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Abstract: In this paper, we analyze both the deterministic and stochastic versions of a team orienteer-
ing problem (TOP) in which rewards from customers are dynamic. The typical goal of the TOP is to
select a set of customers to visit in order to maximize the total reward gathered by a fixed fleet of
vehicles. To better reflect some real-life scenarios, we consider a version in which rewards associated
with each customer might depend upon the order in which the customer is visited within a route,
bonusing the first clients and penalizing the last ones. In addition, travel times are modeled as ran-
dom variables. Two mixed-integer programming models are proposed for the deterministic version,
which is then solved using a well-known commercial solver. Furthermore, a biased-randomized
iterated local search algorithm is employed to solve this deterministic version. Overall, the proposed
metaheuristic algorithm shows an outstanding performance when compared with the optimal or
near-optimal solutions provided by the commercial solver, both in terms of solution quality as well
as in computational times. Then, the metaheuristic algorithm is extended into a full simheuristic
in order to solve the stochastic version of the problem. A series of numerical experiments allows
us to show that the solutions provided by the simheuristic outperform the near-optimal solutions
obtained for the deterministic version of the problem when the latter are used in a scenario under
conditions of uncertainty. In addition, the solutions provided by our simheuristic algorithm for
the stochastic version of the problem offer a higher reliability level than the ones obtained with the
commercial solver.

Keywords: team orienteering problem; mathematical modeling; biased-randomized algorithms;
simheuristics

MSC: 68T20; 90-08; 90-10; 90Bxx; 90B06

1. Introduction

The TOP was initially proposed by Chao et al. [1]. In its basic version, a fixed fleet of
vehicles, initially located at an origin depot, have to select a series of customers to be visited
on their way towards a destination depot. Visiting a customer for the first time generates a
reward, and the goal is to maximize the total collected reward. Since there is a maximum
time or distance that each vehicle can cover, it is likely that not all potential customers can
be visited. Hence, the proper selection of the customers to be included in each vehicle’s
route, as well as the order in which they have to be visited, constitute a challenge for the
decision maker. The TOP is gaining momentum due to its applications to the coordination
of multiple unmanned aerial vehicles and self-driving electric vehicles, the batteries of
which have a limited driving range [2–4].
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In this paper, we consider a version of the TOP that combines both stochastic and
position-dependent components. In particular, stochastic travel times are considered
random variables, and reward values can change according to the position of the associated
customer in the route, i.e., a TOP with position-dependent rewards (TOP-PDR). This effect
can be found in many real-life applications, i.e., whenever the benefits gathered by visiting a
customer (e.g., a local retailer) early in the morning might be higher than the ones obtained
from the same customer if it is visited at the end of the day. Hence, for instance, Herrera
et al. [5] discuss a real-life application where pharmaceutical retailers are happy if they
are visited early in the morning and, inversely, where the distributor has to assume a
penalty cost whenever a customer is visited during the last hours of the day. To the best
of our knowledge, despite its relevance in practical applications, this enriched variant
of the stochastic and position-dependent TOP (STOP-PDR) has not yet been analyzed in
the literature. Hence, the main contributions of our work can be described as follows:
(i)the introduction of a variant of the classical TOP which considers both stochastic and
position-dependent elements; (ii) a mathematical model for the TOP-PDR, in which rewards
are deterministic in nature but are position-dependent as well; (iii) the use of both exact
and metaheuristic methods to solve the deterministic and position-dependent version
of the optimization problem; and (iv) after validating the quality of our metaheuristic
algorithm, we present its extension into a simheuristic [6] in order to solve the STOP-PDR.
As illustrated in Hatami et al. [7], simheuristics combine metaheuristic algorithms with
simulations to solve stochastic optimization problems.

The rest of the paper is structured as follows: Section 2 reviews some related work on
the stochastic TOP. Section 3 describes, in a formal way, the deterministic and stochastic
versions of the TOP considered in this manuscript, proposing a mathematical formulation
for each case. Section 4 proposes a biased-randomized iterated local search (BR-ILS)
algorithm [8,9] to solve the deterministic TOP-PDR. It also extends the proposed BR-ILS
algorithm into a simheuristic by incorporating Monte Carlo simulation (MCS). Section 5
starts by applying a truncated branch-and-cut (B&C) algorithm and several pre-processing
procedures to solve a set of instances of the TOP-PDR, and finishes by testing the BR-ILS,
comparing its results with those provided by the B&C algorithm. In Section 6 we analyze
the results gathered with the simheuristic algorithm for the STOP-PDR. Finally, in Section 7
we highlight the main conclusions of this paper and propose some open lines of research.

2. Related Work

The classical version of the TOP was initially proposed by Chao et al. [1] as a multi-
vehicle extension of the orienteering problem (OP) introduced by Golden et al. [10]. Both
problems are NP-hard. Although most studies focus on deterministic versions of the
TOP, either using exact methods [11] or approximate ones [12], stochastic and position-
dependent versions have received much less attention so far, mainly due to the additional
complexity involved. Some examples of exact methods employed to solve deterministic
TOPs are B&C methods [13] and branch-and-cut-and-price methods [11]. However, since
the number of TOP instances that can be solved by employing exact methods is typically
limited to a few hundred nodes, many metaheuristics approaches have been proposed
to solve larger instances. Among these approaches, we can note the tabu search and
variable neighborhood search algorithms [12], particle swarm optimization [13], simulated
annealing [14], and genetic algorithms [15].

Despite being more realistic than its deterministic counterpart, the stochastic TOP has
only been explored during recent years. Hence, Panadero et al. [2] considered a TOP with
stochastic travel times, and proposed a simheuristic algorithm, which combined a variable
neighbourhood search (VNS) metaheuristic with MCS to efficiently deal with the stochastic
TOP. In a similar way, Mei and Zhang [16] proposed a genetic programming hyper-heuristic
to solve a stochastic TOP with time windows, where service times at each node were
modeled as random variables. Furthermore, Song et al. [17] modeled a subscription delivery
problem as a stochastic TOP with time windows and consistency in the driver assigned
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to each customer. Likewise, stochastic approaches have been employed in relation to the
OP, which is a simplified version of the TOP that considers one single route [18]. In this
sense, Bian and Liu [19] analyzed the operational-level stochastic orienteering problem,
in which travel and service times were stochastic. The routing plan could be adjusted in real
time, so that the vehicle could increase the collected reward and the probability of on-time
arrival. Similarly, Dolinskaya et al. [20] dealt with an extension of the OP with stochastic
travel times. In their version, it was possible to increase the likelihood of collecting a
greater reward by adapting paths between reward nodes as travel times were revealed.
Other stochastic approaches to the OP include those studied in Thayer and Carpin [21]
and Thayer and Carpin [22]. In these cases, travel times between pairs of nodes were
continuous random variables and the reward functions for each state/action pair were
equivalent regardless of the node visiting time or order.

Regarding position-dependent versions of the TOP, Reyes-Rubiano et al. [23] proposed
a biased-randomized learnheuristic for solving the TOP with position-dependent rewards.
In their work, rewards associated with each node were given by unknown (black-box)
functions, the values of which were estimated based on existing observations and using
learning mechanisms. Bayliss et al. [3] discussed a TOP for modeling the coordination
of drones with aerial motion constraints. In this case, travel times were path-dependent,
and a learnheuristic approach was proposed to deal with the complexity associated with
the position-dependent components of the problem. Other time-dependent TOPs, also
including time windows, have been discussed in Gavalas et al. [24] and Yu et al. [25]. To the
best of our knowledge, however, no previous studies have considered both a position-
dependent and stochastic version of the TOP, like the one discussed in this paper.

3. Problem Details

In this section we first provide a formal description of the versions of the TOP being
considered here: deterministic and stochastic versions of the TOP with position-dependent
rewards. Then, we provide a mathematical model for both the deterministic and stochas-
tic variants.

3.1. Formal Description

In a TOP, a fleet M composed of |M| ≥ 2 vehicles is considered. There is a time
threshold, tmax > 0, for completing each route. The set of nodes that can be visited is
denoted by N = {1, 2, . . . , n} ∪ {o, d}, where o and d refer to the origin and destination
depots, respectively. Vehicles travel along the set of arcs A which connect all the nodes.
The TOP-PDR is therefore formulated using a directed graph G = (N, A). All vehicle tours
begin at node o and end at node d. Each non-depot node can be visited at most once and
by only one vehicle. In the TOP, a reward ui ≥ 0 is received when node i ∈ {1, 2, . . . , n}
is visited. In our position-dependent version, if node i is the first non-depot node in a
vehicle’s tour, then a bonus Bi is added to the reward ui obtained for visiting that node.
If node i is the last non-depot node in a vehicle’s tour, then a penalty Pi ≤ ui is subtracted
from the reward ui. In the STOP-PDR, traversing an arc (i, j) ∈ A implies a stochastic travel
time, Tij > 0. In this work, edge traversal times follow log-normal probability distributions.
That is, Tij ∼ lognormal

(
µij, σij

)
, ∀e = (i, j) ∈ A, where µij and σij are the parameters of the

lognormal distribution.
As illustrated in Figure 1, the final solution to the problem is a set of routes, where

each route is defined by an array of nodes starting from node o (the origin depot) and
arriving at node d (the end depot).
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Figure 1. An illustrative example of the stochastic and position-dependent TOP.

3.2. Mathematical Models

The deterministic version of the TOP-PDR assumes constant travel times Tij = tij as
well as deterministic bonuses Bi = bi and penalties Pi = pi, the latter being given as a
percentage of the original node reward ui. The problem thus becomes a deterministic TOP
with position-dependent rewards. The binary variable xm

ij takes the value 1 if the link (i, j)
is traversed by vehicle m; otherwise, it takes the value of 0. In order to eliminate subtours,
we consider continuous variables ym

i , which will help by ordering nodes at each tour m.
Considering that δ+(i) and δ−(i) are the sets of successors and predecessors of node i ∈ N,
respectively, this deterministic version of the problem can be formulated as follows:

maximize ∑
m∈M

∑
(i,j)∈A
j 6=d

xm
ij · uj + ∑

m∈M
∑

j∈δ+(o)
j 6=d

xm
oj · bj − ∑

m∈M
∑

j∈δ−(d)
j 6=o

xm
jd · pj (1)

subject to:

∑
j∈δ+(o)

xm
oj = 1 ∀m ∈ M, ∀j ∈ N \ {d} (2)

∑
j∈δ−(o)

xm
jo = 0 ∀m ∈ M, ∀j ∈ N (3)

∑
j∈δ−(d)

xm
jd = 1 ∀m ∈ M, ∀j ∈ N \ {o} (4)

∑
j∈δ+(d)

xm
dj = 0 ∀m ∈ M, ∀j ∈ N (5)

∑
i∈δ−(j)

xm
ij = ∑

k∈δ+(j)
xm

jk ∀m ∈ M, ∀j ∈ N \ {o, d} (6)

∑
m∈M

∑
i∈δ−(j)

xm
ij ≤ 1 ∀m ∈ M, ∀j ∈ N \ {o, d} (7)

∑
(i,j)∈A

xm
ij · tij ≤ tmax ∀m ∈ M (8)

ym
i − ym

j + |N| · xm
ij ≤ |N| − 1 ∀m ∈ M, ∀i, j ∈ N \ {o, d} (9)
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In this formulation, the objective function (1) maximizes the total collected reward.
This is composed of three terms: (i) the sum of the basic reward collected at the visited
nodes; (ii) the corresponding bonus collected at the first nodes in each route; and (iii) the
sum of the penalties associated with the last nodes in each route, which is subtracted
from the accumulated reward. Constraints (2) and (3) refer to the origin depot o, the first
indicating that all vehicles m ∈ M must depart from o, and the second ensuring that no
vehicle may arrive at the origin depot o. Analogously, Constraints (4) and (5) refer to
the end depot d, ensuring that all vehicles must end their route at node d, and that no
vehicle may depart from this node, respectively. Constraints (6) set the node balance at
each non-depot node, guaranteeing that the number of incoming arcs equals the number
of outgoing arcs. Constraints (7) allow at most one vehicle visit per node. Constraints (8)
establish the time threshold, tmax, on each route length. Constraints (9) are the subtour
elimination constraints (based on Miller et al. [26]), in which variables ym

i set a visiting
order for nodes on each route m. These constraints ensure that all nodes in a route are
connected by a path within the route.

For the STOP-PDR, the objective function would be the expected value of the sum of
the collected rewards, which needs to be maximized without exceeding the threshold value
defined for each route length. In a more formal way, it can be written as:

maximize E

 ∑
m∈M

∑
(i, j) ∈ A : j 6= d

xm
ij · uj + ∑

m∈M
∑

j
xm

oj · Bj − ∑
m∈M

∑
j

xm
jd · Pj

 (10)

Note that the collected rewards uj and the bonus and penalties are affected by the
order of visiting the nodes, which will definitively depend on the stochastic travel times.
The stochastic TOP-PDR constraints are similar to the ones previously defined for the
deterministic case, with the exception of Constraint (8), since travel times are now random
variables. Therefore, for the stochastic version, Constraints (2) to (7) and (9) must also be
fulfilled, whereas the Constraint set (8) is replaced by the Constraint set (11), which restricts
the probability of exceeding the time threshold tmax on each route length:

Pr

 ∑
(i,j)∈E

xm
ij · Tij > tmax

 ≤ α ∀m ∈ M, (11)

with α being as small as desired. This formulation follows the risk-sensitive approach of
Varakantham et al. [27].

4. A Biased-Randomized Iterated Local Search Simheuristic

In this section, we propose a biased-randomized algorithm to solve the determin-
istic and position-dependent version of the TOP-PDR. This algorithm is also combined
with MCS in order to transform it into a simheuristic, which is capable of solving the
stochastic and position-dependent version. Our methodology for the deterministic TOP-
PDR combines biased-randomized (BR) techniques with an iterated local search (ILS)
metaheuristic. Hence, it will be denoted as BR-ILS. As discussed in Rabe et al. [28] and
Reyes-Rubiano et al. [29], metaheuristic algorithms can be easily extended into simheuris-
tics. In addition, these frameworks can work with a reduced number of parameters, thus
avoiding time-consuming tuning processes while providing an excellent trade-off between
simplicity and performance—including computational times.

Algorithm 1 outlines the main components of our final simheuristic algorithm, which
is composed of three phases. In the first phase (line 1), a feasible initial solution is generated
using the constructive heuristic proposed in Panadero et al. [2]. This heuristic extends the
popular ‘savings’ concept for the vehicle routing problem, so it can take into account the
specific characteristics of the TOP, i.e., (i) there might be different nodes to represent the
origin and destination depots; (ii) it is not mandatory to service all customers; and (iii) the
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collected reward—and not just the savings in time or distance—must be also considered
during the construction of the routing plan.

Algorithm 1 BR-ILS Simheuristic (inputs, β, Kmax, T0, tstop)
1: initSol← genInitSol(inputs) % Deterministic heuristic
2: baseSol← initSol
3: bestSol← baseSol
4: fastSimulation(baseSol) % MCS
5: T← T0
6: while (time ≤ tstop) do % ILS stage
7: k← 1
8: while (k ≤ Kmax) do
9: shakedSol← shaking(baseSol, k, β) % BR heuristic

10: newSol ← localSearch1(shakedSol)
11: newSol ← localSearch2(newSol)
12: newSol ← localSearch3(newSol)
13: newSol ← ApplyBonusAndPenalties3(newSol, B, P)
14: if (detCost(newSol) > detCost(baseSol)) then
15: fastSimulation(newSol) % MCS
16: if (stochCost(newSol) > stochCost(baseSol)) then
17: baseSol← newSol
18: k← 1
19: if (stochCost(newSol) > stochCost(bestSol)) then
20: bestSol← newSol
21: insert(poolBestSol,bestSol)
22: end if
23: end if
24: else % SA-based acceptance criterion
25: temperature← calcTemperature(detCost(newSol), detCost(baseSol), T)
26: if (U (0,1) ≤ temperature) then
27: baseSol← newSol
28: k← Kmin
29: else
30: k← k + 1
31: end if
32: end if
33: T← λT
34: end while
35: end while
36: for (sol ∈ poolBestSol) do % Refinement stage - MCS
37: deepSimulation(sol)
38: if (stochCost(sol) < stochCost(bestSol)) then
39: bestSol← sol
40: end if
41: end for
42: return bestSol

Algorithm 2 describes the constructive heuristic employed. First, an initial dummy
solution (line 1) is generated. This dummy solution contains one route per customer. Thus,
for each customer a vehicle departs from the origin depot, visits the customer, and then
resumes its trip towards the destination depot. If any route in this dummy solution does
not satisfy the driving-range constraint, then the associated customer is discarded from the
problem. Next, the ‘enriched savings’ associated with each edge connecting two different
customers are computed (line 2), i.e., the benefits obtained by visiting both customers in the
same route instead of using two distinct routes. In order to compute these enriched savings
associated with an edge, both the travel time (or distance) required to traverse that edge,
as well as the aggregated reward generated by visiting both customers, must be considered.
Each edge will have two associated savings to consider, depending on the actual direction
in which the edge is traversed. Thus, each edge will generate two different arcs. When
all the savings have been computed, their associated arcs are then sorted in descending
order, i.e., from the highest saving to the lowest saving. At this point, an iterative process is
initiated (line 3). In each iteration, the arc at the top of the saving list is selected (line 4).
This arc connects two routes, which are merged into a new route if this new route does not
violate the driving-range constraint (line 9). This route-merging process is carried out until
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the savings list is empty. Finally, the list of routes is sorted according to the total reward
provided (line 15), selecting as many routes from this list as possible—taking into account
the restricted number of vehicles in the fleet– , thus generating the initial solution (initSol).
Finally, the initSol is copied into baseSol and bestSol.

Algorithm 2 Heuristic approach
1: sol← generateDummySolution(Inputs)
2: EnrichedSavingList← computeSortedSavingList(Inputs, α)
3: while (EnrichedSavingList is not empty) do %Starts route-merging process
4: arc← selectNextArc(EnrichedSavingList, β)
5: iRoute← getStartingRoute(arc)
6: jRoute← getClosingRoute(arc)
7: newRoute←mergeRoutes(iRoute, jRoute)
8: timeNewRoute← calcRouteTravelTime(newRoute)
9: isMergeValid← validateMergeDrivingConsts(timeNewRoute, drivingRange)

10: if (isMergeValid) then
11: sol← updateSolution(newRoute, iRoute, jRoute, sol)
12: end if
13: deleteEdgeFromSavingList(arc)
14: end while
15: sortRoutesByProfit(sol)
16: deleteRoutesByProfit(sol, maxVehicles)
17: return sol

During the second phase of our approach, a BR-ILS metaheuristic is applied in order
to improve this initSol by iteratively exploring the search space. Note that we integrate the
BR-ILS component with MCS techniques to assess the behavior of the obtained solutions in
stochastic scenarios. As shown in Algorithm 1, the process starts by applying a diversifica-
tion method (shaking) on the baseSol in order to obtain a new one (shakedSol, line 9). This
process is dependent on the value of k, which represents the degree of destruction to be
applied in the shaking phase. During this process, k adjacent routes are selected at random
from the base solution (baseSol), and their corresponding customers are unassigned. Next,
in order to complete this partial solution, we apply the constructive biased-randomized
version of the heuristic used in the previous step to generate the initSol. Biased-randomized
techniques induce non-uniform random behavior in the heuristic by employing skewed
probability distributions, thus transforming the deterministic heuristic into a probabilistic
algorithm without losing the logic behind the original heuristic. Hence, we avoid obtaining
the same solution in every iteration. In our case, this biased-randomization process is intro-
duced by employing a geometric probability distribution with a parameter β (0 < β < 1).
The value of this parameter was set after a quick trial-and-error process, in which we
observed good performance for the β value of 0.3. Note that the constructive heuristic
described here always generates a feasible solution. In effect, by initially assigning only
one customer to each vehicle, the dummy solution does not violate the maximum-time-
per-route constraint. Therefore, the constructive procedure only allows route-merging
processes insofar as they do not transform the incumbent solution into an unfeasible one.

Following the shaking procedure, the algorithm starts a local search process around
the shakedSol to find a local minimum within the defined neighborhood structure (lines
10–12). In this stage, three operators are performed in a sequential way. First, a traditional
intra-route 2-opt local search is executed. This operator is applied to each route until it
cannot be further improved, before moving to the next route. After that, a cache memory
mechanism that records the best-found-so-far routes is used to achieve a faster convergence.
This mechanism is implemented using a hash map data structure, which is constantly
updated whenever a better route is found by the algorithm. The second operator removes
a subset of nodes from each route. The number of nodes to delete is selected randomly
between 5 and 10 percent of the total number of nodes in the route. There are three different
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mechanisms to choose which nodes should be removed: (i) completely random; (ii) nodes
with the highest rewards; and (iii) nodes with the lowest rewards. The specific mechanism
used is selected randomly in each iteration of the algorithm. The last operator is a biased
insertion algorithm, similar to those proposed by [13], which tries to improve the routes
obtained by the previous operator. Iteratively for each route, the operator strives to insert
new nodes in the route. Therefore, starting with the first node of the route, the next
node is selected from the list of non-served nodes and inserted into the route (assuming
that the driving-range constraints are not violated). In order to select the node to insert,
the algorithm takes into account the ratio between the added duration and the additional
reward, as given in Equation (12). In this equation, it is assumed that a node i is being
inserted between nodes j and h in a route:

(tji + tih − tjh)/ui (12)

Once the local search process has been completed, a new solution (newSol) is returned,
and the bonuses (B) and penalties (P) are applied to the corresponding nodes of each
route as a percentage of the original node reward (line 13). So far, this newSol has been
deterministic. In order to deal with the stochastic nature of the problem, each time a
newSol improves the baseSol in terms of the deterministic reward (i.e, newSol qualifies as a
‘promising’ solution in a deterministic scenario), it is sent through a fast simulation process
to estimate its associated expected reward under uncertainty (line 15). Hence, a short
number of MCS runs is conducted on newSol to obtain rough estimates of its behavior
under stochastic conditions. Moreover, this simulation process provides feedback that can
be used by the metaheuristic to better guide the search. Indeed, the selection of the base
and best solutions is driven by the results of the simulation process. If the stochastic reward
of newSol is also able to improve the stochastic reward of baseSol, the latter is updated,
and the k parameter is reset to 1 (lines 17–18). In the same way, if the stochastic reward of
newSol improves the stochastic reward of (bestSol), the latter is updated (step 19) and added
to the pool of elite solutions (line 20). Through this stage, a reduced pool of ‘promising’
elite solutions is obtained. With the purpose of diversifying the search, the algorithm can
accept solutions that are worse than the current one (lines 25 to 33), following an acceptance
criterion based on a simulated annealing process with a decaying probability regulated
by a temperature parameter (T), which is updated at each iteration. Finally, whenever the
maximum computing time allowed (tstop) has not yet been reached, the previous steps are
repeated in order to generate as many new promising solutions as possible and to assess
their quality via simulation.

Finally, during the last phase of our approach, a refinement procedure using a larger
number of MCS runs is applied to the pool of elite solutions. This allows us to have a better
assessment of the solutions, hence obtaining a more accurate estimation of the expected
total reward. Since the number of generated solutions during the search can be large,
and the simulation process is time-consuming, we limit the number of MCS runs to be
executed. In our computational experiments, the number of runs to be executed during
phases 2 (exploratory) and 3 (intensive) have been set to 1000 and 50, 000, respectively.

5. Solving the Deterministic and Position-Dependent TOP-PDR

In order to validate the use of the BR-ILS algorithm in solving the deterministic TOP-
PDR, we first solve the formulation presented in Section 3.2 and then compare the results
with those obtained using our BR-ILS. To this end, we have used part of the widely used
TOP benchmark instances presented by Chao et al. [1]. This benchmark set includes a total
of 320 instances and is divided into seven different subsets. The instances will be referred
to as pi.m.k, where pi represents the identifier of the subset providing its coordinates,
m indicates the number of vehicles, and k stands for different values of the maximum
driving range in increasing order. As explained above, the deterministic TOP-PDR assumes
constant travel times, tij, as well as constant bonuses bi and penalties pi. Bonuses and
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penalties are given by a percentage of the original node reward, ui. In our computational
experiments, this percentage is set to 5% in both cases.

First, a B&C algorithm, implemented in the Gurobi commercial solver, was employed
to solve the model introduced in Section 3.2. The algorithm was stopped after one hour of
computation using an Intel i7 processor with 8GB of RAM. In order to reduce the size of
the problem, we incorporated a pre-processing phase and a valid inequality. As exposed in
El-Hajj et al. [30], one simple way of reducing the size of the problem is to deal only with
accessible customers and arcs. We tested two main types of pre-processing by disregarding
nodes and arcs, respectively, which could not be visited before the tmax time threshold.
We also made use of a valid inequality on the global duration of the routes, as used in
Bianchessi et al. [31]. The average results obtained for 59 out of the 60 benchmark instances
p3 are shown in Table 1. Note that p3.4.a was not considered since it was unfeasible when
the number of routes was forced to be exactly |M| (Constraints (2) and (4)). The first column
presents the variations of the formulation used, with F1 being the original formulation
presented in Section 3.2. The second column indicates the value of the objective function
(average reward), whereas the third column represents the computation time in seconds.
Finally, the last column represents the optimality gap. More specifically, the main variations
of the original formulation indicated in the first column are as follows:

• Node pre-processing (Prep_nodes): We only considered the nodes that could be visited
during the allowed time interval, that is, nodes i ∈ N were disregarded if toi + tid >
tmax

• Arc preprocessing (Prep_arcs): We only considered arcs (i, j) ∈ A that could be visited
during the allowed time interval. That is, variables xm

ij were disregarded for all m ∈ M
if toi + tij + tjd > tmax

• Valid inequality (VI) on the global duration of the routes, i.e.: ∑m∈M ∑(i,j)∈A xm
ij · tij ≤

|M| · tmax

Table 1. Results obtained for 59 out of 60 p3 instances.

Formulation Reward Run Time (s) Gap

F1 413.71 2111.44 10.69
F1 + Prep_nodes 415.97 1944.51 6.29
F1 + Prep_arcs 413.68 2166.42 10.87
F1 + VI 416.59 2127.94 10.71
F1 + Prep_nodes + Prep_arcs 416.14 1847.96 6.06
F1 + Prep_nodes + VI 415.24 1915.39 6.20
F1 + Prep_nodes + Prep_arcs + VI 417.43 1807.05 5.56

Observe that, with the exception of F1 + Prep_arcs, all variations outperformed the orig-
inal formulation F1 in terms of the objective function. Even though F1 + Prep_arcs yielded
worse results than F1, the combination of arc and node pre-processing outperformed the re-
sults obtained by F1 and F1 + Prep_nodes. As expected, the best results were obtained when
both node and arc pre-processing were applied together with the valid inequality. Hereafter,
we will use the term F2 to denote the formulation F1 + Prep_nodes + Prep_arcs + VI.

To test the performance of the BR-ILS algorithm, a comparison of the results obtained
by the truncated B&C (applied to F2) and BR-ILS approaches for the small TOP benchmark
instances p1, p2, and p3 was performed, with the results shown in Tables 2, 3 and 4,
respectively. The first column indicates the instance pi.m.k. Columns 2 and 3 indicate,
respectively, the objective function (profit) and the computation time (in seconds) achieved
by the BR-ILS. Columns 4 to 6 stand for the profit, the computation time (in seconds),
and the optimality gap achieved by the truncated B&C procedure. The last column presents
the relative percentage deviation (RPD) between the metaheuristic and the exact procedure.
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Table 2. Results given by the BR-ILS and the truncated B&C (F2) models for p1 instances.

BR-ILS Truncated B&C BR-ILS vs.
Trunc. B&C

Instance Profit Time (s) Profit Time (s) Gap (%) RPD

p1.2.b 15.00 0.86 NO SOL –
p1.2.c 20.25 0.75 20.25 0.02 0.00 0.00
p1.2.d 30.50 0.74 30.50 0.05 0.00 0.00
p1.2.e 45.50 0.87 45.50 2.28 0.00 0.00
p1.2.f 80.50 0.60 80.50 7.38 0.00 0.00
p1.2.g 90.50 0.63 90.50 312.00 0.00 0.00
p1.2.h 110.50 0.49 110.50 2156.23 0.00 0.00
p1.2.i 130.75 0.43 130.50 3600.16 22.41 0.19
p1.2.j 175.50 0.42 155.50 3600.07 8.36 12.86
p1.2.k 175.50 0.49 175.25 3600.10 11.41 0.14
p1.2.l 195.50 0.31 190.50 3600.15 10.63 2.62

p1.2.m 215.50 0.53 215.50 3600.06 1.04 0.00
p1.2.n 235.50 0.34 235.50 585.32 0.00 0.00
p1.2.o 240.50 0.74 240.50 3600.08 1.66 0.00
p1.2.p 250.25 0.45 250.25 2968.52 0.10 0.00
p1.2.q 265.50 0.39 265.50 704.36 0.09 0.00
p1.2.r 280.25 0.37 280.25 795.31 0.09 0.00
p1.3.c 15.00 0.86 15.00 0.00 0.00 0.00
p1.3.d 15.00 1.00 15.00 0.00 0.00 0.00
p1.3.e 30.25 0.70 30.25 0.00 0.00 0.00
p1.3.f 40.50 0.43 40.50 0.08 0.00 0.00
p1.3.g 50.75 0.68 50.75 1.16 0.00 0.00
p1.3.h 71.00 0.54 71.00 22.02 0.00 0.00
p1.3.i 105.50 0.42 105.50 395.80 0.00 0.00
p1.3.j 115.50 0.36 111.00 3600.07 14.64 4.05
p1.3.k 135.75 0.51 135.75 3600.16 18.78 0.00
p1.3.l 155.75 0.44 145.75 3600.34 25.04 6.86

p1.3.m 175.75 0.46 170.75 3600.14 25.18 2.93
p1.3.n 190.75 0.53 185.00 3600.24 20.54 3.11
p1.3.o 205.75 0.30 205.75 3600.09 11.42 0.00
p1.3.p 220.75 0.46 220.50 3600.08 11.56 0.11
p1.3.q 230.75 0.30 225.75 3600.12 14.17 2.21
p1.3.r 250.75 0.52 235.50 3600.17 15.29 6.48
p1.4.d 15.00 0.86 NO SOL –
p1.4.e 15.00 1.00 NO SOL –
p1.4.f 25.25 0.74 25.25 0.01 0.00 0.00
p1.4.g 35.25 0.98 35.25 0.02 0.00 0.00
p1.4.h 45.50 0.48 45.50 0.01 0.00 0.00
p1.4.i 60.25 0.58 60.25 2.07 0.00 0.00
p1.4.j 75.75 0.39 75.75 23.76 0.00 0.00
p1.4.k 100.75 0.43 101.00 32.82 0.00 −0.25
p1.4.l 121.00 0.60 121.00 1756.80 0.00 0.00

p1.4.m 131.25 0.40 130.75 3600.16 34.80 0.38
p1.4.n 155.75 0.33 155.75 3600.12 22.31 0.00
p1.4.o 166.00 0.42 161.00 3600.17 25.00 3.11
p1.4.p 176.00 0.30 176.00 3600.13 18.61 0.00
p1.4.q 191.00 0.52 190.00 3600.08 18.55 0.53
p1.4.r 210.75 0.39 205.50 3600.08 21.53 2.55
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Table 3. Results given by the BR-ILS and the truncated B&C (F2) models for p2 instances.

BR-ILS Truncated B&C BR-ILS vs.
Trunc. B&C

Instance Profit Time (s) Profit Time (s) Gap (%) RPD

p2.2.a 89.75 0.65 89.75 0.19 0.00 0.00
p2.2.b 121.00 0.61 121.00 0.09 0.00 0.00
p2.2.c 140.00 0.70 140.00 0.63 0.00 0.00
p2.2.d 160.25 0.45 160.25 2.14 0.00 0.00
p2.2.e 189.50 0.46 189.50 2.55 0.00 0.00
p2.2.f 200.75 0.73 201.25 0.25 0.00 −0.25
p2.2.g 201.25 0.80 201.25 0.22 0.00 0.00
p2.2.h 230.75 0.69 231.25 0.23 0.00 −0.22
p2.2.i 231.75 0.73 231.75 0.08 0.00 0.00
p2.2.j 259.75 0.50 259.75 3.92 0.00 0.00
p2.2.k 274.75 0.54 274.75 70.42 0.00 0.00
p2.3.a 70.25 0.17 70.25 0.02 0.00 0.00
p2.3.b 70.50 0.14 71.00 0.00 0.00 −0.70
p2.3.c 105.25 0.48 105.75 0.08 0.00 −0.47
p2.3.d 106.25 0.64 106.50 0.02 0.00 −0.23
p2.3.e 121.00 0.57 121.50 0.02 0.00 −0.41
p2.3.f 121.50 0.86 121.50 0.02 0.00 0.00
p2.3.g 145.00 0.26 145.00 1.70 0.00 0.00
p2.3.h 165.25 0.46 165.50 7.64 0.00 −0.15
p2.3.i 200.75 0.21 201.00 4.99 0.00 −0.12
p2.3.j 201.50 0.42 201.75 0.36 0.00 −0.12
p2.3.k 201.75 0.90 201.75 0.09 0.00 0.00
p2.4.b 70.25 0.50 70.25 0.09 0.00 0.00
p2.4.c 70.50 0.98 71.00 0.00 0.00 −0.70
p2.4.d 70.50 0.99 71.00 0.00 0.00 −0.70
p2.4.e 70.25 1.00 71.00 0.02 0.00 −1.06
p2.4.f 105.75 0.27 106.25 0.02 0.00 −0.47
p2.4.g 105.75 0.82 106.50 0.03 0.00 −0.70
p2.4.h 120.75 0.67 121.50 0.02 0.00 −0.62
p2.4.i 121.50 0.99 121.50 0.02 0.00 0.00
p2.4.j 121.00 0.96 121.50 0.02 0.00 −0.41
p2.4.k 180.75 0.35 180.75 3.53 0.00 0.00

Note that, for some of the smallest instances (p1, p2, and p3) which also had small
values of tmax, the truncated B&C procedure outperformed the BR-ILS in terms of the
collected profit. However, for larger values of tmax, the BR-ILS found the optimal solution
in much shorter computation times, and even improved upon the objective function of
the truncated B&C method whenever the latter did not yield optimal solutions. When
considering all 139 instances, the truncated B&C procedure yielded 81 optimal solutions,
whereas the BR-ILS obtained more than 75% of them. Moreover, with BR-ILS, we obtained
37 solutions that improved upon those provided by the truncated B&C procedure.
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Table 4. Results given by the BR-ILS and the truncated B&C (F2) models for p3 instances.

BR-ILS Truncated B&C BR-ILS vs.
Trunc. B&C

Instance Profit Time (s) Profit Time (s) Gap (%) RPD

p.3.2.a 92.00 0.08 92.00 0.00 0.00 0.00
p.3.2.b 153.00 8.54 153.00 1.00 0.00 0.00
p.3.2.c 183.00 0.30 183.00 3.55 0.00 0.00
p.3.2.d 220.50 0.00 220.50 4.69 0.00 0.00
p.3.2.e 261.50 0.59 261.50 89.01 0.00 0.00
p.3.2.f 302.00 2.35 302.00 468.06 0.00 0.00
p.3.2.g 362.00 1.34 362.00 921.69 0.00 0.00
p.3.2.h 409.50 5.66 409.50 791.50 0.00 0.00
p.3.2.i 462.00 21.27 462.00 1008.81 0.00 0.00
p.3.2.j 512.00 5.98 510.00 3600.09 6.37 0.39
p.3.2.k 552.00 4.08 552.00 3600.10 4.62 0.00
p.3.2.l 590.00 1.14 590.00 3600.05 0.68 0.00

p.3.2.m 622.00 44.75 622.00 3600.06 1.69 0.00
p.3.2.n 662.00 45.15 662.00 3600.08 0.76 0.00
p.3.2.o 690.00 0.83 690.00 3600.08 1.45 0.00
p.3.2.p 720.00 36.71 712.00 3600.19 3.44 1.12
p.3.2.q 760.00 1.21 760.00 853.51 0.07 0.00
p.3.2.r 790.00 4.70 790.00 416.14 0.06 0.00
p.3.2.s 802.00 0.09 802.00 73.83 0.06 0.00
p.3.2.t 803.00 42.22 804.00 17.68 0.00 −0.12
p.3.3.a 30.00 0.00 30.00 0.00 0.00 0.00
p.3.3.b 92.00 0.00 92.00 0.02 0.00 0.00
p.3.3.c 123.00 0.00 123.00 0.06 0.00 0.00
p.3.3.d 173.50 0.90 173.50 1.92 0.00 0.00
p.3.3.e 203.00 0.00 203.00 5.80 0.00 0.00
p.3.3.f 233.00 57.57 233.50 71.30 0.00 −0.21
p.3.3.g 271.00 0.06 271.00 63.15 0.00 0.00
p.3.3.h 304.50 32.73 304.50 489.77 0.00 0.00
p.3.3.i 334.00 36.19 334.50 3600.06 11.51 −0.15
p.3.3.j 383.00 6.05 381.50 3600.12 6.42 0.39
p.3.3.k 443.50 53.98 432.50 3600.22 19.08 2.54
p.3.3.l 482.00 24.76 473.00 3600.19 15.43 1.90

p.3.3.m 522.00 46.08 473.00 3600.08 33.93 10.36
p.3.3.n 572.00 54.34 550.00 3600.08 18.64 4.00
p.3.3.o 592.00 46.84 549.00 3600.14 24.68 7.83
p.3.3.p 643.00 1.52 634.00 3600.07 7.33 1.42
p.3.3.q 681.50 0.91 681.50 3600.15 4.55 0.00
p.3.3.r 712.50 7.43 712.50 2546.67 0.07 0.00
p.3.3.s 722.00 20.91 714.50 3600.17 7.91 1.05
p.3.3.t 762.00 17.72 742.50 3600.13 8.08 2.63
p.3.4.b 30.00 0.00 30.00 0.00 0.00 0.00
p.3.4.c 92.00 0.00 92.00 0.02 0.00 0.00
p.3.4.d 102.00 0.00 102.00 0.01 0.00 0.00
p.3.4.e 143.50 0.00 143.50 0.34 0.00 0.00
p.3.4.f 193.50 0.60 193.50 4.95 0.00 0.00
p.3.4.g 223.00 0.00 223.00 4.80 0.00 0.00
p.3.4.h 244.00 17.88 244.00 100.79 0.00 0.00
p.3.4.i 272.00 10.30 272.00 222.81 0.00 0.00
p.3.4.j 311.00 0.09 311.00 406.17 0.00 0.00
p.3.4.k 352.50 0.10 352.50 844.74 0.00 0.00
p.3.4.l 384.50 57.75 384.50 3600.12 13.13 0.00

p.3.4.m 393.00 33.48 391.50 3600.37 25.03 0.38
p.3.4.n 444.00 12.06 432.50 3600.21 24.51 2.66
p.3.4.o 500.50 9.77 485.50 3600.09 21.94 3.09
p.3.4.p 561.00 1.00 511.50 3600.08 23.66 9.68
p.3.4.q 564.50 3.98 565.50 3600.07 12.20 −0.18
p.3.4.r 603.00 4.81 575.50 3600.19 17.20 4.78
p.3.4.s 669.00 18.16 595.00 3600.05 13.53 12.44
p.3.4.t 674.00 14.20 675.00 3600.04 0.15 −0.15
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Table 5 presents the average results for the three set of instances (first column) consid-
ering the original formulation (F1, Columns 2 to 4), the formulation with pre-processed
nodes and arcs plus valid inequalities (F2, Columns 4 to 6), and the results provided by our
BR-ILS algorithm (Columns 7 and 8). In order to make the methods comparable, we have
disregarded the three instances (p.1.2b, p.1.4.d, and p.1.4.e) in which the truncated B&C did
not find feasible solutions. Note that, in general, F2 outperformed F1. For instance, for
sets p1 and p3, F2 yielded larger total collected profits, as well as smaller gaps, employing
shorter computational times than F1. For the set of instances p2, both F1 and F2 yielded
the optimal solutions (gap 0.00). However, F2 achieved them in approximately one sixth of
the computational time required by F1. Regarding the comparison of the truncated B&C
for F2 and BR-ILS, the latter yielded better profit results for instances p1 and p3, whereas it
provided similar results for p2 instances (145.17 with BR-ILS, compared to 145.41 with the
truncated B&C). This is due to the fact that p2 instances were all solved to optimality with
the truncated B&C and, therefore, the metaheuristic could only yield equal or worse results.
In any case, for the set of instances p2, the difference in the objective function (profit) was
less than 0.17%, and BR-ILS required less than one tenth of the computation time employed
by the truncated B&C. For p1 and p3 instances, BR-ILS achieved slightly better collected
profits in much shorter computational times. The last row of Table 5 presents the average
results obtained over the three sets of instances. In summary, F2 outperformed F1 in terms
of profit, computational time, and gaps, whereas BR-ILS outperformed F2, yielding slightly
better profits in much shorter computational times (5.01 s versus 1236.72 s). All in all,
the average optimality gap for F2 over a total of 139 instances was small (4.47%), and the
results provided by BR-ILS were quite similar or even better in some non-optimal instances,
despite employing much shorter computational times. Hence, we can conclude that BR-ILS
is an efficient metaheuristic for the deterministic TOP-PDR.

Table 5. Average results obtained for p1, p2, and p3 instances.

F1 (Truncated B&C) F2 (Truncated B&C) BR-ILS

Instance Profit Time (s) Gap (%) Profit Time (s) Gap (%) Profit Time (s)

p1 132.33 2133.88 12.83 132.53 1897.08 7.85 134.37 0.52
p2 145.41 38.33 0.00 145.41 6.02 0.00 145.17 0.61
p3 413.71 2111.44 10.69 417.43 1807.05 5.56 423.47 13.89

Avg: 230.48 1427.89 7.84 231.79 1236.72 4.47 234.34 5.01

6. Solving the Stochastic and Position-Dependent TOP-PDR with Our Simheuristic

Since there are no benchmark instances in the literature for the stochastic version
of this problem, we extended the previously used instancesfor the deterministic version.
To extend the aforementioned instances, we assumed that the travel times followed a
lognormal probability distribution. This probability distribution allowed us to model
stochastic travel times, since these are always non-negative values. In the real-world,
historical observations can be used to determine the specific parameters of the associated
probability distribution. The lognormal distribution has two parameters: the location
parameter, µ, and the scale parameter, σ, which are related to the expected value E[Tij] = tij
and the variance Var[Tij]. In our experiments, the variance of the travel time associated with
a pair of nodes was set as follows: Var[Tij] = c · tij, where c ≥ 0 represents an experimental
parameter that can be employed to analyze scenarios with different degrees of variability.
In our case, we considered three different levels of uncertainty: low (c = 0.05), medium
(c = 0.15), and high (c = 0.25).
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For the scenario with a high level of uncertainty, Tables 6–12 display the obtained
results. The first column of these tables identifies the instance, whereas the next two
columns report our best deterministic solutions (OBD) and the required computational
times (in seconds). The OBS-D column shows the expected rewards obtained when the
OBD was evaluated under stochastic conditions, with the corresponding level of uncer-
tainty. To compute this column, we executed the algorithm disabling the simulation part
(fast simulation process), and we applied the ‘intensive’ simulation process to the best
deterministic solution. Subsequently, the next column shows the reliability associated with
the OBD solution (i.e., the percentage of routes that were completed without violating the
driving-range constraint in the stochastic environment). We considered that whenever a
route incurred a failure (i.e., exceeded the maximum time threshold), the reward gathered
in that route was lost (i.e., it amounted to zero).Similarly, the next three columns of the
table show the expected reward obtained using the solution provided by our simheuristic
approach (OBS-S), its associated reliability, and the associated computational time, respec-
tively. Finally, the last two columns report the corresponding RPDs between OBD, and the
stochastic solutions, i.e, OBS-D and OBS-S, respectively.

The obtained results showed that the OBS-S solutions provided by our simheuristic
approach clearly outperformed the solutions for the deterministic version of the problem
when these were tested in a scenario of uncertainty (OBS-D). On average, an improve-
ment close to 13% was observed for OBS-S with respect to OBS-D. In order to assess our
simheuristic in different stochastic scenarios, Figure 2 summarizes the average RPD of
OBS-S with respect to the OBS-D obtained using different variance levels. Note that, for all
sets, the OBS-S box-plot is always closer to the OBS-D value than the OBS-D box-plot. In the
case of set p7, which contained the larger and more challenging instances, our simheuristic
approach providing an average RPD close to 7.6%, which can be contrasted with the 25.2%
reported for OBS-D. This confirms that the deterministic solutions performed optimally
only when all the elements of the problem were deterministic, but they could easily become
sub-optimal when used in scenarios under uncertainty.

Regarding reliability values, Figure 3 illustrates a comparison between OBS-D and
OBS-S. In general, it can be observed that the solutions provided by our simheuristic
outperformed the ones generated by the deterministic version in all the stochastic scenarios.
This was due to route failures, which occurred during the execution stage and penalized
the entire route. Note that, although the level of reliability decreased as the level of variance
increased, OBS-S still provided a good level of reliability in scenarios with a high level of
variability. On average, OBS-S offered a reliability of 62.3%, whereas the one provided by
OBS-D was only approximately 33.1%. This justifies the processof integrating simulation
methods during the searching process when dealing with stochastic optimization problems.
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Figure 2. Comparison between OBD solutions with respect to stochastic solutions.
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Table 6. Results for p1 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAP (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p1.2.d 30.50 0.74 24.36 0.62 24.49 0.63 32.62 20.13% 19.70%
p1.2.e 45.50 0.87 34.89 0.68 38.48 0.74 6.25 23.32% 15.43%
p1.2.f 80.50 0.60 54.45 0.44 59.07 0.63 5.06 32.36% 26.62%
p1.2.g 90.50 0.63 63.37 0.45 75.17 0.79 4.12 29.98% 16.94%
p1.2.h 110.50 0.49 67.04 0.37 85.41 0.66 8.06 39.33% 22.71%
p1.2.i 130.75 0.43 80.66 0.37 102.96 0.64 15.21 38.31% 21.25%
p1.2.j 175.50 0.42 93.62 0.37 101.28 0.52 6.51 46.66% 42.29%
p1.2.k 175.50 0.49 101.85 0.33 126.94 0.58 2.08 41.97% 27.67%
p1.2.l 195.50 0.31 108.99 0.32 152.07 0.73 43.77 44.25% 22.21%

p1.2.m 215.50 0.53 134.75 0.39 168.30 0.71 6.17 37.47% 21.90%
p1.2.n 235.50 0.34 126.74 0.29 163.58 0.55 13.24 46.18% 30.54%
p1.2.o 240.50 0.74 174.58 0.54 203.06 0.80 8.77 27.41% 15.57%
p1.2.p 250.25 0.45 142.45 0.33 207.87 0.79 1.44 43.08% 16.94%
p1.2.q 265.50 0.39 152.35 0.33 216.24 0.74 10.35 42.62% 18.55%
p1.2.r 280.25 0.37 151.33 0.29 232.44 0.79 17.79 46.00% 17.06%
p1.3.c 15.00 0.86 12.35 0.62 12.38 0.62 1.64 17.67% 17.47%
p1.3.d 15.00 1.00 14.91 0.99 14.94 0.99 1.82 0.60% 0.40%
p1.3.e 30.25 0.70 23.79 0.53 24.75 0.52 2.46 21.36% 18.18%
p1.3.f 40.50 0.43 30.06 0.35 30.35 0.37 1.72 25.78% 25.06%
p1.3.g 50.75 0.68 39.51 0.46 40.31 0.51 0.72 22.15% 20.57%
p1.3.h 71.00 0.54 50.55 0.35 56.71 0.51 0.62 28.80% 20.13%
p1.3.i 105.50 0.42 74.79 0.32 84.27 0.60 34.72 29.11% 20.12%
p1.3.j 115.50 0.36 71.85 0.25 97.93 0.77 0.92 37.79% 15.21%
p1.3.k 135.75 0.51 89.41 0.29 100.18 0.53 47.47 34.14% 26.20%
p1.3.l 155.75 0.44 100.10 0.27 121.68 0.66 0.82 35.73% 21.87%

p1.3.m 175.75 0.46 116.41 0.29 140.00 0.61 45.36 33.76% 20.34%
p1.3.n 190.75 0.53 140.40 0.39 147.47 0.66 16.32 26.40% 22.69%
p1.3.o 205.75 0.30 122.13 0.22 159.45 0.62 0.59 40.64% 22.50%
p1.3.p 220.75 0.46 143.05 0.28 164.19 0.51 21.95 35.20% 25.62%
p1.3.q 230.75 0.30 168.81 0.35 200.58 0.77 35.78 26.84% 13.07%
p1.3.r 250.75 0.52 159.66 0.26 193.68 0.59 0.61 36.33% 22.76%
p1.4.d 15.00 0.86 10.48 0.63 12.33 0.61 3.83 30.13% 17.80%
p1.4.e 15.00 1.00 13.79 0.97 14.78 0.97 4.30 8.07% 1.47%
p1.4.f 25.25 0.74 18.28 0.43 19.12 0.43 6.83 27.60% 24.28%
p1.4.g 35.25 0.98 31.69 0.60 32.72 0.68 6.81 10.10% 7.18%
p1.4.h 45.50 0.48 34.80 0.33 38.43 0.44 7.03 23.52% 15.54%
p1.4.i 60.25 0.58 44.02 0.27 46.98 0.38 1.12 26.94% 22.02%
p1.4.j 75.75 0.39 55.30 0.25 56.95 0.39 8.46 27.00% 24.82%
p1.4.k 100.75 0.43 72.35 0.26 77.67 0.50 25.42 28.19% 22.91%
p1.4.l 121.00 0.60 93.24 0.37 99.26 0.46 3.29 22.94% 17.97%

p1.4.m 131.25 0.40 92.22 0.24 111.49 0.57 2.03 29.74% 15.06%
p1.4.n 155.75 0.33 111.07 0.23 126.51 0.60 38.58 28.69% 18.77%
p1.4.o 166.00 0.42 110.47 0.21 124.00 0.52 2.26 33.45% 25.30%
p1.4.p 176.00 0.30 114.49 0.18 134.82 0.44 4.23 34.95% 23.40%
p1.4.q 191.00 0.52 139.55 0.30 151.82 0.52 0.84 26.94% 20.51%

Average: 129.90 0.54 84.69 0.39 102.07 0.61 11.33 30.44% 20.10%
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Table 7. Results for p2 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p2.2.a 89.75 0.65 62.46 0.49 66.06 0.54 2.43 30.41% 26.40%
p2.2.b 121.00 0.61 79.33 0.45 103.58 0.70 2.35 34.44% 14.40%
p2.2.c 140.00 0.70 103.03 0.52 106.12 0.58 6.50 26.41% 24.20%
p2.2.d 160.25 0.45 96.29 0.37 115.83 0.52 3.19 39.91% 27.72%
p2.2.e 189.50 0.46 114.50 0.36 137.07 0.56 5.53 39.58% 27.67%
p2.2.f 200.75 0.73 150.61 0.57 173.22 0.75 2.90 24.98% 13.71%
p2.2.g 201.25 0.80 124.86 0.36 193.20 0.93 3.04 37.96% 4.00%
p2.2.h 230.75 0.69 156.18 0.46 186.14 0.62 20.33 32.32% 19.33%
p2.2.i 231.75 0.73 165.50 0.55 215.46 0.87 12.14 28.59% 7.03%
p2.2.j 259.75 0.50 164.26 0.40 207.77 0.63 1.06 36.76% 20.01%
p2.2.k 274.75 0.54 178.69 0.41 246.10 0.91 1.46 34.96% 10.43%
p2.3.a 70.25 0.17 50.97 0.34 52.60 0.39 40.73 27.44% 25.12%
p2.3.b 70.50 0.14 58.73 0.84 68.86 0.95 6.62 16.70% 2.33%
p2.3.c 105.25 0.48 72.57 0.37 86.32 0.48 27.43 31.05% 17.99%
p2.3.d 106.25 0.64 84.05 0.49 98.37 0.78 3.10 20.89% 7.42%
p2.3.e 121.00 0.57 96.74 0.54 104.05 0.69 6.15 20.05% 14.01%
p2.3.f 121.50 0.86 98.98 0.53 117.59 0.93 7.14 18.53% 3.22%
p2.3.g 145.00 0.26 91.02 0.22 128.53 0.66 39.04 37.23% 11.36%
p2.3.h 165.25 0.46 110.44 0.30 132.07 0.62 10.20 33.17% 20.08%
p2.3.i 200.75 0.21 117.31 0.20 147.77 0.33 0.23 41.56% 26.39%
p2.3.j 201.50 0.42 149.95 0.44 164.23 0.55 16.44 25.58% 18.50%
p2.3.k 201.75 0.90 170.24 0.71 190.68 0.87 1.07 15.62% 5.49%
p2.4.b 70.25 0.50 51.19 0.35 58.82 0.49 6.06 27.13% 16.27%
p2.4.c 70.50 0.98 56.95 0.59 63.99 0.70 4.07 19.22% 9.23%
p2.4.d 70.50 0.99 57.53 0.79 58.58 0.89 1.84 18.40% 16.91%
p2.4.e 70.25 1.00 59.19 0.94 62.01 0.95 1.92 15.74% 11.73%
p2.4.f 105.75 0.27 65.10 0.21 89.96 0.43 1.37 38.44% 14.93%
p2.4.g 105.75 0.82 87.94 0.50 98.37 0.69 48.84 16.84% 6.98%
p2.4.h 120.75 0.67 101.87 0.49 108.26 0.59 22.47 15.64% 10.34%
p2.4.i 121.50 0.99 95.55 0.54 116.14 0.87 3.04 21.36% 4.41%
p2.4.j 121.00 0.96 102.68 0.82 108.59 0.95 4.73 15.14% 10.26%
p2.4.k 180.75 0.35 118.53 0.19 128.94 0.37 8.64 34.42% 28.66%

Average: 145.17 0.61 102.91 0.48 122.98 0.68 10.06 27.39% 14.89%

OBD-D OBD-S
 

0

20

40

60

80

100

R
el

ia
bi

lit
y 

(%
)

45.6

83.5

36.5

70.2

33.1

62.3

C
0.05
0.15
0.25

Figure 3. Comparison between the reliability of the stochastic solutions.
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Table 8. Results for p3 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p.3.2.a 92.00 0.08 62.65 0.51 79.52 0.84 1.03 31.90% 13.57%
p.3.2.b 153.00 8.54 116.73 0.60 120.62 0.64 16.20 23.71% 21.16%
p.3.2.c 183.00 0.30 149.95 0.66 168.25 0.88 4.07 18.06% 8.06%
p.3.2.d 220.50 0.00 149.85 0.51 180.27 0.71 6.87 32.04% 18.24%
p.3.2.e 261.50 0.59 139.39 0.29 232.64 0.84 0.95 46.70% 11.04%
p.3.2.f 302.00 2.35 167.25 0.31 260.24 0.81 13.02 44.62% 13.83%
p.3.2.g 362.00 1.34 197.52 0.31 290.96 0.74 1.53 45.44% 19.62%
p.3.2.h 409.50 5.66 229.92 0.32 340.51 0.78 5.94 43.85% 16.85%
p.3.2.i 462.00 21.27 254.98 0.32 375.65 0.78 28.23 44.81% 18.69%
p.3.2.j 512.00 5.98 287.59 0.32 397.44 0.73 22.71 43.83% 22.38%
p.3.2.k 552.00 4.08 345.30 0.40 420.76 0.60 12.10 37.45% 23.78%
p.3.2.l 590.00 1.14 339.56 0.35 495.65 0.83 11.16 42.45% 15.99%

p.3.2.m 622.00 44.75 328.00 0.28 547.35 0.86 45.02 47.27% 12.00%
p.3.2.n 662.00 45.15 322.40 0.22 593.91 0.85 49.24 51.30% 10.29%
p.3.2.o 690.00 0.83 408.48 0.37 618.66 0.90 4.77 40.80% 10.34%
p.3.2.p 720.00 36.71 497.16 0.44 637.88 0.89 37.14 30.95% 11.41%
p.3.2.q 760.00 1.21 460.92 0.36 669.49 0.74 53.19 39.35% 11.91%
p.3.2.r 790.00 4.70 499.22 0.38 672.19 0.91 57.01 36.81% 14.91%
p.3.2.s 802.00 0.09 606.35 0.58 680.50 0.73 1.55 24.40% 15.15%
p.3.2.t 803.00 42.22 531.25 0.42 715.70 0.83 45.24 33.84% 10.87%
p.3.3.a 30.00 0.00 20.37 0.68 25.05 0.75 0.94 32.10% 16.50%
p.3.3.b 92.00 0.00 83.70 0.78 85.35 0.78 0.41 9.02% 7.23%
p.3.3.c 123.00 0.00 99.34 0.53 102.86 0.57 0.70 19.24% 16.37%
p.3.3.d 173.50 0.90 136.08 0.52 138.40 0.52 28.77 21.57% 20.23%
p.3.3.e 203.00 0.00 156.37 0.52 172.18 0.76 0.23 22.97% 15.18%
p.3.3.f 233.00 57.57 153.31 0.28 200.09 0.58 66.78 34.20% 14.12%
p.3.3.g 271.00 0.06 184.21 0.36 215.55 0.66 0.67 32.03% 20.46%
p.3.3.h 304.50 32.73 234.68 0.36 259.55 0.54 45.69 22.93% 14.76%
p.3.3.i 334.00 36.19 265.44 0.51 301.88 0.81 61.84 20.53% 9.62%
p.3.3.j 383.00 6.05 267.48 0.29 337.70 0.78 13.58 30.16% 11.83%
p.3.3.k 443.50 53.98 242.12 0.18 347.33 0.47 62.83 45.41% 21.68%
p.3.3.l 482.00 24.76 331.66 0.34 405.86 0.59 28.83 31.19% 15.80%

p.3.3.m 522.00 46.08 325.82 0.24 451.62 0.81 74.87 37.58% 13.48%
p.3.3.n 572.00 54.34 337.69 0.20 483.77 0.69 57.45 40.96% 15.42%
p.3.3.o 592.00 46.84 404.23 0.32 541.19 0.85 56.86 31.72% 8.58%
p.3.3.p 643.00 1.52 416.06 0.24 540.23 0.72 35.06 35.29% 15.98%
p.3.3.q 681.50 0.91 396.12 0.22 578.71 0.74 1.89 41.88% 15.08%
p.3.3.r 712.50 7.43 403.43 0.19 609.89 0.78 53.62 43.38% 14.40%
p.3.3.s 722.00 20.91 510.30 0.34 658.67 0.75 49.36 29.32% 8.77%
p.3.3.t 762.00 17.72 459.42 0.23 687.65 0.91 65.29 39.71% 9.76%
p.3.4.b 30.00 0.00 19.74 0.66 25.38 0.77 8.45 34.20% 15.40%
p.3.4.c 92.00 0.00 75.35 0.50 76.04 0.52 2.59 18.10% 17.35%
p.3.4.d 102.00 0.00 95.60 0.64 96.37 0.64 43.98 6.27% 5.52%
p.3.4.e 143.50 0.00 114.40 0.37 122.45 0.45 1.72 20.28% 14.67%
p.3.4.f 193.50 0.60 149.31 0.40 154.74 0.47 0.96 22.84% 20.03%
p.3.4.g 223.00 0.00 140.68 0.20 178.05 0.58 0.87 36.91% 20.16%
p.3.4.h 244.00 17.88 190.16 0.33 211.63 0.43 38.74 22.07% 13.27%
p.3.4.i 272.00 10.30 159.09 0.12 235.34 0.81 24.98 41.51% 13.48%
p.3.4.j 311.00 0.09 215.56 0.23 254.21 0.46 10.37 30.69% 18.26%
p.3.4.k 352.50 0.10 246.27 0.20 280.15 0.30 3.11 30.14% 20.52%
p.3.4.l 384.50 57.75 256.68 0.20 319.51 0.50 94.12 33.24% 16.90%

p.3.4.m 393.00 33.48 252.58 0.17 368.56 0.82 43.58 35.73% 6.22%
p.3.4.n 444.00 12.06 288.79 0.15 391.50 0.82 39.71 34.96% 11.82%
p.3.4.o 500.50 9.77 334.41 0.21 427.46 0.63 15.40 33.18% 14.59%
p.3.4.p 561.00 1.00 363.06 0.18 462.52 0.58 7.98 35.28% 17.55%
p.3.4.q 564.50 3.98 404.65 0.29 490.50 0.67 47.84 28.32% 13.11%
p.3.4.r 603.00 4.81 350.29 0.12 538.68 0.85 20.95 41.91% 10.67%
p.3.4.s 669.00 18.16 395.71 0.11 505.18 0.40 27.14 40.85% 24.49%
p.3.4.t 674.00 14.20 402.78 0.14 577.17 0.53 21.64 40.24% 14.37%

Average: 423.47 13.89 270.80 0.35 361.99 0.70 26.72 33.35% 14.81%
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Table 9. Results for p4 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p4.2.a 206.35 2.51 121.95 0.35 142.67 0.64 40.17 40.90% 30.86%
p4.2.b 342.35 2.04 184.96 0.29 258.38 0.71 54.64 45.97% 24.53%
p4.2.c 449.35 10.85 238.92 0.28 332.49 0.58 210.69 46.83% 26.01%
p4.2.d 532.25 386.22 310.45 0.34 415.16 0.73 541.09 41.67% 22.00%
p4.2.e 618.35 45.77 354.61 0.33 440.99 0.57 63.69 42.65% 28.68%
p4.2.f 687.40 547.96 364.28 0.28 504.55 0.68 559.80 47.01% 26.60%
p4.2.g 747.05 518.38 413.34 0.30 583.38 0.71 530.50 44.67% 21.91%
p4.2.h 824.40 472.07 430.67 0.24 529.19 0.50 452.46 47.76% 35.81%
p4.2.i 915.60 46.22 484.16 0.29 587.39 0.47 126.64 47.12% 35.85%
p4.2.j 944.25 479.72 539.38 0.30 617.54 0.54 530.68 42.88% 34.60%
p4.2.k 1014.40 354.50 624.14 0.36 659.04 0.49 410.05 38.47% 35.03%
p4.2.l 1041.75 369.46 493.79 0.18 785.39 0.63 458.74 52.60% 24.61%

p4.2.m 1109.45 200.05 567.28 0.22 716.65 0.43 251.95 48.87% 35.40%
p4.2.n 1145.40 336.26 602.19 0.24 804.57 0.49 441.51 47.43% 29.76%
p4.2.o 1151.25 326.57 633.94 0.30 845.51 0.57 375.19 44.93% 26.56%
p4.2.p 1204.55 42.16 684.10 0.32 786.96 0.46 410.83 43.21% 34.67%
p4.2.q 1220.90 83.79 710.25 0.34 856.04 0.49 215.42 41.83% 29.88%
p4.2.r 1246.45 165.92 757.83 0.37 861.53 0.56 228.35 39.20% 30.88%
p4.2.s 1262.50 124.60 839.05 0.42 843.19 0.48 127.65 33.54% 33.21%
p4.2.t 1285.35 172.90 690.05 0.29 911.49 0.55 232.53 46.31% 29.09%
p4.3.b 38.50 0.00 20.81 0.32 22.64 0.46 0.00 45.95% 41.19%
p4.3.c 194.40 0.09 114.50 0.21 149.37 0.52 4.28 41.10% 23.16%
p4.3.d 334.90 449.67 176.78 0.16 250.91 0.54 524.70 47.21% 25.08%
p4.3.e 469.75 373.92 285.38 0.22 352.14 0.49 467.74 39.25% 25.04%
p4.3.f 580.25 577.16 308.91 0.15 420.43 0.58 591.80 46.76% 27.54%
p4.3.g 647.35 165.25 359.31 0.17 397.26 0.31 200.86 44.50% 38.63%
p4.3.h 722.90 357.78 395.16 0.16 531.47 0.41 499.46 45.34% 26.48%
p4.3.i 806.70 595.52 446.82 0.17 576.54 0.46 553.65 44.61% 28.53%
p4.3.j 853.00 42.25 507.04 0.21 625.20 0.47 427.48 40.56% 26.71%
p4.3.k 915.90 232.85 479.71 0.12 652.15 0.47 310.86 47.62% 28.80%
p4.3.l 964.70 115.28 530.03 0.17 675.42 0.45 104.94 45.06% 29.99%

p4.3.m 1042.50 440.55 548.24 0.14 726.83 0.42 593.18 47.41% 30.28%
p4.3.n 1114.10 470.48 616.46 0.16 785.67 0.52 536.31 44.67% 29.48%
p4.3.o 1153.25 300.51 614.79 0.14 740.52 0.38 301.95 46.69% 35.79%
p4.3.p 1198.60 519.83 725.22 0.21 802.74 0.32 553.44 39.49% 33.03%
p4.3.q 1225.85 99.60 824.07 0.30 908.05 0.45 373.21 32.78% 25.92%
p4.3.r 1249.35 246.66 811.36 0.28 896.92 0.44 341.96 35.06% 28.21%
p4.3.s 1267.25 258.12 739.01 0.20 920.24 0.45 421.37 41.68% 27.38%
p4.3.t 1287.60 160.71 807.24 0.25 909.29 0.44 263.50 37.31% 29.38%
p4.4.d 38.50 0.00 20.32 0.30 20.35 0.30 1.40 47.22% 47.14%
p4.4.e 185.50 0.06 115.68 0.13 137.98 0.40 4.23 37.64% 25.62%
p4.4.f 325.55 96.42 188.71 0.11 238.18 0.42 132.45 42.03% 26.84%
p4.4.g 462.80 123.79 256.83 0.10 311.23 0.24 204.01 44.51% 32.75%
p4.4.h 572.55 500.74 323.68 0.11 396.85 0.33 555.25 43.47% 30.69%
p4.4.i 658.10 399.88 364.43 0.10 452.22 0.36 426.58 44.62% 31.28%
p4.4.j 731.90 267.88 443.19 0.14 511.10 0.40 351.15 39.45% 30.17%
p4.4.k 822.30 50.95 435.79 0.04 557.94 0.33 255.38 47.00% 32.15%
p4.4.l 878.50 454.71 458.45 0.10 617.26 0.37 520.78 47.81% 29.74%

p4.4.m 906.65 146.87 541.91 0.12 658.96 0.35 181.86 40.23% 27.32%
p4.4.n 965.40 461.19 551.10 0.11 699.71 0.35 465.39 42.91% 27.52%
p4.4.o 1056.30 497.32 578.27 0.08 742.52 0.37 502.85 45.26% 29.71%
p4.4.p 1115.00 109.33 591.18 0.08 727.26 0.20 120.49 46.98% 34.77%
p4.4.q 1147.00 385.90 623.08 0.09 836.70 0.41 449.11 45.68% 27.05%
p4.4.r 1192.95 128.49 694.08 0.12 804.69 0.26 260.46 41.82% 32.55%
p4.4.s 1236.35 399.35 663.76 0.08 894.79 0.34 433.25 46.31% 27.63%
p4.4.t 1276.10 288.25 714.58 0.10 923.10 0.38 318.90 44.00% 27.66%

Average: 849.78 257.24 480.74 0.21 595.66 0.46 330.66 43.64% 29.95%
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Table 10. Results for p5 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p5.2.b 20.00 0.00 16.58 0.69 16.80 0.71 0.81 17.10% 16.00%
p5.2.c 50.00 0.00 34.20 0.47 35.38 0.63 15.75 31.60% 29.24%
p5.2.d 80.50 0.00 61.40 0.56 75.00 0.88 2.70 23.73% 6.83%
p5.2.e 180.00 0.00 107.91 0.36 109.71 0.37 23.40 40.05% 39.05%
p5.2.f 241.00 340.89 116.12 0.18 152.43 0.53 390.38 51.82% 36.75%
p5.2.g 320.00 25.91 261.60 0.67 168.72 0.69 117.05 18.25% 47.28%
p5.2.h 411.00 11.66 236.16 0.33 293.21 0.61 16.94 42.54% 28.66%
p5.2.i 481.00 254.94 241.28 0.27 403.04 0.84 298.02 49.84% 16.21%
p5.2.j 580.00 0.00 319.00 0.30 372.90 0.45 119.07 45.00% 35.71%
p5.2.k 670.00 182.65 396.31 0.35 505.64 0.62 183.39 40.85% 24.53%
p5.2.l 800.00 417.43 432.00 0.29 639.60 0.94 493.51 46.00% 20.05%

p5.2.m 860.00 143.33 468.27 0.30 580.40 0.58 179.27 45.55% 32.51%
p5.2.n 925.50 116.54 535.46 0.33 702.71 0.65 146.28 42.14% 24.07%
p5.2.o 1020.50 159.42 506.22 0.16 739.43 0.67 339.49 50.39% 27.54%
p5.2.p 1151.00 125.34 632.50 0.30 703.57 0.47 162.80 45.05% 38.87%
p5.2.q 1195.50 125.72 625.83 0.27 1048.23 0.85 221.68 47.65% 12.32%
p5.2.r 1260.00 137.00 814.56 0.42 1133.73 0.99 189.56 35.35% 10.02%
p5.2.s 1340.00 340.25 714.94 0.29 1140.00 0.82 451.46 46.65% 14.93%
p5.2.t 1390.00 163.62 738.77 0.28 1140.00 0.82 302.46 46.85% 17.99%
p5.2.u 1460.00 81.36 816.16 0.31 1134.60 0.79 148.29 44.10% 22.29%
p5.2.v 1501.00 309.87 742.50 0.21 1210.00 0.72 485.35 50.53% 19.39%
p5.2.w 1555.50 6.41 966.82 0.38 1200.00 0.58 84.63 37.85% 22.85%
p5.2.x 1611.00 154.07 871.01 0.29 1163.06 0.59 186.93 45.93% 27.81%
p5.2.y 1645.50 46.56 894.80 0.30 1236.35 0.63 88.72 45.62% 24.86%
p5.2.z 1665.50 55.66 879.34 0.28 1245.52 0.58 109.01 47.20% 25.22%
p5.3.b 15.00 0.00 10.98 0.39 11.05 0.40 0.82 26.80% 26.33%
p5.3.c 20.00 0.00 16.58 0.69 16.63 0.69 0.92 17.10% 16.85%
p5.3.d 61.50 0.00 37.32 0.24 39.24 0.28 1.28 39.32% 36.20%
p5.3.e 96.00 0.00 60.91 0.30 61.79 0.31 10.86 36.55% 35.64%
p5.3.f 111.50 177.83 74.94 0.31 104.24 0.85 200.46 32.79% 6.51%
p5.3.g 186.00 0.26 127.43 0.33 132.88 0.37 12.21 31.49% 28.56%
p5.3.h 261.00 43.64 204.78 0.49 209.12 0.52 182.50 21.54% 19.88%
p5.3.i 336.50 358.96 165.27 0.14 223.32 0.45 415.52 50.89% 33.63%
p5.3.j 471.00 86.41 294.91 0.25 306.58 0.27 181.56 37.39% 34.91%
p5.3.k 495.00 23.70 282.81 0.19 418.65 0.71 173.20 42.87% 15.42%
p5.3.l 595.00 100.64 361.14 0.22 423.61 0.41 178.27 39.30% 28.81%

p5.3.m 651.00 57.13 529.92 0.54 534.94 0.56 112.05 18.60% 17.83%
p5.3.n 755.00 364.78 430.76 0.19 524.23 0.40 537.29 42.95% 30.57%
p5.3.o 870.00 8.35 476.18 0.16 545.96 0.34 192.31 45.27% 37.25%
p5.3.p 991.50 172.58 527.34 0.15 673.07 0.42 534.65 46.81% 32.12%
p5.3.q 1070.00 122.58 586.00 0.16 872.30 0.72 182.30 45.23% 18.48%
p5.3.r 1125.00 73.51 619.96 0.17 962.32 0.78 189.35 44.89% 14.46%
p5.3.s 1190.50 366.21 652.42 0.16 973.05 0.73 386.34 45.20% 18.27%
p5.3.t 1261.00 398.29 884.14 0.34 975.00 0.41 452.43 29.89% 22.68%
p5.3.u 1331.50 23.41 766.25 0.19 966.69 0.44 353.52 42.45% 27.40%
p5.3.v 1425.50 276.10 824.51 0.19 1008.72 0.44 342.69 42.16% 29.24%
p5.3.w 1460.50 259.43 929.72 0.25 1123.08 0.51 289.34 36.34% 23.10%
p5.3.x 1536.00 14.74 847.83 0.17 1127.74 0.51 324.99 44.80% 26.58%
p5.3.y 1591.00 118.64 1179.48 0.41 1273.31 0.58 136.56 25.87% 19.97%
p5.3.z 1635.00 73.93 871.74 0.15 1357.56 0.81 129.34 46.68% 16.97%
p5.4.d 20.00 0.00 16.39 0.67 16.65 0.69 0.95 18.05% 16.75%
p5.4.e 20.00 0.00 19.38 0.94 19.47 0.95 0.99 3.10% 2.65%
p5.4.f 82.00 0.00 70.10 0.59 70.38 0.60 51.84 14.51% 14.17%
p5.4.g 141.00 0.00 97.85 0.24 99.54 0.25 461.22 30.60% 29.40%
p5.4.h 142.00 0.51 118.72 0.50 132.87 0.82 2.48 16.39% 6.43%
p5.4.i 240.00 0.50 132.46 0.09 141.27 0.26 87.92 44.81% 41.14%
p5.4.j 341.00 1.54 200.30 0.12 205.13 0.19 54.05 41.26% 39.84%
p5.4.k 342.00 85.54 266.22 0.36 301.99 0.62 150.97 22.16% 11.70%
p5.4.l 430.00 55.51 219.86 0.04 302.47 0.34 131.72 48.87% 29.66%

p5.4.m 556.00 9.52 301.85 0.09 366.80 0.26 202.96 45.71% 34.03%
p5.4.n 622.00 352.78 387.66 0.14 505.50 0.44 481.86 37.68% 18.73%
p5.4.o 690.50 507.22 406.65 0.12 524.24 0.44 538.58 41.11% 24.08%
p5.4.p 761.00 24.77 448.52 0.07 559.44 0.29 312.12 41.06% 26.49%
p5.4.q 861.00 61.37 630.61 0.29 638.31 0.34 16.51 26.76% 25.86%
p5.4.r 961.00 497.20 454.00 0.08 711.59 0.48 575.32 52.76% 25.95%
p5.4.s 1030.00 298.06 538.27 0.07 686.34 0.28 240.31 47.74% 33.37%
p5.4.t 1160.00 310.31 633.36 0.09 733.82 0.26 153.09 45.40% 36.74%
p5.4.u 1300.00 0.00 730.60 0.10 827.72 0.25 94.71 43.80% 36.33%
p5.4.v 1321.00 387.32 848.21 0.16 1037.40 0.41 390.56 35.79% 21.47%
p5.4.w 1390.00 25.42 802.99 0.11 1220.38 0.78 31.53 42.23% 12.20%
p5.4.x 1451.00 425.36 804.15 0.09 1278.55 0.94 464.56 44.58% 11.88%
p5.4.y 1520.00 374.33 932.68 0.14 1298.38 1.00 410.34 38.64% 14.58%
p5.4.z 1621.00 279.07 887.33 0.09 1300.00 1.00 329.55 45.26% 19.80%

Average: 807.66 137.21 467.69 0.28 616.35 0.57 211.81 38.34% 24.27%
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Table 11. Results for p6 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p6.2.e 360.00 43.62 194.94 0.29 201.41 0.32 101.23 45.85% 44.05%
p6.2.f 588.00 0.00 335.75 0.33 335.90 0.40 20.45 42.90% 42.87%
p6.2.g 660.00 74.66 434.61 0.43 438.59 0.47 374.35 34.15% 33.55%
p6.2.h 780.00 227.99 452.40 0.34 617.81 0.91 246.34 42.00% 20.79%
p6.2.i 888.00 353.52 451.42 0.25 486.75 0.37 403.60 49.16% 45.19%
p6.2.j 942.60 207.13 625.73 0.43 702.37 0.59 215.53 33.62% 25.49%
p6.2.k 1032.00 76.17 748.20 0.53 810.18 0.90 82.34 27.50% 21.49%
p6.2.l 1116.00 20.09 763.34 0.47 774.61 0.56 36.35 31.60% 30.59%

p6.2.m 1188.00 93.70 729.43 0.38 872.27 0.60 267.96 38.60% 26.58%
p6.2.n 1248.00 155.93 718.33 0.33 758.98 0.39 150.24 42.44% 39.18%
p6.3.g 282.00 0.00 155.41 0.17 157.39 0.19 501.52 44.89% 44.19%
p6.3.h 444.00 101.40 252.34 0.18 262.69 0.22 281.13 43.17% 40.84%
p6.3.i 642.00 19.48 347.65 0.16 359.03 0.19 63.62 45.85% 44.08%
p6.3.j 828.30 0.00 464.95 0.18 468.22 0.25 130.10 43.87% 43.47%
p6.3.k 894.30 447.73 490.55 0.17 641.57 0.43 438.95 45.15% 28.26%
p6.3.l 1002.00 439.66 622.38 0.23 639.46 0.30 510.97 37.89% 36.18%

p6.3.m 1080.00 214.91 611.22 0.18 820.47 0.88 242.34 43.41% 24.03%
p6.3.n 1158.00 113.20 594.23 0.14 774.79 0.33 409.99 48.68% 33.09%
p6.4.j 366.00 0.00 204.61 0.10 207.25 0.11 417.85 44.10% 43.37%
p6.4.k 529.20 6.27 291.96 0.09 305.69 0.14 189.44 44.83% 42.24%
p6.4.l 696.00 366.44 402.17 0.11 418.13 0.15 79.77 42.22% 39.92%

p6.4.m 912.00 0.78 488.37 0.09 505.82 0.11 10.73 46.45% 44.54%
p6.4.n 1068.00 0.00 609.91 0.11 625.69 0.14 2.15 42.89% 41.41%

Average: 813.23 128.81 477.82 0.25 529.79 0.39 225.08 41.79% 36.32%

Table 12. Results for p7 instances in a stochastic scenario with a high variance (c = 0.25).

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p7.2.a 30.00 0.00 20.95 0.47 21.92 0.48 0.29 30.17% 26.93%
p7.2.b 63.80 0.00 61.47 0.92 61.95 0.94 0.81 3.65% 2.90%
p7.2.c 102.10 1.00 76.13 0.54 96.54 0.92 1.94 25.44% 5.45%
p7.2.d 190.30 0.77 133.05 0.50 157.20 0.75 0.88 30.08% 17.39%
p7.2.e 290.30 7.83 203.15 0.51 234.93 0.73 10.34 30.02% 19.07%
p7.2.f 387.70 114.82 224.20 0.34 347.21 0.92 164.80 42.17% 10.44%
p7.2.g 459.05 3.78 254.84 0.32 406.40 0.86 42.03 44.49% 11.47%
p7.2.h 520.95 169.54 348.05 0.45 500.13 0.94 185.69 33.19% 4.00%
p7.2.i 578.95 436.75 371.64 0.42 538.85 0.84 541.58 35.81% 6.93%
p7.2.j 638.35 446.44 366.36 0.32 570.39 0.91 530.74 42.61% 10.65%
p7.2.k 689.05 369.74 494.81 0.52 628.97 0.91 435.06 28.19% 8.72%
p7.2.l 722.05 221.16 437.16 0.36 653.33 0.93 318.24 39.46% 9.52%

p7.2.m 791.25 479.88 452.78 0.31 748.51 0.96 495.76 42.78% 5.40%
p7.2.n 850.95 367.42 489.40 0.33 778.67 0.95 457.96 42.49% 8.49%
p7.2.o 905.55 468.53 634.88 0.47 848.53 0.95 559.51 29.89% 6.30%
p7.2.p 935.95 292.50 491.85 0.28 857.82 0.87 313.22 47.45% 8.35%
p7.2.q 966.95 465.21 657.58 0.41 901.56 0.92 471.56 31.99% 6.76%
p7.2.r 1028.75 312.64 629.43 0.39 907.80 0.89 329.56 38.82% 11.76%
p7.2.s 1057.00 228.95 740.77 0.47 945.32 0.81 388.35 29.92% 10.57%
p7.2.t 1090.85 339.00 582.05 0.30 882.49 0.83 363.04 46.64% 19.10%
p7.3.b 46.00 0.00 43.09 0.82 43.44 0.82 2.32 6.33% 5.57%
p7.3.c 78.80 0.00 76.00 0.91 76.68 0.93 1.43 3.55% 2.69%
p7.3.d 116.15 0.05 92.40 0.42 101.78 0.70 14.67 20.45% 12.37%
p7.3.e 175.45 313.17 145.65 0.54 159.24 0.73 313.54 16.98% 9.24%
p7.3.f 248.70 0.66 182.83 0.41 211.94 0.74 44.79 26.49% 14.78%
p7.3.g 346.05 13.70 229.62 0.25 287.98 0.78 22.21 33.65% 16.78%
p7.3.h 426.10 165.84 305.21 0.33 389.49 0.91 385.64 28.37% 8.59%
p7.3.i 487.25 283.73 341.30 0.32 452.41 0.92 389.99 29.95% 7.15%
p7.3.j 562.95 456.76 410.06 0.41 508.72 0.94 465.10 27.16% 9.63%
p7.3.k 630.30 504.05 387.72 0.24 558.55 0.90 519.38 38.49% 11.38%
p7.3.l 680.90 214.92 483.49 0.34 630.90 0.86 438.60 28.99% 7.34%

p7.3.m 754.75 226.50 518.17 0.32 690.18 0.90 441.35 31.35% 8.56%
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Table 12. Cont.

Deterministic Scenario Stochastic Scenario GAPS (%)

Instance OBD Time OBS-D Reliability OBS-S Reliability Time (1–2) (1–4)(1) (s) (2) (3) (4) (5) (s)

p7.3.n 805.55 305.03 513.76 0.25 734.14 0.93 183.13 36.22% 8.86%
p7.3.o 852.45 143.70 530.79 0.22 763.63 0.87 460.49 37.73% 10.42%
p7.3.p 903.55 372.14 608.22 0.31 833.09 0.93 322.73 32.69% 7.80%
p7.3.q 941.75 264.96 506.83 0.16 827.73 0.89 193.57 46.18% 12.11%
p7.3.r 978.25 181.69 797.07 0.50 906.91 0.92 473.91 18.52% 7.29%
p7.3.s 1040.25 491.53 831.16 0.48 893.89 0.82 457.05 20.10% 14.07%
p7.3.t 1079.95 262.28 743.74 0.33 1004.30 0.90 424.20 31.13% 7.00%
p7.4.b 30.00 0.00 21.09 0.47 21.48 0.49 0.98 29.70% 28.40%
p7.4.c 46.00 0.00 46.00 1.00 46.00 1.00 1.77 0.00% 0.00%
p7.4.d 79.10 0.00 78.59 0.98 78.63 0.99 1.95 0.64% 0.59%
p7.4.e 123.90 0.00 99.80 0.43 112.18 0.67 123.22 19.45% 9.46%
p7.4.f 165.45 1.09 137.34 0.43 154.65 0.99 7.14 16.99% 6.53%
p7.4.g 219.05 71.91 168.52 0.31 198.63 0.86 83.75 23.07% 9.32%
p7.4.h 287.30 156.61 228.51 0.37 260.30 0.78 171.85 20.46% 9.40%
p7.4.i 367.55 0.50 257.56 0.25 327.45 0.92 6.06 29.93% 10.91%
p7.4.j 463.75 72.74 288.56 0.16 417.36 0.83 138.63 37.78% 10.00%
p7.4.k 519.05 203.39 362.19 0.26 479.96 0.83 372.78 30.22% 7.53%
p7.4.l 590.05 233.99 349.44 0.12 527.30 0.93 272.70 40.78% 10.63%

p7.4.m 645.10 250.97 462.62 0.25 592.95 0.75 337.53 28.29% 8.08%
p7.4.n 726.00 567.47 495.92 0.23 637.00 0.80 516.21 31.69% 12.26%
p7.4.o 778.20 289.40 495.47 0.16 671.89 0.64 295.91 36.33% 13.66%
p7.4.p 836.75 227.60 571.30 0.19 706.27 0.45 407.25 31.72% 15.59%
p7.4.q 901.15 99.10 639.99 0.27 818.63 0.76 158.03 28.98% 9.16%
p7.4.r 964.25 360.39 685.70 0.26 866.82 0.85 490.02 28.89% 10.10%
p7.4.s 1009.55 431.09 619.16 0.15 931.32 0.91 455.07 38.67% 7.75%
p7.4.t 1053.85 99.10 867.79 0.45 970.64 0.90 559.46 17.66% 7.90%

Average: 573.47 206.76 384.37 0.40 516.95 0.85 268.38 29.32% 9.98%

7. Conclusions

In this study, we analyzed both deterministic position-dependent and stochastic
position-dependent versions of the TOP with position-dependent rewards. To solve the
deterministic TOP-PDR, a mixed-integer programming formulation, F1, has been proposed,
An enhanced formulation, F2 was then obtained by adding node and arc pre-processing,
as well as a valid inequality constraint. The deterministic TOP-PDR was solved by em-
ploying these models in combination with a branch-and-cut algorithm provided by Gurobi
(this procedure was truncated after one hour of computation). Furthermore, a biased-
randomized iterated local search algorithm was proposed and utilized to solve the deter-
ministic version. Out of 139 instances, which were adapted to consider position-dependent
rewards, the F1 and F2 formulations solved using the truncated B&C algorithm yielded
average optimality gaps of 7.84% and 4.47%, respectively. We observed that F2 outper-
formed F1 in terms of the collected rewards and also in terms of computational times.
In addition, our BR-ILS algorithm obtained more than 75% of the optimal solutions found
by F2 in just a few seconds of computation, and improved the objective function (profit)
for 37 out of the 58 solutions that were not optimally solved by the truncated B&C. On
average, BR-ILS outperformed F2, yielding slightly better profit while employing much
shorter computational times.

After validating the efficiency of BR-ILS in solving the deterministic TOP-PDR, we
extended it into a simheuristic algorithm in order to deal with the stochastic and position-
dependent version of the problem. MCS runs were conducted to obtain insights regarding
how promising solutions perform under stochastic conditions, as well as to better guide
the search process in scenarios under conditions of uncertainty. In order to diversify
the search, an acceptance criterion based on simulated annealing was used and updated
after each iteration. This was followed by a final refinement procedure. A series of
numerical experiments were performed, assuming stochastic travel times and reward
bonuses/penalties that depended upon the position of each customer in the associated
route. In these experiments, different levels of uncertainty were considered (low, medium,
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and high variability). The results showed that the solutions provided by our simheuristic
approach (OBS-S) clearly outperformed the solutions obtained for the deterministic version
of the problem (OBS-D) when these were considered in stochastic scenarios. This was
especially true as the level of uncertainty increased. Regarding reliability issues, as expected,
the reliability of the best solutions tended to decrease as scenarios with higher levels of
uncertainty were considered. Nevertheless, OBS-S outperformed OBS-D in all stochastic
scenarios. On average, OBS-S provided approximately 62.3% reliability, ahead of the
33.1% provided by OBS-D. These results highlight the importance of integrating simulation
methods during the searching process in stochastic optimization problems.

Regarding future work, several lines of research can be considered, such as (i) consider-
ing some of the reward bonuses/penalties as fuzzy valyes, therefore extending the problem
to one with both stochastic and fuzzy uncertainty; (ii) employing similar approaches with
other optimization problems, such as vehicle routing or the arc routing problems; and (iii)
considering an even more position-dependent version of the problem (e.g., one similar
to the one described in Arnau et al. [32] for the vehicle routing problem), in which fre-
quent changes in the inputs force managers to re-optimize routing plans using an agile
optimization approach.
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Abbreviations

The following abbreviations are used in this manuscript:
BR biased-randomized
BR-ILS biased-randomized iterated local search
B&C branch-and-cut
F1 original formulation presented in Section 3.2
F2 adjusted formulation presented in Section 5
ILS iterated local search
MCS Monte Carlo simulation
OBD our best deterministic solution
OBS-D our best deterministic solution evaluated under stochastic conditions
OBS-S our best stochastic solution
OP orienteering problem
RPD relative percentage deviation
STOP-PDR stochastic team orienteering problem with position-dependent rewards
TOP team orienteering problem
TOP-PDR team orienteering problem with position-dependent rewards
VI valid inequality
VNS variable neighbourhood search
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