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Parabolic-trough solar collector fields are large-scale systems, so the application of centralized optimization-
based control methods to these systems is often not suitable for real-time control. As such, this paper formulates
a novel coalitional control approach as an appropriate alternative to the centralized scheme. The key idea is
to split the overall solar collector field into smaller subsystems, each of them governed by a local controller.
Then, controllers are clustered into coalitions to solve a local optimization-based problem related to the
corresponding subset of subsystems, so that an approximate solution of the original centralized problem
can be obtained in a decentralized fashion. However, the operational constraints of the solar collector field
couple the optimization problems of the multiple coalitions, thus limiting the ability to solve them in a
fully decentralized manner. To overcome this issue, a novel population-dynamics-assisted resource allocation
strategy is proposed as a mechanism to decouple the local optimization problems of the multiple coalitions. The
proposed coalitional methodology allows to solve the multiple local subproblems in parallel, hence reducing the
overall computational burden, while guaranteeing the satisfaction of the operational constraints and without
significantly compromising the overall performance. The effectiveness of proposed approach is shown through
numerical simulations of a 10- and 100-loop version of the ACUREX solar collector field of Plataforma Solar
de Almeria, Spain.

1. Introduction sunlight, two main techniques can be distinguished: directly through
photovoltaic panels or indirectly using concentrated solar power (CSP)

In 2015, all United Nations members approved the 2030 Agenda systems. CSP systems, reviewed in [3,4], collect solar radiation and

for Sustainable Development, where seventeen sustainable development
goals can be found. In particular, Goals #7 and #13, (“Affordable and
clean energy” and “Climate action” respectively), focus on the need to
tackle climate change and protect the environment [1], since carbon
dioxide and other greenhouse gases in the atmosphere have reached
record levels in recent years. For this reason, there is great interest in
the use of renewable energy to reduce the high environmental impact
of fossil fuel systems. Among the different sources of renewable energy
(for example, solar, wind, geothermal, hydropower, ocean, bioenergy),
solar energy is the most abundant [2]. To generate electricity from

concentrate it to heat a fluid that will produce steam to drive turbine
generators. This technology includes parabolic troughs [5], Fresnel
collectors [6], solar power towers [7], and dish collectors [8]. However,
this article will focus exclusively on the control for parabolic-trough
solar collector fields.

Unlike other power generation processes, where the main energy
source can be handled as a control variable, solar energy cannot be
manipulated and therefore acts as a disturbance from a control view
point. In this regard, model predictive control (MPC) is one of the most
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popular techniques applied in the control of parabolic-trough plants,
as it deals with system disturbances and constraints in a receding-
horizon fashion. For example, the authors of [9] formulate a dual MPC
approach for reference tracking and disturbance rejection, while the
authors of [10] propose an MPC for the optimal scheduling of CSP
systems. However, one of the main drawbacks of the MPC approach
is the computational effort required to solve large-scale optimization
problems in real time. To overcome this issue in parabolic-through
plants, recent research has focused on decreasing the computational
burden with respect to the implementation of a centralized MPC. For
example, neural networks are applied to approximate the optimal flow
value given by an MPC in [11], reducing the computational load.
Moreover, the authors of [12] propose a fuzzy MPC for the parabolic-
trough plant to predict the future evolution of the outlet temperature
while reducing the computational time with respect to the original
non-linear model of the plant.

As an alternative, coalitional MPC partitions the large-scale system
into clusters of local controllers (or agents), achieving a trade-off
between coordination and performance. This type of distributed control
dynamically adjusts the structure of the global problem, creating clus-
ters of cooperative agents only when it improves overall performance.
The main objective of coalitional control is to offer an intermediate
solution between fully cooperative and decentralized schemes, pro-
viding better performance than decentralized control while reducing
the communication and computation burden of fully cooperative ap-
proaches [13]. A major problem that arises in the application of cen-
tralized strategies to large-scale systems is that the number of control
variables explodes while increasing the size of the model. To address
this issue, coalitional control splits the global control problem into
multiple local subproblems, which are solved in a decentralized fashion
by the agents within a coalition. In particular, the local subproblems
in a parabolic-trough solar collector field are coupled to each other
by a global shared resource constraint, referring to the total amount
of heat transfer fluid that can be provided to the field; see [14,15].
Hence, a key problem is how to decouple the shared constraint, so that
the local problem of each coalition can be solved in a decentralized
fashion and independently of other coalitions. In this way, such a
decentralized framework seeks to reduce the computational burden of
the overall approach by taking advantage of parallel executions. Note
that, for classical decentralized schemes, the satisfaction of the coupled
constraint requires an equal distribution of this constraint among all
the local problems, without any dynamic adjustment, since there is no
cooperation between the different parts of the system. As a result, there
could be a greater loss of performance.

In contrast to previous works and inspired by ideas on evolution-
ary game theory, this paper proposes a novel approach to decouple
the aforementioned shared resource constraint. Recently, the field of
evolutionary games and population dynamics [16,17] has received
significant attention with respect to applications of dynamic resource
allocation in large-scale systems [18]. Some examples include wire-
less networks [19], water distribution systems [20], demand response
applications [21], coordination of electric vehicle charging [22], and
congestion games in autonomous vehicle fleets [23], among others. A
motivation behind such applications is that population dynamics have
certain invariance and stability features that make them suitable for
dynamic resource allocation problems. Namely, granted an appropriate
initial condition, some population dynamics guarantee the dynamic
satisfaction of simplex-like constraints without relying on repeated
projections. In the context of dynamic resource allocation, this in-
variance property can be exploited to guarantee the feasibility of the
resource distribution at any point in time. On the other hand, several
population dynamics have well-studied asymptotic stability properties,
which guarantee their asymptotic convergence to the optimal solution
of an underlying optimization problem [17].

Based on the above, this work combines a coalitional model pre-
dictive control approach with population dynamics for resource distri-
bution. In particular, the coalitional approach splits the global control
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problem into multiple coupled local subproblems, whereas population
dynamics are employed to allocate the available resource over the mul-
tiple coalitions, guaranteeing the satisfaction of the coupled constraint
at any point in time so that the multiple local control subproblems can
be solved in parallel to reduce computational time. In summary, the
contributions of this paper are twofold:

« First, a novel coalitional MPC approach with population-dynamics
assistance is formulated for the temperature regulation of parab-
olic-trough solar collector fields. The proposed approach not only
guarantees the exact satisfaction of the shared resource con-
straint, but also reduces computational burden, leading to im-
proved scalability for large-scale scenarios.

Second, the proposed approach is validated through numerical
simulations of a 10- and 100-loop version of the ACUREX solar
collector field of the Plataforma Solar de Almeria, Spain. The
numerical results show that, when compared to a centralized MPC
approach, the proposed method provides a significant reduction
in computation times, yet with negligible losses on performance.

The proposed strategy is presented as an alternative to relieve the com-
putational burden, since, apart from considering a coalition approach,
it proposes a linearization of the lumped parameter model of the solar
plant. In this way, the use of a nonlinear distributed parameter models
is avoided as it would increase the overall computational burden.
Another alternative on how to deal with the non-linearity of the system
model can be found in [24], where the authors use a linear parameter
varying model of the solar plant. In such a work, the authors present
an adaptive MPC in which two consecutive quadratic programming
problems are solved to obtain the optimal control law. In contrast with
such an approach, our proposed strategy relies on static linearization
techniques, reducing the overall computational burden of the method.
On the other hand, it is worth to highlight that although our approach
employs an additional control layer for the dynamic resource allocation
of the coupled constraint (which may be seen as a disadvantage as it
increases the overall complexity of the strategy), such a control layer
can be executed at a different time-scale than the (bottom) MPC layer,
ruling out any significant bottlenecks at real-time execution. Moreover,
despite this additional complexity, our proposed approach reduces the
total computation time in comparison with centralized MPC, with a
minimal impact on the overall performance.

The remainder of this article is organized as follows. In Section 2,
the mathematical model of the parabolic-trough solar collector field
and the operational constraints considered are presented. Section 3 de-
scribes the overall control objective and introduces the problem setting
for coalitional MPC. Furthermore, Section 3 motivates the assistance
via population-dynamics to distribute the available resource and handle
the coupled constraint, and presents the proposed control scheme.
Section 4 includes some numerical simulation results on a 10- and
100-loop solar collector field. Finally, concluding remarks and future
research lines are provided in Section 5.

Notations. R”" denotes the n-dimensional Euclidean space, while RY,
and R denote the non-negative and positive orthants of R", respec-
tively. Moreover, let col(a,b, ..., z) denote the stacked column vector
obtained from the collection of column vectors a,b,...,z. Similarly,
let diag (A, A, ..., Ay) be the diagonal block matrix with the square
matrices A, A, ..., Ay in its main diagonal. Given a vector a € R”, the
notation a; refers to the ith element of a. Finally, given a square matrix
A € R™", the notation A, (A) refers to the maximum eigenvalue of A.

2. Parabolic-trough solar collector field
2.1. Description of the ACUREX solar plant system

Throughout this article, the ACUREX parabolic-trough solar col-
lector field located in Plataforma Solar de Almeria (PSA), Spain, is
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ACUREX field
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Fig. 1. Schematic of the ACUREX parabolic-trough solar collector plant.

studied. The solar field consists of a set of parabolic mirrors, known
as collectors, which concentrate solar irradiance in a pipe located in its
focal line, where a heat transfer fluid (HTF) heats up as it circulates.
The HTF carries the thermal energy to produce steam, and the electrical
energy is generated by a steam turbine. For this plant, Therminol 55 is
used as the HTF, whose density (p) and specific heat capacity (¢) are
temperature dependent and are given by [25]

p (Ty(1) =903 - 0.672T,(1),

(€]
¢ (Tp(1) = 1820 + 3.478T (1),

where T, () is the temperature of the HTF at time instant 7.

The distributed collector field can be modeled asaset £ = {1,..., N}
of N parallel loops; in particular, the ACUREX solar collector field
consists of 480 east-west aligned single-axis tracking collectors that
form N = 10 loops. Each loop measures 174 m in length, and consists of
four 12-module collectors connected in series. For each loop j € L, it
is possible to distinguish an active part that receives solar irradiance
(144 m length) from a passive part where solar radiation does not
reach (30 m length). Moreover, it is assumed that the HTF inflow of
each loop j € £ is controllable. Furthermore, in general, loops have
different dynamics, because their mirrors might have different levels of
cleanliness and thermal losses. However, there are some homogeneous
parameters for all loops j € L, such as the length L of each loop, the
cross-sectional area a r of the HTF, and the reflective surface S of each
loop. As an illustration, Fig. 1 shows a diagram of the ACUREX plant.

2.2. Concentrated parameter model

This section presents the dynamical model considered, which de-
scribes the behavior of the ACUREX solar plant [26]. For the sake of
clarity, the model variables and parameters are summarized in Table 1.

In what follows, each loop j € L will be described using the
concentrated parameter model, which provides a global description of a
loop by modeling the variation of the internal energy of the HTF. More
formally, each loop j € £ can be described by the continuous-time
model given by

dTJ(t) T a
o =S = B SH 0 (T = T°() -

- P0g,0 (T,0 -T/"0)).

c,0)

with

C(0) = p; (T®)c; (Tt a,L,
Pi(1) = p; T@0) ¢; (T(1)).
_TO+T(

= 2

Here, the global coefficient of thermal losses H,() depends on the
outlet (Tj), inlet (ij"), and ambient (T%) temperatures, and its ex-
pression can be found in [25]. Moreover, 5 is the overall efficiency
of the collectors, considering the optical and geometric efficiencies.
In addition, the difference in loop dynamics is modeled through two
scaling factors a; and f; that characterize the mirror cleanliness and
thermal losses of each loop, respectively. Furthermore, notice that,
as (2) describes the dynamics of the outlet temperature of loop j,
the properties in (1) of the HTF in loop j become dependent on the
corresponding outlet temperature T;(r).

2.3. Characteristics and operational constraints of the system

Let us assume that the inlet temperature of each loop is equal to the
inlet temperature of the fluid to the field, i.e., T;” =T forall j € L.
Additionally, the inlet temperature, direct normal irradiance (DNI), and
ambient temperature are considered disturbances that can be measured
or estimated. Moreover, the outlet temperature of the whole field is
given by

ST (0g;(0

T = ————oi, 3
qT (1)
where the total HTF flow of the field is defined as
N
a0 = g @
j=1

On the other hand, several operating restrictions must be consid-
ered due to the minimum (T™") and maximum (T™%) temperatures
supported by the HTF, and also the operating limits of the pump and
valves. Namely, it is required that

(5a)
(5b)

Tmin < Tj(l‘) < Tmax, Vj er

qmm S qj(t) S qmax, Vj e £
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Table 1

Model’s variables (top) and parameters (bottom).

Symbol Description Units
t Continuous-time variable s
k Discrete-time index -

T; Outlet temperature of loop j °C

T Inlet temperature of loop j °C

T Outlet temperature of the field °C

™" Inlet temperature of the field °C
T¢ Ambient temperature °C

T Mean inlet-outlet temperature °C
q; HTF flow in loop j s
q" Total HTF flow /s
T Direct solar irradiance W/m?
H, Coef. of thermal losses of loop j W/(m? °C)
) Discretization time H
N Number of loops -
L Length of each loop m
N Reflective surface of each loop m?
a, Cross-sectional area of the fluid m?
P Density of the HTF kg/m?
¢ Specific heat capacity of the HTF J/(kg °C)
C; Thermal capacity of a loop J/°C
n Efficiency of the collectors -
a; Cleanliness scale factor of loop j -
b; Loss scale factor of loop j -

qT(t) < qTA,max’ (SC)

where the minimum flow value in a loop, ¢™", is such that there is
a turbulent regime within the loop, and the maximum flow in a loop,
g™, is related to the maximum pressure drop allowed. Moreover, the

pump limits the total HTF flow of the field within a maximum value
T ,max
q .

2.4. Linear discrete-time model of the system

For the control strategy formulated in this paper, a linearization of
the concentrated parameter model of each loop, i.e., (2), is proposed to
operate every loop close to a desired operating point ( T?, q; ). For this
purpose, the temperature and flow of each loop j € L are redefined
as the sum of its value at the operating point plus a small increment

represented by the deviation variables (x;,u;). That is,

Ty =T¢ +x,(0. (1) = ¢° +u;(0). 6)

Assumption 1. Since only small variations around the operating point
are considered, it is assumed that temperature-dependent parameters,
e.g. P,C; and H, are fixed at a temperature value equal to ;.
Consequently, these time-varying parameters are now assumed to be
constant. For the sake of clarity, these parameters are identified with
the superscript ° in the linear model to emphasize their dependence on
the operating point.

Based on (6), the lumped model defined in (2) can be expressed as
o 4x;() oo, BSH]
C— = Pj q; + 5 x;(1)

Jodt
ch (Tjo _ Tm(t)) L{j(t)
o o o in
+ anSI(t) - PPg’ (Tj _7 (z))
;SH?
2
for every loop j € L. Moreover, by grouping and identifying the terms

that accompany x; as A¢, those that accompany u; as B, and the

disturbances as wj, the model in (7) can be rewritten as

()

(T; +T(1) — 2T”(t)) ,

C]‘.’xj(t) = ijj(t) + B]c.uj(t) + wj(z), VjeL, (8)
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where the superscript ¢ emphasizes the continuous-time nature of the
model.

The forward Euler method is used to approximate the time deriva-
tives in order to express the model of each loop j € £ in discrete time,
that is,

dx;(t)  x;lk+1]=x;[k]

dt 5 ’
being 6 the discretization time. Dividing by c?, and following (9),
Eq. (7) can be expressed in discrete time as

9

5 . 5 . 5 .
xjlk+1]= (—OA. + 1>xj[k]+ =B u;[k] + =5 w (K], (10)
CJ. / Cj / Cj /
———
Aj B; wj

for all j € L. By the identified terms, the local discrete-time model of
each loop j € L is given by

x;lk + 1] = A;x;[k] + B;u;[k] + w;[k]. 1D
Equivalently, by defining
x[k] = col (x,[k], x,[k]. ..., xy[K]) € RN,
ulk] = col (u; [k, uy[K], ... ,uy[k]) € RV,
wlk] = col (w;[k], w,[k], ..., wy[k]) € RY,
A =diag (A}, Ay, ..., Ay) € RN,
B = diag (B, B, ..., By) € RMN,
the model of the whole field can be written more compactly based on
(11) as
x[k + 1] = Ax[k] + Bulk] + w[k]. (12)

Finally, the constraints in (5) can be rewritten in terms of the deviation
variables x,[k] = T;[k] — T° and u;[k] = ¢;[k] - q; as

T™min TP <x;[kl <T™ -T7, VjeL (13a)
qmin _q; < uj[k] < qmax _q;’ Vj el (13b)
Dulkl g™ =Y g (130)

jec jecr

Remark 1. We highlight that since the control strategy formulated in
this paper relies on the discrete-time linear time-invariant (LTI) model
presented in (12), our proposed method is also applicable for other
nonlinear models of the solar plant (i.e., models different than (2), for
each loop j € £) for which a discrete-time LTI model as (12) can be
obtained.

3. Problem statement and proposed approach
3.1. Overall control objective

This section introduces the overall control objective considered in
this paper. Throughout, the linear discrete-time model of each loop
given in (11) is considered, or equivalently, the model of the entire
solar field given in (12). Both models are defined in terms of the
deviation variables x;[k] = T;[k] - T/.° and u;lkl = q;1k] - q;.’. Thus,
the goal is to regulate the deviation variables at the origin, so that the
system is kept close to the desired operating point T7.47), forall j e L,
while satisfying the operational constraints given in (13).

Definition 1 (Control Objective). Let N, € Z3, be the prediction
horizon. The model predictive optimization-based control problem to
be solved at time k is given by

NP Np—l
rJB{I]I ; x[k +n]T Ox[k + n] + Z:‘, ulk + n" Rulk + n], 14
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subject to the constraints in (12) and (13). The weighting matrices for
state and input Q, R € RV*N are symmetric positive definite, and the
vector u[k] describes the sequence of inputs (-] from instants n = k to
k+N,-1, ie.,

ulk] = col (u[k],ulk +1],...,ulk + N, — 1]) .

Remark 2. Regarding Definition 1, it is worth highlighting that
the corresponding model predictive controller receives an estimate
of the solar DNI profile over the prediction horizon, which can be
forecast using several techniques, such as those proposed in [27,28].
Furthermore, Assumption 2 is imposed to guarantee the existence of a
solution.

Assumption 2. The set of solutions to the problem in Definition 1 is
not empty. Moreover, Ngmin < g7-max < Ngmax,

Although the problem in Definition 1 could be solved by standard
centralized methods, if the size of the solar field is sufficiently large, the
computational burden of the underlying optimization problem might
render the application of such centralized methods unfeasible for real-
time control. As such, a coalitional control approach is formulated.
The key idea is to group subsets of loops into so-called coalitions, and
define a local (decoupled) optimization problem for each coalition, so
that by solving these multiple (smaller) decoupled problems in parallel
one obtains an approximate solution of the centralized problem in
Definition 1. Consequently, through a trade-off between computational
burden and performance, the centralized controller is replaced by a
set of local controllers whose corresponding optimization problems
have lower computational costs and can be solved in parallel in a
decentralized fashion. The proposed coalitional method is detailed
below.

3.2. Codalitional control approach

In what follows, we proceed as in previous coalitional control
schemes in the solar plant framework [14,15].

Following graph-theoretic partitioning approaches [29], the
parabolic-trough plant can be characterized by a graph ¢ = (L, &)
that models a cooperative network. Being £ the set of loops, it is
assumed that a local controller or agent governs each loop j € L.
Furthermore, £ represents a set of links & C £ x £ that establish
data-exchange connections between the different loops. The state of
these links is dynamically switched between enabled and disabled
according to the needs of the system. When a given link is enabled,
the corresponding loops are connected through a bidirectional flow of
information, allowing their controllers to exchange data.

Assumption 3. At any time, the graph G is partitioned by a set of
M disjoint complete subgraphs G,,G,, ..., G,,. More formally, for every
€ {1,2,..., M} it exists a subgraph G, = (£;.&;), with £, C £ and

& =L;xXL;. Also, £;nL, =@ holds foralli # ¢, and L,UL,U---UL,, = L.

Definition 2 (Coadlition). Under the partitioning provided by Assump-
tion 3, a coalition C; = L; is a subset of loops whose controllers are
connected through a set of enabled links &; according to the complete
subgraph ;. In this regard, agents within a coalition operate as a single
entity. In general, the size of a coalition can range from a singleton
C; =j, i.e., |C] =1, to the grand coalition C; = L, i.e., |C;| = N, where
IC;] denotes the cardinality of C;. Throughout, let P = {C|,C,,...,Cy }
be the set of coalitions, and thus P characterizes the partition of the
system.

Remark 3. The partitioning of the field can be done following different
criteria such as geographical proximity, e.g., grouping loops that are
close to each other in the solar plant; difference in the DNI, e.g., as-
sociating loops that receive more solar irradiance with those that are
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dirty or shaded; or simply by creating random coalitions. In particular,
this article does not focus on a specific partitioning method. Instead,
it is assumed that the partition P is given by an arbitrary previously
selected criterion.

Based on the partition P, the maximum HTF flow of the field
(given in deviation variables by ¢7-m& — ¥ jer q;) is distributed over
the coalitions using a population-dynamics-assisted resource allocation
method (the details of such a method are given in Section 3.3). Namely,
let q"“"‘ denote the maximum HTF flow allowed for coalition C; € P,

and these maximum coalition-level flows are set to satisfy Zl | q‘cndx =

D 4;. In terms of the deviation variables, it is thus requlred
that

Y ulkl < A (R (15)
JEC;

Consequently, if the constraint in (15) holds in all coalitions, then the
field-level constraint in (13c) is satisfied.

Therefore, assuming that an appropriate q’“‘“ has been determined
for every coalition, the local control objectlve for each coalition is
defined as follows.

Definition 3 (Local Control Objective). The model predictive optimiza-
tion-based control problem to be solved at time k by coalition C; € P
is given by

Np

' Tk + 110, x; [k +
urgl[rlzj Z}/;vxj[ nlQ;x;[k +nl
. (16)

+ 2 D ujlk+nlRu,lk + nl,
n=0 jeC;
subject to (11), (13a), and (13b), for all j € C;, and (15). The
local weighting scalars Q;, R; € R, are set according to the global
weighting matrices in (14), for all j € C;. The vector u, [k] describes
the sequence of inputs within the coalition C; from instants n = k to
k+N,—1, ie.,

ug,[k] = col (uq kL, [k + 11, ... .ug, [k + N, — 1]) ,
where the vector u,[-] = col ({u f[']}je c,-) is comprised of the inputs of
the loops belonging to coalition C;.

Remark 4. By means of the maximum coalition-level flows q‘c““" for
all ¢; € P, and the constraints in (15), the local control problems of
Definition 3 are solved by each coalition in a decentralized fashion,
i.e., independently of the other coalitions. Furthermore, Remark 2 also
applies to each problem in Definition 3. On the other hand, it is worth
highlighting that Assumption 2 is not enough to guarantee the non-
emptiness of the set of solutions of each problem in De‘ginition 3 under

a general partition P and resource allocation | g2 . However, to
overcome such an issue, the constraints in (13a) can he formulated as
barrier functions whose corresponding weighting coefficients can be set

locally by each coalition’s controller (see, for instance, [14,15]).

Based on the discussion above the question that remains to be
answered is: how to determine g.®, for all ¢; € P, so that an ap-
propriate approximation to the solutlon of the problem in Definition 1
can be obtained by means of solving the multiple decoupled problems
in Definition 3? As such, to compute qm"x for all C; € P, we propose
the population-dynamics-assisted resource allocation method presented
below.

3.3. Population-dynamics-assisted resource allocation

This section formulates the proposed population-dynamics-assisted
resource allocation method that is used to determine g7 for each
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coalition C; € P. In broad terms, the approach solves a model predictive
optimization-based control problem with a unitary control horizon,
whose solution provides an estimate of the average flow of HTF re-
quired by each loop over N, and thus provides information to de-
termine qg:a", for all ¢; € P, such that an approximate solution of
the centralized problem in Definition 1 can be obtained by means
of the coalitional control approach of Section 3.2. The solution of
such a unitary control horizon problem is computed iteratively by
exploiting certain properties of invariance and asymptotic stability of
discrete-time population dynamics [30], and the numerical simulations
in Section 4 show that the proposed method indeed leads to an ac-
ceptable trade-off between computational burden and performance. For
the sake of clarity, we now proceed to describe in detail the proposed
population-dynamics-assisted resource allocation method.

Throughout this section, the following model predictive control
problem with unitary control horizon is considered.

Definition 4 (Control Objective under Unitary Control Horizon). The
unitary control horizon model predictive optimization-based control
problem to be solved at time k is given by
N, Np-1
_ . T T
olk] = arg min Y xtk+n"Qx[k +nl+ Y ulk]” Rulkl, a7
n=1 n=0
subject to the constraints in (12), (13b), and the coupled constraint
Yjec ujlk] =™~ ¥ ¢7. The weighting matrices for state and in-
put, namely Q and R, are the same as those considered in Definition 1.

In contrast to the control problem of Definition 1, notice that the
one in Definition 4 considers the constraint in (13c) with strict equality
and disregards the constraints in (13a).!We enforce the constraint
in (13c) with strict equality to allocate the totality of the available
resource over the multiple coalitions, so that Z,}Z . qg:“" = glmax _
Yjec 4;- On the other hand, the reason to remove the constraints in
(13a) is to guarantee the non-emptiness of the set of solutions under
the unitary control horizon constraint. In particular, observe that under
Assumption 2 it immediately follows that the set of solutions of the
problem in Definition 4 is not empty. However, such a claim does not
hold in general if the constraints in (13a) were to be considered in
the problem of Definition 4. Clearly, one might deal with this issue by
including the constraints in (13a) as penalty terms in (17), but such an
approach increases the overall complexity of the method, as it involves
the computation of additional penalty parameters, and increases the
number of iterations required to guarantee the convergence of the
proposed population dynamics to a solution (because a higher Lipschitz
constant of (17) requires a smaller step size in the updates of the
dynamics, c.f., [30, Theorem 5]). Finally, it is worth highlighting that
Remark 2 also applies to the problem in Definition 4.

Now, note that according to the dynamics in (12), the state of the
system at time instant k + n under a constant input u[k] applied during
times k,k + 1,...,k+n—1 is given by

x[k +n]l = A"x[k] + G ulk] +dlk+n—1], VY(k+n)>1,
where
n—1
G,=) A"B
£=0
n—1

d[k+n—l]:2A”’w[k+n—l—K].
=0

1 Nevertheless, recall that the constraints in (13a) are still considered at the
local level of each coalition’s controller (see Remark 4).
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Consequently, the cost function in (17) can be equivalently written as
NP
J (u[k]) = E ( x[k]TA"TQA"x[k] + 2x[k]T AT QG ,ulk)

n=1
+ 2x[k1T AT Qd[k + n — 11+ ulk]" G} QG ulk]
+ 2ulk]"GT Qd[k +n - 1]

+dlk+n-1]"Qd[k+n—1] > +N,ulk]" Rulk],

and the gradient of J(-) with respect to u[k], which is denoted as g (-),
is given by

Np

gk =Y < 2GT QA"x[k] + 2G| OG,ulk]

n=1
+2G, Qdlk +n—1] > +2N, Rulk].
Based on these formulations and motivated by the results in [30],

to solve the problem in Definition 4 the following iterative dynam-
ics (with state d[x] = col(Dl[K], Dz[x],...,ﬁN[K]) and output v[x] =

col (v;[x], vy[x], ..., vx[x])) are considered
9;[x] = max (qmax — gMin _ 17/-[1(],0) (18a)
0;;[x] = min (max (g,- (vlx]) - g; (vlx]) ,0), 7) (18b)
ﬂj[K] = 2 (U,-[K]SJ-[K]QU[K'] - Uj[K']&,-[K]jS[K']) (18¢c)
iec
O;lk + 11 = 0;[x] + ep;lx] (18d)
v;[K1 = 0,k +¢™" = ¢, (18e)

for all i,j € L, where y,e € R, are strictly positive constants whose
values are defined in Theorem 1, and the initial condition 5[0] satisfies
that

~ ~ N . Z'e[l b, = qT,max _ quin
o[0] € {v eRY : ﬁ,-js i e } _ 19)
Moreover, it is worth to highlight that the updates in (18) occur
at discrete-time instants x, which are not necessarily the same time
instants k of the discrete-time model in (12). Finally, given the partition
P, the resource allocation for each coalition C; € P at time « is
calculated as

ekl = Y vjlxl. (20)
JEC;

The iterative dynamics in (18) correspond to a discretization of
the so-called Smith population dynamics with carrying capacities [31],
which are a particular case of the population dynamics studied in [30,
32], and whose evolutionary game theoretical interpretation is as
follows.

Remark 5 (Interpretation of the Dynamics in (18)). Population dynamics
describe the temporal evolution of the strategic interaction of a large
population of non-descriptive players under the mean-field approxi-
mation [17], i.e., assuming an infinite number of players modeled as
continuum of a given mass. Under such a framework, 7;(r) € Ry repre-
sents the mass of players choosing strategy j € £ at the continuous-time
t € Ry (notice that the set of loops £ is interpreted as the set of
strategies of the game), and the temporal evolution of 7;(#) is given
by the (mean) evolutionary dynamics model

B0 = Y (5,(08,(D0,; () = 5,(1)9,(1)0;,(1)) .

ier
Here, 9;(r) € Ry denotes the carrying capacity of strategy j at time ¢
(with 9;(r) = 0 meaning that no more players can choose strategy j at
time 1), and o;;(t) € Ry is the switch rate of players from strategy i to
strategy j at time ¢. Hence, ,(1)8;(t)o,;(?) is the mass of players switch-
ing from strategy i to strategy j at time ¢, while 9;(#)9;(t)o;;(?) is the mass
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of players switching from strategy j to strategy i at time ¢. Adding these
terms over all strategies i € L gives the total variation u;(t) 25 (1) of
the mass of players playing strategy j at time ¢. Furthermore, to ease
the practical application of the dynamics, the above continuous-time
evolutionary dynamics model is discretized following a forward Euler
discretization with step-size e € R, as in (18d). In addition, to relate
the population dynamics to the underlying optimization problem, the
carrying capacity 9;[x] is set according to the HTF capacity of loop j,
as in (18a); and the strategic switch rate ; ;K] is defined based on the
gradients of the cost function J(-) and the saturation parameter y € R,
as in (18D). Finally, employing (18e), the variable 7,[x] € [0, gmax — gmin)
is shifted to vilxl € [¢™ - qj‘?,q"“’X - q;], so that (13b) is satisfied.
Overall, the dynamics in (18) comprise a population-dynamics-inspired
iterative algorithm to update the variables v;[«x], for all j € £, which
are in turn related to the solution of (17). For further details on how to
apply population dynamics to solve convex optimization problems, as
well as on the related analogies, we refer the interested reader to [18].

As mentioned above, our interest on the dynamics in (18) is to
exploit certain invariance and asymptotic stability properties that these
dynamics have. For the sake of completeness, such properties are
formalized next.

Theorem 1. Consider the iterative dynamics in (18) with

N
P
y =2 (g7 = Ng™™) A Z G]0G, + N,R|.

n=1

and 0 < e < (y (qm™ —g™in) (N - 1))_1. Moreover, let §[0] satisfy the
condition in (19). The following facts hold.

(1) For all k > 0, the vector v[k] satisfies the constraints of the problem
in Definition 4.

(2) The set of solutions of the problem in Definition 4 is asymptotically
stable under the considered dynamics.

(3) For all k > 0, if v[«] is not a solution of the problem in Definition 4,
then J (v[x + 11) < J (v[x]).

Proof. Fact (1) follows immediately from [30, Theorem 3]. Namely,
following the same steps as in the proof of [30, Theorem 3], one can
show that under the given conditions for y, ¢, and 5[0], the set in (19)
is positively invariant under the discrete-time dynamics in (18d). That
is, if 5[0] satisfies (19), then §[x] belongs to the set in (19), for all ¥ > 0.
Consequently, by (18e) it holds that

" —q; <okl <q™ —qf, VjEL
Y vkl =q"m - Y g,
JjeL JjeL

for all x > 0, which means that the vector v[x] indeed satisfies the
constraints of the problem in Definition 4, for all « > 0.

Similarly, Facts (2) and (3) also follow from [30]. More precisely,
following the formulation in Remark 5 and [30, Section 3], it holds that
the discrete-time dynamics in (18a)-(18d) can be rewritten compactly
as o[k + 1] = d[x] + eL[x]f[x], where f[x] = —g (v[«]) and L[x] € RV*N
is a symmetric positive semi-definite matrix, for all ¥ > 0 [30, Lemma
1]. Also, based on (18e), the output vector v[x] is a constant shift of the
state vector §[x], for all ¥ > 0. Hence, consider the (convex quadratic)
Lyapunov function candidate given by V (v[x]) = J (v[x])—J (v*), where
v* is an arbitrary optimal solution of the problem in Definition 4.
Following the same steps as in the proof of [30, Theorem 5] it can be
shown that

Vlk+1]) -V (v[x]) £ —e(1 = e&)f[K]TL[K]f[K],

where 0 = y (¢™™ —¢™") (N — 1). Moreover, from [30, Lemma 1]
and [30, Theorem 1], one can conclude that f[x]TL[x]f[x] = 0 if and
only if v[x] = v*, and that v[x + 1] = v[x] if and only if v[x] = v*.
Thus, if 0 < ¢ < 1/6, then V (v[x +1]) — V (v[k]) < 0, for every
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vlk + 1] # v[x] # v*. Consequently, v* is asymptotically stable under
the dynamics in (18) and Fact (2) holds. Also, Fact (3) holds from
the previous Lyapunov stability analysis by noting that V (v[x + 1]) —
VlkD=J@wk+1)-J@kD. R

Based on Theorem 1, note that if the constraint in (19) is satisfied,
then the feasible set of the problem in Definition 4 is positively invari-
ant under the dynamics in (18), which in turn implies that the resource
allocation in (20) always satisfies Z:Zl a” = q"m = Y e g7, as
desired. In addition, such a property holds without relying on recursive
projections onto the feasible set, which simplifies the execution of
the proposed dynamics. Furthermore, the cost function in (17) strictly
decreases under the trajectories of the dynamics in (18), and its min-
imizer is achieved asymptotically. Thus, under the dynamics in (18),
the resource allocation v[x,] at time «x, is always better, in the sense
of the problem in Definition 4, than the allocation v[x,] at time «,,
for all 0 < k; < K, and granted that the allocation at time «, is not
optimal (in this case v[x,] = v[k;]). These facts show that, regardless
of the number of update iterations applied to the dynamics in (18),
the corresponding resource allocation is always better than the initial
one (again, here better is to be understood in the sense of the problem
in Definition 4). This property is attractive in the scenario where the
updates in (18) can only be executed a limited number of times due
to real-time constraints. Moreover, note that this property does not
hold under other iterative approaches, such as the so-called primal-
dual gradient dynamics [33], where the feasibility of the solution is
guaranteed only in the asymptotic sense.

For clarity, a summary of the proposed general approach is provided
below.

3.4. Summary of the proposed approach

The proposed coalitional model predictive control approach con-
sists of two layers. At the top layer, the population-dynamics-assisted
resource allocation method of Section 3.3 is employed to solve the
unitary control horizon problem of Definition 4, and to allocate the
resource q'c‘:'“‘x to each coalition C; € P. At the bottom layer, on the
other hand, the controller of each coalition C; € P solves the local
model predictive control problem of Definition 3 subject to the resource
allocation provided by the top layer. Both layers can be executed at
different time-scales, so that the bottom layer uses the most up-to-date
value of qg:“x when required. For completeness, the proposed approach
is summarized in Algorithm 1.

Remark 6. The parameters Nj, fop, and i, in Algorithm 1 are
set according to the computational capacities of the corresponding
controllers, as well as to the associated time-scales of the solar plant.
In particular, the time-scale 7, is set as a multiple of the discretization
time § of the model, while the time-scale #,,, is set as a multiple of ;.
The rationale for setting #,,, slower than #,, is to avoid recomputing
the resource allocation and partitioning of the system too frequently,
and thus to reduce the computational burden of the overall approach.
In fact, to further reduce the computational burden, the upper control
layer might be executed in an event-triggered fashion based on the DNI
disturbances.

4. Numerical simulations

This section provides simulation results on a 10 and 100 loop
parabolic-trough solar plant such as the one described in Section 2.
The control objective is to operate the plant around a desired operating
temperature of 250 °C, while satisfying the coupled constraint in the
total HTF flow, as well as the remaining operational constraints. All
simulations have been performed using Matlab® R2020.a on a Win-
dows 4.1 GHz hexa-core Intel® Core™ i7-8750H CPU and 16 GB RAM
computer. Hereafter, the results obtained with the proposed coalitional
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Algorithm 1 Overall control scheme.

The top and bottom control layers are repeatedly executed at possibly
different time-scales.
Top control layer (executed at a time-scale tmp)

1. Given an initial condition 5[0] satisfying (19), the dynamics in
(18) are updated a number of Ny, iterations. The resulting vector
U[Njr] pProvides a feasible approximation for the solution of the
problem in Definition 4 (with the error of the approximation
converging to 0 as Nj, — ).

2. The field partition P is computed by forming coalitions using the
selected criterion (see Remark 3).

3. The resource allocation for each coalition C; € P is computed by
means of (20). Namely,

48> [Nier] = D, 0 Niger]: VG € P.
JEC;

Bottom control layer (executed at a time-scale #,,;)

1. For every coalition C; € P, the local optimization problem
in Definition 3 is solved. Such a local optimization problem is
subject to the (most up-to-date) resource allocation provided by
the top layer, and its solution corresponds to the profile u’éi [k1,
where k denotes the current time instant under the time-scale 7.

2. Every coalition C; € P applies the first component of the optimal
sequence uz [k] to its associated loops (the deviation variables
are transformed back to the original inputs by adding their
corresponding operating values).

approach, summarized in Algorithm 1, are compared to those obtained
with a centralized MPC. For this purpose, the index P is introduced to
measure the performance of a given control algorithm throughout the
entire simulation. The selected performance index is formulated as
Tsim
P= 2 x[k + 11T Ox[k + 1] + u[k] Ru[k], 21)
k=0
where the simulation length is set to T;,, = 60min for both case studies.
Moreover, a one-hour DNI profile? is used to model the disturbances,
while the ambient temperature T¢ and the inlet temperature 7" of the
HTF to the field are considered constant for simplicity. As shown in the
DNI profiles of Figs. 2 and 6, if the total length of a loop is discretized
into one-meter segments, the passive parts of the loops correspond to
the segments {3742}, {79-96}, and {133-138}, respectively. Since these
segments are not reached by concentrated solar radiation, their DNI
is set to 0. Finally, Table 2 includes the values of the homogeneous
parameters for all loops, and the values of operational constraints,
which are taken equal for both simulations.

For these numerical simulations, the partition P of the field is
calculated by grouping sets of |C;| unbalanced loops according to the
effective solar irradiance they receive. For instance, loops that are dirty
or shaded due to a cloud are associated with loops that receive more
DNI, either because they are not affected by any cloud or because they
are cleaner. Moreover, let us assume that all coalitions have the same
number of loops, i.e., |C;| = |C/|, for all i,# € {1,2,..., M} with i # Z.

On the other hand, to compare the coalitional and centralized
control strategies by means of the required computational time, 7¢qpy, is
defined as the average computation time in the simulation, calculated
as

T.
Sm 7 (k] Zeep e [kl

Teomp = Z"; with 7[k] = C'EP—‘, (22)
Tsim |P|

2 The considered DNI profile is generated as in [34].
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Table 2
Parameters (top) and constraints (bottom) of
ACUREX field.

Symbol Value Units
L 174 m
N 267.4 m?
a; 7.55 - 104 m?
n 0.64 -
a; [0.6,1] -
B [1,1.25] -
min 220 °C
Tmax 300 °C
gmn 0.2 /s
g™ 1.5 /s

Table 3
Time comparison for the centralized and coalitional simulations of the 10 and
100 loop plants.

Strategy Teomp Ceomp Units
Cen. MPC N =10 0.2804 0.0466 s
Coal. MPC N = 10 0.1463 0.0154 s
Cen. MPC N =100 2.7260 0.4522 s
Coal. MPC N = 100 0.2511 0.0045 s

where 7[k] is the average computation time per coalition at the time
instant k, and ALIBY the time it takes for the coalition C; to solve the
local optimization problem in Definition 3. Seeking to be more rigorous
with the results provided, Table 3 shows, in addition to the average
computation time 7., the value of the standard deviation oo, of
the sample. The times included in Table 3 are measured in seconds.

4.1. Simulation results for the 10-loop field

The first case of study corresponds to the 10-loop ACUREX field
located in the PSA. This scenario considers ¢7"™* = 57209 I/s as
the maximum flow value, which corresponds to the total HTF flow at
the desired operating point of the system. Moreover, without loss of
generality, five coalitions of two loops are considered. That is, M =5
and |C;| =2, for all C; € P.

For this simulation, two moving clouds have been generated for
the DNI profile, which cross the field at specific times. As shown in
Fig. 2, a small cloud moves through the plant between ¢ = 13 min
and ¢+ = 26 min, and a larger one appears between ¢ = 38 min and
t = 52 min. These clouds produce a decrease in the solar radiation
received by the shaded loops, which in turn has an impact on the
partition P of the field (as loops are grouped according to the effective
DNI that they receive). As an illustration, the coalitional topology of the
entire simulation is depicted in Fig. 3, where it can be seen that if the
plant is not affected by the presence of any cloud, then the coalitions
remain constant, but when a cloud enters the field, the partition P of
the system changes, resulting in new coalitions. Finally, it is worth to
highlight that besides the two moving clouds, it has been considered
that some loops’ collectors might be cleaner than others, and thus
receive more solar radiation. This fact adds more heterogeneity to the
components of the field.

In Fig. 4, the top plot shows the evolution over time of the outlet
temperature of each loop, while the bottom plot depicts the evolution
of the HTF flow circulating through each loop. Here, loops that have
cleaner collectors and are therefore more efficient, have a higher flow
value at the operating point q; (see, for example, that flows in loops #1
or #6 converge to a value g, far above the corresponding values in loops
#3 or #5). In addition, the passing of the larger cloud has a greater
impact on both the temperature and the flows of the system, when
compared to the passing of the smaller cloud (as expected). Moreover,
such an impact is more notable in the less efficient loops (see, for
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Fig. 2. Effective DNI profile of the 10-loop collector field with clouds passing.
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Fig. 3. Coalition forming of the 10-loop collector field.

example, the drop in the outlet temperature of loop #3, represented
by a pink line in Fig. 4, when the second cloud appears).

A comparison of the proposed coalitional approach with respect to
the centralized approach is presented in Fig. 5 in terms of the outlet
temperature and the total HTF flow of the field. We highlight that
the temporal evolution of both T(f) and ¢ (s) under the coalitional
approach follows up closely the ones of the centralized solution. In
fact, the proposed coalitional algorithm results only in a 1.1771% drop
in the overall performance P with respect to the centralized solution.
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Fig. 4. Outlet temperature (top plot) and HTF flow (bottom plot) for each loop
Jj €{1,2,...,10} in the 10-loop field, when using the coalitional approach.
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Fig. 5. Outlet temperature (top plot) and total HTF flow (bottom plot) of the 10-loop
field. Solid lines represent the evolution using the proposed coalitional algorithm, while
dashed lines represent the result using a centralized MPC. Here, the coupled constraint
q"™> is represented with a dotted line, and T(t) and ¢’ (t) are given by (3) and (4),
respectively.

Likewise, as shown in Table 3, the computational time of the coalitional
approach is lower than that of the centralized strategy, reducing the
centralized time by half. This result is expected because the centralized
approach solves the problem in Definition 1 using a single controller,
whereas the coalitional one employs N /|C;| decentralized controllers
to solve the local problems of Definition 3 in parallel.

4.2. Simulation results for the 100-loop field

Let us now consider a 100-loop extension of the original 10-loop
ACUREX field. As such, the values of the local constraints in (5) are
also set according to Table 2, yet, since the number of loops is ten
times greater, the value of ¢’ "™ is set an order of magnitude higher
than the 10-loop plant. Likewise, the maximum flow value in the plant
is considered equal to ¢7™* = 53.8834 1/s, which corresponds to the
total HTF flow at the desired operating point of the system. Besides,
without loss of generality, in this scenario ten coalitions of ten loops
are considered. That is, M = 10 and |C;| = 10, for all C; € P.

For this simulation, the DNI profile generates two moving clouds
that cross over the 100-loop field. A large cloud moves through the
plant almost during the whole simulation, between t+ = 4 min and
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Fig. 6. Effective DNI profile of the 100-loop collector field with clouds passing at 1 = 30
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Fig. 7. Outlet temperature (top plot) and HTF flow (bottom plot) for 10 random loops
in the 100-loop field, when using the coalitional approach.

t = 52 min, while a smaller cloud appears between r = 16 min and
t = 46 min. As an illustration, Fig. 6 shows the two clouds over the
plant halfway through the simulation, at = 30 min. In addition, as
before, it is considered that some loop collectors may be cleaner than
others and therefore receive more solar radiation.

Fig. 7 shows the evolution over time of the outlet temperature T; ()
and the HTF flow ¢;(#) of ten random loops of the 100-loop plant. The
small cloud crosses diagonally, affecting approximately the upper half
of the field, while the large cloud crosses the entire plant, creating
shadows on all of the loops. The consequences of passing clouds can
be seen in Fig. 7. As in the case of the 10-loop plant, the most efficient
loops stabilize in a higher flow value. See, for example, in the upper
part of the field, loop #93 (light-purple line) reaches a higher value of
the flow than loop #82 (red line). Similarly, when clouds shade loop
#82, the drop in the outlet temperature of this loop is much greater
than when #93 is affected by the clouds. The effects of cloud passing
can also be seen in the evolution of the flow, as loops tend to decrease
their flow ¢;(t) when they are shaded.

Finally, Fig. 8 compares the evolution of the outlet temperature and
the total HTF flow of the 100-loop field when applying a centralized
controller (dashed lines) and the proposed coalitional approach (solid
lines). Note that, as the larger cloud crosses the field during almost the

10
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Fig. 8. Outlet temperature (top plot) and total HTF flow (bottom plot) of the 100-loop
field. Solid lines represent the evolution using the proposed coalitional algorithm, while
dashed lines represent the result using a centralized MPC. Here, the coupled constraint
g"™ is represented with a dotted line, and T'(r) and 4" (t) are given by (3) and (4),
respectively.

entire simulation, the outlet temperature is slightly below the desired
value of 250 °C, while the total flow of the field suffers a notorious
decrease with respect to the value of g7, However, the coalitional
algorithm manages to closely follow the centralized evolution of T'(r)
and 4" (r) with a practically negligible loss in overall performance P of
a 0.3544%.

Working with a larger plant involves longer computation times
when optimizing the centralized MPC, as Table 3 shows. In this way,
the coalitional control approach achieves better overall computation
times, as it distributes the global problem among the set of local
controllers given by the partition P. Hence, the benefits of applying
a coalitional control scheme are more notable as the system becomes
larger in scale. In particular, choosing a smaller number of loops within
a coalition |C;|] < 10 results in a lower average computation time
Teomps DUL Tequires more local controllers to work simultaneously. For
comparison, the 100-loop plant has been simulated with coalitions of
5 loops, |C;| = 5, resulting in a decrease in P of a 0.4875%, with
T =0.1928s and o, = 0.0176s.

comp comp

5. Concluding remarks

The proposed coalitional approach allows us to distribute the global
large-scale optimization problem into smaller local subproblems which
can be solved in parallel in a decentralized fashion. Thus, reducing
the computational burden of the overall approach while obtaining a
negligible performance loss with respect to the centralized approach.
Moreover, the population-dynamics assistance allows us to satisfy the
constraint that couples the multiple local subproblems.

Future research should focus on applying this idea to larger solar
plants, such as Solana® (808 loops), since the advantages of the coali-
tional approach with respect to the centralized method become more
evident as the plant becomes larger. Additionally, we plan to adapt the
proposed coalitional approach to distributed-parameter models of the
ACUREX field, which provide a higher level of detail of the field but
imply higher complexity in terms of computational load. Other research
directions might include the extension of the proposed method to
consider the maximization of thermal power by regulating the system’s
state towards different outlet temperature references.

3 https://solarpaces.nrel.gov/project/solana-generating-station
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