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Abstract: Solar absorption plants are renewable energy systems with a special advantage: the
cooling demand follows the solar energy source. The problem is that this plant presents solar
intermittency, phenomenological complexity, and nonlinearities. That results in a challenge for
control and energy management. In this context, this paper develops a Digital Twin of an
absorption chiller High Temperature Generator (HTG) seeking accuracy and low computational
effort for control and management purposes. A neuro-fuzzy technique is applied to describe
HTG, internal Lithium-Bromide temperature, and water outlet temperature. Two Adaptative
Neuro-Fuzzy Inference Systems (ANFIS) are trained considering real data of eight days of
operation. Then, the obtained model is validated considering two days of real data. The
validation shows a RMSE of 1.65¢~2 for the internal normalized temperature, and 2.05¢~2
for the outlet normalized temperature. Therefore, the obtained Digital Twin presents a good
performance capturing the dynamics of the HTG with adaptive capabilities considering that
each day can update the learning step.
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1. INTRODUCTION

Industrial development in the current era, immersed in
digitalisation in all fields, means that, in the design, im-
plementation, and start-up phase, replicas of the physical
entities that make up the systems can be designed. These
virtual replicas are now called Digital Twins (DT) and not
only model a reality, but also interact with it. Besides, the
growing technological development allows real-time data
storage to be the main point in the monitoring process
of physical entities and is used to a great extent for the
interconnection between physical and virtual entities. The
DT will compose intelligent manufacturing and Industry
4.0 as it stands out by the perfect integration between
physical and virtual spaces, and its fundamental basis
is modelling and simulation. The DT development of a
physical entity gives high support to analyse its behaviour
in different situations of operation, control, etc., without
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the need of doing it physically, avoiding experimental costs
once it is possible to do virtually.

The term DT appears for the first time in a seminal
paper by Grieves about Product Lifecycle Management
(PLM). In this work, the author details the premise where
each system consists of two systems, the physical system
and the virtual system that contains all information of
the physical system (Grieves (2016)). Several concepts
were proposed for DT by (Grieves (2016); Haag and
Anderl (2018); Boschert and Rosen (2016); Saracco (2019);
Glaessgen et al. (2012)). The works have in common that
the DT has three main parts: physical product, virtual
product, and the connected data that indissolubly link
and interconnect the physical and virtual products. Today,
the DT concept is popular with several applications in
industry and academy. The work published by Tao et al.
(2019) presents a comprehensive view of the concept,
types, development, and points the Prognostic and Health
Management (PHM) area as the main application field.
Moreover, (Rasheed et al. (2020)) presents methodologies
and techniques for DT development from the modelling
perspective.
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Obtaining DT maximum potential is possible because the
Internet of Things (IoT), communication protocols, hard-
ware advances like Graphical Processing Units (GPU),
cloud data storage and processing, and high-performance
computers. In addition, the creation of DT uses 3D and
2D virtual environment design and software tools focused
on engineering (Rasheed et al. (2020); Ke et al. (2019);
Havard et al. (2019)). In the industrial ambit, General
Electric develops its DT focused on predicting the health
and performance of its products throughout its life cycle,
while Siemens’ DT aims to improve the efficiency and
quality of manufacturing (Lund et al. (2016); Wang and
Canedo (2016)).

Besides, the human programming interface (HPI) devel-
oped by Siemens allows that a machine interacts with
humans interpreting their behaviours. Nowadays, the au-
tomation systems are not aware of the critical role of
humans in an automated system. Hence, the HPI can
be used to create a DT of the human, whose behaviour
is transformed into an autonomous system so that the
automated system could become more intelligent.

Several Artificial Intelligence (AI) techniques are used
to describe a system behaviour like Machine Learning
(ML), Deep Learning (DP) that is capable of learning
and modelling massive data sets, achieving success in
various applications such as dynamic systems modelling,
for example, artificial neural network (ANN) (Li et al.,
2020), Genetic Algorithm (GA) (Shirazi et al. (2017)),
Adaptive Neuro-Fuzzy Inference System (ANFIS) (Jang,
1993; Kharb et al., 2014; Yaici and Entchev, 2014).

Many works utilize AI techniques to model energy systems,
such as (Papacharalampopoulos and Stavropoulos (2019))
which relies on the concept of data direction that exists
between the physical entity and its DT to develop a
nonlinear model of a thermal laser process. The work of
(Elsheikh et al. (2019)) presents several methods based
on ANN to optimize and predict the performance of
different solar energy systems. A Neuro-Fuzzy estimator
is developed in (Escano et al. (2021)) to estimate the
non-observable states in a parabolic trough solar field. In
(Chicaiza et al. (2021)) a Neuro-Fuzzy model of a Fresnel
solar field is developed, focusing on a rule-based model.
In addition, neuro-fuzzy systems can use to manage and
predict energy consumption (Gaber et al. (2021); Gonzélez
Perea et al. (2021); Jallal et al. (2020)).

Several works investigate the steady-state modeling of an
absorption chiller for design and operation under steady-
state conditions, although the dynamical modeling is quite
limited ((Nielsen et al., 2015)). The available dynamic
models are complex and time-consuming and not suit-
able for control and optimization purposes (Lazrak et al.
(2016)). In the work of Lazrak et al. (2016), the authors
build a dynamic and fast model of an absorption chiller
using an ANN technique. The neural model validation
is satisfactory, presenting absolute relative errors of the
transferred energy within 0.1-6.6%. Another application of
ANN was carried out in an absorption plant by (Nasruddin
et al. (2018)). In the latter, the authors present a faster
and simpler model compared to a physical-based model if
input-output data is available. The lowest RMSE is 2.57.
Lastly, (Tamiru (2009)) presents a neuro-fuzzy model that

is capable of substituting the phenomenological model of
a Cogeneration Cooling Plant operating with steam.

This work uses ANFIS to model the High Temperature
Generator (HTG) for control and optimization purposes.
The objective is to obtain two Fuzzy Inference Systems
(FIS) capable of describing the dynamic behaviour of
an absorption chiller subsystem in all operation ranges.
The HTG subsystem is part of a solar absorption plant
installed on the roof of the building of the Faculty of
Engineering (ETSI) of the University of Seville, Spain.
The plant is composed by Fresnel solar collectors and
a two-stage absorption chiller. The solar collector uses
mirrors to concentrate sun irradiation onto a concentrator
composed of secondary mirrors and a receiver tube. Water
flows into this receiver tube absorbing solar radiation and
exiting at a higher temperature. The water carries thermal
energy to the absorption chiller, which operates on a
thermodynamic absorption cycle. This cycle is divided into
two sides: a hot side that uses the solar-heated water as
a high-temperature source and a cold side that chills a
water stream through different Lithium-Bromide solution
concentrations and evaporation/condensation heats. The
chilled water of the cold side is employed to supplement
the air conditioning system of ETSI. Finally, the cooled
water of the hot side leaves the HTG and is fed back to
the Fresnel solar collector in a hydraulic closed loop. For
more information, refer to (Bermejo et al. (2010)).

This work main idea is to mathematically represent the
absorption chiller performance considering solar intermit-
tency, thus, the on-off operation throughout the day and
night and off-design conditions. Besides, the HTG model
must have a satisfactory response considering the distur-
bances of irradiation and chilled water demand due to
clouds and users’ actions in time. In addition, the internal
processes of the absorption chiller have complex heat and
mass transfer effects, internal controllers, and Lithium-
Bromide stream recycles, resulting in a highly nonlinear
system that the model must represent. This work objec-
tive is to obtain a Neuro-Fuzzy model that describes the
dynamic behaviour of both the internal Lithium-Bromide
temperature (T5) and the outlet temperature (T16p) of the
HTG. The model considers various input variables that
affect the process. Measured historical data from the SCP
operation are used and compose the historical learning and
validation data sets.

The article is organized as follows. Section 3 deals with the
preparation of data for fuzzy inference systems. Section 2
presents literature contributions on neural and neuro-fuzzy
modelling of absorption chillers and justifies the techniques
used in this work. Section 4 discuss the design of Neuro-
Fuzzy Model of HT'G system. Section 5 shows evaluation
results, and lastly, the article ends with a conclusion
section.

2. ABSORPTION CHILLERS MODELLING

The subsystem referred to in this work is the High-
Temperature Generator (HTG) depicted on Figure 1. The
HTG is a chiller’s subprocess between the hot and cold
sides of the absorption chiller. The HTG is responsible
for receiving solar thermal power from the Fresnel so-
lar collector and exchanging the heat with the internal
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Fig. 1. ETSI absorption plant schematic.

Lithium-Bromide solution. Due to the HTG purpose, its
temperature is the most sensitive to the absorption cycle
coefficient of performance (COP), and Exergetic Efficiency
(Karimi et al. (2018)). Therefore, the HTG is a subprocess
directly coupled with both the Fresnel solar collector and
chilling process, so its dynamics affect the whole plant.
Due to the intermittent and variable nature of solar energy
systems, the dynamic modelling of the HTG is critical for
designing control systems with adequate safety, stability,
and performance indexes. Moreover, to production plan-
ning and maintenance.

Two subsystems of neuro-fuzzy modelling represent the
HTG. Subsystem 1 is related to the hot side of HTG
with respect to the water flow that comes and goes
to the Fresnel solar collector. Subsystem 2 is related
to the cold side inside the chiller that will be used to
evaporate/condensate the Lithium-Bromide solution to
generate the chilling effect.

The contributions are a fast, simpler, dynamic model in
comparison to phenomenological-based models, so a conve-
nient tool for control. Furthermore, the neuro-fuzzy model
can be considered a grey-box model (Lindskog (1997)), as
the rules that define the behaviour of the system can be
extracted from it. Leaving open the possibility of adding
further information and offering more possibilities of op-
timization techniques. In addition, the training procedure
can be directly linked to the real-time data, therefore the
model can be updated each night, resulting in a DT of the
HTG of the absorption plant.

3. PREPARATION OF OPERATIONAL DATA

The measured historical data from the SCP composes
the learning set (training and checking) employed in the
ANFIS learning process. In addition, a validation data set
is used to evaluate if the model’s learning is generalized.
Table 1 presents the used variables to design the model of
the DT.

The measured data were pretreated to prevent affecting
the learning process with inconsistencies. The process
consists of normalization to avoid the different nature
and magnitude of the variables, noise filtering, and outlier
interpolation, and not a number or blank filling.

Total data is composed by ten days of operation mea-
surements sampled every 20 seconds. The the first five
days data set starts at 05:02 am on 14" August and ends
at 05:22 am on 18" August. The second five days data

&b

Guadalquivir '
river

set is taken from 22! September at 5:02 am, until 26"

September at 05:19 am, totalling 37641 samples. The total
data is divided into 27737 samples for the learning process
and 6934 samples for validation. Each variable is listed on
Table 1.

‘ (70%) Training
(80%) Learning (30%) Checking

DATA{
(20%) Validation

4. HTG NEURO-FUZZY MODELLING

Fuzzy inference systems allow to obtain nonlinear models.
ANFIS systems make it possible to obtain a structure
based on rules, using the learning methods of ANNs. If
one of the inputs of the system corresponds to previously
sampled values of its output, we will have a type of
autoregressive neural network, which manages to learn the
dynamic behaviour of physical systems from the data.

Unlike simple neural networks, ANFIS systems allow the
addition of knowledge through the later inclusion of rules,
which makes them very flexible to reflect further changes
in the physical system in the DTs.

The models based on ANFIS are of type TS (Takagi and
Sugeno (1985)) composed of j type rules:
IF 1 is Fyj and x5 is Fyj and x; is Fjj ,
THEN : f;(x) = goj + 91521 + -+ + 9ijTi
where g;; € R are parameters, x; are the inputs, fj
the output respectively for each rule and Fj; represents

the fuzzy sets defined by Gaussian membership functions
(MF) of the type:

Table 1. Variables

Symbol Description Units
Ti6B Waste heat outlet temp sensor °C
Tiea Waste heat inlet temp sensor °C
Ts Exhaust temperature sensor °C
Toumb Local ambient temp °C
T3 Cooling water inlet temp sensor °C
Ty Cooling water outlet temp sensor °C
Ts HTG Lithium-Bromide internal temp °C
% Chilled /heating water flow. m3/h
Va Cooling water flow m3/h
V3 Gas flow m3/h
Ve Heat source water flow m3/h
Vi Hot water flow m3/h
Fi Evaporator inlet valve aperture %
Ps3 Pressure related to the absorber water flow Bar
INVg Cooling water pump inverter %
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where a;j, b;j, ¢;; is the set of parameters used to vary the
MFs. The value of the function up,; for a given x; is known
as the degree of membership of x; for the fuzzy set Fj;.

1+

The models that capture the dynamic behaviour of the
HTG are modelled employing ANFIS, using several cor-
related variables as inputs and Ts and Tigp as output.
Each ANFIS training is executed by firstly applying a
subtractive clustering method (Chiu (1994)) that initially
estimates the number of clusters to determine the num-
ber of rules and Membership Functions (MF). Then, the
parameters of each ANFIS layer are updated using a hy-
brid learning method that combines gradient descent to
optimize the antecedent parameters and least squares to
determine the consequent linear parameters. The param-
eters of ANFIS architecture are similar in both cases, but
for each input, they have a different number of rules which
are obtained once the learning process of each NF model
is finished as shown in Table 2.

Table 2. ANFIS parameters for HTG

Description ANFIS

MF type: Gaussian
Optimization method: hybrid

Output MF type: linear

FIS SUB1 SUB>
Number MFs: 2 3
Number rules: 2 3
Influence range 0.7 0.70
Epoch number: 250 250

The learning process of each ANFIS uses a few epoch
numbers, and the training and checking sets present small
errors, indicating that the learning was general. The error
indexes obtained in the learning process for each model
are shown in Table 3.

Table 3. RMSE index obtained of learning
process for each ANFIS

RMSE min of
Training & Checking

ANFIS obtained

FISSUBl FISSUB2

HTG HTG
RMSET,qin 2.46le=3  1.1774e~3
RMSEcheck 2.517¢3 1.880e~3

This paper develops two models based on ANFIS (see

Fig.2). The FIS}S;%%1 and FIS%%% describes the dynamics
of HTG and are shown on Fig.2(a) and Fig.2(b), respec-
tively. The FIS that describes the dynamic behaviour of
subsystem HTGgup_1 is modelled through an ANFIS, it
utilizes as inputs the variables mentioned in Table 1, with
exception of (T5) that is chosen as the model output and,
therefore, the variable that the neuro-fuzzy model must
learn.

In this way, it is obtained a first-order recursive FIS%%]Z},

that once trained, gives the estimation of Ty as output
based on the input data. Similarly, this paper obtains the
FIS that describes the dynamic of subsystem HTGguyg_2,
it uses as inputs [T5, T164, Va, Tams, T165], and as output

T ()
T ()
F (k)
(k)
B(k)

WY, (k) / Ty (k+1)
V0

e ( ¥
T.(k) \

0 /

)

%) SUB,

7 FIS;76

Vi(k)

L)

(a) Neuro-Fuzzy Model HTG-1 - Lithium-Bromide
internal temperature. The chosen input variables in
historical data have a correlation coefficient greater

than 0.5.
VY
lru‘)” / Tm”(k+1)
ey [~ AN
FIS}
pal” m—

(b) Neuro-Fuzzy Model HTG-2 - Outlet water tem-
perature. The chosen input variables in historical
data have a correlation coefficient greater than 0.7.

Fig. 2. Neuro-Fuzzy models obtained
the outlet temperature (Ti6p), resulting in a first-order
recursive HTGsyg_2.

5. VALIDATION OF THE NEURO-FUZZY MODELS

Four error indexes were used to compare the models: mean
error, standard deviation (Std), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE)
shown in Egs. 2 and 3.

Z?:l (z¢ — })?

RMSE = (2)
n
;L:l zt;a:t
MAPE = : (3)
n

This section simulates the FIS%L}EC‘;1 model and contrast
SUB;

its results with real data. Figure 3 shows that FIS} .~
model is capable to follow the internal Lithium-Bromide
measured temperature trend with an error of 4.9379¢~4 +
3.30e~2 as shown in Table 4, with an interval estimate of
95% considering a normal distribution of measurements.
Note that the temperature decrease between samples 1000
and 4000 is related to the night period. Thus, the model
can capture the dynamics of HTG in all temperature
ranges of HT'G operation.

Figure 4 shows that FISZL}% model is capable to follow
the measured outlet temperature trend with an error of
20e~* 4 4.08¢72 as shown in Table 4, with a interval
estimate of 95%. It is observed that the temperature
decrease between samples 1000 and 4000 is related to the
night, when the flow rate is zero. Thus, the model can
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Table 4. Error indexes obtained for Neuro-
Fuzzy Model.
SUB; SU Bz
Error FISHTG FISHTG
indexes model model
Mean 0.05¢—2 0.20e—2
Std +3.30e72  44.08¢2
RMSE 1.65e~2 2.05¢=2
MAPE 0.0407% 0.0272%
|
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Fig. 3. (a) FISIS;,%%1 model evaluation, model data vs real
data. (b) Zoom of model during operation
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Fig. 4. FIS}(’;%% model evaluation, model data vs real
data. (b) Zoom of model during operation

capture the dynamics of the HT G outlet temperature over
all HTG operating ranges.

To compare the results of both models (FIS‘?{%%I and
FIS%%%Q), a set of simulations results are shown in Table
4 where the RMSE and MAPE indexes are shown for the
different test days. It can be observed that models 1 and
2 present low errors: RMSE of 1.65¢~2 and 2.05¢~2, while
a MAPE of 0.0407% and 0.0272%, respectively.

6. CONCLUSION

In this work, ANFIS with feedback were applied to capture
the dynamics of the Lithium-Bromide internal tempera-
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ture and water outlet temperature in HTG. First-order
recurrent fuzzy inference systems are attained, specifically,
two models with a different number of rules. The ANFIS
was trained with real measured data of 8 days and vali-
dated on 2 days considering Root Mean Square Error and
Mean Absolute Percentage Error indexes. The range of
influence of clustering and the number of epoches were
varied, obtaining fast models with low error indexes for
each model. This model can be used to design control and
optimization strategies in future works.
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