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Abstract

Functional data appear more and more in modern societies, in which many processes
are monitored in real time. Classification (both unsupervised and supervised) prob-
lems with such data are a challenging problem. In this work we describe some

techniques for classification of functional data using Mathematical Optimization.



Resumen

Cada vez es mas frecuente el uso de datos funcionales en las sociedades modernas,
en las que muchos de los procesos son monitorizados en tiempo real. Abordar el
problema de clasificacién (tanto no supervisada como supervisada) con este tipo de
datos es un desafio. En este trabajo se describen algunas técnicas de clasificacion

de datos funcionales mediante optimizacion matematica.
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Chapter 1

Introduction

This work analyses classification procedures for functional data. To do that, we
first review (Chapter 2) some basic ideas of Functional Data, then we address in
Chapter 3 some basic classification procedures for such data, and then we describe
in Chapter 4 the R routines enabling us to perform classification. The work ends
with Chapter 5, in which we illustrate the approach with two real datasets growth

and CanadianWeather (fda package).



Chapter 2

Functional Data Introduction

With the advancement of modern technology, more and more data are being recorded
continuously during a time interval or intermittently at several discrete time points.
These are both examples of functional data, which have become a commonly en-
countered type of data. A functional data or a time series is defined as a set of
quantitative observations arranged in chronological order. Functional data analysis
(FDA) encompasses the statistical methodology for such data. See [14] for further
details.

The simplest dataset encountered in FDA is a sample of this type

Xo(tin) ER, tj, €T, Ty, n=12...N, j=1,..J,. (2.1)

By this we mean that N curves are observed in a common interval [T, T5]. The
values of the curves may be not known at all points ¢ € [T7, T3], they are available
only at some specific points t;,, which can be different for different curves X,
therefore, j takes valuesin 1,...,.J,. A fundamental idea of FDA is that the objects

we wish to study are smooth curves, like
{X,(t): te [, Ty],n=1,2,... N}, (2.2)

for which the values X, (t) exist at any point ¢, but are observed only at selected
points ¢;,. Instead of considering functional data as a continuous parameter ¢, we

may consider that time is a discrete variable. Details are found in [8].
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2.1 Where do the data live

Most theoretical developments require the assumption that the sample space X is a
real separable Banach space whose norm is denoted by ||-||. Separability ensures that
a linear combination of random elements valued at X is again a random element.
Very often a structure of (separable) Hilbert space, with associated inner product
(-,-) is needed for X. Two standard choices for X are C[a,b], the Banach space
of real continuous functions X : [a,b] — R endowed with the supremum norm

| X|| = max | X (t)], and the Hilbert space L?[a,b] of square-integrable real functions

b
on [a,b] endowed with the usual inner product (X,Y) = / X(t)Y(t)dt.

2.2 Processing the data: basis representation and

smoothing

Very often “raw data” (X(t1),...,X(tn)) require a preliminary treatment before
applying FDA techniques. This is motivated in terms of dimension reduction in
order to remove the noise present in the data measurements. Basis representation
is a very usual way to transform the data. Assume that X € L%[a,b], and {ex(t)} a
orthonomal basis of that space. We may think of fitting a function X from the raw
data in the following way: we fix a number J of basis functions, typically smaller
than N, and define

X(t) =) cje;(t)

Jj=1

where the ¢; are the Fourier coefficients, chosen in order to minimize

> (X(tk) - chej(tk)>

k=1
Then, this representation process can be summarized in terms of two transfor-

mations,
(X(t1),..., X(tn)) — (cl,...cy) — ()N((tl),...,)N((tN))

Therefore, this procedure provides both a more compact representation of the

data (as J is typically much smaller than V) and a denoising process, since X can
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be considered as a smoothed version of the original data X.

Note that an important advantage of such regularization processes is the pos-
sibility of using the first or second order derivatives of the original data. This is
extremely useful in practice, as sometimes the relevant information is included in

the derivatives rather than in the data themselves. Details are found in [4].

2.3 Cubic Spline Interpolation

Cubic spline can be used to achieving smooth curves. The fundamental idea behind
cubic spline interpolation is to draw smooth and simple enough curves (piecewise
third-degree polynomials) through a number of points. For each n =1,2,... N, the
essential idea is to fit a function of the form

(S30)  if € [t ta)
sp(t) if t€ [tan, tsnl

Sn(t) = (2.3)
L Sin_l(t) Zf te [tJnfl,T“tJnyn]
where J, is the number of observations of the curve z,, and s/, for j =1,...,J, 1 is
a third degree polynomial defined by
sh(t) = al(t — )’ + 05t = t0)" + ch(t = tj0) + . (2.4)

Our spline S, (t) will need to interpolate all data points (¢, z,(t;,)) for each n =
1,2,...N so

Tn (tj,n) = Sn (tj,n)

= .
Furthermore, the functions S, (t) and their derivatives S/ (t) and S/(t) will be
continuous on the interval [ty ,,t7, 4]
S%(tj+17n) = 87]‘14_1(75]'4_17”) for j = 1, .. Jn_g

-/

s (tipin) = i (Ln) forj=1,...Juy (2.6)

-1/

S% (tj+1,n) = 8%+1//(tj+17n) for j = 1, c. Jn727
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where the equations of the derivatives
sp(t) = 3aj(t—tjn)* +260(t —tjn) + )

(2.7)
si'(t) = 6al(t —t;,)+ 20

n n

2.4 Sample mean and variance

We now assume that the raw data have been converted to functional objects of the
form (2.2) using the method described above in Section 2.3. The simplest statistics

are the pointwise mean and the pointwise standard deviation.

Definition 2.1

Given n times series {X1,..., Xy}, the pointwise mean or the center time series is
given by
_ 1 <
X(t) =+ > Xi(). (2.8)
i=1
|

Definition 2.2

Given n times series { X1, ..., Xy}, the pointwise standard deviation is given by

N 1/2
o(t) = {ﬁ St - >‘<<t>>2} . (29)
|

The pointwise sample standard deviation gives us an idea about the typical
variability of the curves at any point ¢, but it does not give information on how the
values of the curves at the point ¢ relate to those at the point s, for that is defined

the sample covariance function as follows.

Definition 2.3

Covlt,s) = —— " (%:(t) = X (Xils) — X(5)) (2.10)
[ |

The interpretation of the values of Cov(t, s) is the same as for the usual variance-
covariance matrix. For example, large values indicate that X;(¢) and X;(s) tend to

be simultaneously above or below the average values at these points.
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2.5 Euclidean Distance and Dynamic Time Warp-

ing (DTW) Distance

Definition 2.4

The squared FEuclidean distance between two time series X; and Xy, where each

functional data is observed in the same m discrete time instants ty,...,t,, is given
by [3]:
(X1, X) = Y (Xa(ty) — Xa(t)? (2.11)
j=1
|

Rigid distances, such as the Euclidean distance or the Manhattan distance,
present difficulties [1], such as their inability to naturally measure the distance

between similar series, but which have some displacement in time.

Example 2.5 Using the example of the dataset growth of the package fda.usc [6],
all functional data are measured at 31 discrete time points between the ages of 1
and 18. Given new functional data X, our objective is to predict to which group
it will belong, if “girls” or “boys”, classifying it in the closet group in terms of a
metric. If the heights of this new data are recorded at the same 31 time points,
the Euclidean distance is usually used to measure the distances between X and the
rest of the dataset. Unfortunately, in most cases, X is observed in different discrete

points, moreover outside of the range between 1 and 18 years.
|

The difficulties above can be solved using the DTW distance, but it carries a
higher computational cost. One of the differences between the DTW distance and
the Euclidean distance is that certain elements of a series can be matched with one

of the other series.

The objective of the DTW is to contrast two time series X := (x1,22,...,2x)
of length N € Nand Y := (y1, 42, ..., yn) of length M € N. In this technique, each
point of the first time series is compared with any arbitrary point from the second
time series. [7]

Fixed a sample space X, to compare z,,y, € X for n € {1,...,N} and

m € {1,..., M}, one needs a local cost measure, sometimes also referred to as
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local distance measure, which is defined to be a function

CIXXX-)RZ(). (212)

Typically, ¢(zn, ym) is small (low cost) if z, and vy, are similar to each other,

and otherwise ¢(z,, y,) is large (high cost).

Taking into account the standard choices for X discussed above in Section 2.1,
we use the Euclidean distance as local cost measure ¢. Manhattan distance can also

be used.

Evaluating the local cost measure for each pair of elements of the functional data
X and Y, one obtains the cost matriz C € RN*M defined by C(n,m) := c¢(Zpn, Ym)-
The goal is then to find an alignment between X and Y with minimal overall cost.

To formalize the notion of alignment, we define warping path. [10]

Definition 2.6

An (N, M )-warping path is a contiguous set of cost matrix elements p = (p1,...,pr)
with p, = (ng,my) € {1,...,N} x {1,...,M} for ¢ € {1,..., L}, that defines a
mapping between X and Y, satisfying the following three conditions.

1. Boundary condition: p; = (1,1) and p;, = (N, M).
2. Monotonicity condition: n; < ng < ---<npand m; <myg < --- < my,.

3. Step size condition: pey1 — pe € {(1,0),(0,1),(1, 1)} for £ € {1,..., L — 1}.

Observation 2.7 The step size condition implies the monotonicity condition.

A (N, M)-warping path p = (p1,...,pr) defines an alignment between two se-
quences X := (x1,22,...,xy) and Y := (y1,9s,...,yn) by assigning the element
xp, of X to the element y,,, of Y. The boundary condition enforces that the first
elements of X and Y as well as the last elements are aligned to each other. The
monotonicity condition forces the points in the warping path to be monotonically
spaced in time: if an element in X precedes a second one this should also hold for
the corresponding elements in Y , and vice versa. The step size condition expresses
a kind of continuity condition: no element in X and Y can be omitted and there are
no replications in the alignment i.e., all index pairs contained in a warping path p
are pairwise distinct. Also, this condition restricts the allowable steps in the warping

path to adjacent cells (including diagonally adjacent cells).
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Example 2.8 Let p an (4, 3)-warping path p = (p1, pe, ps, p4) With p; = (ngs, my) for

e {1,2,3,4} and p; = (1,1),p2 = (2,2),p3 = (3,3),ps = (4,3). Then

n =1, m =1
ng =2, My =2
ny =3, mg =3
ng =4, my =3

(2.13)

The warping path p defines an alignment between two sequences X = (x1, xo, T3, T4)

and Y = (y1,y2) by assigning x,, of X to the element y,,, for ¢ € {1,2,3,4}. The

assignment is

Tpy =21 1O Ymy =1
Tpo = Lo 1O = Yy
2 Yme =Y (2.14)
Tpg = X3 1O Ymy = U3
Tpy = T4 1O Yy = U3
The warping path above is shows in the next figure
dev.new()
plot(NA, x1lim=c(0, 4), ylim=c(0, 3), xlab=’’, ylab=’’,xaxt="na",yaxt="na")

rect(0, 0, 1, 1, col=’red’)
rect(l, 1, 2, 2, col="red")
rect(2, 2, 3, 3, col="red")
rect(3, 2, 4, 3, col="red")

# Vertical grid
axis(1,
at = c(0:4),
tck = 1, 1ty = 2, col

Ilgrayll)

# Horizontal grid
axis(2,
at = c(0:3),

tck = 1, 1ty = 2, col = "gray", las=1)

Definition 2.9

The total cost ¢,(X,Y) of a warping path between X and Y with respect to the

local cost measure c is defined as
L

Cp(X, Y) = Z C<xnev ymz)'

(=1

(2.15)
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There are exponentially many warping paths that satisfy the above conditions. How-

ever, we are only interested in the path that minimizes the total cost.

Definition 2.10
An optimal warping path between X and Y is a warping path p* having a minimal

total cost among all possible warping paths.

Definition 2.11
The DTW distance DTW(X,Y') between X and Y is then defined as the total cost

*

of p*:

DTW(X,Y) :=c¢x(X,Y)

2.16
= min{c,(X,Y) | p is an (N, M )-warping path} (2.16)

As a result, time series with similar patterns occurring in different time periods
are considered similar.

To determine an optimal path p*, one could test every possible warping path
between X and Y. The complexity of this procedure is exponential in the lengths
N and M. We will now introduce an O(NM) algorithm that is based on dynamic

programming. To this end, we define the sequences X (1 : n) := (21, 9,...,2,) for
ne{l,...,N}and Y(1:m) := (y1,y2,...,ym) for m € {1,..., M} and set

D(n,m) =DTW(X(1:n),Y(1l:m)). (2.17)

The values D(n, m) define an N x M matrix D, which is also referred to as the
accumulated cost matriz. One has X (1 : N) is equal to X and Y (1 : M) is equal
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toY,so D(N,M)=DTW(X(1:N),Y(1: M)) =DTW(X,Y). The next theorem

shows how D can be computed efficiently.

Theorem 2.12 The accumulated cost matriz D satisfies the following identities:

n

D(n,1) = Zc(xk, y1)forn € {1,...,N},

k=1 (2.18)
D(1,m) = c(xq, yg)form € {1,..., M}, and

k=1

D(n,m)=min{D(n—1,m—1)+D(n—1,m)+ D(n,m — 1)} + c(xn, yn) (2.19)
for1 <n < Nand 1 <m < M. In particular DTW(X,Y) = D(N,M) can be
computed with O(N M) operations.

Proof. Let m =1 and n € {1,...,N}. Then

D(n,1) TW(X(1:n),Y(1:1))
TW(X(1:n),1)

(X(1:n),y) (2.20)

D
D

I
o
3

C(xka yl)

ol

=1
The first equality is given by the definition of an accumulated cost matrix element
2.19. The second is by the definition of sequence Y (1 : m) with m = 1 2.5. Then
we use the definition of the DTW distance 2.11. There is only one possible warping
path between X (1 :n)and Y(1:1) =y given by p* = ((1,1),(2,1),...,(n, 1)) that
satisfies the three conditions of warping path definition 2.6, so it is the minimum
of all the possible warping paths. Finally, we obtaig the total cost of this warping

path 2.9 as c¢(x1,y1) + c(z2, 1) + -+ + c(Tp, 1) = Z c(zr, Y1)
k=1

Similarly, one obtains the formula for D(1,m) = D(1,m) = Z c(xy,yg) for m €
k=1

{1,...,M).

Now, let n > 1 and m > 1 and let ¢ = (q1,...,491-1,qz) be an optimal path
for X(1 : n) and Y(1 : m). Then the boundary condition implies q;, = (n,m).
Setting (a,b) := qr_1, the step size condition implies (a,b) € {(n —1,m — 1), (n —
1,m), (n,m — 1)}. Furthermore, it follows that (¢qi,...,qr—1) must be an optimal

warping path for X (1 : a) and Y(1 : b) (otherwise, ¢ would not be optimal for
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X(1:n)and Y(1:m)). Since

D(n,m)= DTW(X(1:n),Y(1:m))
= ¢,(X(1:n),Y(1:m))
Clarsnan (X (1: @), Y(1: 8) + (2, ym)
= min{D(n,m—1),D(n—1,m),D(n—1,m — 1)} + c(xn, Ym)

(2.21)

The DTW distance between the sequences X (1 : n) and Y (1 : m) is the total cost

of the optimal warping path ¢. This cost can be broken down into two addends: the

total cost of the optimal warping path for X (1 : a) and Y(1 : b), where a = n or

a=n—1and b=m or b =m — 1 attend the step size condition, and the local cost,

for example, the Euclidean distance, between x,, and y,,. The election of a and b

shall determine which of the next set {D(n,m — 1), D(n —1,m),D(n —1,m — 1)}

corresponds whit the DTW distance, the one who gives the minimum.l

Theorem 2.12 facilitates a recursive computation of the matrix D. The initial-
ization can be simplified by extending the matrix D with an additional row and
column and formally setting D(n,0) := oo for n € {1,...,N}, D(0,m) := oo
for m € {1,...,M} and D(0,0) = 0. Then the recursion of (2.19) holds for
ne{l,...,N}and m € {1,..., M}. The time and space complexity of this method
is O(NM). The following algorithm compute an optimal warping path p*.

Algorithm: Optimal Warping Path
Input: Accumulated cost matrix D.
Output: Optimal warping path p*.
Procedure: The optimal path p* = (p1,...,pr) is computed in reverse order of
the indices starting with p;, = (IV, M'). Suppose p, = (n,m) has been computed. In

case (n,m)=(1,1), we are finished. Otherwise,

(1,m—1) ifn =1
pe-1:=4 (n—1,1) ifm =1
argmin{D(n,m — 1), D(n —1,m), D(n —1,m — 1)} otherwise

(2.22)

where we take the lexicographically smallest pair in case arg min{D(n,m—1), D(n—

1,m),D(n —1,m — 1)} is not unique.

Observation 2.13 The Euclidean distance between two sequences can be seen as a

special case of the DTW distance, where each element of the optimal warping path
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is constrained to py = (ng, my) with ny = my = ¢. Note that it is only defined in the

special case where the two sequences have the same length N = M. [5]



Chapter 3

Introduction to the Functional Data

Classification

Our aim here is to summarize the main ideas and techniques used so far in the

classification of functional data.

3.1 Supervised and unsupervised functional clas-

sification

In statistics, the word classification also has the same usual double meaning as in
the ordinary language, where this term stands for both “to assign (an element)
to a particular class or category” and for “arrange (a group of elements) in classes
according to shared characteristics”. The first meaning corresponds to the statistical
methodology called supervised classification or discriminant analysis. The second
one would fit better with clustering methodology, which roughly corresponds to the
unsupervised classification theory. Here, the term “supervised” in the first problem
refers to the fact that there is a “training” (sample) dataset of elements which are
assumed to be well-classified. Then the problem is to classify the new incoming
elements. In the unsupervised class, no such help is available, the problem is just to
group the data into “clusters” of mutually alike elements. The reader is referred to

[2] for more details

17
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3.2 Unsupervised Classification

The purpose of unsupervised classification techniques is to partition a (usually large)
data sample {X;,..., Xy} into a number K of clusters or groups. The members
of the same cluster are similar to each other according to certain characteristics.
Some well-known algorithms for grouping a given dataset are based on the mutual
distances between the data. So, they can be adapted to the case of functional data,

provided that a suitable distance is defined.

The number of groups K must be given in advance, but most grouping procedures
include some guidelines for the choice of K. Unsupervised classification is typically
used when a large amount of data is available and some internal structure of data

groups is suspected.

3.2.1 K-means Clustering

K-means clustering is a method for finding clusters and cluster centers in a set of
unlabeled data. Once the desired number of cluster centers was elected, say K, and
the K-means procedure iteratively moves the centers to minimize the total within
variance [13]. Given an initial set of K centers, the K-means algorithm alternates

the two steps:

e for each center Xy, for k € {1,..., K} we identify the subset of training func-

tional data (its cluster) that is closer to it than any other center.

e the mean 2.4 for the functional data in each cluster are computed, and this

mean becomes the new center for that cluster.

These two steps are iterated until convergence. Typically, the initial centers are K

randomly chosen observations from the training data.

3.2.2 Gaussian Mixtures

Each cluster is described in terms of a Gaussian density, which has a centroid and a
covariance matrix. The two steps of the alternating EM algorithm are very similar

to the two steps in K-means:

e In the E-step, each observation is assigned a weight for each cluster, based on

the likelihood of each of the corresponding Gaussian’s. Observations close to
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the center of a cluster will most likely get weight 1 for that cluster and weight
0 for every other cluster. Observations half-way between two clusters divide

their weights accordingly.

e In the M-step, each observation contributes to the weighted means (and co-

variance) for every cluster.

3.3 Supervised classification

This methodology applies when K populations are given in advance. The available
data consist of a “training sample” (X,,Y;) where X, for i € {1,..., N} are func-
tional data and Y,, = k if the n-th individual belongs to the population Py. The final
aim is to classify a newly appearing observation X into one of the populations Py,
i.e., we want to predict the corresponding value Y using the information provided

by the training sample.

3.3.1 k-Nearest Neighbors Method

Assume that X is a metric space. To classify a data X, look at the k training
data closest to X (in the metric of X) and assign X to P; when the majority of
these k data belong to P;, in the case of our training sample consist of K clusters
Py, ..., Px. For the latter, an appropriate functional distance must be chosen. This
is equivalent to specifying the feature metric space X where the functional data are

supposed to take values. See Section 2.1.

3.3.2 Prototype Methods

Throughout this section, our training data consists of the N pairs (X1,Y7)...,
(Xn,Yy) where Y, for n € {1,..., N} is a class label taking values in 1,2,..., K.
Prototype methods represent the training data by a set of functional data in the

feature space X. These prototypes are typically not examples from the dataset.

Each prototype has an associated class label, and the classification of a query
point X is made into the class of the closest prototype. Closeness is usually defined
by the Euclidean distance in the feature space. The Euclidean distance usually
requires two time series to have the same length. Otherwise, the DTW distance is
used, as we discuss in Section 2.5. The main challenge is to figure out how many

prototypes to use and where to put them.
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3.4 K-fold cross-validation

Ideally, if we had enough data, we would set aside a validation set and use it to
assess the performance of our prediction model. Since data are often scarce, this is
not usually possible. To avoid the problem, K-fold cross-validation uses part of the
available data to fit the model, and a different part to test it. We split the data into
K roughly equal-sized parts.

For the k-th part k € {1,..., K}, we fit the model to the other K — 1 parts of
the data and calculate the prediction error of the fitted model when predicting the
k-th part of the data. We do this for £ = 1,2, ..., K and combine the K estimates

of the prediction error. The way we combine the K estimates is doing the mean.

Typical choices for K are 5 or 10. If we have a dataset {X,..., Xy}, the case
K = N is known as leave-one-out cross-validation: for each functional data X,,, we
fit the model with the other N — 1 time series, and calculate the prediction error of
the fitted model when predicting X,,. We repite this for each function in our dataset

and estimate the prediction error as the mean of the N estimators.

Observation 3.1 It is important to randomly select the sample because it is pos-
sible that the records follow a pattern linked with their position in the dataset. For
example, growth dataset of fda.usc package [6] consists of heights measured in
boys and girls at 31 discrete time points between the ages of 1 and 18. Then, we
could choose “boys” curves to test the model and “girls” ones to fit it. In this case,

the error will be considerably greater.

In the folds of different models, there is a common part; this is the reason that
the K estimators of the error will not be independent. However, the so-obtained

estimator will be more precise in the sense of variance.
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Automatic procedures by R

4.1 Introduction to splines?

The R package splines2 provides functions to construct basis matrices of natural

cubic splines, along with their integrals and derivatives of a given order.

The function naturalSpline() returns nonnegative basis functions (within the
boundary) for natural cubic splines. When integral = TRUE, naturalSpline()
returns the integral of each natural spline basis. To obtain the derivatives of the
spline basis functions, we may specify the argument derivs = k, k being the order

of the derivative, or the deriv() method.

4.2 Conversion of raw data or other functional

data classes into fdata class

The function fdata() of the fda.usc package [6] creates a functional data object
of class fdata from matrix, data.frame, numeric, integer, fd, fds, fts or sfts

class data.

fdata(mdata,
argvals = NULL,
rangeval = NULL,
names = NULL,
fdata2d = FALSE)

21
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Arguments

e mdata is a matrix of set cases with dimension (n x m), where n is the number

of curves and m are the points observed in each curve.
e argvals by default 1:m, is a vector of the points observed.

e rangeval range of discretization points, by default: range(argvals). names

list with tree components:

— main an overall title.
— xlab title for x axis.

— ylab title for y axis.

e fdata2d = TRUE if the functional data is observed in at least two grids. In

this case, argvals is a list of vectors. This argument is FALSE by default.

The result is a fda class object with:

e data matrix of the set of cases of the argument mdata.
e argvals the discretizations points.
e rangevals range of the discretizations points.

e names list names of the argument.

4.3 Central and dispersion measures for functional

data

func.mean.formula(formula, data = NULL, ...)

func.mean (x)

func.var(fdataobj)

func.trim.FM(fdataobj, ...)
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func.trim.mode(fdataobj, ...)

func.trim.RP(fdataobj, ...)

func.med.FM(fdataobj, ...)

func.med.mode(fdataobj, ...)

func.med.RP(fdataobj, ...)

func.trimvar.FM(fdataobj, ...)

func.trimvar.mode(fdataobj, ...)

func.trimvar.RP(fdataobj, ...)

func.trimvar.RPD(fdataobj, ...)

Arguments

x fdata or ldata class object.
e fdata class object.

e formula a formula, such as y group, where y is a fdata object to be split into

groups according to the grouping variable (usually a factor).

e data ldata class object. It is a list containing the variables in the formula.
The item called “df” is a data frame with the grouping variable. The item
called ” fdata” is a fdata object.

Value

e func.mean.formula(formula, data = NULL, ...) Returns a fdata object

containing the mean curves for the groups.
e func.mean(x) Gives mean curve.

e func.var(fdataobj) Gives variance curve.



Chapter 4. Automatic procedures by R

24

deepest curves following FM criteria.

func.trim.FM(fdataobj, ...) Returns the average from the (1-trim)7

e func.trim.mode(fdataobj, ...) Returns the average from the (1-trim)7

deepest curves following mode criteria.

e func.trim.RP(fdataobj, ...) Returns the average from the (1-trim)7

deepest curves following RP criteria.

e func.med.FM(fdataobj, ...) Returns the deepest curve following FM cri-

teria.

e func.med.mode(fdataobj, ...) Returns the deepest curve following mode

criteria.

e func.med.RP(fdataobj, ...) Returns the deepest curve following RP cri-

teria.

e func.trimvar.FM(fdataobj, ...) Returns the marginal variance from the

deepest curves followinng FM criteria.

e func.trimvar.mode(fdataobj, ...) Returns the marginal variance from

the deepest curves followinng mode criteria.

e func.trimvar.RP(fdataobj, ...) Returns the marginal variance from the

deepest curves followinng RP criteria.

4.4 Derivatives of functional data

fdata.deriv(
fdataobj,
nderiv = 1,
method = "bspline",
class.out = "fdata",
nbasis = NULL,

Arguments
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e fdataobj fdata class object.
e nderiv Order of derivation.

e method

(13

— if method = “bspline”, “exponential”, “fourier”, “monomial” or “polyno-
mial”, fdata.deriv function creates a basis to represent the functional
data. First, the functional data are converted to class fd using the in-
dicated basis. Finally, the function calculates the derivative of order

nderiv.

— if method = “fmm”, “periodic”, “natural” or “monoH.FC” is used splinefun

of the stats package.
— if method = “diff”, raw derivation is applied. It is not recommended to
use these methods when the values are not equally spaced.

e class.out Class of functional data returned: fdata or fd class.

e nbasis Number of basis for fdataobj$data when method = “bspline”, “expo-

nential”, “fourier”, “monomial” or “polynomial”.

fdata.deriv returns the derivative of functional data of fd class if class.out

= “fd” or fdata class if class.out = “fdata”.

4.5 Euclidean distance matrix computation

The squared Euclidean distance between two time series or functional data observed

at m discrete time points is given in Section 2.5 by

dp(X1, X2) = Y (Xu(t) — Xa(t;))? (4.1)

j=1
In this term, the function metric.dist of the package fda.usc [6] computes
the Euclidean distances between the rows of two data matrix by using the specified

distance measure.

metric.dist(x,y = NULL, method = "euclidean", p = 2, dscale =1, ...)
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Arguments

e x is a data matrix with dimension nl x m i.e., nl functional data measured in

m discrete time points.

e y is a data matrix with dimension n2 x m i.e., n2 functional data measured
in m discrete time points. If y = NULL the function metric.dist returns a

symmetric matrix with the distances between two functional data of x.

e method in this case, method = ’euclidean”. Other rigid distances are available:

“maximum”, “manhattan”, “canberra”, “binary” or “minkowski” .

This function returns a distance matrix of dimension (n1xnl)if y = NULL, (nlxn2)

otherwise.

4.6 Dynamic time warping distance matrix

The function metric.DTW of the package fda.usc [6] computes distances time warp-

ing for functional data.

metric.DTW(
fdatal,
fdata2 = NULL,
p=2,
w = min(ncol(fdatal), ncol(fdata2)),

Arguments

fdatal Functional data object where fdata$data is a data matrix with di-

mension n; X m i.e., n; functional data measured in m discrete time points.

fdata2 Functional data object where fdata$data is a data matrix with di-

mension ny X m i.e., ny functional data measured in m discrete time points.

p LP norm, by default it uses p = 2.

w Vector of weights with length m, If w = 1 (by default) approximates the

metric LP by Simpson’s rule.
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4.7 Functional Classification using K-fold cross-

validation

The function classif.kfold of the package fda.usc [6] computes functional clas-

sification using K-fold cross-validation.

classif.kfold(
formula,
data,
classif = "classif.glm",
par.classif,
kfold = 10,

Arguments

e formula is an object of class formula: a symbolic description of the model to
be fitted.

e data is a list containing the variables in the model.

e classif is a character, name of classification method to be used in the fitting

model.
e par.classif is a list of arguments used in the classification method.

e kfold is an integer, the number of K-fold.

4.8 k-Nearest Neighbors classifier from Functional
Data

The function classif.knn fits supersvised classification for functional data.
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classif.knn(
group,
fdataobj,
knn = NULL,

metric,

Arguments

e group is a factor vector of length N of the corresponding group for each
functional data in fdataobj. Following the notation in Section 3.3.1, group
= (Yi, . .,YN).

fdataobj is an object of fdata class.

knn is a vector of number of nearest neighbors considered.

e metric metric function, “metric.lp”, “metric.dist” or “metric. DTW” are avail-
able.

4.9 Predicts from a fitted classif object

The function predict of the package fda.usc [6] classifies a functional data by
kernel method using functional data object of class classif. It returns the predicted

classes using a previously trained model.

predict(object, new.fdataobj = NULL, type = "class", ...)

Arguments

e object Object estimated by: k-nearest neighbors method classif .knn, kernel

method classif.kernel.

e new.fdataobj New functional explanatory data of fdata class.
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e type Type of prediction (class or probability of each group membership).

If type="‘class”, produces a vector of predictions. If type="“probs”, a list with

the following components is returned:

e group.pred the vector of predictions.

e prob.group the matrix of predicted probability by factor level.

4.10 K-means clustering for functional data

The function kmeans.fd of fda.usc package [6] performs K-means clustering for
functional data. Returns a vector of the indexes of groups assigned clusters and

a fdata object of curves centers.

kmeans . £d (
fdataobj,
ncl = 2,
metric = metric.lp,
max.iter = 100,
method = "sample",
cluster.size = 5,

draw = TRUE,

Arguments

e fdataobj fdata class object.

e if ncl is an integer, indicating the number of groups to classify, ncl initial cen-
ters are selected using kmeans.center.ini function of the fda.usc package
[6]. If ncl is a vector of integers, indicating the position of the initial centers
with length(ncl) equal to number of groups. If ncl is a fdata class objecct,

ncl are the initial centers curves with nrow(ncl) number of groups.

e metric Metric function, by default metric.1p.
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e max.iter. Maximum number of iterations for the detection of centers.

e method for selectiong initial centers. If method=“sample” takes a random se-
lection by the ncl centers. The ncl curves with greater distance are the initial
centers. If method="“exact”, all combinations of ncl centers are calculated (if
i le+6) of ncl centers. The ncl curves with greater distance are the initial

centers (this method may be too slow).

e cluster.size Minimum cluster size (by default is 5). If a cluster has fewer

curves, it is eliminated and the process is continued with a less cluster.

e draw=TRUE, draw the curves in the color of the centers.
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Experiments

5.1 growth dataset

5.1.1 Data description

Berkeley (California) Growth Study data, downloaded from the package fda [12] is
a list containing the heights of 39 boys and 54 girls between the ages of 1 to 18, and

a vector with such ages. This list contains the following components:

e growth$hgtm Is a 31 by 39 numeric matrix giving the heights in centimeters
of 39 boys at 31 ages between 1 and 18 years.

e growth$hgtf Is a 31 by 54 numeric matrix giving the heights in centimeters
of 54 girls at 31 ages between 1 and 18 years.

e growth$age a numeric vector of length 31 giving the ages at which the heights

were measured. Ages are not equally spaced.

First, we upload the fda [12] library to use the dataset growth and visualize the

elements of the list.

library(fda)

data(growth)

31
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growth$hgtm[,1:4]

growth$hgtf[,1:4]

growth$age

> library(fda)
> data(growth)
> growth$hgtm[,1:4]
boy01 boy02 boy03 boy04

1 81.3 76.2 76.8 T4.1
1.26 84.2 80.4 79.8 78.4
1.5 86.4 83.2 82.6 82.6
1.75 88.9 85.4 84.7 85.4
2 91.4 87.6 86.7 88.1
3 101.1 97.0 94.2 098.6
4 109.5 104.6 100.4 104.4
5 115.8 112.3 107.1 111.0
6 121.9 118.9 112.3 116.3
7 130.0 125.0 118.6 123.2
8 138.2 130.1 124.0 129.9
8.5 141.1 133.0 126.5 133.0
9 144 .3 135.4 128.9 136.0
9.5 147.5 137.5 131.2 138.7
10 150.5 139.7 133.4 141.4
10.5 153.4 142.2 135.8 144.0
11 156.2 144.2 138.4 146.4
11.5 159.7 146.2 141.0 148.8
12 163.8 148.1 143.6 151.4
12.5 168.8 149.8 146.8 154.5
13 174.9 151.6 150.8 157.7
13.5 181.2 153.8 155.1 162.2
14 186.3 156.3 159.5 167.4
14.5 189.6 159.2 163.3 172.5
15 191.3 163.3 166.8 176.3
15.5 192.1 167.7 167.8 178.5
16 192.8 171.5 168.8 179.8
16.5 193.2 174.3 169.8 180.7
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17

193.8 176.1 170.9 181.4

17.5 194.3 177.4 171.2 181.6

18

> growth$hgtf[,1:4]

1 76.2 T4.
1.26 80.4 78.
1.5 83.3 82.
1.75 85.7 86.
2 87.7 90.
3 96.0 94.
4 103.8 102.
5 110.7 109.
6 116.8 115.
7 122.2  122.
8 127.4 128.
8.5 130.6 131.
9 133.4 134.
9.5 135.9 138.
10 138.6 140.
10.5 142.4 143.
11 146.8 146.
11.5 150.3 149.
12 153.1 152.
12.5 155.0 156.
13 156.2 159.
13.5 157.1 161.
14 157.7 162.
14.5 158.0 163.
15 1568.2 165.
15.5 158.4 165.
16 158.6 165.
16.5 158.7 165.
17 168.7 166.
17.5 158.8 166.
18 158.9 166.
> growth$age

[1] 1.00 1.25
[10] 7.00 8.00

girlOl girl02

[19] 12.00 12.50
[28] 16.50 17.00

O O Kk O O W O O O O O b © b = b O N O, N N O N P © O © O O O

1.50

2

N © N © © 0 N 0 & 0 W = O N O W 0 N o O N O O© NN =P, O © b @

1

13.00 13

17.50 18.

195.1 178.7 171.5 181.8

girl03 girl04
78.
81.
85.
87.
89.
97.
109.
116.
122.
128.
134.
138.
141.
145.
148.
152.
155.
158.
159.
160.
160.
160.
161.
161.
161.
161.
161.
161.
161.
161.
162.

TT.

80.

83.

87.

90.

98.
106.
113.
120.
125.
131.
134.
137.
140.
143.
145.
148.
151.
154.
158.
161.
163.
165.
166.
166.
166.
167.
167.
167.
167.
167.

QO O P BN O OO N TN 0O 0NN, R, O NN WO WO WwWo N

.75 2.00 3.00 4.00 5.00 6.00
.00 9.50 10.00 10.50 11.00 11.50
.50 14.00 14.50 15.00 15.50 16.00
00
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5.1.2 Descriptive statistics

Then we convert functional data into fdata class with fdata function. The upload
of fda.usc package is necessary. We create three fdata objects, corresponding to
“boys” functional data fdata.m, “girls” functional data fdata.f and both together
fdata.growth, where argvals is the vector that collects the ages at which heights
were measured. Following the indications in Section 4.2, we transpose the numeric

data matrix: the curves must be by rows and the observation time points in columns.

library(fda.usc)
argvals<-growth$age
fdata.m=fdata(t(growth$hgtm),
argvals = argvals,
names=1list (main="Boys",xlab="ages",ylab="heigth"))
fdata.f=fdata(t(growth$hgtf),
argvals = argvals,

names=list(main="Girls",xlab="ages",ylab="heigth"))

fdata.growth<-fdata(t(cbind(growth$hgtm,growth$hgtf)), argvals = argvals)

Now, the objective is to summarize numerically and graphically the created
fdata object. We computed central and dispersion measures for functional data as
we could see in Section 4.3. The measures of the central tendency by groups are

shown in Figure 5.1.

fac<-factor(rep(c("boy","girl"),c(39,54)))

ldata<-1list("df" = data.frame(fac), "fdataobj" = fdataobj)

a<-func.mean.formula(fdataobj~fac, data = ldata)

dev.new()
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plot(a)
legend(2,160,c("boys mean","girls mean"),fill=c(1,2),border=0, bty="n")

mean

180
|

160
|

H  boys mean
W girls mean

X(®)
120 140
| |

100
|

80

Figure 5.1: Measures of central tendency by groups

Other measures of central tendency, as we can see in Figure 5.2, are calculated
for the whole dataset.

al<-func.mean(fdataobj)
a2<-func.trim.FM(fdataobj)
a3<-func.trim.mode(fdataobj)
a4<-func.trim.RP(fdataobj)
ab<-func.med.FM(fdataobj)
a6<-func.med.mode(fdataobj)
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a7<-func.med.RP(fdataobj)

dev.new()

par (mfrow=c(1,2))

plot(c(al,a2,a3,ad),ylim=c(70,170),col=c(2,3,4,5) ,main="Central tendency:

trimmed mean")

legend(2,160,c("mean","trimmed mean FM criteria","trimmed mean mode criteria",

"trimmed mean RP criteria"),fill=c(2,3,4,5),border=0, bty="n")

plot(c(al,ab,a6,a7),ylim=c(70,170) ,main="Central tendency: median",
col=c(2,3,4,5))

legend(2,160,c("mean","median FM criteria",'"median mode criteria",

"median RP criteria"),fill=c(2,3,4,5),border=0, bty="n"

X()

Central tendency: trimmed mean Central tendency: median
o . Va
© — © 4 Z
— — /

| mean | mean
trimmed mean FM criteria median FM criteria /
L trimmed mean mode criteria/ L median mode criteria //
e | trimmed mean RP criteria e | median RP criteria J/
— / - /
S/
// //
/// /

g / s g /
S / X 3 J

/ //

// /
/ //
o (=3
o 4 o
= |
//
/

o o
«© «©

T T T T T T

5 10 15 5 10 15

Figure 5.2: Mean, trimmed mean and median using FM criteria, mode criteria and
RP criteria.

Measures of dispersion such as variance and trimmed variance using FM criteria,

FM criteria with trimmed parameter trim = 0.1, mode criteria and RP criteria

are being calculated, among others. A graphical representation of these dispersion

measures is shown in Figure 5.3.
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bi<-func
b2<-func
b3<-func
b4<-func
bb<-func

.trimvar
.trimvar
.trimvar

.trimvar

.var (fdataobj)

.FM(fdataobj)
.FM(fdataobj,trim=0.1)
.mode (fdataobj)
.RP(fdataobj)

dev.new()

par (mfrow=c(1,2))

plot(c(bl,b2,b3),col=c(2,3,4),ylim=c(0,90) ,main="Measures of dispersion I")

legend(2,80,fill=c(2,3,4) ,border=0, bty="n",c("variance","trimmed var FM
criteria", "trimmed var FM criteria 10%"))

plot(c(bl,b4,bb),col=c(2,3,4),ylim=c(0,90) ,main="Measures of dispersion II")

legend(2,80,fill=c(2,3,4) ,border=0, bty="n",c("variance", "trimmed var mode

criteria", "trimmed var RP criteria"))

o | o | e
@ @ /
- variance / | variance /
trimmed var FM criteria / trimmed var mode criteria /
L trimmed var FM criteria 10% /’/ L trimmed var RP criteria /’/
8 / o | //
© / ©
,// /
Ve P

/
o | / / o | / /
? / ) < / /

e / } / Vs
/ / -
/ - O
o | yd o _| ’ /
« S N 74
/
7
N \* —
(=R o
T T T T T
5 10 15 10 15

Measures of dispersion |

Measures of dispersion Il

Figure 5.3: Measures of dispersion: variance, trimmed variance using FM criteria,

FM criteria with trimmed parameter trim = 0.1, mode criteria and RP criteria.

Now, we compare the mean curve of each group, “boys” and “girls” with the

rest of “boys” and “girls” curves, respectively. See Figure 5.4.
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dev.new()

par (mfrow=c(1,2))

mean.m=func.mean(fdata.m)

matplot (growth$age,growth$hgtm,type="1",ylim

lines(mean.m,col=2,1wd=6)

= ¢(60,200))

title("39 boys heights until 18",cex.sub=.1,col.main=2)

legend (0,200, "mean curve of heights",2,bty="n")

mean.f = func.mean(fdata.f)

matplot (growth$age,growth$hgtf,type="1",ylim

lines(mean.f,col=2,1wd=6)

title("54 girls heights until 18",cex.sub=.1,

= ¢(60,200))

col.main=2)

legend (0,200, "mean curve of heights",2,bty="n")

growth$hgtm

39 boys heights until 18

8 =3
o t=}
N . 34
mean curve of heights

180
1
180

100
1
growth$hgtf
120 140 160

100

80
1
80

T T T
5 10 15

growth$age

Figure 5.4: Comparing “boys” and “girls”

54 girls heights until 18

[ mean curve of heights

T T T
5 10 15

growth$age

curves with their mean curves.
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One of the advantages of using functional data instead of the multivariate case
is that derivatives of any order can be computed for the data, noted in Section 2.2.
In Figure 5.5 and Figure 5.6, first and second order derivatives for each time series

in the dataset are represented.

fdata.m.deriv<-fdata.deriv(fdata.m,nderiv=1,method = "bspline",
class.out = ’fdata’)
fdata.m.deriv2<-fdata.deriv(fdata.m,nderiv=2,method = "bspline",
class.out = ’fdata’)

dev.new()

par (mfrow=c(1,2))
plot(fdata.m.deriv)
plot(fdata.m.deriv2)

fdata.f.deriv<-fdata.deriv(fdata.f,nderiv=1,method = "bspline",
class.out = ’fdata’)
fdata.f.deriv2<-fdata.deriv(fdata.f,nderiv=2,method = "bspline",

class.out = ’fdata’)

dev.new()

par (mfrow=c(1,2))
plot(fdata.f.deriv)
plot(fdata.f.deriv2)

A fundamental part of classifying functional data is to compute the distances
between every couple of time series that belong to the dataset. First, we check if
the function metric.dist 4.5 computes the distance between two functional data
according to the above-mentioned definition in Section 2.5. For that, the distance
between the first boy in fdata.m and the first girl in fdata.f, dist_boy0l_girl01l
is compare with the square root of the square difference of the corresponding rows
“boy01” and “girl01”, diff boy0l_girlOl.

dist_boy0Ol_girlOl<-metric.dist(t(growth$hgtm) ,t (growth$hgtf),
method = "euclidean")[1,1]
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ages ages

Figure 5.5: First and second order derivatives for “boys” functional data

diff_boy01_girlOi<-growth$hgtm[,1]-growth$hgtf[,1]

round (sqrt (sum(diff_boy01l_girl01°2))-dist_boy0l_girl01,2)

Now, we calculate the distances between “girls” and “boys”. Arguments of the
function metric.dist must be a data matrix. For this reason, the data matrix
data is created, adding a grouping variable ("boys” and ”girls”) which will serve
us later. A representative submatrix of the distance matrix is shown in the bellow

frame 5.1.2.

Figure 5.7 represents graphically the Euclidean distances between the whole
dataset. Red labels or characters make mention to functional data corresponding
to “boys”, and green ones to “girls”. The time series in data are represented in the
horizontal axis (note that we have 93 curves). On the vertical axis, the distances
between two functional data are shown. For example, for the first curve boy0l
(labeled as “17), the functional data nearest to it (in the sense of Euclidean distances)
are those labeled as “v”, “0” or “y”. These labels are all red, so they correspond to
other “boys” functional data. In the positive sense of the horizontal axis, the label
“0” appears in the 10 -th place. We conclude that boy10 is very similar to boy01 in
height.
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Figure 5.6: First and second order derivatives for “girls” functional data

Observation 5.1 As is known, every element satisfies that the distance with itself

is 0. This is the reason why all the labels appear in the horizontal line dist = 0.

data=rbind(cbind(growth$hgtm,growth$hgtf) ,rep(c("boy","girl"),c(39,54)))

d<-metric.dist(t(datal[1:31,]))

d[c(1:4,40:43),c(1:4,40:43)]

dev.new()

matplot(d,type="p",col=1+(data[32,]=="boy")+2*(datal[32,]=="girl"))

title("Distances between girls and boys")

> d[c(1:4,40:43),c(1:4,40:43)]

(.11 [,2] (.31 [,4] (,51 [,6] [,71 [,8]
boy01 0.00 88.47 101.00 61.76 112.30 92.50 95.31 83.35
boy02 88.47 0.00 25.65 30.57 41.37 28.87 45.61 30.06
boy03 101.00 25.65 0.00 40.91 37.89 29.12 55.55 37.76
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boy04 61.76 30.57 40.91 0.00 60.14 40.00 56.20 36.44
girl01 112.30 41.37 37.89 60.14 0.00 21.93 30.79 29.62
girl02 92.50 28.87 29.12 40.00 21.93 0.00 29.67 13.99
girl03 95.31 45.61 55.55 56.20 30.79 29.67 0.00 23.33
girl0o4 83.35 30.06 37.76 36.44 29.62 13.99 23.33 0.00

Distances between girls and boys
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Figure 5.7: Euclidean distance between "boys” and " girls”

Then we do the same with the DTW distance. By default, the local cost (2.12)
associated to compute the DTW distance between two functional data is the LP-
metric, approximated by Simpson’s rule. We choose p = 2. Figure 5.8 follows the
same idea that Figure 5.7 but with the new distance. Also, Figure 5.9 is created

expanding Figure 5.8 to get a more detailed view.

dtw<-metric.DTW(fdata.growth,p=2)

dtwlc(1:4,40:43),c(1:4,40:43)]

dev.new()

matplot (dtw,type="p",col=1+(data[32,]=="boy")+2*(data[32,]=="girl"))

FDP Belén del Rocio Garcia Camino. Mathematics Degree
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dev.new()

matplot (dtw,col=1+(datal[32,]=="boy")+2*(data[32,]=="girl"),
x1lim=c(0,20),ylim=c(0,1000))

> dtwl[c(1:4,40:43),c(1:4,40:43)]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.00 1813.09 4081.19 1149.59 10933.81 6555.96 8743.18 5694.87
[2,] 1813.09 0.00 166.57 70.41 1564.16 574.89 1055.91 384.92
[3,] 4081.19 166.57 0.00 616.90 897.10 182.22 500.32 95.25
[4,] 1149.59 70.41 616.90 0.00 3453.58 1492.78 2456.19 1166.30
[6,] 10933.81 1564.16 897.10 3453.58 0.00 413.29 150.94 670.89
[6,] 6555.96 574.89 182.22 1492.78 413.29 0.00 155.13 82.68
[7,] 8743.18 1055.91 500.32 2456.19 150.94 155.13 0.00 260.93
[8,] 5694.87 384.92 95.25 1166.30 670.89 82.68 260.93 0.00
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Figure 5.8: DTW distances between "boys” and ”girls

We now calculate the DTW distance between the first boy in fdata.m and the
first girl in fdata.f. The accumulated cost matrix is computed following Theorem

2.12. The function findPath computes the optimal warping path between these two

FDP Belén del Rocio Garcia Camino. Mathematics Degree
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Figure 5.9: Figure 5.8 expanded in [0,20]x[0,1000].

time series using the Algorithm 2.5. We can see in Figure 5.10 how this warping

between these two functional data has been executed.

Di=fda.usc:::DTW(fdata.m$datall,],fdata.f$datall,],p=2)
aal=fda.usc:::findPath(D1$D)

dev.new()
plot(c(fdata.m[1,],fdata.f[1,]),col=c("blue","red"))
segments (fdata.m$argvalsfaall,1]],

fdata.m[1]$datalaal[,1]],fdata.f$argvals(aal[,2]],
fdata.f[1]$datalaal[,2]],1wd = 0.5,col=8)

In general, the results obtained about central and dispersion measures suggest
that boys in Berkeley (California) are taller than girls. In addition, while examining
the smoothness of the derivative curves, boys grow more sharply than girls, where
the stages of the most rapid growth are childhood and adolescence (over 13 years).
In Figure 5.7 and clearer in Figure 5.8, we can see that the most similar curves

to the boys curves are themselves, and the same for girls functional data. More
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Figure 5.10: Warping path between the first boy in fdata.m and the first girl in
fdata.f.

extreme values are observed in Figure 5.8 than in Figure 5.7, i.e., two time series
are very similar or very different for the DTW distance, while for the FKuclidean
distance the distances are more homogeneous. This phenomenon can be explained
by Figure 5.10, where the ages at which boy0l grows more (13 years of age or
older) are warped to the same point in the curve corresponding to girl01, which is

experiencing stagnation of growth about 12 years old.

5.1.3 Unsupervised classification

We can consider the unsupervised classification problem. For that, /{-means cluster-
ing method is introduced. Set ncl = 2 the number of clusters and method="exact"
since the sample size is not too large. Figure 5.11 shows the output of the evaluated
function kmeans.fd. All functional data are represented and colored in red or green
depending on the group in which they have been classified (red for “boys” and green
for “girls”). In the right plot, we can see the center curves in the last step of the
iterative K-means process. Furthermore, the confusion matrix is provided. Then

we calculate the estimate of the total probability of correct classification.
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Figure 5.11: Red lines correspond to those curves classified as “boy” and green lines

to “girls”.

dev.new()

unsu.classif=kmeans.fd(fdata.growth,ncl=2,draw=TRUE,method="exact")

table(unsu.classif$cluster,groups)

sum(diag(table(unsu.classif$cluster,groups)))/nrow.fdata(fdata.growth)

> table(unsu.classif$cluster,groups)
groups
boy girl
1 27 27
2 12 27

> sum(diag(table(unsu.classif$cluster,groups)))/nrow.fdata(fdata.growth)
[1] 0.5806452
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5.1.4 Supervised classification

Every functional data in fdata.growth belongs to one of the two groups: ”boys”
or "girls” (2 populations). Then, we should consider the supervised classification
problem with growth dataset. The final aim is to classify a new time series X into

one of these populations, using the information provided by the training sample.

We will analyze the previous survey by the k-Nearest neighbors method, first by
hand calculating in R and then using automatic procedures already implemented.
We choose an arbitrary functional data in fdata.growth, for example the first
observation, boy01l. We shall forget this functional data belongs to “boys” group
for classify it using the information of the rest of the dataset (the training sample).
Implementation of k-Nearest neighbors method needs a chosen distance, for example
the Euclidean distance. Now, we compute the k training data closest to boy0l and
assign it to P; (“boys” or “girls”) when the majority of these k data belong to FP;.
See Section 2.1. Let k = 5, Figure 5.7 shows that the closest training data to boy01
are those labeled as “v”, “s”, “07, “y”, “A”, which corresponds to the functional
training data boy32, boy29, boyl0, boy3b and boy37. All of them have been
classified as “boys”, so we predict that boy01 is a “boy” for k£ = 5. The distances

among them are calculated bellow.

> metric.dist(t(growth$hgtm[,1]), t(growth$hgtm[,c(32,29,10,35,37)]1))
boy32 boy29 boy10 boy35 boy37
[1,] 10.13262 13.10458 18.38614 28.09609 33.81272

Also, the function predict could classify the functional data boy01 by k-Nearest

neighbors method as follows.

train.sample<-fdata.growth[c(2:93),]

groups<-datal[32,]

train.groups<-groups[c(2:93)]
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out<-classif.knn(train.groups,train.sample,knn=5)

summary (out)

test.sample<-fdata.growth[1,]

pred<-predict(out,test.sample)

pred

Our training data train.sample consists of fdata.growth but excluding the

first functional data boy0l since it is the time series of which we want to know

the group. To construct the classif object using the k-Nearest neighbors method,

a training sample, their corresponding groups and the neighbors number knn are

needed. This is the reason why the character vector groups is created. The summary

of the classif object and the resulting prediction follows.

> summary (out)

- SUMMARY -

-Probability of correct classification by group (prob.classification):
y

boy girl
1.0000000 0.9444444

-Confusion matrix between the theoretical groups (by rows)

and estimated groups (by column)

boy girl
boy 38 0
girl 3 51

-Vector of probability of correct classification
by number of neighbors (knn):
5
0.9674
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-Optimal number of neighbors: knn.opt= 5

with highest probability of correct classification max.prob= 0.9673913
-Probability of correct classification: 0.9674
> pred

[1] boy
Levels: boy girl

These results are in line with those obtained by hand calculations. Furthermore,
summary of classif object, give us information about how good is the classifica-
tion model with the training sample providing the confusion matrix. Moreover, an
estimation of the probability of correct classification is displayed (properly classified

number divided by sample size).

5.2 CanadianWeather dataset

5.2.1 Data description

CanadianWeather collects information about Canadian average annual weather cy-
cle. This dataset included in fda package [12], contains the daily temperature
and precipitation at 35 different locations in Canada averaged over 1960 to 1994.

CanadianWeather is a list with the following components:

e dailyAv a three dimensional array c¢(365, 35, 3) summarizing data collected

at 35 different weather stations in Canada on the following:
— dailyAvl[,,1]1=[,, ’Temperature.C’]: average daily temperature for
each day of the year.

— dailyAv([,,2]=[,, ’Precipitation.mm’]: average daily rainfall for each

day of the year rounded to 0.1 mm.

— dailyAv[,,3]=[,, ’loglOprecip’]: base 10 logarithm of dailyAv[, ,2]
after first replacing 27 zeros by 0.05 mm [11].
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e place Names of the 35 different weather stations in Canada whose data are
summarized in dailyAv. These names vary between 6 and 11 characters in
length.

e province names of the Canadian province that contains each place.

e coordinates a numeric matrix giving N.latitude and W.longitude for each

place.

e region Which of the 4 climate zones contain each place: Atlantic, Pacific,

Continental and Arctic.

e monthlyTemp A matrix of dimensions (12 x 35) giving the average temperature

in degrees Celsius for each month of the year.

e monthlyPrecip A matrix of dimensions (12 x 35) giving the average daily

precipitation in millimeters for each month of the year.

e geogindex Order the weather stations from East to West to North.

First, we load the CanadianWeather data. Also, the fda [12] library must be
uploaded if we had not done it before in Section 5.1. Let us then the different
components of the list, displaying it in the first four places. Also, Figure 5.12,
Figure 5.13 and Figure 5.14 show dataset graphical descriptions. Figure 5.12 shows
that temperatures and precipitations waver much since there are many discrete time
points of observation. A map of Canada is sensed in Figure 5.13. Places names are
colored according to the climate zone (Atlantic, Pacific, Continental and Arctic) to
which they belong (left plot) and the point shape changes depending on the province
(right plot). Monthly temperature and precipitation curves are represented in Figure
5.14.

library(fda)

data("CanadianWeather")

x<-CanadianWeather$dailyAv

x[100:103,1:4,1]
x[100:103,1:4,2]
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x[100:103,1:4,3]

dev.new()

par (mfrow=c(1,2))
matplot(x[,,1], type="1")
matplot(x[,,2], type="1")

place<-CanadianWeather$place
place[1:4]

province<-CanadianWeather$province

province[1:4]

coordinates<-CanadianWeather$coordinates

coordinates[1:4,]

region<-CanadianWeather$region

region[1:4]

dev.new()

par (mfrow=c(1,2))
plot(-coordinates[,2],coordinates[,1],type="n")

text (-coordinates[,2],coordinates[,1],place,cex=0.7,
col=1+(region=="Atlantic")+2*(region=="Continental")+
3x(region=="Artic")+4*(region=="Pacific"))
plot(-coordinates[,2],coordinates[,1],
col=1+(region=="Atlantic")+2*(region=="Continental")+
3x(region=="Artic")+4*(region=="Pacific"),
pch=1+(province=="Quebec")+2* (province=="British

Colombia")+3*(province=="Northwest Territories"))

y<-CanadianWeather$monthlyTemp
y[,1:4]

z<-CanadianWeather$monthlyPrecip
z[,1:4]

dev.new()

par (mfrow=c(1,2))
matplot(y,type="1")
matplot(z,type="1")
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geo<-CanadianWeather$geogindex

> x[100:103,1:4,1]
St. Johns Halifax Sydney Yarmouth

apri0 1.0 2.4 1.6 3.7
april 1.1 2.8 1.4 3.8
apri2 0.7 2.0 0.6 3.3
april3 0.2 2.2 0.5 3.5

> x[100:103,1:4,2]
St. Johns Halifax Sydney Yarmouth

april0 3.3 6.1 6.8 4.8
april 6.6 5.0 6.0 3.1
apri2 5.3 2.2 3.8 1.4
apri3 2.8 2.5 1.3 3.0

> x[100:103,1:4,3]

St. Johns Halifax Sydney Yarmouth
apr10 0.5185139 0.7853298 0.8325089 0.6812412
aprll 0.8195439 0.6989700 0.7781513 0.4913617
aprl2 0.7242759 0.3424227 0.5797836 0.1461280
apr13 0.4471580 0.3979400 0.1139434 0.4771213

> place[1:4]
[1] "St. Johns" "Halifax"  "Sydney" "Yarmouth"

> province[1:4]
St. Johns Halifax Sydney Yarmouth

"Newfoundland" "Nova Scotia" "Nova Scotia" "Nova Scotia"

> coordinates[1:4,]

N.latitude W.longitude

St. Johns 47.34 52.43
Halifax 44 .39 63.36
Sydney 46.09 60.11
Yarmouth 43.50 66.07

> region[1:4]
St. Johns Halifax Sydney  Yarmouth
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Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov

Dec

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov

Dec

> z[,1

n
ct

N N N N I IR U ORI U NS NS

> y[,1:4]
St.
.654839
.325000
.532258
.256667
.793548
. 786667
.206452
.280645
.623333
.019355
.953333
.845161

Johns

:4]

. Johns
.651613
. 735714
.235484
.616667
.251613
.270000
.651613
.822581
.126667
.909677
.783333
.680645

Halifax
.158065
.182143
.738710

3.623333
9.441935

14.
18.
18.
13.

776667
380645
203226
866667

8.490323
3.240000

H
4.
4.

.987097

alifax
632258
146429

.135484
.010000
.529032
.126667
.0225681
.403226
.203333
.122581
.140000
.364516

g O W W NN WD

Sydney
-5.722581
-6.796429
-2.935484

1.850000
7.496774
13.140000
17.487097
17.635484
13.306667
8.274194
3.533333
-2.029032

"Atlantic" "Atlantic" "Atlantic" "Atlantic"

Yarmouth
.2161290
.4892857
.1516129

4.6866667
9.3419355

13.
16.
16.
13.

4033333
2935484
5967742
5933333
.2451613

4.9000000

.4645161

Sydney Yarmouth
.764516 4.022581

.446429 3.
3.30
3.37
3.09
3.04
2.63
.116129 2.
2
3
4
4

.422581
.076667
.180645
.976667
. 754839

.506667
.551613
.193333
.509677

63

78

.95
.50
.51
.64

9286
9677
3333
3548
6667
8710
0645
3333
9677
6667
1935

Using the function summary, we can see the highest temperature or millimeters
of precipitation achieved at each location during the year, as well as the minimum

or the mean. A temperature summary of the first four location appearing in dataset

follows.

> summary (x[,,1]1) [,1:4]
Halifax

St.

Johns

Sydney
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Figure 5.12: Average daily temperature for each day of the year at 35 different
weather stations in Canada (left plot) and average daily rainfall for each day of the

year rounded to 0.1 mm at 35 different weather stations in Canada.

Min. :=7.00 Min. :-8.10 Min. :-8.40 Min. :-5.300
1st Qu.:-2.10 1st Qu.:-2.60 1st Qu.:-2.40 1st Qu.:-0.100
Median : 4.50 Median : 6.40 Median : 5.40 Median : 7.400

Mean : 4.69 Mean : 6.15 Mean : 5.51 Mean : 6.812
3rd Qu.:11.40 3rd Qu.:14.00 3rd Qu.:13.10 3rd Qu.:13.500
Max. :17.10 Max. :19.80 Max. :19.20 Max. :17.700

5.2.2 Descriptive statistics

To address the classification problem, let us turn our attention to monthlyTemp
and monthlyPrecip since monthlyTemp is itself a summary of dailyAv[,,1] and
monthlyPrecip of dailyAv[,,2] (we are keeping with the averaged temperature
per month). Because dailyAv[,,3] is a log transformation of dailyAv[,,2], we

will not analyze it either.

Next, we convert the functional data into fdata class. Uploading the fda.usc
package is necessary. Two fdata objects, corresponding to “Temperature” fdata.t

and “Precipitation.mm” fdata.p are created. Following the indications in Section
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Figure 5.13: Coordinates of the 35 different weather stations in Canada. In red those
that belong to ” Atlantic” climate zone, green corresponds to ” Continental” climate
zone, black is for ” Arctic” region and blue, those that belong to ”Pacific” zone (left
plot). At right the point shapes vary depending on the province: the places belong
to "Quebec” are represented with A, + correspond with those that are in ”British
Colombia” province, x match with ”Northwest Territories”. The rest of provinces

are assigned with O.
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Figure 5.14: Average temperature in degrees Celsius for each month of the year (left
plot) and average daily precipitation in millimeters for each month of the year (right
plot).
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4.2, we transpose the numeric data matrix: the curves must be by rows and the

observation time points in columns.

library(fda.usc)

fdata.t=fdata(t(y))

fdata.p=fdata(t(z))

Now, the objective is to summarize numerically and graphically the created
fdata object. We computed central and dispersion measures for functional data, as
we could see in Section 4.3. If we present the problem of unsupervised classification
for temperature or precipitation, the intuition suggests that there exists a good way
to create groups or clusters, by region (Arctic, Atlantic, Continental and Pacific).
For this reason, we will keep in mind the possible existence of these groups all

through this Section 5.2.2. Simultaneously, we will study both fdata objects.

fac<-factor(region)

ldata.a<-list("df"
ldata.b<-1list("df" = data.frame(fac), "fdataobj" = fdata.p)

data.frame(fac), "fdataobj" = fdata.t)

a<-func.mean.formula(fdataobj~fac, data = ldata.a)
b<-func.mean.formula(fdataobj~fac, data = ldata.b)
dev.new()

par (mfrow=c(1,2))

plot(a)

legend(5,-10,levels(fac),fill=1:4,border=0, bty="n")
plot (b)

legend(4,4,levels(fac),fill=1:4,border=0, bty="n")

In Figure 5.15 we can see the average monthly temperature by region (Arc-
tic, Atlantic, Continental and Pacific) and the average monthly temperature by

region. Higher temperatures are concentrated in the Summer months from June
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Figure 5.15: Average monthly temperature by region (left plot) and average monthly

precipitation in millimeters by region (right plot).

until September. Pacific region is notorious as the hottest region of Canada and
the Arctic region is the coldest. In the Arctic and Continental regions, rainfall is
concentrated in the Summer months of June through September, whereas in the
Pacific region, the Winter is very rainy (it rains throughout the year). Precipitation

has remained constant through all the year in Atlantic region.

One of the advantages of using functional data instead of the multivariate case
is that derivatives of any order can be computed for the data, noted in Section 2.3.

In Figure 5.16 , first derivative for each time series in both dataset are represented.

4)
4)

fdata.t.deriv<-fdata.deriv(fdata.t, class.out ’fdata’, nbasis

fdata.p.deriv<-fdata.deriv(fdata.p, class.out = ’fdata’, nbasis

dev.new()

par (mfrow=c(1,2))
plot(fdata.t.deriv)
plot(fdata.p.deriv)

Functional data classification (both, supervised and unsupervised) requires mea-
sures of proximity between two curves. For that, we are going to calculate the

distances (Euclidean and DTW) between the “Temperature” curves, and on the
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Figure 5.16: Monthly temperatures first derivatives (left plot) and monthly precip-

itations first derivatives.

other hand between “Precipitation.mm” curves. Moreover, we are going to study
how equal or different are the 35 locations belong to Canada, depending on their

temperatures or their precipitations.

dy<-metric.dist(t(y))
dyl[1:4,1:4]

dz<-metric.dist(t(z))
dz[1:4,1:4]

dev.new()

par (mfrow=c(1,2))
matplot(dy,col=1+(region=="Atlantic")+2*(region=="Continental")+
3% (region=="Artic")+4*(region=="Pacific"))

legend(0,100,levels(fac),fill=c(1,2,3,5) ,border=0, bty="n")
matplot(dz,col=1+(region=="Atlantic")+2*(region=="Continental")+
3% (region=="Artic")+4*(region=="Pacific"))

legend(0,25,levels(fac),fill=c(1,2,3,5) ,border=0, bty="n"

dtwy<-metric.DTW(fdata.t,p=2)
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dtwy[1:4,1:4]

dtwz<-metric.DTW(fdata.p,p=2)
dtwz[1:4,1:4]

dev.new()

par (mfrow=c(1,2))

matplot (dtwy,col=1+(region=="Atlantic")+2x(region=="Continental")+
3x(region=="Artic")+4*(region=="Pacific"))

legend(0,8000,levels(fac),fill=c(1,2,3,5) ,border=0, bty="n")

matplot (dtwz,col=1+(region=="Atlantic")+2*(region=="Continental")+
3x(region=="Artic")+4*(region=="Pacific"))

legend(0,8000,levels(fac),fill=c(1,2,3,5) ,border=0, bty="n")

>dy[1:4,1:4]

[,1] [,2] [,3] [,4]
St. Johns 0.000000 8.102809 5.271054 7.828830
Halifax  8.102809 0.000000 3.753839 6.261523
Sydney 5.271054 3.753839 0.000000 6.790745
Yarmouth 7.828830 6.261523 6.790745 0.000000

>dz[1:4,1:4]

[,1] [,2] [,3] [,4]
St. Johns 0.000000 1.7292430 1.5204781 2.661606
Halifax 1.729243 0.0000000 0.8901354 1.948340
Sydney 1.520478 0.8901354 0.0000000 2.382512
Yarmouth 2.661606 1.9483399 2.3825116 0.000000

>dtwy[1:4,1:4]

[,1] [,2] [,3] [,4]
[1,] 0.00000 42.66202 27.78401 31.42942
[2,] 42.66202 0.00000 14.09131 39.20667
[3,] 27.78401 14.09131 0.00000 39.62530
[4,] 31.42942 39.20667 39.62530 0.00000

>dtwz[1:4,1:4]
[,1] [,2] [,3] [,4]
[1,] 0.000000 1.2156991 1.8384273 1.494167
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[2,] 1.215699 0.0000000 0.6262885 1.727500
[3,] 1.838427 0.6262885 0.0000000 2.246582
[4,] 1.494167 1.7275001 2.2465817 0.000000
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Figure 5.17: Euclidean distances between 35 places in Canada according to temper-

ature (left plot) and their precipitations (right plot).

In Figure 5.17, we can see that with the Euclidean distance and considering the
temperature, there is clearly a region which differs from the other, the Arctic region
(the coldest region). The most distinctive one in terms of the precipitations are the
Pacific, the most rainy region (as we also saw in Figure 5.15). We see in Figure 5.18

that the results are equivalent.

5.2.3 Unsupervised classification

The unsupervised classification problem is considered, which we will resolve using
automatic procedures implemented in R. For that, kmeans. fd function is introduced
in Section 4.10. Set ncl = 4, the number of clusters and method="exact" since the
sample size is not too large. We choose the numbers of groups equals to 4 for same
the idea above in 5.2.2.
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Figure 5.18: DTW distances between 35 places in Canada according to temperature

(left plot) and their precipitations (right plot).

dev.new()

temp.cluster=kmeans.fd(fdata.t,ncl=4,draw=TRUE,method="sample",cluster.size=1)

dev.new()

prec.cluster=kmeans.fd(fdata.p,ncl=4,draw=TRUE,method="sample",cluster.size=1)

In both, Figure 5.19 and Figure 5.20 all functional data are represented and
colored depending on the group in which they have been classified. On the right,

we can see the center curves in the last step of the iterative K-means process.

5.2.4 Supervised classification

We could consider the supervised classification problem with monthlyPrecip dataset
since every functional data in fdata.p belongs to a region (Arctic, Atlantic, Conti-
nental, Pacific). The final aim is to classify the first curve in fdata.p by taking the
rest of dataset as a training sample. For this, we are going to create a classification

model using k-Nearest neighbors method implemented by classif.knn function.

To construct the classif object using the k-Nearest neighbors method, a train-

ing sample, their corresponding groups and the neighbors number knn are needed.
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Figure 5.19: K-means. Average monthly temperature curves colored depending on

the group in which they are classified.
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Figure 5.20: K-means. Average monthly precipitation curves colored depending on

the group in which they are classified.
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Training data train.sample consists of fdata.p but excluding “St. Johns” row,

since it is the time series of which we want to know the group. The associated

vector of the groups train.groups is the character vector region, but converted

from “character” to “factor”. The summary of the classif object and the resulting

prediction follows.

train.sample<-fdata.p[2:35,]

train.groups<-fac[2:35]

out<-classif.knn(train.groups,train.sample,knn=3)

summary (out)

test.sample<-fdata.pl[1,]

pred<-predict (out,test.sample)
pred

>summary (out)

- SUMMARY -

-Probability of correct classification by group (prob.classification):

y

Arctic Atlantic Continental Pacific

0.0000000 1.0000000 0.9166667  0.0000000

-Confusion matrix between the theoretical groups (by rows)

and estimated groups (by column)

Arctic Atlantic Continental Pacific

Arctic 0 0 3 0
Atlantic 0 14 0 0
Continental 0 1 11 0
Pacific 0 3 2 0

-Vector of probability of correct classification
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by number of neighbors (knn):
3
0.7353

-Optimal number of neighbors: knn.opt= 3

with highest probability of correct classification max.prob= 0.7352941
-Probability of correct classification: 0.7353
> pred

[1] Atlantic

Levels: Arctic Atlantic Continental Pacific

The prediction is correct since “St. Johns” belongs to the Atlantic region. But
looking at the confusion matrix, we realize that this model is not very reliable. In the
dataset, three of the curves within the Arctic region, and none of them are classified
as such. The same happens for the five functional data that belong to “Pacific”,
three of them are classified as “Atlantic” and the other two as “Continental”. This
problem may arise from a lack of functional data, in general, or from a lack of data
within the Arctic and Pacific regions compared to the other two regions (“Atlantic”

and “Continental” data are three times more than “Arctic” and “Pacific” data).
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