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a b s t r a c t

This article presents a robust coalitional model predictive control (MPC) approach where neighboring
agents negotiate the bounds of their coupling variables. Also, the control variables of each agent
are divided into a private part that is locally optimized, and a public part that is controlled by the
corresponding neighbors. Under certain conditions, the agents communicate to update the bounds that
determine the constraints on these private and public variables. Moreover, the mutual disturbances
induced by coupling are considered using a tube-based approach, guaranteeing recursive feasibility
and stability of the closed-loop system. The proposed method is tested on a simulated eight-input
coupled tank benchmark to illustrate its benefits.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Model predictive control (MPC) is a computer-based control
ethod that uses a model to predict the evolution of a system as a

unction of the sequence of inputs provided along a given horizon.
hen, the minimization of a cost function allows us to determine
n optimal sequence to steer the system according to the control
esigner’s goals. To this end, the MPC controller solves an opti-
ization problem at each time step, which may include explicit
onstraints on the system variables, among other complex issues
uch as delays, information about expected disturbances, and
ncertainties affecting the system. Once a minimizer has been
btained for the optimal control problem, the element of the
equence corresponding to the current time step is implemented
nd the problem is solved again at the next time instant following
receding horizon approach.
One of the principal drawbacks of MPC is that it cannot be

pplied to large-scale systems in a centralized way due to the
umber of decision variables in the optimization problem. Natu-
ally distributed systems such as smart grids and water networks
equire distributed MPC (DMPC) strategies [1–4]. The main idea
s to decompose the overall system into subsystems, which are
ssigned to local interacting controllers, also known as agents.
s a consequence, the global problem is partitioned and solved
n a distributed manner, preserving the essence of MPC while
roviding increased scalability and flexibility [5,6]. In the DMPC
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framework, the communication and cooperation between the set
of agents in their distributed computations play a key role to
optimize the global performance and provide theoretical guaran-
tees. While complete decentralized strategies minimize commu-
nication demands, fully cooperative DMPC algorithms can attain
centralized-like behavior. Nonetheless, it may be interesting to
restrict the information exchange and minimize the cooperation
effort when the latter does not compromise the overall perfor-
mance. A relevant issue in this regard is that of the coupling that
often exists between the subsystems’ dynamics. In this regard, au-
thors in [7] apply a distributed tube-based MPC approach where
local controllers share information about the size of their cur-
rently used constraint space to reduce conservatism by exploiting
the varying degree of coupling.

Within the DMPC framework, the so-called coalitional control
nalyzes the dynamic couplings between the different parts of
he system so that only strongly coupled elements communicate
ith each other. In this respect, the communication topology can
e chosen based on a function that penalizes the communica-
ion cost [8,9] or the coupling strength [10,11]. Consequently,
he global control structure is adjusted in real-time, optimiz-
ng the existing computational and communication resources.
he underlying idea is to dynamically cluster the local agents
nto cooperative groups, i.e., coalitions, whenever this improves
he overall system’s performance [12], thus leading to time-
arying partitions. Accordingly, there may be coalitions of agents
xchanging information, while others may be operating in a de-
entralized fashion. This idea of dynamic clusters of controllers
as drawn attention within the context of multi-agent networked
ystems [13,14]. In particular, coalitional control is presented as
n alternative that is halfway between fully cooperative schemes
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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nd decentralized control. Note that in distributed systems, the
ack of coordination may compromise the global performance [5].
ikewise, coordinating all control decisions increases the commu-
ication and computation demands [15]. Considering this, coali-
ional schemes promotes data sharing and coordination under
ertain conditions. See also [16], which reviews the literature on
ontrol by clustering strategies, discussing different criteria for
artitioning the system and providing examples of application.
In this article, we present a novel coalitional MPC approach

n which input variables are decomposed into private and pub-
ic versions sharing a common constraint space. The proposed
ontrol scheme shares the nature of coalitional MPC strategies
ntroduced in [17–19], which permit partial modes of coopera-
ion, ranging from the fully distributed MPC algorithm, where all
gents share information, to agents working in a decentralized
anner without any communication. In this way, there may
e a group of agents operating cooperatively for the sake of
verall performance, while others work independently without
xchanging data. Finally, note that this article is closely related
o [20], which is used as the starting point for the problem and the
lgorithm formulation. However, the previously referred work
acks robustness and formal stability guarantees because it is
ased on a stochastic approach. To remedy this, we employ here
tube-based framework, which leads to significant changes in

he control strategy. In particular, we follow a tube-based MPC
pproach applied in a distributed manner, where disturbances
nduced by the coupling between subsystems are modeled as
ounded disturbances. Finally, we proceed to summarize the
ain contributions of this paper:

• First, this work strengthens the control algorithm presented
in [20] by using a robust approach to guarantee constraint
satisfaction, recursive feasibility, and stability. The main idea
of the algorithm is to decompose coupling so that agents can
cede a portion of their inputs to neighboring agents.
• Second, we propose a coalitional scheme where the agents’

communication is event-based, and they negotiate the con-
straint space of the shared inputs by performing an iterative
procedure based on dual decomposition. Unlike traditional
distributed algorithms, where state or input sequences are
communicated, here the agents only broadcast information
about the scale factors that bound their inputs’ constraint
space. In this way, we minimize the amount of data to be
shared.
• Third, our approach promotes communication between

agents only when it generates a significant benefit in terms
of overall performance. In this way, it is possible to re-
duce the communication and computational burden without
significantly compromising the system performance with
respect to the centralized behavior.

The outline of the rest of the article is organized as follows. In
ection 2, the model of the system is presented, introducing the
ecomposition of input variables into private and public parts,
nd defining the setting for coalitional MPC. In Section 3, we
escribe the application of tube-based MPC to deal with uncer-
ainties. Furthermore, we distribute the problem using the dual
ecomposition algorithm to negotiate the bounds of coupling
ariables. Section 4 presents the proposed control scheme. In Sec-
ion 5, conditions for recursive feasibility and stability are given.
ection 6 shows simulation results on an eight input-coupled tank
ystem. Finally, concluding remarks are provided in Section 7.

. System description

Consider a discrete-time, linear time-invariant system that
an be divided into a set N = {1, 2, . . . ,N} of input-coupled
65
ubsystems modeled as
+

i = Aiixi + Biiui + di,

ith di =
∑
j∈Ni

Bijuj, (1)

here xi ∈ Rnxi and u ∈ Rnui are the state and control input of
ubsystem i ∈ N , and x+i is the state at the next time instant.
ccordingly, di ∈ Rnxi represents the input coupling, with the set
i of the neighboring agents defined as Ni ≜ {j ∈ N : Bij ̸= 0, j ̸=
}. Moreover, each subsystem i ∈ N is subject to local constraints
n its state, i.e., xi ∈ Xi, and input, i.e., ui ∈ Ui, where Xi and Ui
re convex sets containing the origin.
By aggregating all subsystems’ states x = [xi]i∈N ∈ Rnx and

nputs u = [ui]i∈N ∈ Rnu , we can describe the global behavior of
he system as
+
= Ax+ Bu, (2)

here matrices A = diag(Aii)i∈N and B =
[
Bij

]
i,j∈N represent

he global model and are defined as the aggregation of (1) for
ll subsystems. Note that the centralized model (2) does not
nclude uncertainties because interactions are already present in
he global matrices.

.1. Decomposition of coupling variables

In this work, we apply the decomposition method proposed
n [20], where input variables are partitioned into public and
rivate parts. Consequently, we can decompose a local variable
i as

i = upr
i +

∑
j∈Mi

upu
ij , (3)

here

(i) upr
i is the private part of the variable, which is controlled

exclusively by the agent that owns it, i.e., i, and it must verify
upr
i ∈ αiUi with αi ∈ [0, 1].

(ii) upu
ij is the public part of ui controlled by agent j and must

verify upu
ij ∈ αijUi. The set of agents j that can manipulate

the public part of ui are defined as affected subsystems Mi =

{j ∈ N : Bji ̸= 0, j ̸= i}.

emark 1. In general, the sets Ni and Mi are different and
epend on the dynamics of the system, i.e., while Ni contains the
et of neighbors that affect i, Mi defines the set of agents affected
y the input of subsystem i.

emark 2. Without loss of generality, in this article we consider
nput-coupled subsystems as defined in (1), i.e., Aij = 0 for all
̸= j. However, this decomposition could similarly be applied to
tate-coupled subsystems.

In particular, each agent iwill locally control the private part of
ts input variable, upr

i and the public part of its neighboring inputs
upu
ji }∀j∈Ni . Accordingly, since the dynamics of the subsystem i is
ffected by the inputs uj of neighboring subsystems, agents j ∈ Ni
ill decide the value of the private input upr

j . Moreover, the set
∈Mi of agents affected by subsystem’s i input, will decide the
ublic part of ui, i.e., {u

pu
ij }∀j∈Ni . Therefore, variables that cannot be

ocally controlled such as {upr
j }∀j∈Ni and {u

pu
ij }∀j∈Mi are treated as

ounded disturbances from subsystem’s i viewpoint. Fig. 1 shows
diagram with three agents illustrating the decomposition and
egotiation that occurs in our method.



A. Sánchez-Amores, P. Chanfreut, J.M. Maestre et al. Journal of Process Control 123 (2023) 64–75

n
p

v
i

α

N
t

2

s
n
n
g
a
i
s
s
o
I
c
c

s
w
c

e
c
a
f

Fig. 1. Scheme of the proposed variable decomposition for three agents. Each agent i manipulates its private variable upr
i and the public input upu

ji ceded by its
eighbor j ∈ Ni . Agents can negotiate the value of input scale factors αi, αji . Focusing on agent 1, we identify N1 = {3}. Therefore, agent 1 can manipulate a public
art of u3 . Also, M1 = {2}, meaning that subsystem 2 is affected by u1 and will manipulate a public part of it.
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Hereafter, it is considered that agents should determine the
alues of upr

i and upu
ij , ∀i ∈ N and j ∈ Mi, so that the next

nequality is satisfied:

i +
∑
j∈Mi

αij ≤ 1, ∀i ∈ N . (4)

ote that if ui is calculated according to (3) and (4) holds, then
he input constraint ui ∈ Ui will be satisfied for all i ∈ N .

.2. Control architecture and strategy

Let us assume that a local controller or agent governs each
ubsystem i ∈ N . Also, consider that local agents are intercon-
ected through a configurable data network that allows commu-
ication among them. We can describe this network using the
raph G = (N ,L), being N the set of nodes that represent the
gents, and L the set of links, with L ⊆ LN

= {{i, j}|i, j ∈ N }. It
s considered that the state of the links can change dynamically to
uit the changing requirements of the control scheme, so that the
et of agents is partitioned into disjoint communication elements
r coalitions, i.e., only agents inside a coalition can exchange data.
n particular, let α̂ be a threshold to enable or disable the agents’
ommunication. Concerning this, the state of the links L will
hange depending on the values of αij with respect α̂.
Let P(k) = {C1, C2, . . . , C|P(k)|} define the partition of the

ystem at time instant k, where Ci ⊆ N describes the ith coalition
ithin the partition, with Ci ∩ Cj = ∅ for any i ̸= j. The size of Ci
an range between the following two extremes:

(i) If all agents work in a decentralized manner, i.e., there is no
communication among them, there will be |N | singletons,
i.e., P(k) = {{1}, {2}, . . . , {N}} and |Ci| = 1, ∀i. This happens
when αij < α̂, for all upu

ij ∈ αijUi, with i ∈ N and j ∈Mi.
(ii) If all agents work in a centralized manner, they will form

the grand coalition, so there will be a single coalition that
will group all agents, i.e. P(k) = {N }. This happens when
αij ≥ α̂, for all upu

ij ∈ αijUi, with i ∈ N and j ∈Mi.

As coefficients αij take values over and below α̂ for differ-
nt combinations of {i, j}, there will be clusters of agents that
ommunicate, i.e., coalitions, whereas others may be working in
decentralized manner. Therefore, agents operate in a flexible

ashion that allows partial modes of cooperation.
66
The agents’ goal is to maximize global performance with a
inimum exchange of information. In particular, agents aim to
inimize the cost function
∞

t=0

∑
i∈N

(
x⊤i (t + 1) Qi xi(t + 1)+

upr
i
⊤(t) Rpr

i upr
i (t)

)
+

∑
j∈Ni

upu
ji
⊤(t) Rpu

i upu
ji (t),

(5)

ith Qi, R
pr
i , Rpu

i being positive definite weighting matrices. Any
gent i will optimize the private part of its input variable upr

i , the
ublic part of neighboring input variables upu

ji , ∀j ∈ Ni, and will
e able to negotiate scale factors αi and αji. In contrast to standard
istributed schemes, which negotiate the values of coupling vari-
bles, we propose a negotiation of the scale factors that bound
hese variables. Also, the use of public variables will be penalized
ith a higher cost to discourage unnecessary cooperation efforts,

.e., Rpu
i ≫ Rpr

i .

. Tube-based MPC for regulation

In contrast to [20], where uncertainties were considered using
scenario-based MPC, we propose a tube-based MPC approach to
eal with neighboring uncertainties. In this way, we are able to
atisfy the system’s constraints regardless of the realization of the
isturbance.

.1. Nominal control problem

Considering the definition of the local state (1), and the de-
omposition of private and public inputs (3), we can rewrite the
ynamics of subsystem i as:

+

i = Aiixi + Biiu
pr
i +

∑
j∈Ni

Biju
pu
ji + wi,

ith wi ≜
∑
j∈Mi

Biiu
pu
ij +

∑
j∈Ni

Biju
pr
j .

(6)

s a result of the interaction between subsystems, the distur-
ance wi groups the uncertainties generated by the agents in
, which control the public part of u , i.e., {upu

} , and those
i i ij ∀j∈Mi
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Table 1
Notation summary.
ui Local variable of subsystem i, decomposed as (3).
Xi,Ui State and input set of constraints of xi and ui .
upr
i Private part of ui controlled exclusively by agent i.

upu
ij Public part of ui ceded to agents j ∈Mi .

upr
j Private part of uj controlled by agent j ∈ Ni .

upu
ji Public part of uj with j ∈ Ni , controlled by agent i.

αi Tightening factor for set Ui , with upr
i :∈ αiUi .

αji Tightening factor for set Uj , with upu
ji :∈ αjiUj .

Ni Neighboring subsystems of i: {j∈ N : Bij ̸=0, j ̸= i}.
Mi Subsystems affected by ui: {j∈ N : Bji ̸=0, j ̸= i}.
Wi Bound of agent i’s disturbances: wi ∈ Wi (7).
Ri Robust positively invariant set of subsystem i.
xi, ui Nominal state and input local variables of i (8).
Xi,Ui State and input set of nominal constraints.

in Ni, which control the private part of their input variables,
i.e., {upr

j }∀j∈Ni . Therefore, uncertainties are bounded by:

i ∈ Wi ≜
⨁
j∈Mi

BiiW
pu
ij ⊕

⨁
j∈Ni

BijW
pr
j ,

with Wpu
ij = αijUi, and Wpr

j = αjUj,

(7)

where Wpu
ij and Wpr

j are convex closed sets containing the origin,
satisfying upu

ij ∈ Wpu
ij and upr

j ∈ Wpr
j . To take into account these

uncertainties, we will follow a robust approach.
The tube-based MPC approach [21,22], is characterized by

solving an MPC problem for the nominal system, that is, without
considering disturbances, and by adding an auxiliary control law
to keep the evolution of the real system within a tube around
the nominal trajectory. Based on (6), we can derive the nominal
model for each subsystem i by ignoring interactions wi, i.e.,

x+i = Aiixi + Biiu
pr
i +

∑
j∈Ni

Biju
pu
ji . (8)

In the nominal control problem, subsystem i ignores private vari-
bles of neighboring agents Ni, and the public part of its input
ariable ui, which is controlled by agents belonging to Mi. For
he sake of clarity, Table 1 has been included to summarize the
otation used in this article.
Let us aggregate local input-to-state matrices as Bi ≜

[
Bii Bij

]
for all j ∈ Ni. In what follows, we consider the following assump-
tions:

Assumption 1. For every subsystem i:

• There exists a local feedback gain Ki that guarantees that
AKi ≜ (Aii + BiKi) is stable.
• It is possible to find a robust positively invariant (RPI) set Ri

that satisfies: AKiRi ⊕Wi ⊆ Ri, Ri ⊆ Xi, and KiRi ⊆ Ui.
• Nominal state and input constraints are non-empty sets:

Xi ̸= ∅ and Ui ̸= ∅, with Xi ≜ Xi ⊖Ri and Ui ≜ Ui ⊖ KiRi.

emark 3. Assumption 1 is generally considered in the tube-
ased MPC framework [21,22], as it must be satisfied to have a
on-empty solution space for the nominal problem.

For the nominal problem, the goal of each local controller i is
to minimize the objective function

Jci
(
xi, upr

i ,
[
upu
ji

]
∀j∈Ni

, αi

)
=

k+Np−1∑
t=k

ℓi

(
xi(t), upr

i (t),
[
upu
ji (t)

]
j∈Ni

)
f ( )

(9)
+ fi(αi)+ Vi xi(k+ Np) , m
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where t denotes the time step along the prediction horizon Np.
Let us describe upr

i and upu
ji as the sequence of inputs upr

i (·) and
upu
ji (·) from t = k to k+ Np − 1:

upr
i =

[
upr
i (0)⊤, upr

i (1)⊤, . . . , upr
i (Np − 1)⊤

]⊤
,

upu
ji =

[
upu
ji (0)

⊤, upu
ji (1)

⊤, . . . , upu
ji (Np − 1)⊤

]⊤
.

(10)

et αi group the value of the scale factors controlled by i:

i =

[
αi,

[
αji

]
∀j∈Ni

]⊤
. (11)

ote that scale factors αi and αji are recalculated every time
nstant k, but are kept constant over the prediction horizon.
urthermore, the first term of (9) corresponds to the stage cost
i(·), described by the quadratic function:

i

(
xi(t), upr

i (t),
[
upu
ji (t)

]
j∈Ni

)
=

x+i
⊤Qi x+i + u pr

i
⊤Rpr

i u pr
i +

∑
j∈Ni

u pu
ji
⊤Rpu

i u pu
ji .

(12)

Moreover, fi(·) is introduced as a penalization for the scale
actors αi and αji for all j ∈ Ni, i.e.,

i(αi) = ρprαi +
∑
j∈Ni

ρpuαji, (13)

eing ρpr and ρpu positive weighting factors. The last term of Jci
epresents the terminal cost function, with Pi > 0:
f
i

(
xi(k+ Np)

)
= xi(k+ Np)⊤Pi xi(k+ Np). (14)

Considering (9), the centralized MPC problem for the nominal
ystem at each time instant k is defined as:

min[
upri ,

[
upuji

]
∀j∈Ni

, αi

]
i∈N

∑
i∈N

Jci
(
xi, upr

i ,
[
upu
ji

]
∀j∈Ni

, αi

)
s.t.
xi(k) ∈ xi ⊕ (−Ri),

xi(t + 1) = Aiixi(t)+ Biiu
pr
i (t)+

∑
j∈Ni

Biju
pu
ji (t),

upr
i (t) ∈ αiUi,

upu
ji (t) ∈ αjiUj,

xi(t) ∈ Xi,

xi(Np) ∈ Xf
i = {0},

∀i ∈ N , ∀j ∈ Ni,

∀t = k, . . . , k+ Np − 1.

(15)

where Xf
i represents the terminal region of the nominal model,

which has been chosen as the origin. In this way, at the end of the
prediction horizon, the state of the plant subject to uncertainties
will stay in a neighborhood of the origin given by Ri. Moreover,
et upr,∗

i and upu,∗

ji be the optimal sequences of private and public
inputs, which are solution for subsystem i to problem (15). Note
that there will be |Ni| different sequences upu,∗

ji , one from each
neighboring subsystem.

Since the MPC follows a receding horizon strategy, only the
first component of the optimized sequences upr,∗

i and upu,∗

ji for all
∈ Ni is applied at time instant k, yielding the nominal control
aw

κ i(xi) =
[
upr,∗
i (0),

[
upu,∗

ji (0)
]
∀j∈Ni

]⊤
. (16)

To deal with the mutual disturbances ignored by the nominal
odel, an auxiliary control law is used so that the trajectory of
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he real system follows closely the nominal one, trying to cancel
he error between the nominal and real states, i.e., xi and xi.
onsequently, the private and public inputs of each subsystem
are calculated as:

upr
i[

upu
ji

]
∀j∈Ni

]
= κ i(xi)+ Ki (xi − xi) . (17)

emark 4. For all i ∈ N , the implemented input of subsystem i,
expressed according to (1), is the sum of the private and public
parts of the manipulated variable ui defined in (3), whereas (17) is
the vector of input variables computed by agent i. In this regard,
note that the private part of ui is computed by agent i, but the
public part is decided by agents in Mi.

Solving (15) provides for each subsystem i ∈ N the value of
the private and public inputs used to obtain the real implemented
input (17), i.e., upr,∗

i (0) and upu,∗

ji (0), and the corresponding op-
imal scale factors α∗i , i.e., αi = α∗i and αji = α∗ji , for all
eighboring agents j ∈ Ni. In what follows, we will describe how
he centralized problem is solved in a distributed manner among
he set of agents by using dual decomposition. Consequently, (15)
s not intended to be solved directly.

.2. Distributed MPC based on dual decomposition

Let us consider the dual decomposition algorithm described
n [23], which allows us to compute the solution of (15) in
distributed fashion. In this context, convergence is attained

hroughout an iterative negotiation procedure where Lagrange
ultipliers λi are used to coordinate coupling variables. Consider

he problem in (15) and note that if the dynamics of differ-
nt agents is affected by a shared input ui, they will need to
egotiate the value of the scale factors that define the input con-
traints, i.e., αi,

[
αij

]
j∈Ni

. Moreover, the solution needs to satisfy
ondition (4). The latter will be enforced by the introduction
f Lagrange multipliers, which become new parameters of the
ocal objective functions, and thus influence the agents’ solutions.
hese multipliers are assumed to remain constant during the
rediction horizon, however, note that they may vary at each
ime instant k and throughout the dual decomposition iterations.
n particular, to comply with constraints (3) and (4), agents that
arry out the negotiation are required to satisfy:

i

⎛⎝αi +
∑
j∈Mi

αij − 1

⎞⎠ ≤ 0 with λi ≥ 0. (18)

Let Si be the set containing subsystem i and its neighboring
gents, i.e., Si ≜ {{i}∪Ni}. Accordingly, there will be |Si| Lagrange
ultipliers in the local objective function of subsystem i. In other
ords, there will be as many Lagrange multipliers as private
nd public input local variables. These auxiliary variables are
ntroduced in the local objective function of each subsystem i ∈
N as

Λi
(
αi, [λm]m∈Si

)
= λiαi +

∑
j∈Ni

λjαji. (19)

Remark 5. Note that (18) needs to be fulfilled for every agent
i ∈ N . Consequently, (19) is the result of keeping all the terms of
the |N | expressions of (18) that multiply the variables controlled
by agent i.

As a result, to distribute the global problem (15), we can
rewrite (9) taking into account the agents’ negotiation. The local
objective function is formulated as the sum of the stage cost
ℓ (·) (12), the penalization of scale factors f (·) (13), the term
i i

68
introducing the Lagrange multipliers for the dual decomposition
algorithm Λi(·) (19), and the terminal cost V f

i (·) (14):

Ji
(
xi,u

pr
i ,

[
upu
ji

]
∀j∈Ni

, αi,
[
λp
m

]
m∈Si

)
=

k+Np−1∑
t=k

ℓi

(
xi(t), u

pr
i (t),

[
upu
ji (t)

]
j∈Ni

)
+ fi (αi)+Λi

(
αi,

[
λp
m

]
m∈Si

)
+ V f

i

(
xi(k+ Np)

)
.

(20)

Consequently, at each time instant k and iteration step p, each
agent i ∈ N solves:

min[
upri ,

[
upuji

]
∀j∈Ni

,αi

]
i∈N

Ji
(
xi,u

pr
i ,

[
upu
ji

]
∀j∈Ni

, αi,
[
λp
m

]
m∈Si

)
.t.
xi(k) ∈ xi ⊕ (−Ri),

xi(t + 1) = Aiixi(t)+ Biiu
pr
i (t)+

∑
j∈Ni

Biju
pu
ji (t),

upr
i (t) ∈ α

p
i Ui, upu

ji (t) ∈ α
p
jiUj, ∀j ∈ Ni,

xi(t) ∈ Xi,

xi(Np) ∈ Xf
i = {0},

λp
m ≥ 0, ∀m ∈ Si,

∀t = k, . . . , k+ Np − 1.

(21)

here [λp
m]m∈Si are introduced as parameters.

The iterative negotiation takes the values of the variables
nvolved in (19) obtained at any iteration p and compares them
ith those resulting from the previous iteration p − 1. Practical

convergence is attained when ∆ ≜ |αp
− αp−1

| is below a thresh-
old ϵ > 0. In this way, while ∆ > ϵ agents will negotiate the
bounds on shared variables. On the other hand, when ∆ ≤ ϵ, it
is considered that consecutive values are similar enough to finish
the negotiation for time step k. Meanwhile, Lagrange multipliers
are updated in each step of the negotiation according to:

λ
p+1
i = λ

p
i + γ

⎛⎝α
p
i +

∑
j∈Mi

α
p
ij − 1

⎞⎠ , (22)

where γ > 0 is the step size. Finally, the scale factors αi and αij
involved in (18) come from the solution to (21) at time instant k
nd iteration step p.

4. Control scheme

The proposed coalitional control approach aims to reduce
communication among agents and is summarized in Algorithm
1. For convenience, in what follows we use superscript − to refer
to a variable at the previous time instant, e.g., x− denotes x at
time instant k− 1.

We consider event-based coordination, meaning that com-
munication links will be enabled or disabled according to the
condition introduced in Step 9 of Algorithm 1. The communica-
tion link between two agents i and j will be disabled if the public
variable upu

ji is small enough during two consecutive time steps. It
is considered that there is no need for coordination depending on
the value of αji because it scales the constraint space of the public
variable. When αji takes small values, the region of the public
ariable is negligible compared to the values that the private
ariable can take. Nevertheless, communication will be restored
f at a single time step k agent i requires greater use of the
ublic variable upu

ji , being the value of its scale factor αji above
he threshold α̂.
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Agents that are communicating follow an iterative procedure
nder the distributed dual decomposition algorithm. They share
he values of the scale factors αi and αji until the negotiation
onverges, updating the value of the Lagrange multipliers at every
teration step p. It is worth mentioning that, unlike common
istributed approaches, agents share the variables that bound
nput constraints and not input variables directly. In addition,
gents will keep calculating the value of their public variables
ven when they are not communicating since the negotiation can
e suddenly resumed.

Algorithm 1 Control Scheme
Initialization: At the first time instant k = 0 and iteration p = 0,
the values of the scaling factors are set to a positive non-zero
value: α

p=0
i (0) = αaux, α

p=0
ji (0) = αaux ∀i, j ∈ N , with αaux > 0.

If k > 0, we will set the value of the scale factor at p = 0 as
the one in the previous time instant, i.e., α

p=0
i (k) = αi(k − 1),

α
p=0
ji (k) = αji(k − 1) ∀i, j ∈ N . Moreover, set [λm]m∈Si = 0 at

p = 0 ∀k.
At each sample time k, each agent i ∈ N proceeds as follows:
1: while ∆ > ϵ do
2: Update the disturbance set Wp

i (7) according to the scale

values from the previous iteration, i.e.,
[
α
p−1
ij

]
∀j∈Mi

and[
α
p−1
j

]
∀j∈Ni

.

3: Compute the corresponding invariant set Rp
i .

4: if xi − xi /∈ Rp
i then

5: Set Rp
i = R−i .

6: end if
7: Solve (21) to obtain the optimal nominal sequences upr,∗

i ,
upu,∗

ji and the optimal scale factors α∗i .
8: Calculate the real inputs upr

i and upu
ji ∀j ∈ Ni according to

equation (17).
9: if α

p
ji < α̂ and α−ji < α̂ then

10: Disable the communication between agents j and i.
11: Ignore the value of the public variable: upu

ji = 0.
12: The associated Lagrange multiplier to αji will remain

constant in the next iteration: λ
p+1
j = λ

p
j .

13: Set ∆j = 0.
14: else
15: Enable the communication between agents j and i.
16: Update the neighboring Lagrange multiplier λ

p:+1
j accord-

ing to (22).
17: Compute ∆j = max{|αp

j − α
p−1
j |, |α

p
ji − α

p−1
ji |}.

18: end if
19: Set p← p+ 1 and compute ∆ = max{∆j}∀j∈Ni .
20: end while

The set Rp
i has to be recalculated for each iteration p and

or every time instant k. Note that, in the literature, there are
ethods such as [24,25] that allow us to perform this calculation.

n particular, the invariant sets for Algorithm 1 are designed ac-
ording to [26], where a one-step procedure is applied to compute
polytopic minimal robust positively invariant (mRPI) set. In
articular, this method solves a single LP to compute the so-called
P, r)-mRPI, where r denotes the number of inequalities defining
he set and P is a predefined matrix. Therefore, the update of Rp

i
ntails a light computational load.

.1. Verify whether xi − xi ∈ Rp
i

Since input, state, and uncertainty constraint sets vary over
time, the RPI set must be recomputed at every instant k to suit
69
the new constraints. Following [7], a checking step is introduced to
verify if the difference between the predicted and nominal states
in k+ 1 belongs to the new RPI calculated at that time instant in
order to maintain constraint satisfaction and recursive feasibility.

According to [22], if the state belongs to the set xi ⊕ Ri for a
ertain time instant k, we can guarantee that for the successive
ime instant k + 1 the state will remain within the set x+i ⊕ Ri.
At the beginning of the algorithm, k = 0, R0

i is calculated, and
we guarantee that x0i − x0i ∈ R0

i , since the initial nominal state is
optimized according to xi(0) ∈ xi ⊕ (−Ri). The problem arises
hen we have to recalculate for each time step k the RPI set
ecause the constraints that affect Ri may have changed with
espect to the previous instant. According to xi ∈ xi ⊕ Ri, at
time instant k, successor states x+i and x+i are calculated using
the invariant set Ri. As condition x+i ∈ x+i ⊕ Ri holds, we have
to guarantee that the new RPI calculated at k + 1 contains the
difference between the predicted real and nominal current states:

x+i − x+i ∈ R+i . (23)

To pursue this goal, Step 3 of Algorithm 1 is introduced with the
same procedure as the checking step introduced in [7] (Subsec-
tion 4.1). If (23) is met, the following is satisfied:

AKi

(
x+i − x+i

)
⊕W+i ⊆ R+i . (24)

Consequently, the predicted state and input trajectory will verify
the original constraints Xi and Ui. Conversely, if x+i −x+i /∈ R+i we
will discard the new RPI set and use the previous one, i.e., Ri :=

R−i , since x+i ∈ x+i ⊕Ri is always fulfilled.

. Recursive feasibility and stability

In what follows, we proceed as in [7] to develop the conditions
hat ensure recursive feasibility and stability since the applied
chemes are somewhat similar except for the novel distribution
f inputs among agents, and the exchanges of communication
hat are necessary to adjust the bounds on shared variables.

.1. Decreasing trend of the disturbance set W

Hereafter, we will introduce several assumptions that allow
s to preserve the guarantees of recursive feasibility and stability
hen using the previous RPI if the new set does not satisfy
ondition (23).

ssumption 2. The set of disturbances are non-increasing from
one time instant k to another k+ 1, i.e., W+i ⊆ Wi.

Remark 6. Since we are working with a regulation control
problem, the state will approach the origin as time goes by, and
hence the inputs will also tend to zero. In this regard, any non-
increasing evolution of factors αj (j ∈ Ni) and αij (j ∈Mi) will lead
o coupling disturbances sets satisfying Assumption 2 (recall (6)
nd (7)).

In this way, the bounds of the uncertainties evolve into smaller
ets over time. This implies that if the disturbance set changes
n two consecutive instants, the successor set will be a subset
f the previous one. As the size of the RPI set depends on the
isturbance set, a smaller disturbance set entails a smaller RPI
et, leading to the following assumption:

ssumption 3. The invariant sets are non-increasing from one
ime instant k to another k+ 1, i.e., R+ ⊆ R .
i i
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Let us consider that at time instant k, subsystem i satisfies:
KiRi⊕Wi ⊆ Ri. Considering the above, for the successor instant,
t holds that W+i ⊆ Wi, and R+i ⊆ Ri. Hence, for k+1 is satisfied:
KiR
+

i ⊕ W+i ⊆ R+i . Let us define Wi as any uncertainty set
contained in Wi, i.e., Wi ⊆ Wi. As disturbances decrease over
time, AKiRi⊕Wi ⊆ Ri is fulfilled for any uncertainty set contained
in Wi. A fail-safe option for k + 1 if x+i − x+i /∈ R+i , is to replace
he new RPI with the preceding one, i.e., set R+i = Ri. This is
hy Step 4 of the control algorithm is proposed as an alternative
hen the necessary conditions are not met, as we are being more
onservative with a larger RPI set that satisfies the problem’s
onstraints.

.2. Conditions for recursive feasibility

heorem 1 (Recursive Feasibility). Consider that Assumptions 2 and
hold. Then, if at the initial time instant k = 0 it is possible to find a

feasible solution of problem (21) for all agents i ∈ N , it is guaranteed
hat it exists a feasible solution for any instant k ∈ {0, 1, 2, . . .}. □

roof. Let x∗i =
[
x∗i (0)

⊤, x∗i (1)
⊤, . . . , x∗i (Np)⊤

]⊤ and

upr,∗
i (k) =

⎡⎢⎢⎢⎣
upr,∗
i (0)

upr,∗
i (1)

...

upr,∗
i (Np − 1)

⎤⎥⎥⎥⎦ ,upu,∗

ji =

⎡⎢⎢⎢⎣
upu,∗

ji (0)
upu,∗

ji (1)
...

upu,∗

ji (Np − 1)

⎤⎥⎥⎥⎦∀j ∈ Ni

e the optimal state and input sequences derived from the so-
ution of (21) at instant k. Additionally, note that Assumptions 2
and 3 imply that W+i ⊆ Wi and R+i ⊆ Ri, with W+i and R+i being
respectively the disturbances and RPI sets at instant k+1, and Wi
and Ri those at k. Finally, let us build up the following candidate
solution for instant k+ 1:

x̃+i =

⎡⎢⎢⎢⎢⎣
x̃+i (0)
x̃+i (1)

...

x̃+i (Np − 1)
x̃+i (Np)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

x∗i (1)
x∗i (2)

...

x∗i (Np)
0

⎤⎥⎥⎥⎥⎦ , (25)

˜
pr,+
i =

⎡⎢⎢⎢⎢⎣
upr,∗
i (1)

upr,∗
i (2)

...

upr,∗
i (Np − 1)

0

⎤⎥⎥⎥⎥⎦ , ũpu,+

ji =

⎡⎢⎢⎢⎢⎢⎣
upu,∗

ji (1)
upu,∗

ji (2)
...

upu,∗

ji (Np − 1)
0

⎤⎥⎥⎥⎥⎥⎦∀j ∈ Ni. (26)

From the constraints of (21), we have that xi− x∗i (0) ∈ Ri and
x∗i (Np) = {0}. Additionally, if we apply control law (17), it holds
that x+i − x∗i (1) ∈ Ri. However, as the RPI is recalculated at each
ime step, condition x+i − x∗+i (1) ∈ R+i must be satisfied at k+ 1.
Since x̃+i (0) = x∗i (1), then

x+i − x̃+i (0) ∈ Ri.

Moreover, according to the checking step described in Section 4.1,
if x+i − x̃+i (0) /∈ R+i , then we set R+i := Ri as a fail-safe option,
i.e., x∗i (1) will always satisfy the constraint on the initial nominal
tate of problem (21).
Additionally, given that R+i ⊆ Ri, nominal constraints sets Ui

and Xi can only enlarge in time, i.e., U+i ⊇ Ui, X
+

i ⊇ Xi. Therefore,
tates x∗i (n) and inputs upr,∗

i (n), upu,∗

ji (n) ∀j ∈ Ni in (25) and (26)
re admissible for all n = 1, . . . ,Np. Finally, since x∗i (Np) = {0},

we can always apply zero as the terminal input to stay at the
origin. Therefore, (25) and (26) constitutes a feasible solution of
problem (21) for time step k + 1. By induction, the theorem is
proven. ■
 t

70
5.3. Conditions for stability

Theorem 2 (Stability). For all agents i ∈ N , the origin is asymptot-
ically stable. □

Proof. To establish stability, we have to prove that the nominal
cost function Ji (20) decreases during the evolution of the system.
Let the optimal sequences in 1 x∗i , u

pr,∗
i and upu,∗

ji at k lead to
the optimal cost J∗i . Additionally, the candidate state and input
sequence for k + 1, i.e., x̃+i , ũ

pr,+
i and ũpu,+

ji , lead to the cost J̃+i ,
which provides a value for the upper bound of the optimal cost:
J+i ≥ J∗+i . Moreover, we can calculate the difference J̃+i − J∗i as:

ℓi

(
x̃+i (Np − 1), ũpr,+

i (Np − 1),
[
ũpu,+

ji (Np − 1)
]
∀j∈Ni

)
− ℓi

(
x∗i (0), u

pr,∗
i (0),

[
upu,∗

ji (0)
]
∀j∈Ni

)
+ f̃ +i (αi)− f ∗i (αi)

+ Λ̃+i

(
αi, [λm]m∈S

)
−Λ∗i

(
αi, [λm]m∈S

)
+ V f

i

(
x̃+i (Np)

)
− V f

i

(
x∗i (Np)

)
.

(27)

Unlike private and public inputs upr
i and upu

ji , optimal scale
actors in α∗i remain constant along the prediction horizon. More-
ver, the values of the Lagrange multipliers for the candidate
olution do not vary along Np, so λ̃+m = λ∗m. We have assumed that
he values of optimization variables that remain constant over
he prediction horizon are also kept constant from the optimal
olution in k to the candidate solution in k+1. Therefore, f̃ +i = f ∗i
nd Λ̃+i = Λ∗i , so they cancel themselves in (27). As a result,
n the subtraction J̃+i − J∗i there are only left terms referring
o the stage and terminal costs. Furthermore, the terminal cost
s a continuous Lyapunov function at the origin, meaning that
f
i (k+ 1)− V f

i (k) ≤ 0, which entails:

i

(
x̃+i (Np − 1), ũpr,+

i (Np − 1),
[
ũpu,+

ji (Np − 1)
]
∀j∈Ni

)
+ V f

i

(
x̃+i (Np)

)
− V f

i

(
x∗i (Np)

)
.

(28)

herefore, we can rewrite (27) as:

+

i − J∗i ≤ −ℓi

(
x∗i (0), u

pr,∗
i (0),

[
upu,∗

ji (0)
]
∀j∈Ni

)
, (29)

hich also implies

∗+

i − J∗i ≤ −ℓi

(
x∗i (0), u

pr,∗
i (0),

[
upu,∗

ji (0)
]
∀j∈Ni

)
. (30)

We can extend the (30) for all subsystems i ∈ N :

J =
∑
∀i∈N

Ji → J∗+ − J∗ ≤ −ℓ (x(0), u(0)) . (31)

As the stage cost ℓ(·) is strictly positive, it is proven that the
ost function Ji defined in (20) decreases over time, ensuring the
tability of the system. ■

. Simulation results

In this section, we apply the proposed coalitional control al-
orithm to the academic example shown in Fig. 2. The eight
nput-coupled tanks plant consists of four top tanks (5, 6, 7,
) that discharge flow into four bottom tanks (1, 2, 3, 4), and
hese, in turn, discharge into a shared storage tank. Four pumps
Qa,Qb,Qc,Qd) are used to fill the tanks, carrying water from the
torage tank to the tanks indicated in Fig. 2. As can be seen, flow
egulation is done through three-way valves, which divide the
umped flow into two ways to fill the tanks.
The global system can be divided into N = 4 subsystems

hat consist of a top and bottom tank. Thus, the first subsystem



A. Sánchez-Amores, P. Chanfreut, J.M. Maestre et al. Journal of Process Control 123 (2023) 64–75

i
s
#
i
p
d
a
b
a
a
w

a
o
t
i
i
a
k
a
h

f

P

b
p
m
(
t
c
c
p
o
e
m
e
m
t
i

s formed by tanks #1 and #5; tanks #2 and #6 describe the
econd one; the third subsystem is composed of tanks #3 and
7; and the fourth one is formed by tanks #4 and #8. As shown
n Fig. 4, subsystems are physically coupled through the colored
ipes that connect their tanks. On the other hand, we refer to the
ata connections between their corresponding local controllers
s communication links. In particular, link (i, j) represents the
idirectional data connection between agents i and j. Whenever
given link is enabled, the agents connected through it will form
coalition and will be able to share information. In this regard,
e consider the following links: (4, 1), (2, 3), (1, 2), and (3, 4).
The target is to regulate the lower tanks towards their oper-

ting point in terms of water level, i.e., h◦i . To this end, the state
f each subsystem is defined as the water level measured from
he operating point. Taking the fourth subsystem as an example,
ts state is given by: x4 =

[
h4 − h◦4, h8 − h◦8

]T . Additionally, the
nputs are given by the difference of the pump flow and its value
t the operating point ui = Qk − Q ◦k , with i = 1, . . . ,N and
∈ {a, b, c, d}. Let us describe the operating point of the plant

s:
◦

1 = 0.6487, h◦2 = 0.6639, h◦3 = 0.6534, h◦4 = 0.6521,
h◦5 = 0.6498, h◦6 = 0.6592, h◦7 = 0.6594, h◦8 = 0.6587,
Q ◦a = 1.63, Q ◦b = 2, Q ◦c = 1.8, Q ◦d = 2,

(32)

where water level is measured in meters and flows in cubic
meters per hour. Moreover, we can characterize each subsystem
with the following matrices:

A11 =

[
0.8257 0.1178

0 0.8703

]
, B11 =

[
0.0379

0

]
, B14 =

[
0.0056
0.0843

]
,

A22 =

[
0.8163 0.1023

0 0.8867

]
, B22 =

[
0.0503

0

]
, B21 =

[
0.0053
0.0916

]
,

A33 =

[
0.8232 0.1077

0 0.8813

]
, B33 =

[
0.0442

0

]
, B32 =

[
0.0047
0.0783

]
,

A44 =

[
0.8194 0.1050

0 0.8840

]
, B44 =

[
0.0441

0

]
, B43 =

[
0.0050
0.0849

]
.

Accordingly, the disturbance vectors (recall (7)) for the simulation
example are such that:

w1 ∈ W1 ≜ B11W
pu
12 ⊕ B14W

pr
4 ,

with Wpu
12 = α12U1, and Wpr

4 = α4U4,

w2 ∈ W2 ≜ B22W
pu
23 ⊕ B21W

pr
1 ,

with Wpu
23 = α23U2, and Wpr

1 = α1U1,

w3 ∈ W3 ≜ B33W
pu
34 ⊕ B32W

pr
2 ,

with Wpu
34 = α34U3, and Wpr

2 = α2U2,

w4 ∈ W4 ≜ B44W
pu
14 ⊕ B43W

pr
3 ,

with Wpu
14 = α14U4, and Wpr

3 = α3U3.

Lastly, the system is subject to the following constraints: 0.2 ≤
hn ≤ 1.3, ∀n = 1, . . . , 8, 0 ≤ Qa ≤ 3.26, 0 ≤ Qb ≤ 4, 0 ≤ Qc ≤

3.6, and 0 ≤ Qd ≤ 4. Note that these conditions must be adapted
to the state and input constraints by subtracting the operating
point (32) from the previous limit values. The simulation has been
done using as weighting matrices: Qi = I2, R

pr
i = 0.20, Rpu

i = 2Rpr
i ,

and ρpr
= Rpr, ρpu

= Rpu penalize scale factors in the objective
function (13), calculated by trial and error. The prediction horizon
has been set to Np = 10, and the simulation lasts 25 s. Finally, the
threshold α̂ is a tunning parameter, and its value has been set as
α̂ = 0.015 by trial and error.

In what follows, the proposed coalitional method is compared
with a decentralized MPC, where agents optimize their local
control objectives regardless of the control goals of the rest of
 h

71
Fig. 2. Diagram of the eight tanks plant, where the coupling relations are
represented by the colored pipes.

the system, and with a centralized MPC, representing a fully co-
operative scheme. Note that the centralized MPC solution can also
be found in a distributed fashion, e.g., using dual decomposition
DMPC after convergence is attained. To that end, the agents need
to share information regarding their input sequences at every
time instant, whereas communication in the proposed coalitional
method is less demanding and event-based (recall Algorithm 1).

Fig. 3(a) represents the evolution of the water level of lower
tanks towards their equilibrium point. As they all start with a
water level that is above their operating point, they must be
slightly emptied and, therefore, the flow rate of the four pumps
must decrease. This is shown in Fig. 3(b), which illustrates the
performance of Algorithm 1 in terms of the evolution of flow
rates. As can be seen, when using the coalitional scheme with
α̂ = 0.015, water level and pump flow trajectories stay close to
the centralized solution. This fact highlights the benefits provided
by the proposed method, as a very similar behavior to the central-
ized one is achieved without permanent communication between
the agents. On the other hand, the water level evolution towards
their operating point h◦i is slower with the decentralized MPC due
to the lack of coordination, which makes the agents act indepen-
dently of each other’s control objectives. As a consequence, the
pump operation differs substantially from that implemented with
the centralized and coalitional approaches.

Let us define P as the index that evaluates the system’s per-
ormance:

=

T∑
k=1

∑
i∈N

u⊤i (k)R
pr
i ui(k)+ x⊤i (k+ 1)Qixi(k+ 1), (33)

eing T the simulation length. Note that the definition of the
erformance index allows one to compare the three assessed
ethods. In the coalitional approach, the input variable ui(k) in

33) is defined as the sum of the private and public parts of
he variable according to (3). In this regard, Table 2 provides a
omparison of the performance index when using centralized,
oalitional, and decentralized MPC strategies. Applying the pro-
osed coalitional approach results in a 1.28% decrease in the
verall performance regarding the centralized solution. This was
xpected since coalitional control leads to a slight loss of perfor-
ance in exchange of savings in cooperation and communication
fforts. In turn, the decentralized MPC strategy implies a perfor-
ance loss of a 17.06% compared to the centralized solution, as

here is no communication between the different agents. Thus,
t can be seen that, in terms of performance, it is beneficial to

ave some coordination between agents, as there is a significant
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t
t
d
w
t

Fig. 3. Evolution of the water level of the lower tanks and flow rate of the four pumps. Solids lines represent the result using the proposed coalitional algorithm using
α̂ = 0.015, while dashed and dotted lines represent the evolution using a centralized and decentralized MPC respectively. The fine dashed–dotted line represents
the operating point of the plant (32).
Table 2
Comparison of the overall performance for different control approaches.

Performance index P
Centralized MPC 4.8189
Coalitional algorithm with α̂ = 0.015 4.8805
Decentralized MPC 5.6411

loss in the performance when agents work independently in the
decentralized scheme.

Our coalitional approach aims to reduce communication be-
ween agents while minimizing performance losses with respect
o the centralized approach. Therefore, performance is slightly
ecreased in order to save on cooperation efforts. To check this,
e have calculated a value for the communication cost as the
otal number of links activated along the simulation. While in
72
Fig. 4. Communication topology by means of the state of the communication
links, i.e., enabled/disabled, using α̂ = 0.015.
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Fig. 5. Evolution of the public variables upu
ji and scale factors αji controlled by

ach agent i.

the centralized solution agents are constantly coordinating, and,
therefore, all communication links are always active, the state
of the links in the coalitional scheme depends on Step 9 of
Algorithm 1 (see Fig. 4, which represents the state of the links
during the simulation of the coalitional scheme). In this regard,
the communication cost for the coalitional scheme (using the
threshold value α̂ = 0.0015) decreases by a 83% concerning
he centralized approach. Therefore, we can conclude that our
roposal saves communication efforts while preserving system
erformance.
In order to study the effect of the threshold that enables and

isables communication, Fig. 5 compares the performance loss
nd the communication savings of the coalitional approach in
omparison with the centralized control when using different
alues of α̂. Note that the value of this threshold for the given
imulation results (α̂ = 0.015) provides a tradeoff between
erformance and savings in coordination efforts.
Finally, Fig. 6 shows the evolution of the public variables upu

ji
nd scale factors αji, for each agent i ∈ N with j ∈ Ni. Each col-
mn of the graph represents the variables controlled by agent i.
he first row represents in solid lines the trajectory of the public
art of the neighboring input uj which has been ceded to agent i.
he second row shows the evolution of the scale factors αji, that
ound the constraint of the public variables upu

ji . Moreover, the
alue of the selected threshold α̂ = 0.015 is represented in a
ontinuous red dotted line in the bottom plots. In this way, along
ith the evolution of upu

ji in the upper row, the product αjiUj has
een represented in the graph with a gray dashed line to illustrate
he values that the public variable can take. To allow a better
omparison between agents, we have represented public inputs
nd scale factors using the same range. As it can be seen, when
 a

73
he value of a given scale factor αji is below the threshold α̂ at two
onsecutive time-steps, the corresponding communication link is
isabled according to Step 9 of Algorithm 1, and the value of upu

ji
s set to zero accordingly. Fig. 4 also illustrates this, as we can
ee that, for example, at the time instant k = 6 s, the link (2, 3)
s disabled. This happens because at k = {5, 6} s the scale factor
23 that bounds the public part that agent 2 cedes to agent 3 (upu

23)
atisfies α23 < α̂.

.1. The case of milder coupling

The previous case study does not allow the comparison with
onventional tube-based MPC because the minimal invariant set
i for every subsystem exceeds the considered constraint set as
an be seen in Fig. 7(a). This highlights the advantages of the
ethod we present, for it dynamically scales the tube size based
n the requirements of the agents.
To further highlight the benefits of our method, an additional

imulation in which we have reduced the terms of the coupling
atrices Bij by a scale factor of 0.35 is included. In this way,
e can compute a mRPI set for every subsystem, which satisfies
i ⊆ Xi, as shown in Fig. 7(b). A comparison in terms of
he evolution of the pump flows is given in Fig. 8, where the
oalitional approach is compared with a classic tube-based MPC
TMPC), as well as with the centralized and decentralized MPC
chemes. As expected, if we decrease the coupling terms Bij there
s less difference with the decentralized approach. Nonetheless,
ur coalitional algorithm provides an intermediate solution with
loss of a 0.86% in the overall performance P regarding the cen-
ralized approach, while the decentralized and the classic TMPC
pproach resulted in a 5.97% and 5.59%, respectively.

. Conclusion

This paper presents a novel coalitional strategy, where cou-
ling variables are decomposed and distributed among neighbor-
ng agents into multiple versions that share a common constraint
pace. Agents willing to communicate will be coordinated using
he dual decomposition scheme, negotiating the bounds of shared
ariables. Instead of communicating input or state sequences, the
istributed algorithm will only broadcast information about the
cale factors of the constraints. In this framework, we propose
tube-based MPC approach to robustify agents against distur-
ances induced by coupling. When agents communicate, they will
hare and negotiate the values that bound the input constraints,

nd the tube size will depend on these variables. In this way, we
Fig. 6. Evolution of the public variables upu
ji and scale factors αji controlled by each agent i when using α̂ = 0.015.
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t
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Fig. 7. Representation of the state constraint set Xi (red), mRPI set Ri (yellow)
and (on the bottom plot) nominal constraint set X̄i (orange) for every subsystem.
The mRPI has been calculated using the methods proposed in [21,26], both
leading to the same set.

demonstrate conditions for recursive feasibility and stability of
the algorithm.

Simulation results on an 8-tanks system show that the pro-
posed coalitional approach provides an overall performance sim-
ilar to the one obtained with the centralized MPC algorithm.
Event-based communication reduces the communication burden
74
since agents will only coordinate when deemed necessary for the
sake of better fulfillment. Further research will consider applying
this idea to larger systems, such as solar plants, irrigation canals
or electrical networks, to fully exploit the algorithm’s scalability.
In addition, future lines of work will consider the application of
learning methods, such as in [27], to optimize the selection of α̂.
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