
Expert Systems with Applications 39 (2012) 2461–2465
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Online motion recognition using an accelerometer in a mobile device

D. Fuentes a, L. Gonzalez-Abril b,⇑, C. Angulo c, J.A. Ortega a

a Computer Languages and Systems Dept., University of Seville, 41012 Seville, Spain
b Applied Economics I Dept., University of Seville, 41018 Seville, Spain
c Technical Research Centre for Dependency Care and Autonomous Living – CETpD., Universitat Politécnica de Catalunya, 08034 Vilanova i la Geltru, Spain

a r t i c l e i n f o a b s t r a c t
Keywords:
Features extraction
Pattern recognition
SVM
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.08.098

⇑ Corresponding author.
E-mail address: luisgon@us.es (L. Gonzalez-Abril).
This paper introduces a new method to implement a motion recognition process using a mobile phone
fitted with an accelerometer. The data collected from the accelerometer are interpreted by means of a
statistical study and machine learning algorithms in order to obtain a classification function. Then, that
function is implemented in a mobile phone and online experiments are carried out. Experimental results
show that this approach can be used to effectively recognize different human activities with a high-level
accuracy.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Motion recognition is a discipline that has been around lately in
the human–computer interaction research community (Nayak,
Sarkar, & Loeding, 2009; Parera, Angulo, & Rodriguez-Molinero,
2009). Motion detection is a similarly hard problem as speech or
gesture recognition since these are complex acts in human beings.
Nevertheless, this field has a wide variety of applications. For
example, a continued study of this information can help a doctor
to establish a correct diagnosis or a rehabilitation plan for persons
with mobility problems.

Many mobile phones can be found nowadays fitted with devices
such as accelerometers, gyroscopes, cameras, etc., enabling us to
obtain data from their users such as their movements. Further-
more, these mobile phones have a really high processing capacity
to execute complex programs. This feature allows us the imple-
mentation of reliable methods to recognize movements using the
data from the accelerometer. However, that recognition process
implies a common problem: human movements are very complex
because many actions can take place both sequentially and simul-
taneously. Due to that, there are many different combinations of
sequential and simultaneous human movements so it is almost
impossible to model them all explicitly. Using an accelerometer
with a person, the data collected can be different depending for
example on the age of the person who stands up, i.e., a young
boy or an elder person.

Another similar situation could be considered when two per-
sons with the same age do a lateral movement and one of them
has one of his/her legs injured. To begin with, the time in which
these persons would do the movement would not be the same.
ll rights reserved.
Secondly, if these persons have a device fitted with accelerometers
the data captured would be different. Hence, a recognition method
has to be designed in order to recognize movements in persons of
different sex, age or physical condition. Another problem is where
to place the recognition device, since the data retrieved from the
accelerometer can be different if the same person has the device
in a different pocket of his trousers or even in the same pocket.

From the medical point of view, many works have been devel-
oped using the data retrieved from the accelerometers’ sensors to
study chronic diseases, strokes or rehabilitation processes. Acceler-
ometers have a high potential use in monitoring patients undergo-
ing rehabilitation processes because the information provided
together with a clinical assessment can help shortening the dura-
tion of the rehabilitation plan by applying the appropriate thera-
peutic intervention earlier. Clinicians and biomedical engineers
are joining forces to make this technology part of the routine in
clinical practice (Bobick & Davis, 2001; Sminchisescu, Kanaujia,
Li, & Metaxas, 2006). Hence, the processing of data from the accel-
erometer allows determining the rehabilitation activities a patient
would require. This information, for example, could on the one
hand help a doctor to determine if a patient is doing his/her exer-
cises correctly or, on the other hand, it could be taken as a sign that
helped to correct the rehabilitation plan.

The acceleration signals recorded via the accelerometers have
been used in many works to classify daily life activities (such as sit-
ting, standing and even walking) (Li & Ge, 2009; Parera et al.,
2009). Most notable accelerometry studies discriminate one move-
ment from other activities, e.g., fall detection (Zhang, Wang, Liu, &
Hou, 2006). Some methods use other technologies rather than
accelerometry such as RFID (Alvarez, Perez, Angulo, & Ortega,
2007; Hein & Kirste, 2007) or video recording (Matta & Dugelay,
2009). Likewise, a wide variety of classification methods are used:
KFD algorithms (Zhang et al., 2006), Bayesian and neural networks
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(Bu, Okamoto, & Tsuji, 2009), support vector machines (Cao,
Masoud, Boley, & Papanikolopoulos, 2009; Parera et al., 2009) or
decision trees (Rogez, Rihan, & Ramalingam, 2008). All these works
describe online recognition, consisting of collecting data and then
recognizing the movements. However, in this paper, we describe
a new solution and implement an online method to recognize hu-
man movements in real time using a phone with an accelerometer.

The rest of this paper is structured as follows: Section 2 de-
scribes the data captured and the activities studied. The feature
selection strategy based on discriminate power for generated fea-
tures is presented in Section 3. Data interpretation and processing
is described in Section 4. Experimentation is carried out in Section 5
and the last section contains the conclusions drawn.
2. Information collection

In this section, the relation between the device used and the
way to obtain data from the accelerometer are explained. The
activities to be classified are described next.
Fig. 1. Z-axis readings for different movements.
2.1. Data collection

An accelerometer measures acceleration (measured in m/s2)
caused either by a motion or by the gravity. Acceleration near
the surface of the earth is around 9.8 m/s2, which is used as unit
of measure and is denoted as G, that is, 1 G = 9.8 m/s2. The data re-
trieved from an accelerometer can provide the necessary data to
study the behaviour of a person, e.g., the patient movements in
his rehabilitation exercises. In this paper, the input signals are ob-
tained from a triaxial accelerometer of the sensor device located on
the user’s chest sampled at 100 Hz. This position has been chosen
because, despite the asymmetry of the human body, usually in
both men and women the centre of mass (a pivot point around
which the system can revolve (Wikia Education, 2010)) is around
the chest. The data from the triaxial accelerometer is represented
in 3-column values (X;Y;Z) measured in G. The orientation of the
three axes is variable and depends on the device; hence it is an
important step before doing any test to establish a common axis
orientation in order to be able to compare it later with other mo-
tion recognition methods or with the same method implemented
in different devices. Data from the accelerometer is stored into text
files for the next step and then it is normalized (that is, the mean
value is zero and the standard deviation value is one) in order to
avoid problems with outliers.
2.2. Activities

The final objective of this work is to identify a set of four daily
activities performed by the user while he/she is wearing the sensor
device. The activities to be classified are (the orientation of XYZ
axes are shown in):

� Sitting down: this movement ranges from 1 to 2.5 s.
� Standing up: this action also ranges from 1 to 2.5 s. It is similar

to an inverse action of sitting down.
� Walking: this activity includes taking various steps.
� Stop: the stop motion is considered as the steady standing and

sitting action. In both cases the mobile phone stays in the same
position, and hence the data obtained is very similar and the
movements are considered to be the same.

Fig. 1 shows an example of the Z-axis readings of an accelerom-
eter for each activity. It is worth noting that the duration of the
movement depends on the person who carries out the movement.
For example, a young man can take less than 1 s to stand up while
in an elder person the time can be equal to or longer than 1.5–2 s.
3. Features extraction

Once the data is collected, more than 100 related features were
considered such as angle calculations, the acceleration module,
increments and averages. A deep statistical analysis was carried
out in Parera et al. (2009) and previous data analysis tools were
used (e.g., boxplot, the Fourier transform, etc.) to choose the next
nine features.

� The standard deviation and the range of the orientation h angle.
This angle based on the earth gravity allows computing the sen-
sor device orientation.
stdðhÞ; rangeðhÞjh ¼ arctan X;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ Z2

q� �
: ð1Þ
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� The standard deviation and the minimum value of the forward
acceleration AF. This acceleration uses the h angle to compute
the accelerations in the earth fixed reference frame by applying
the rotation matrix of the X axis.
F

stdðAFÞ; rangeðAFÞjAF ¼ cosðhÞ � X þ sinðhÞ � Z: ð2Þ
� The standard deviation of the vertical acceleration AV. The ver-
tical acceleration is similar to the forward acceleration and it
uses the h and w orientation angles.
stdðAVÞjAV ¼ cosðwÞ�XþsinðhÞ �XþsinðwÞ�YþcosðwÞ�Z;

w¼ arctanðY ;ZÞ:
ð3Þ
� The standard deviation and the minimum values of the Y values
of the window.
stdðYÞ; rangeðYÞ: ð4Þ
� The standard deviation and the minimum values of the Z values
of the window.
stdðZÞ; rangeðZÞ: ð5Þ
The orientation of the XYZ axis are shown in Fig. 4. The features
selected depend on the activities studied. In this case, none of these
activities implies a lateral movement. In the accelerometer, lateral
movements are represented by the X axis; hence the features
which include Y or Z axes are better classifiers.

4. Data labeling and processing

As aforementioned, the values from accelerometer are recorded
into a 3-column format file. Once the movement is finished, the
data file is divided into different windows of 100-xyz values. The
nine statistical features are computed for each window and the re-
sults are recorded in another file. Then, an automatic procedure is
carried out to decide which ones will be useful in the classification
machine learning process. In activities involving stopping and
walking, all entries (we consider an entry a set of nine statistical
results) are considered useful for machine learning training and
they determine the learning set. The situation for the stop move-
ment (same as for walking) is shown in Fig. 2.

However, the cases in the standing up and sitting down activi-
ties are different. Before a person sits down (or stands up) he re-
mains steady in a standing up position (or in a seating position)
and, after that person has finished that motion, he sits down (or re-
mains steady in a standing up position). Hence, the beginning and
ending parts of the movements are more similar to the stop move-
ment, and consequently, the activity label for these times may not
correspond to the actual times of the activity performed. Therefore,
the entries which are located in the centre of the movement are
ig. 2. Features calculation sample for stopping (or walking) activity.
considered for the learning set. These entries are labelled with
the movement and they will be useful to recognize standing up
and sitting down movements. Nevertheless, the other entries com-
puted with the data gathered since the beginning of the motion un-
til its end are ruled out because they can generate errors due to
their similarity with the stop activity. Fig. 3 describes this
procedure.

Once the training period ends and the features are computed, an
estimation of the patient behaviour is stored in the device. After
that, the aim is to determine the activity associated with a new en-
try with nine values from the statistical features using a supervised
learning method. In this paper tests have been carried out specifi-
cally using a support vector machine (SVM) (Gonzalez, Angulo,
Velasco, & Catala, 2006; Vapnik, 1998) which is based on
1 � v � 1 SVM with different normalization outputs (Gonzalez-
Abril, Angulo, Velasco, & Ortega, 2012).

Using this configuration, the SVM learns the behaviour of a pa-
tient derived from the data of the accelerometer through hundreds
of labelled instances which are formed by nine variables and a la-
bel. In a first step, the SVM is trained by multiple labelled entries.
After the execution, the result obtained from training a SVM is a
trained classification function which will help to classify new
examples without label. The program computes automatically
the classification function with the training set and tests it with
the testing set. The best cross-validation mean rates (the accuracy)
(C,r2) and the necessary parameters to implement directly the
classification function in the mobile phone are reported in the next
section.

5. Experimentation

In this section, we present the results from experimentation. In
order to increase the robustness of the system, the effectiveness of
the method has been studied on ten men and women between 20
and 55 years old with different mobility limitations. For this task,
the Openmoko mobile phone Neo FreeRunner (Openmoko Wiki,
2010) was used to implement and test our system. Openmoko is
a Linux distribution designed for open mobile computing plat-
forms, such as, but not limited to, mobile phones. It is not tied to
any particular mobile phone providing developers with the capa-
bility to easily create and deploy applications. Openmoko is cur-
rently selling the Neo FreeRunner model, in which there are two
three-axes accelerometer sensors and the information from them
is exported through two different input event based file mappings.
A program has been designed to take the retrieval signals from one
of the accelerometers whose orientation is showed in Fig. 4.

This experimentation section has been split in offline and online
recognition tests. The main difference between them is based on
the decision to implement the classification function into the mo-
bile device. In the offline experimentation, the phone is only
needed to obtain the training and testing sets.
Fig. 3. Features calculation sample for standing up (or sitting down) activity.



Fig. 4. Orientation of the axes in the Openmoko Neo FreeRunner accelerometer
used.
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5.1. Offline recognition

For the offline experimentation, the dataset is obtained in first
place. The test group performed each activity 10 times and 1300 la-
belled entries were computed in total. Using this dataset, a Matlab
program was used for the offline recognition. This application
implements the SVM where C and r2 values are configurable
parameters and the size of labelled-training and the unlabelled-
testing sets are variable. For each C and r2 values, the SVM is
trained with the training set in order to obtain a function able to
recognize new entries. Then, the testing set is used to recognize
movements, each entry is labelled by the function and the accuracy
is computed.

Due to its spread use, the performance for the multi-classifica-
tion approach, in the form of the accuracy rate has been evaluated
on models using the Gaussian kernel, kðxi; xjÞ ¼ exp�kxi�xjk2=2r2

, and
therefore two hyper-parameters must be set: the regularization
term C and the width of the kernel r2. This space is explored on
a two-dimensional grid with the following values:
C = {210,29, . . . ,2�2} and r2 = {24,23, . . . ,2�4}. The criteria used to
Table 1
Accuracy (%) ± Standard deviation for different values of the parameters C and r2.

C r2

24 23 22 21 2

210 92.4 ± 0.14 92.6 ± 0.13 92.5.1 ± 0.12 92.6 ± 0.14 9
29 92.5 ± 0.12 92.4 ± 0.13 92.4 ± 0.12 92.3 ± 0.12 9
28 92.7 ± 0.12 92.6 ± 0.12 92.5 ± 0.14 92.5 ± 0.16 9
27 92.8 ± 0.14 92.8 ± 0.14 92.7 ± 0.16 93.0 ± 0.15 9
26 93.1 ± 0.13 92.9 ± 0.13 92.7 ± 0.12 92.9 ± 0.13 9
25 92.8 ± 0.12 93.0 ± 0.13 92.9 ± 0.14 93.4 ± 0.12 9
24 (93.0%,0.13) 93.2 ± 0.13 93.1 ± 0.16 92.9 ± 0.14 9
23 92.3 ± 0.14 93.0 ± 0.15 93.2 ± 0.16 93.2 ± 0.14 9
22 92.7 ± 0.13 92.8 ± 0.12 92.9 ± 0.13 92.9 ± 0.12 9
21 92.8 ± 0.13 92.9 ± 0.14 92.7 ± 0.13 92.8 ± 0.15 9
20 92.5 ± 0.15 92.6 ± 0.13 92.8 ± 0.15 92.5 ± 0.12 9
2�1 92.6 ± 0.13 92.7 ± 0.13 92.8 ± 0.13 92.6 ± 0.14 9
2�2 92.5 ± 0.13 92.7 ± 0.14 92.4 ± 0.14 92.6 ± 0.14 9
estimate the generalized accuracy is the 10-fold cross-validation
on the whole set of training data and this procedure is repeated
50 times in order to ensure a good statistical behaviour. The opti-
mization algorithm used is the exact quadratic program-solver
provided by Matlab. Results have also been normalized in order
to prevent problems with outliers. Data from the test has been
normalized.

The best cross-validation mean rate among the pairs (C,r2) and
its standard deviation are reported in Table 1.

The best accuracy rate is 93.4% which is attained with the val-
ues C = 25 and r2 = 2, and a standard deviation equal to 0.12. In or-
der to test whether there were statistically significant differences
between the accuracy rates, hypothesis tests were carried out:

Let Xi = 0 be assigned when the machine provide an error for the
pattern xi and Xi = 1 otherwise. Then Xi follows a Bernoulli p.d.f.,
Xi � B(pi), where pi is the probability that the machine assigns a
correct class for a new input. By testing H0 : p1 = p2 versus
H1 : p1 – p2, the statistics is Z ¼

ffiffi
n
p
ðX1�X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X1ð1�X1ÞþX2ð1�X2Þ
p � Nð0;1Þ and X

is the mean sample of size n.
Hence, no statistically significant difference between accuracy

rates was found.
Therefore, according to the empirical experimentation carried

out in this work, some analysis can be completed: (i) the accuracy
rate can be improved using different values of C and r2, although
no statistically significant differences between accuracy rates were
found. (ii) The standard deviation of the mean accuracy rate is very
similar for each considered classification problem, which is a logi-
cal result since the optimization problem for all the iterations is the
same. (iii) The standard deviation depends on the mean accuracy
rate more than on any other characteristic of the data set, which
is a natural theoretical result. (iv) It can be observed that the differ-
ence in performance between parameters is small.
5.2. Online recognition

Once the SVM classification function is obtained and the best C
and r2 values are computed in the offline recognition, the function
is implemented into the mobile phone with the objective of label-
ling new entries in real time. To demonstrate the effectiveness of
the online method, the test group repeated each activity 10 times.
In the phone, the data is collected, the features are computed to
form a new entry and, using the classification function, the label
is assigned, then it is displayed on the screen of the phone and fi-
nally it is stored in a log file. Tests results are listed in Table 2.

In all these experiments the Openmoko accelerometers were no-
ticed to be very sensitive to light vibrations, and the stop motion was
displayed on the screen of the device with 100% accuracy. In relation
to the walking movement, each person carried out 10 tests, consist-
ing of taking five steps in a straight line, obtaining 95% accuracy, that
0 2�1 2�2 2�3 2�4

2.4 ± 0.12 92.3 ± 0.13 92.5 ± 0.11 92.5 ± 0.15 92.4 ± 0.12
2.4 ± 0.14 92.6 ± 0.13 92.3 ± 0.15 92.5 ± 0.14 92.3 ± 0.15
2.6 ± 0.12 92.4 ± 0.13 92.4 ± 0.13 92.4 ± 0.13 92.4 ± 0.12
3.0 ± 0.13 92.8 ± 0.14 92.7 ± 0.12 92.6 ± 0.12 92.8 ± 0.14
3.1 ± 0.12 92.8 ± 0.13 92.7 ± 0.13 92.9 ± 0.14 93.1 ± 0.12
3.1 ± 0.15 93.1 ± 0.12 93.2 ± 0.14 93.1 ± 0.15 93.1 ± 0.12
3.1 ± 0.13 93.2 ± 0.11 93.1 ± 0.14 93.3 ± 0.15 93.3 ± 0.12
3.1 ± 0.15 92.8 ± 0.14 93.1 ± 0.14 93.0 ± 0.14 92.9 ± 0.13
3.1 ± 0.12 93.0 ± 0.14 93.1 ± 0.12 92.7 ± 0.12 92.9 ± 0.14
2.9 ± 0.14 92.8 ± 0.13 92.6 ± 0.12 92.6 ± 0.15 92.5 ± 0.13
2.6 ± 0.12 92.9 ± 0.13 92.5 ± 0.15 92.8 ± 0.13 92.6 ± 0.15
2.8 ± 0.13 92.6 ± 0.12 92.6 ± 0.14 92.7 ± 0.14 92.5 ± 0.14
2.4 ± 0.14 92.6 ± 0.13 92.8 ± 0.14 92.4 ± 0.13 92.6 ± 0.14



Table 2
Confusion matrix.

Activity Stopping Walking Standing-up Sitting-down

Stopping 100 0 0 0
Walking 0 95 2.6 2.4
Standing-up 0 8.3 91.7 0
Sitting-down 0 7.8 0 92.2
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is, the mobile phone detects this motion from the moment the per-
son starts moving until he/she stops. In the standing-up and sit-
ting-down activities, each person carried out 10 repetitions using
the same chair but taking different time to complete the activity.
The total accuracy for these activities was 91.7% and 92.2% respec-
tively. The best accuracy was achieved for the stop and walking
activities; during the exercise sessions we found that activities with
limited or repeated actions like stopping or walking can be better
distinguished from other activities which imply different move-
ments such as standing up or sitting down thanks to the good sensi-
tivity and specificity. Moreover, it was observed that the time for
doing activities like walking was usually the same whereas for
standing-up or sitting-down it depended on the age or physical con-
dition of the person who performed the activity. Table 2 shows that
most errors arose from confusing standing up or sitting down mo-
tions with walking and these mistakes can be related to the speed
of the movement and the body inclination.

6. Conclusions

In this paper, we have presented a new methodology to recog-
nize motions either offline or online based on data from an accel-
erometer in a mobile device. Using this method, health personnel
can obtain new information about the patient to decide a diagno-
sis. Both online and offline designed algorithms showed an overall
accuracy of 93% when recognizing different activities.
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