r)dr ∀ s ∈ [t− 1, t],

and therefore, by (46) and (52), we deduce

‖u(t)‖2 ≤ ‖u(s)‖2 + C(N)IV (t)

+
2a(h+ 1)
ν(1 − ρ∗)

ρH(t)

+
2
ν

∫ t

t−1
f(r)dr ∀ s ∈ [t− 1, t].

Integrating in s, and using again (52), we obtain
(50), with

ρV (t) = (1 + C(N))IV (t) +
2a(h+ 1)
ν(1 − ρ∗)

ρH(t)

+
2
ν

∫ t

t−1
f(r)dr. (55)

For the proof of (51), observe that by (50), if
τ ≤ t− TD − h and s ∈ [t− h, t], then

‖u(s; τ, φ)‖2 ≤ ρV (s) ∀φ ∈ D,

and therefore

‖u(s; τ, φ)‖2 ≤ max
r∈[t−h,t]

ρV (r) (56)
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for all τ ≤ t − TD − h, ∀ s ∈ [t − h, t], ∀φ ∈ D.
Integrating in (54), we obtain

ν

∫ t+θ2

t+θ1

|Au(r)|2dr

≤ ‖u(t+ θ1)‖2 +
∫ t+θ2

t+θ1

(C(N)‖u(r)‖2

+
2
ν
(a|u(r − ρ(r))|2 + f(r)))dr,

for all θ1 ≤ θ2 ∈ [−h, 0], and therefore, by (46) and
(56) we obtain (51), with

F (t) = ν−1(1 + hC(N)) max
r∈[t−h,t]

ρV (r)

+ 2ν−2

(
ah max

r∈[t−h,t]
ρH(r) +

∫ t

t−h
f(r)dr

)
.

(57)

�

5.2.4. Existence of the pullback attractor

Now, under an additional assumption, we can prove
the existence of the pullback attractor.

Theorem 5.8. Under the assumptions in Theo-
rem 5.6, suppose moreover that

sup
s≤0

e−εs

∫ s

−∞
eεrf(r)dr <∞. (58)

Then there exists a pullback attractor
{ACH

(t)}t∈R for the process U(·, ·) in CH defined
by (34) and (35). Moreover, ACH

(t) is a bounded
subset of CV for any t ∈ R.

Proof. Observe that as, in particular, f is non-
negative and locally integrable, condition (58) is
equivalent to

sup
s≤t

e−εs

∫ s

−∞
eεrf(r)dr <∞ ∀ t ∈ R,

or, also equivalently,

sup
s≤t

∫ s

s−1
f(r)dr <∞ ∀ t ∈ R.

Thus, if we define

ρ̃V (t) = sup
s≤t

ρV (s), t ∈ R,

we have

ρV (t) ≤ ρ̃V (t) <∞, ∀ t ∈ R.

Let us consider the family {B0(t)}t∈R, where

B0(t) = BCV
(0; ρ̃1/2

V (t)) t ∈ R.

This is a family of bounded sets in CV , which is pull-
back absorbing for U(·, ·). More exactly, by (56), we
have that for any t ∈ R and all bounded D ⊂ CH ,

U(t, τ)D ⊂ B0(t) ∀ τ ≤ t− TD − h. (59)

For each t ∈ R the set B0(t) is, in particular,
a bounded subset of CH , thus, if we consider the
family {B(t)}t∈R given by

B(t) = U(t, t− TB0(t) − h)B0(t) t ∈ R, (60)

by (59), we have

B(t) ⊂ B0(t) ∀ t ∈ R. (61)

The family {B(t)}t∈R is also pullback absorb-
ing for the process U(·, ·). In fact, if D ⊂ CH is
bounded, and τ ≤ t− TB0(t) − h− TD − h, we get

U(t, τ)D = U(t, t− TB0(t) −h)U(t− TB0(t) −h, τ)D

⊂ U(t, t− TB0(t) − h)B0(t− TB0(t) − h)

⊂ U(t, t− TB0(t) − h)B0(t) = B(t).

If we prove that each B(t) is relatively compact
in CH , then {B(t)}t∈R (where the closure is taken
in CH) is a family of compact pullback absorbing
sets in CH for U(·, ·), what ensures the existence of
the pullback attractor {ACH

(t)}t∈R for this process,
with ACH

(t) ⊂ B(t) ⊂ B0(t) for all t ∈ R.
Let us now prove this compactness property. To

this end, we will use the Ascoli–Arzelà theorem, in
other words, we have to check that for each t ∈ R,

(A) The set U(t, t − TB0(t) − h)B0(t) is equicon-
tinuous (i.e. ∀ ε > 0,∃ δ > 0 such that if
−h ≤ θ1 ≤ θ2 ≤ 0, with θ2 − θ1 ≤ δ, then

|(U(t, t − TB0(t) − h)φ)(θ2)

− (U(t, t− TB0(t) − h)φ)(θ1)| ≤ ε,

for all φ ∈ B0(t)).
(B) For each θ ∈ [−h, 0],⋃

φ∈B0(t)

(U(t, t− TB0(t) − h)φ)(θ)

is a relatively compact set in H.

Property (B) follows from (61) and the com-
pactness of the injection of V into H.
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Finally, in order to prove (A) we fix φ ∈ B0(t),
and −h ≤ θ1 ≤ θ2 ≤ 0. Let us denote u(r) =
u(r; t − TB0(t) − h, φ), r ∈ [t − h, t]. Then, taking
into account (46) and (56), we have

|u(t+ θ1) − u(t+ θ2)|

=
∣∣∣∣
∫ t+θ2

t+θ1

u′(r)dr
∣∣∣∣

≤
∫ t+θ2

t+θ1

|u′(r)|dr

≤
∫ t+θ2

t+θ1

(ν|Au(r)| + |BN (u(r), u(r))|

+ |G(r, u(r − ρ(r)))|)dr

≤
∫ t+θ2

t+θ1

(ν|Au(r)| + c1|Au(r)|‖u(r)‖

+ a1/2|u(r − ρ(r))| + f1/2(r))dr

≤
∫ t+θ2

t+θ1

((ν + c1ρ̃
1/2
V (t))|Au(r)|

+ a1/2ρ̃
1/2
H (t) + f1/2(r))dr,

and, consequently, by the Cauchy inequality
and (51),

|u(t+ θ1) − u(t+ θ2)|

≤
{

(ν + c1ρ̃
1/2
V (t))F 1/2(t)

+
(∫ t

t−h
f(r)dr

)1/2
}

(θ2 − θ1)1/2

+ a1/2ρ̃
1/2
H (t)(θ2 − θ1),

which implies the needed equicontinuity.
The proof is now complete. �
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