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Abstract

Explainability and causality are becoming increasingly relevant in Machine Learn-
ing research. On the one hand, given the growing use of models in decision-making
processes, the way in which they make predictions needs to be more thoroughly un-
derstood. On the other hand, a rising interest exists in formalising and introducing the
causal relationships present in the real world into those same models. This work ad-
dresses both aspects through the use of Shapley values, a concept that is at the origin
of SHAP, one of the most popular explainability techniques. Different methods for
calculating Shapley values to explain predictions are introduced that take into account
the dependence and the causal structure of the data. These methods are illustrated
and compared through a series of experiments using a database whose causal struc-
ture is known. They show that differences can be observed when taking causality into
account.
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Resumen

La explicabilidad y la causalidad son áreas cada vez más relevantes en la investi-
gación en Aprendizaje Automático. Por un lado, dado el creciente uso de los modelos
en los procesos de toma de decisión, es necesario comprender mejor la forma en que
realizan las predicciones. Por otro lado, existe un creciente interés por formalizar
e introducir en esos mismos modelos las relaciones causales presentes en el mundo
real. Este trabajo aborda ambos aspectos mediante el uso de los valores de Shapley,
concepto que está en el origen de SHAP, una de las técnicas de explicabilidad más
populares. Se exponen diferentes métodos de cálculo de valores de Shapley para ex-
plicar las predicciones que tienen en cuenta la dependencia y la estructura causal de
los datos. Estos métodos se ilustran y comparan mediante una serie de experimentos
que utilizan una base de datos cuya estructura causal se conoce. De ellos se pueden
observar que existen diferencias cuando se tiene en cuenta la causalidad.
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Chapter 1

Introduction

Since their origin in the mid-20th century, Machine Learning models allowing to
make statistical associations and accurate predictions have experienced an unprece-
dented revolution. Over time, the path of research in this area has been to improve
the speed, accuracy, and precision of these models to make them as useful as possible.
However, new questions have recently started to be asked about the nature and future
Machine Learning research [21].

On the one hand, making Artificial Intelligence interpretable (i.e. understanding
why models make the decisions they do), and not only powerful and accurate in its
predictions, has become a major concern. Since an increasing number of decision-
making processes are starting to rely on AI, there exists a real need to justify the results
that are obtained and make them comprehensible for humans [6]. By achieving this
goal, we could envision reducing or even eliminating the presence of biases that could
lead to discrimination in the real world.

On the other hand, research has also been recently focusing on the problem of
formalising causality, that is, being able to formalise cause-effect relationships like
finding out the consequences of actively fixing the value of a variable. This is essential,
given that it brings the Machine Learning domain even closer to the way the real world
works [25].

Although these two issues, interpretability and causality, may appear to be unre-
lated, the reality is that they have much in common. Models able to work with the
causal structure of data will tend to be fairer, as we will be able to correct the biases
present in the real world in them [14]. Moreover, the interpretability of the models may
benefit from the knowledge of the underlying causal relationships between variables,
resulting in better explanations.
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In this work, we try to give a brief introduction to these two topics, showing how
they can be connected through the use of Shapley values. These were firstly introduced
in the context of Game Theory, but were later used as the basis for SHAP, a local
interpretability technique that allows us to explain not only single instances but also
complete models. Different methods for the computation of Shapley values in Machine
Learning will be introduced, some of them taking into account causal relationships
between variables.

The structure of this work is as follows: Chapter 2 features a brief theoretical intro-
duction to the topic of explainability in Machine Learning, current formal approaches
to the problem of causality and the Machine Learning models used later on. In Chapter
3, we present SHAP as an explainability technique based on the use of Shapley values.
Later, we describe different approaches to the calculation of SHAP values that deal
with feature dependency and causal structures. Finally, in Chapter 4 we introduce the
computational framework for the practical implementation and experiments carried out
in Chapter 5. In it, we compare the different methods to calculate SHAP values as well
as the differences between models.



Chapter 2

Preliminars

In this chapter, we will introduce some of the theoretical concepts necessary to
better understand this work. We will present the notion of explainability in Machine
Learning, giving basic definitions and a classification of explanation methods. Then,
the problem of causality and some theoretical concepts about graphs and causal models
will be introduced. Finally, we will briefly describe some of the models that will be
used in the experiments.

2.1 Explainable Machine Learning

Machine Learning models are being increasingly used to support decision-making
processes in many different areas, ranging from Law to Medicine. In recent times,
due to the interest in improving accuracy and speed of such models, they have become
black-boxes incomprehensible for humans. But since humans are the users of these
models and their predictions directly affect them, it is essential to have an explanation
supporting them. In this context, XAI (eXplainable Artificial Intelligence, also often
called Explainable Machine Learning), a set of algorithms aimed at explaining black-
box models [21], is currently gaining interest.

The terms explainability and interpretability are often used interchangeably. How-
ever, some authors understand interpretability as the capacity to understand why a
certain prediction or decision is made while explainability accounts for the ability of
explaining the internal mechanics of a model in human terms. In this sense, explain-
able models are interpretable, since understanding the internal mechanics allows for
an undestanding of predictions, but not the other way round [8].

13



14 2.1. Explainable Machine Learning

The increasing need for explainability is also manifested by the fact that institu-
tions such as the European Union have recently legislated on the use of algorithms
in decision-making. In 2016, the EU introduced the General Data Protection Regula-
tion (GDPR). This regulation went into effect in 2018, and it deals with concepts such
as the right to non-discrimination, the right to explanation and the ethical design of
algorithms. For a more detailed explanation, the reader is referred to [9].

Figure 2.1: Humorous vignette on black-box models
Source: xkcd

The following definitions will be useful in the course of this work.

Definition 2.1.1 (Prediction model). For a Machine Learning model with n features
we can define the prediction model as the function f : Rn → R, yielding the value of
the prediction in regression models or the probability of an individual belonging to a
certain class in binary classification models.

In binary classification problems, probabilities of belonging to one class or another
are complementary and therefore it makes sense that the prediction model is a function
in R. In multiclass classification defining the prediction model becomes more complex
as there are several probabilities to take into account. For that reason, throughout this
work we will deal exclusively with binary classification models.

Definition 2.1.2 (Explanation model). For a Machine Learning model with n features
we can define the explanation model as the function g : {0, 1}n → R, corresponding
to a model that allows to explain the predictions of a particular prediction model f .

https://xkcd.com/1838/
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This notion of explanation model was firstly introduced in [17]. It receives as an in-
put a simplified version of an observation x, known as simplified input (or interpretable
input [26]) and denoted as x′.

Definition 2.1.3 (Coalition vector). In a feature model f with a set N of n features, the
coalition vector z′ ∈ {0, 1}n for a subset S ⊆ N represents whether a given feature is
present in the coalition by setting z′i = 1 if the i-th feature is present and z′i = 0 if it is
not [20].

Coalition vectors are a type of simplified input. The correspondence between the
original space of our prediction model and the simplified space of the explanation
model can be made by means of the mapping function.

Definition 2.1.4 (Mapping function). Let f be a prediction model with n features and
be x one of them. If x′ is the simplified input corresponding to x, the mapping function
hx : {0, 1}n → Rn is the one that transforms the simplified space of coalition vectors
into the original space of features, making x = hx(x

′).

In general, local methods try to guarantee that hx(z
′) ≈ x when z′ ≈ x′ [17].

Definition 2.1.5 (Additive feature attribution methods). A method to explain a predic-
tion model f with n features is said to be an additive feature attribution method if the
explanation model g is a linear combination of binary variables

g(z′) = ϕ0 +
n∑

i=1

ϕiz
′
i (2.1.1)

with z′ ∈ {0, 1}n and ϕi ∈ R, i = 0, . . . , n.

Finally, explanation methods can be classified as follows [5]:

1. According to when the explanation is made:

• Intrinsic: explanations are produced alongside the predictions, since the
method is built into the model.

• Post-hoc: explanations are produced after the model is trained.

2. According to what is explained:

• Local: individual, specific predictions are explained by measuring the con-
tribution of each feature in a given model.

• Global: the whole model is explained for a given dataset.



16 2.2. The problem of causality

3. According to how the explanation is made:

• Model-agnostic: the method is applicable to different Machine Learning
models, since it does not inspect specific parameters.

• Model-specific: the method is specifically built for a given Machine Learn-
ing model since it uses its internal structure and parameters to provide the
explanations.

2.2 The problem of causality

At a time when data and the information they provide us with are taking on a cen-
tral role, some scientists started to wonder if they could help establish cause-effect
relationships, allowing to understand or even predict effects. The relevance that this
issue has acquired is exemplified by the fact that the Sveriges Riksbank Prize in Eco-
nomic Sciences in Memory of Alfred Nobel (commonly known as the Nobel Prize
in Economics) was awarded in 2021 to Joshua Angrist and Guido Imbens for their
contributions on the analysis of causality.

In Statistics, the field of causal inference is gaining importance, with scientists
aiming to formally establish existent and predict future causal relationships. For this
purpose, they are using different mathematical tools. In this section we will describe
Judea Pearl’s approach [25] to the problem of causality which combines a symbolic
language, do-calculus, with the use of graphs.

2.2.1 Causal diagrams

Causal diagrams are a powerful tool in causal inference used to represent cause-
effect relationships graphically but also to facilitate formalisation [23]. The main dia-
gram used is the directed acyclic graph (DAG).

Definition 2.2.1 (Directed acyclic graph). In causal inference, a directed acyclic graph
(DAG) is a graph in which nodes represent variables and each arrow a cause-effect re-
lationship between two of them. A DAG does not contain cycles, and it is only complete
if variables that are common cause for any other two are included.

It is important to note that DAGs are acyclic since variables should not cause them-
selves. This implies that bidirected arrows are not permitted, as two variables cannot
cause each other [30].
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There are three basic causal structures [25, 27]:

1. Chain: A→ B→ C. B is a mediator between the cause A and the effect C.

2. Fork: A← B→ C. B is a common confounder for A and B.

3. Collider or inverted fork: A→ B← C. Both A and C are causes for B.

Example 2.2.2 (DAG). In the following DAG we can see a chain (A→ B→ C), a fork
(D← B→ C) and a collider (A→ E← C):

A

B
CD

E

Figure 2.2: Directed acyclic graph

Another type of causal diagram that will be particularly useful throughout this work
is the causal chain graph. They are useful when the complete causal structure is not
known but only a partial ordering is available.

Definition 2.2.3 (Causal chain graph). A causal chain graph consists of chain com-
ponents that contain a certain number of variables and are linked by directed edges
without forming cycles [12]. In each chain component, the relationship between vari-
ables can be that of a common confounder, mutual interactions, etc.

Example 2.2.4 (Causal chain graph). In a causal chain graph, only causal relation-
ships between different chain components are known. The relationships between the
variables of a given chain component are assumed. In this case, we assume a common
confounder for A, B, C and mutual interactions for G, H, I.

A

B C

D

E F

G

H I

Figure 2.3: Causal chain graph
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2.2.2 Pearl’s do-calculus

The do-calculus is an axiomatic system developed by Judea Pearl in 1995 to enable
identification of causal effects in models [24]. The basis of the do-calculus is the
operator do(X = x). It represents an intervention in which a function X of the model
is replaced by a constant X = x, therefore actively setting the value of the variable.

The idea is to be able to manipulate expressions of the form p(y | do(x), z, w) so
that we arrive to classic probabilities without the do-operator. There are three basic
rules that, applied successively, allow to do so. These rules are dependent the causal
structure given by the diagrams, and in fact allow for them to be simplified.

We will denote GX the operation of deleting edges from graph G that point to
variable X , and GX the one of deleting edges that come out from X . The rules are
therefore the following [24, 25]:

1. Rule 1 (Insertion/deletion of observations):

p(y | do(x), z, w) = p(y | do(x), w)

if the variables W and X block all possible paths from Y to Z in GX .

2. Rule 2 (Action/observation exchange):

p(y | do(x), do(z), w) = p(y | do(x), z, w)

if the variables W and X block all possible paths from Y to Z in GXZ .

3. Rule 3 (Insertion/deletion of actions):

p(y | do(x), do(z), w) = p(y | do(x), w)

if the variables W and X block all possible paths from Y to Z in GXZ(W ), where
GXZ(W ) accounts for the graph GX withouth the edges that go into Z if Z is not
an ancestor of W .

For further explanations on the do-calculus the reader is referred to [24].
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2.3 Prediction models

In this section we will introduce briefly the different prediction models supported
by the shapr package, as explained in Chapter 4. These models can be used both in
classification and regression problems.

2.3.1 Generalized Linear Models

Generalized Linear Models (GLM) emerged as a generalisation of linear models.
These models assume that the response variable Y follows a distribution in the expo-
nential family. GLM have three components [19]:

• Random component: probability distribution of the response variable Y.

• Systematic component: linear predictor produced by the covariates (x1, . . . , xn),
noted as η =

∑n
i=1 βixi.

• Link function: associates the random and systematic components, E[Y] = η.

In GLM models, the linear relationship is not between the response variable and
the covariates, but between the transformed response variable by means of the link
function and the covariates.

Example 2.3.1 (Logistic regression). The logistic regression is an example of GLM
which can be used in binary classification problems. The link function is η = log

(
π

1−π

)
where π = P(Y = 1 | X = x) and 1− π = P(Y = 0 | X = x).

Generalized Additive Models with integrated smoothness estimation

Another example of GLM are Generalized Additive Models (GAM). In this case,
the linear predictor is obtained by adding the result of applying smooth functions over
the covariates and a conventional parametric component of the linear predictor (α):

η = α + f1(X1) + · · ·+ fn(Xn) (2.3.1)

Smooth functions over the covariates can be chosen freely by the user. However,
there are selection techniques based on likelihood that penalize its maximization in
order to avoid over-fitting.
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2.3.2 Random Forests

Random Forests are a supervised learning algorithm that was firstly introduced
by L. Breiman in [2] in 2001. The idea is to build a large number of non-correlated
decision trees and then averaging the prediction of each of them, which will therefore
be the Random Forest prediction. This is known as ensemble learning, since multiple
algorithms are combined to obtain more accurate predictions.

The algorithm as described in [11] is the following:

Algorithm 1 Random Forest

1. For b = 1 to B:

(a) Draw a bootstrap sample of size M from the training data.
(b) Create a decision tree Tb of size nmin (minimum node size) by repeating:

i. Randomly select p variables from the n initial variables.
ii. Pick the best separation variable among the p selected.

iii. Split the node into two.

2. Output the ensemble of trees {Tb}B1
3. The prediction for an individual x will be CB

rf (x) = majorityvote{Cb(x)}B1 ,
where Cb(x) is the class prediction for the b-th random forest.

Fitting B models using B different bootstrap samples and then averaging the pre-
diction is a technique called bootstrap aggregation or bagging. Another characteristic
of Random Forests is feature randomness. Randomly selecting a subset of variables
from the original space of features allows for more independence across trees, since
the separation variable at each step will be different.

Finally, this method can also be used for regression. In that case, the prediction for
an individual x can be calculated as fB

rf = 1
B

∑B
b=1 Tb(x).

2.3.3 Extreme Gradient Boosting (XGBoost)

The eXtreme Gradient Boosting (XGBoost) algorithm is another supervised learn-
ing algorithm that can be used both in regression and classification problems. It gained
notoriety as it was widely used and achieved great results in Machine Learning com-
petitions [10].
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The idea behind it is building a large number of trees using boostrap aggregation,
but in this case trees are built sequentially trying to minimize errors from previous
ones. This technique is known as tree boosting.

The error is minimized using a gradient descent optimization algorithm, with gives
name to XGBoost. The adjective extreme comes from the fact that it is optimized to
treat missing values and use few computational resources to provide accurate predic-
tions. A detailed explanation of the algorithm can be found in [3].
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Chapter 3

SHAP

SHAP (SHapley Additive exPlanations) is one of the most commonly used model
agnostic techniques to explain predictions. In a Machine Learning model, it allows to
quantify the contribution of a particular feature in the prediction for an observation by
assigning it an importance value [17].

This measure of importance is calculated through the use of Shapley values, de-
signed in the first instance to solve a problem in Game Theory. Later on, the underlying
idea was applied in the area of Explainable Machine Learning.

3.1 Shapley values

Shapley values were proposed by Lloyd Shapley in 1953 in the context of Game
Theory [28]. The purpose was to numerically determine the contribution or marginal
gain of each player in a cooperative game.

Definition 3.1.1 (Characteristic function). Let N = {1, . . . , n} be a set of players.
The function v : 2N → R defined over this set is known as characteristic function. It
measures the value or contribution of a given subset S of N with v(∅) = 0.

The characteristic function can therefore measure the marginal gain of an individ-
ual player or a subgroup of them. As players may have overlapping skills, it is needed
to average the contribution of a player in all possible formations, i.e. in all possible
subsets of N . A Shapley value is therefore the calculation of the marginal value of all
possible subsets weighted over all possible permutations.

23



24 3.1. Shapley values

Definition 3.1.2 (Shapley value). Let N = {1, . . . , n} be a set of n players, S a subset
with size s and v the characteristic function. The Shapley value of player i is defined
as:

ϕi(v) =
∑

S⊆N∖{i}

s!(n− s− 1)!

n!
[v(S ∪ {i})− v(S)] (3.1.1)

With n being the number of players, S ⊆ N∖{i} indicates all the possible subsets
in which we can add player i to the set. The term s! accounts for all the possible
permutations of players in S and (n − s − 1)! for those belonging to the residual
players that are not in it. Finally, n! is the total number of possible sets, taking order
into account. It acts therefore as a normalizing constant as it is in the denominator of
all weights.

Proposition 3.1.3 (Properties of Shapley values). Shapley values satisfy the following
properties [12]:

1. Symmetry: If v(S∪{i}) = v(S∪{j}) for all S ⊆ N∖{i, j}, then ϕi(v) = ϕj(v).

2. Null-player (Dummy): If v(S∪{i}) = v(S) for all S ⊆ N∖{i}, then ϕi(v) = 0.
A player that never contributes to the game either directly or indirectly has null
Shapley value.

3. Linearity: If we have two possible value functions v1 and v2, then they satisfy
ϕi(α1v1 + α2v2) = α1ϕi(v1) + α2ϕi(v2) for any α1, α2 ∈ R.

4. Efficiency: The marginal gain of each player of the game equals the total con-
tribution of the set of players: v(N) =

∑N
i=1 ϕi(v).

3.1.1 Model explanation using Shapley values

In Machine Learning, Shapley values are at the core of some local, post-hoc,
model-agnostic interpretation methods. Let us assume that we have a prediction
model f over a set N of n features that we aim to explain. Shapley values allow to
measure the contribution of a feature i to a prediction made for a specific observation
x = (x1, . . . , xn).
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For linear models, Shapley values can be calculated as [17]

ϕi(f) =
∑

S⊆N∖{i}

s!(n− s− 1)!

n!
[fS∪{i}(S ∪ {i})− fS(S)] (3.1.2)

where the characteristic function is set as v(S) = fS(S) and is the result of evaluating
the model fS trained only with the features present in the subset S.

In general, Shapley values measure the difference between the estimate of the
model for features that are not in S and the averaged predicted value of the model.
The estimate of the model over a subset of parameters is the result of integrating the
parameters that are not in the subset, i.e. marginalizing over features that are not in the
model. As a result we obtain the following expression of the characteristic function:

v(S) =

∫
f(x1, . . . , xn)dPi/∈S − EX [f(x)] (3.1.3)

When substituting this characteristic function in Equation 3.1.1, since the expected
value of the model EX [f(x)] will be the same for any subset S, it will cancel. The
problem that remains then is how to approximate the integral of the parameters that are
not in the subset.

3.2 SHAP

SHAP (SHapley Additive exPlanations) was introduced by Lundberg and Lee as a
framework that allows prediction interpretation [17]. The idea is explaining the pre-
diction of a given instance by calculating the marginal contribution of each feature. It
is an additive feature attribution method.

Proposition 3.2.1. If x is a given input and x′ its coalition vector, SHAP verifies the
following properties:

1. Local accuracy: The explanation model and the original model agree

f(x) = g(x′) = ϕ0 +
n∑

i=1

ϕix
′
i

This property is consistent with the efficiency property of the Shapley values
(3.1.3) by setting ϕ0 = E[f(x)] and x′

i = 1 for all i = 1, . . . , n [20].
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2. Missingness: x′
i = 0 ⇒ ϕi = 0, that is, features not present in a coalition do

not have an impact in the explanation.

3. Consistency: If two models f and f ′ verify that for all S ⊆ N

f ′
x(S)− f ′

x(S ∖ {i}) ≥ fx(S)− fx(S ∖ {i})

then ϕi(f
′, x) ≥ ϕi(f, x), where fx(S) = f(hx(z

′)) and z′ ∈ {0, 1}n is the
coalition vector for the subset S. This means that if the contribution of a feature
increases when changing the model, then its Shapley value will either increase
or stay the same.

Theorem 3.2.2. The only possible explanation model g that satisfies the properties
above is obtained by setting

ϕi(f) =
∑

S⊆N∖{i}

s!(n− s− 1)!

n!
[fx(S ∪ {i})− fx(S)] (3.2.1)

with n = |N |, s = |S| and fx(S) = f(hx(z
′)) as defined previously.

3.3 SHAP values

SHAP values were proposed in [17] and are the Shapley values of a conditional
expectation function of the original model, that is, they approximate the integral in
Equation 3.1.3 by the expected output of the model conditional on the values of the
subset chosen. They set the characteristic function of Shapley values as

v(S) = fx(S) = f(hx(z
′)) = E[f(z) | zS = xS] (3.3.1)

where zS = hx(z
′). Since z′ is the coalition vector for a subset S ⊆ N , the vector zS

in the original space will have missing values for the features that are not included in
the coalition S. We are therefore approximating f(zS) by using E[f(z) | zS = xS],
the expected output of the model conditional on the feature values of the subset. This
conditional expectations can be rewritten as:

v(S) = E[f(z) | zS = xS] = E[f(zS̄, zS) | zS = xS] =

=

∫
f(zS̄, xS)p(zS̄ | zS = xS)dzS̄ (3.3.2)
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with S̄ = N ∖ S. From this we deduce that in order to compute SHAP values all the
conditional distributions p(zS̄ | zS = xS) are necessary.

By assuming feature independence, we can approximate p(zS̄ | zS = xS) ≈ p(zS̄)
and therefore

v(S) = fx(S) = f(hx(z
′)) = E[f(z) | zS = xS] = E[f(zS, zS̄) | zS = xS] =

=

∫
f(zS̄, xS)p(zS̄ | zS = xS)dzS̄ ≈

∫
f(zS̄, xS)p(zS̄)dzS̄ =

= E[f(zS̄, zS)] (3.3.3)

If model linearity is assumed on top of feature independence, a further simplifica-
tion is

v(S) = E[f(z) | zS = xS] ≈ E[f(zS̄, zS)] ≈ f(E[zS̄], zS) (3.3.4)

It is important to note that a feasible computation of this SHAP vales assumes
feature independence to the marginal expectation. This raises the problem of how to
deal with features that are not independent, and whether supposing independence may
result in erroneous explanations of the model.

3.4 Methods for feature dependency

Shapley values have proved to be a useful and solid tool to explain predictions of
complex Machine Learning models. However, as mentioned before, they generally
assume features to be independent, which may result in erroneous or counterintuitive
explanations.

To deal with this problem, Aas, Jullum and Lølland proposed different methods in
[1] that allow to estimate directly the conditional probability p(zS̄ | zS = xS) with-
out the need of assuming feature independence, and thus maintaining the dependence
structure in data.
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3.4.1 Multivariate Gaussian distribution method

This method assumes that feature vectors come from a multivariate Gaussian dis-
tribution Z ∼ NN(µ,Σ), with N the number of features. The vector µ and the co-
variance matrix Σ can be estimated as the mean and covariance of the sample of the
training data.

Under this assumption, the conditional distribution p(zS̄ | zS = xS) is also a
multivariate Gaussian N|S̄|(µS̄|S,ΣS̄|S). If we write µ and Σ as

µ = (µS, µS̄) and Σ =

ΣSS ΣSS̄

ΣS̄S ΣS̄S̄


then the parameters µS̄|S and ΣS̄|S can be obtained as indicated in [1]

µS̄|S = µS̄ + ΣS̄SΣ
−1
SS(xS − µS) (3.4.1)

ΣS̄|S = ΣS̄S̄ − ΣS̄SΣ
−1
SSΣSS̄ (3.4.2)

By obtaining K samples from this distribution, both p(zS̄ | zS = xS) and the inte-
gral in Equation 3.3.2 can be approximated, thus obtaining the characteristic function:

v(S) =
1

K

K∑
k=1

f(zkS̄, xS) (3.4.3)

where zk
S̄

, k = 1, . . . , K are the samples obtained and xS are the values of the obser-
vation x for features included in S.

3.4.2 Gaussian Copula method

If features do not seem to follow a multivariate Gaussian distribution, the depen-
dence structure can be accounted for by means of a Gaussian copula, with marginals
represented by their empirical distributions.
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Definition 3.4.1 (Copula). A n-dimensional copula is a function C : [0, 1]n → [0, 1]
that is the joint cumulative distribution function of a d-dimensional random vector and
satisfies [22]:

1. If uk = 0, C(u1, . . . , uk−1, 0, uk+1 . . . , un) = 0, ∀k = 1, . . . , n.

2. C(1, . . . , 1, uk, 1 . . . , 1) = uk, ∀k = 1, . . . , n.

3. C is a n-increasing function.

Theorem 3.4.2 (Sklar, 1959). Let H be a joint distribution function with marginal
distributions F1, . . . , Fn. Then there exists a n-copula C such that for all u1, . . . , un ∈
Rn [22]:

H(u1, . . . , un) = C(F1(u1), . . . , Fn(un))

By assuming a Gaussian copula, the expressions in Equations 3.4.1 and 3.4.2 can
be used to approximate p(zS̄ | zS = xS) by generating samples through the following
steps [1]:

1. If Z is the distribution of the features, approximating each marginal Zj to a
Gaussian Vj = Φ−1(F̂j(Zj)), where Φ is the cumulative distribution function
of a standard normal distribution and F̂j the empirical cumulative distribution
function of the marginal Zj .

2. Assuming V follows a multivariate Gaussian, the previously described multi-
variate Gaussian distribution method can be used to obtain the desired samples
for the margins distribution Vj .

3. Transforming back to the original distribution using that Ẑj = F̂−1
j (Φ(Vj)).

As in the previous method, we can obtain K samples zk
S̄

from this distribution and
approximate the characteristic function using the formula in Equation 3.4.3.

3.4.3 Empirical conditional distribution method

When neither the marginal distributions nor the dependence structure follow a
Gaussian distribution, a different, non-parametric approach is needed. This method
is based on the idea that if samples (zS̄, zS) have zS ≈ xS , then they are informative
about the conditional distribution p(zS̄ | xS).

The method relies therefore in the calculation of distances between zS and xS ,
using a version of the Mahalanobis distance.
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Definition 3.4.3 (Mahalanobis distance). The Mahalanobis distance between two vec-
tors x and y respect to the covariance matrix Σ is:

ρ(x, y) =
√
(y − x)′Σ−1(y − x) (3.4.4)

The steps are the following [1]:

1. Computing the distance between the instance to be explained x and all the m
training instances zi, i = 1, . . . ,m using a scaled Mahalanobis distance:

ρS(x, z
i) =

√
(zi − x)′Σ−1

S (zi − x)

|S|
(3.4.5)

with ΣS the covariance of the n training instances zi.

2. Using these distances to compute weigths by means of a Gaussian kernel:

ωS(x, z
i) = e−

ρS(x,zi)2

2σ2 (3.4.6)

with σ a bandwith parameter that has to be specified.

3. With an increased order of the weights, z[k] refers to the k-th largest weight. The
integral in Equation 3.3.2 can be approximated as:

v(S) =

∑K
k=1 ωS(x, z

[k])f(z[k], xS)∑K
k=1 ωS(x, z[k])

(3.4.7)

where K ≤ m can be adjusted so that only the K largest weights are taken into
account.

The number K of samples can be also chosen so that a fraction η of the total weight
is accounted for

K = min
L>0

{∑L
k=1 ωS(x, z

[k])∑m
i=1 ωS(x, zi)

}
Finally, the role of the bandwith parameter σ is that of adjusting the trade-off be-

tween variance and bias. A small value of σ will give as a result low bias and high
variance since most weight will be put on the closest training observations. On the
other hand, a big value will distribute more the weights resulting in high bias but low
variance.
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Authors in [1] suggest a method to choose σ using the corrected Akaike Informa-
tion Criterion (AICc), a version proposed in [13] to deal with small sample sizes:

AICc = AIC +
2(k + 1)(k + 2)

n− k − 2

where n is the sample size and k the number of estimated parameters.

3.5 Methods for causal structures

In addition to feature dependency, there may also exist causal structures that affect
model explanation. In this context, new frameworks have been proposed to incorpo-
rate these causal structures, leading to new definitions of different ways of computing
Shapley values.

It is important to note that methods described below require additional information
about the causal relationships between variables. This information is not easily avail-
able, and is usually obtained from empirical studies, although some researchers are
currently focusing in the development of techniques that allow to find it directly from
data [29].

3.5.1 Asymmetric Shapley values

A more general definition of Shapley values can be given by taking into account
a particular ordering π ∈ Π for the features, where Π is the set of all permutations of
elements in N .

Definition 3.5.1 (Shapley value - General definition). Let ∆(Π) be the set of prob-
ability measures over Π so that w ∈ ∆(Π) is a distribution over the permutations,
w : Π→ [0, 1], that satisfies

∑
π∈Π w(π) = 1. The Shapley value of player i is defined

then as:

ϕw
i (v) =

∑
π∈Π

w(π)[v({j : π(j) ≤ π(i)})− v({j : π(j) < π(i)})] (3.5.1)

with π(j) < π(i) if feature j precedes i in the permutation π.

If the choice for the distribution over the permutations is the uniform w(π) = 1
n!

,
we retrieve 3.1.1. It is important to note that property (1) of symmetry is lost for
non-uniform distributions, although the rest apply [12].
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Frye et al. [7] named these Shapley values for which symmetry is lost as Asymmet-
ric Shapley values, and proposed them as a way to incorporate causal knowledge into
model explainability. They argue that the property of symmetry may confuse causal re-
lationships in the data, and that some choices of w(π) incorporate causal understanding
into the explanation.

If there are causal dependencies between features, this can be introduced by setting
w(π) = 0 for those permutations in which a known ancestor i does not precede a
descendant j. As such, the Asymmetric Shapley value of feature xi will measure
its effect by assuming feature xj is unknown (since it is its descendant), while the
Asymmetric Shapley value of feature xj will assume its predecesor xi has already
been specified.

3.5.2 Causal Shapley values

Heskes et al. [12] try to provide explanation that takes into account causal depen-
dencies through a different method. They introduce the notion of Causal Shapley value
by choosing the following characteristic function:

v(S) = E[f(z) | do(zS = xS)] =

∫
f(zS̄, xS) p(zS̄ | do(zS = xS)) dzS̄ (3.5.2)

This equation is just the result of replacing p(zS̄ | zS = xS) in Equation 3.3.2 by
p(zS̄ | do(zS = xS)). The use of Pearl’s do-calculus allows to measure the contribution
of a given feature if we actively set its value compared to not knowing it.

The practical calculation of these causal Shapley values is made by means of the
causal diagrams presented in Section 2.2.2. It is possible to retrieve the formulas for
p(zS̄ | do(zS = xS)) from both DAGs and causal chain graphs, since the latter can be
considered as a DAG where instead of variables there are chain components. Details
on these formulas can be found in [12].

3.6 Other methods

Lundberg and Lee [17] proposed numerous methods that supposed an improvement
to previous approaches to explainability, such as Kernel SHAP, Deep SHAP, Linear
SHAP and Max SHAP. We will present Kernel SHAP, Tree SHAP [16] and the Monte-
Carlo sampling method.
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3.6.1 Kernel SHAP

Kernel SHAP combines ideas from Shapley values and LIME (Local Interpretable
Model-agnostic Explanations) [26], another local explainability method. LIME creates
local linear explainable models by training a dataset of perturbed samples from the
original instance. The originality of this method is that it is possible to retrieve the
Shapley values from the coefficients of a weighted linear model.

The weights are obtained from a SHAP kernel proposed by Lundberg and Lee in
[17]:

πx(z
′) =

n− 1 n

|z′|

 |z′|(n− |z′|)
(3.6.1)

where |z′| is the number of features present in the coalition vector z′, i.e. the number
of components of the vector that are equal to 1.

They prove then that if the explanation model g is trained by optimizing the loss
function

L(f, g, πx) =
∑
z′∈Z

[f(hx(z
′))− g(z′)]2 πx(z

′) (3.6.2)

then the Shapley values can be recovered. Kernel SHAP algorithm is as follows:

Algorithm 2 Kernel SHAP

1. For k = 1 to K:

(a) Sample a coalition vector z′k ∈ {0, 1}n.
(b) Convert z′k to the original feature space by using hx, with x the instance

of interest, and then apply the model to get f(hx(z
′
k)).

(c) Use the SHAP kernel (Equation 3.6.1) to calculate the weight πx(z
′
k) for

z′k.

2. Fit the weighted linear model by optimizing the loss function described in
Equation 3.6.2.

3. The coefficients of this linear model will be the Shapley values ϕk.
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This method is an improvement since it offers a solution to the problems that arise
from the exponential complexity of the Shapley values formula and the challenge of
estimating SHAP values. However, it still assumes feature independence, and therefore
presents the same issues when dealing with dependencies between variables.

3.6.2 Tree SHAP

Tree SHAP allows to compute SHAP values for decision tree models in a more
computationally efficient way [16].

The characteristic function is defined by means of the conditional expectation in-
stead of the marginal expectation. This results in a reduction the complexity of com-
puting from O(TLDN) to O(TL2N), where T is the number of trees, L the maximum
number of leaves in any tree, D the maximum depth and N the number of features.

The aim is to calculate E[f(z) | zS = xS] in a tree model. The prediction for z can
fall into different leaves since only known values for z are zS = xS . The idea is then
the following [20]:

• If S = N the set of all features, the expected value will be the expected predic-
tion of the model, the only leave into which z can fall.

• If S = ∅, the expected value will be the weighted average of all leaves, where
the weights are calculated by node size (number of training samples that fall in
that node).

• If S contains some features, the expected value will be the weighted average of
the leaves that can be reached following the decision path given by zS = xS .

This last calculation can be performed in polynomial time by calculating the out-
come of considering all possible subsets at the same time, descending in the tree. A
detailed explanation of the algorithm can be found in [16] and [18].

Finally, as Shapley values are additive, this method is also useful when working
with tree ensemble models, since the SHAP values will be the average of the SHAP
values for the single trees.
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3.6.3 Monte-Carlo sampling

When dealing with large sets of features, problems of computational nature may
arise. All possible subsets S ⊆ N need to be evaluated, thus becoming an intractable
problem. A possible solution lies in the use of the Monte-Carlo sampling algorithm
[20], which allows to retrieve an approximation to the Shapley value of a feature i for
a given individual x.

Algorithm 3 Monte-Carlo sampling method to approximate Shapley values

1. For m = 1 to M :

(a) Obtain a second individual y by sampling randomly from the dataset.
(b) Create two new instances from x and y by replacing a number of feature

values by others from the individual y:

xm
+i = (x1, . . . , xi−1, xi, yi+1, . . . , yn)

xm
−i = (x1, . . . , xi−1, yi, yi+1, . . . , yn)

In the first case, the original value of feature i for the individual x is kept
while in the second it is also taken from the sampled individual y.

2. The Shapley value of feature i will therefore be the result of averaging the
difference of those two instances:

ϕ̂i =
1

M

M∑
m=1

(
f(xm

+i)− f(xm
−i)

)
(3.6.3)

3.6.4 Feature importance

Shapley values as described in this section allow to calculate importance of a fea-
ture in a particular prediction (local interpretability). In order to estimate the impor-
tance of a feature for a Machine Learning method, it is possible to average Shapley
values across instances.

If our prediction model has been trained over n features, the relevance of feature j
can be calculated as follows

Φj =
1

M

n∑
i=1

|ϕi
j| (3.6.4)

where ϕi
j represents the Shapley value of feature j for the instance i.
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This method would give a measure of global interpretability, that is, an explana-
tion of the expected model behaviour [21].



Chapter 4

Computational implementation

In this chapter, the computational tools used to design and carry out the different
experiments in Chapter 5 will be described. The packages for Shapley value computa-
tion, model training and plotting will be described.

4.1 Shapley values computation

One of the main packages for the calculation of Shapley values in R is shapr. It is
based on the method for computation of Shapley values described in [1]. The package
is composed of three functions [15]:

• shapr: gets Shapley weights for test data, creating an explainer object.

• explain: computes Kernel SHAP values for test data.

• plot.shapr: plots the individual prediction explanations.

The first step is training the model. Afterwards, the function shapr() can be used
to obtain the Shapley weights for test data, that is, the predictions we want to explain.
Arguments include the data, the trained model and optionally the number of combina-
tions. By default, when omitting the argument for the number of combinations, it will
calculate the weights for the 2n possible combinations, where n = |N | is the number
of features considered. The data should have a numeric form, with categorical features
encoded and converted into integer format.
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This function currently supports explanation of the following models:

• Generalized linear models: stats::glm.

• Linear models: stats::lm.

• Random Forests through the package "ranger": ranger::ranger.

• Extreme Gradient Boosting (XGBoost): using both xgboost::xgboost or
xgboost::xgb.train.

• Generalized additive models with integrated smoothness estimation using the
function mgcv::gam.

After the explainer object is created in the previous step, individual predictions
can be explained using the function explain(). The main arguments are test data
corresponding to the individuals to be explained, the explainer object, the approach
to be used and the prediction value for unseen data, which is usually the mean of the
response.

There are different approaches to the computation of Shapley values as seen in
Chapter 3. Some options are empirical for the empirical approach, gaussian for the
multivariate Gaussian distribution approach and copula for the Gaussian copula ap-
proach, amongst others. If multiple individuals are explained, a different approach
for each individual can be chosen by giving a vector of the length of the number of
predictions to be explained as an argument.

4.1.1 Causal Shapley values

To compute causal Shapley values as described in Chapter 3, authors in [12] devel-
oped an extension of the shapr package that allows to do so. The code is available
at their GitLab repository. This extension modifies both functions presented before
introducing new arguments.

The causal structure of data, also known as partial ordering is needed to calculate
the causal Shapley values. This partial ordering is given in the form of a list of vectors,
each of them representing a chain component of the causal chain graph. The vectors
themselves contain the numbers corresponding to the columns of the variables in the
dataset that are included in the chain component.

https://gitlab.science.ru.nl/gbucur/caushapley/-/tree/master/
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The first function receives two new arguments: shapr(..., asymmetric =
FALSE, ordering = NULL). The argument for asymmetry allows to compute
both symmetric or asymmetric Shapley values. The ordering argument receives the
partial ordering list.

As for the explain() function, the approach causal is introduced in addition
to those mentioned above. Additionally, three new arguments are to be set for the
function: the previously seen for asymmetry and ordering and another for confounding.
The confounding argument accounts for whether the variables in each of the chain
components are confounded or not. It is therefore a vector of logicals, with the same
length as the partial ordering list.

4.2 Data preparation, model training and plotting

Data preparation The dataset to be used in the experiments has been prepared using
functions from the tidyverse package to merge, filter and declare types of variables.
A descriptive analysis of the features has also been made using this package.

Partitioning data into train and test sets is possible using the library caret (Clas-
sification And REgression Training) and its function createDataPartition().
This function receives a vector with the response variable, the number of partitions to
create and the percentage of training data, among other arguments. It returns a list of
the row positions that will be included in the training data.

Random Forest Different libraries allow Random Forest implementation. The one
which is currently suported by the shapr package is the library ranger. The func-
tion to train the Random Forest is ranger(). It receives as input the formula (de-
scription of the model to fit) and the training data.

Other arguments that can be set are the number of trees to calculate, whether sam-
pling with replacement or not, weights for sampling or whether the forest to grow is a
classification forest. More information is available on the online documentation.

XGBoost XGBoost models can be implemented through the xgboost package by
using the function xgb.train() or the simpler version xgboost(). These func-
tions receive the training data in matrix form as an input and a set of parameters.

https://www.rdocumentation.org/packages/ranger/versions/0.4.0/topics/ranger
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Other arguments such as the maximum number of iterations, printing information
about model performance or saving the model can also be set. A detailed description
of the functions and its arguments can be found in the online documentation.

Plotting results Plots have been constructed using ggplot2, the package for graph-
ical representation included in tidyverse. The code for the individual explanation
plots and the sina plots has been adapted from the ones available in the shaprr package
and its causal extension respectively.

https://www.rdocumentation.org/packages/xgboost/versions/1.6.0.1/topics/xgb.train
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Experiments

In this chapter, a series of experiments will be performed on real data in order to
illustrate the concepts introduced in this work. Data used has been obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI).

We will first describe the dataset and its causal structure, which we will compare
with the structure of associations between variables. Later, we will contrast the differ-
ent ways of calculating Shapley values described in Chapter 3. Finally, we will see if
there are differences in Shapley values when working with different models. All the
code used for the different experiments can be found on this GitHub repository.

5.1 ADNI database

Data used were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership. Its primary goal has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

Features considered are described in Figure 5.1. They are divided into three groups
according to their type. The demographic variables account for the sex, years of educa-
tion and age at baseline (at the beginning of the study) of the patients. Biomarkers are
indicators in the human body that empirical studies have associated with the presence
of Alzheimer’s disease. Finally, the gene ApoE4 has also been linked to an increased
risk of development of the disease.
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https://adni.loni.usc.edu/
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The response variable will be the diagnosis of Alzheimer’s disease. It is a categor-
ical variable with three classes: Alzheimer’s disease (AD), mild cognitive impairment
(MCI) and cognitive normal (CN). For simplicity, a new variable DXB has been created
by grouping the classes AD and MCI into a new one category disease present (DP).
This brings us to a binary classification problem, which will simplify the interpretation
of the different Shapley values as mentioned in Section 2.1.

Label Description Mean (SD) Classes (%)

Biomarkers

FDG Fudeoxyglucose 6.2 (0.77)

ABETA Amyloid beta 171.9 (53.39)

PTAU Phosphorilated tau 39.9 (22.83)

Genetics

APOE4
Number of

apoliprotein alleles

0: no alleles (52%)

1: one allele (37%)

2: two alleles (11%)

Demographic variables

PTGENDER Sex
0: male (57%)

1: female (43%)

AGE Age at baseline 73.1 (7.41)

PTEDUCAT Years of education 16.08 (2.79)

Diagnosis (response variable)

DX
Diagnosis of

Alzheimer’s Disease

0: AD (17%)

1: CN (24%)

2: MCI (59%)

DXB

Diagnosis of

Alzheimer’s Disease

(binary classification)

0: DP (76%)

1: CN (24%)

Table 5.1: Continuous and categorical variables description
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5.2 The "gold standard" graph

The selection of the ADNI dataset was motivated by the fact that some authors have
proposed a causal association graph of some of the variables present in the dataset. As
mentioned in Chapter 4, in order to calculate causal Shapley values, a partial ordering
of the variables is required. In [29], authors proposed the "gold standard" graph, which
is based on relationships between variables that are well established in literature. It is
shown in Figure 5.2.

AGE

PTGENDER

PTEDUCAT

APOE4 PTAU

ABETA

FDG

DX

Figure 5.2: "Gold standard" graph

The "gold standard" graph allows therefore to establish the following partial order-
ing for the calculation of the Causal Shapley values.

({APOE4, PTEGENDER, AGE, PTEDUCAT}, {ABETA}, {FDG, PTAU})

We can try to compare this causal structure with that of correlations. Since our
dataset contains both categorical and numerical variables, we will better speak of as-
sociation structure. The way we have calculated the association between variables
according to their type is as follows:

• Between numerical variables: Pearson’s correlation coefficient.

• Between numerical and categorical variables: ANOVA.

• Between categorical variables: Cramer’s V [4], which is based on the χ2 statistic.
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These calculations allow us to construct a matrix of associations, which we can
visualise with a type of graph known as network plot. It shows the different variables
related by coloured nodes whose colour and intensity depends on the sign and the
strength of the association. This network plot for our dataset is shown in Figure 5.3.

Figure 5.3: Network plot showing associations between variables

The plot shows that the associations between features are not very strong. The
most strongly associated variables are grouped together, while the less related ones are
further away.

It is observed that the group of variables APOE4, ABETA, PTAU and FDG is
connected to each other and to the response variable DXB. In the "gold standard"
graph, variables pointing to DXB were PTAU, FDG and PTEDUCAT, while APOE4
and ABETA are related to DXB through intermediate variables. This could explain
why all this variables are close together except for the case of PTEDUCAT, which
seems poorly associated with any other variable.

Lastly, for the variables PTGENDER and AGE, the "gold standard" graph shows
that the variable PTGENDER is isolated, something similar to what happens in the
network plot. The AGE variable is an ancestor of ABETA, whereas in this graph they
are barely correlated.
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5.3 Differences in methods

In this first experiment, we aim at showing whether Shapley values differ when
using the different methods for feature dependency described in Section 3.4 and those
that take into account the causal structure of data described in Section 3.5.

5.3.1 Feature dependence

We will analyse first the results of using the methods for feature dependency: multi-
variate Gaussian distribution, Gaussian copulas and empirical conditional distribution.

These three methods will be compared with the result of calculating the Shapley
values using the causal method but assuming that all variables are confounded with
each other. That is, there is no order or causal structure in the data. These Shapley
values are called Marginal Shapley values in [12], and we will refer to them in this
way.

Outcomes shown in Figure 5.5 belong to the XGBoost model. In the model evalu-
ation metrics we get an accuracy of 77.1%, a sensitivity of 84.5% and a specificity of
45.5%. See also Table 5.4.

Predicted

DP CN

A
ct

ua
l DP 120 18

CN 22 15

Table 5.4: Confusion matrix for the XGBoost model

The summary plots show the results are through sina plots. In them, each dot
represents the Shapley value of a given individual for the features in the y-axis. The
color gradient indicates the original value for the feature. Results obtained with the
first two methods for the two categorical variables (APOE4 and PTGENDER) do not
have a strong theoretical support and therefore are not included, as it does not make
sense to assume that they come from a Gaussian distribution or a Gaussian copula.
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For the numerical variables, we see that results across methods are very similar.
For variables such as FDG, PTAU and PTEDUCAT, it is not observed that Shapley
values differ according to the original value of the variable. For ABETA and AGE
variables it can be seen that small values of the original variable correspond to small
Shapley values.

Figure 5.5: Sina plots for the feature dependence methods in the XGBoost model

For the categorical variables, as discussed before it does only make sense to com-
pare the empirical approach and the Marginal Shapley values. We see that the three
categories of the APOE4 variable are slightly separated in the empirical approach,
though it is not the case in the Marginal Shapley values sina plot. As for PTGEN-
DER, in both methods the two cases are moderately differentiated, with one category
corresponding to a negative impact and the other to a positive one.
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5.3.2 Causal structure

To deal with the causal structure, we will calculate four different Shapley values
using the partial order introduced before when describing the "gold standard" graph.
The sina plots with the results calculated for the same XGBoost model as before are
shown in Figure 5.6.

Figure 5.6: Sina plots for the different Shapley values in the XGBoost model



48 5.3. Differences in methods

These Shapley values have been calculated setting the arguments of the different
functions as follows:

• Symmetric Shapley values: without including the argument for asymmetry.

– Symmetric causal Shapley values: causal approach and partial order.

– Marginal Shapley values: causal approach with all variables confounded.

• Asymmetric Shapley values: including the argument for asymmetry.

– Asymmetric Shapley values: causal approach with all variables confounded.

– Asymmetric causal Shapley values: causal approach and partial order.

We can see that there are differences across the Shapley values calculated, espe-
cially for categorical features. Both asymmetric Shapley values clearly separate the
categories of APOE4 and PTGENDER, whereas the symmetric ones do not do so
well.

In the case of continuous features, there are hardly any differences between meth-
ods. In some of the variables, such as FDG and ABETA, low values of the feature
might be associated to negative Shapley values and high values to positive in all meth-
ods. For the remaining variables no evident patterns are observed in any of the four
types of Shapley values.

5.3.3 Analysis of individual explanations

Additionally, we can plot individual explanations using the four Shapley values
dealing with causality for given individuals to further illustrate the experiment. We
have chosen three different observations, one corresponding to the positive class (Dis-
ease Present, with a low predicted probability), other classified in the negative class
(Cognitive Normal, high predicted probability) and the third having a predicted prob-
ability near 0.5.

The different plots show the Shapley value for each of the features alongside their
value. Positive Shapley values are considered to push to increase the predicted value,
that is, the predicted probability, whereas features with negative Shapley values will be
the ones pushing to decrease the prediction.
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For the first individual the model has predicted the presence of Alzheimer’s disease.
In all four Shapley value prediction explanations we can see that the variable that
influences the decision the most is the age of the individual, which pushes to decrease
the predicted probability, therefore contributing to the classification in the positive
class.

As for the rest of the variables, it is here where we see differences across methods.
In the symmetric one, the other variable that seems to have an influence in the predic-
tion is ABETA, with a positive contribution. However, in both asymmetric methods
this variable has nearly no influence, and in the case of the asymmetric Shapley value
we see that instead of contributing to increase it does so to decrease the predicted
probability.

Figure 5.7: Individual plots for the different Shapley values in the XGBoost model

The second individual has a predicted class with no disease present since its pre-
dicted probability is nearly 1. In this case the variables that have the greatest influence
is FDG, contributing towards an increment of the predicted probability.

For the rest of features, we see differences across methods. For the causal Shapley
value, the second variable that influences the prediction the most is the age, as in the
marginal Shapley values. For the asymmetric Shapley values we see that we see that
both PTAU and AGE have an positive influence in the decision.
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Finally, in the case of the asymmetric causal Shapley values both AGE a PTAU
have a positive influence as in the precedent case, but it is also remarkable that ABETA
pushes towards decreasing the predicted probability, something that does not happen
in the rest of cases.

Figure 5.8: Individual plots for the different Shapley values in the XGBoost model

Finally, the third individual is assigned to the class with disease present, although it
has been chosen because the predicted probability is close to the threshold, established
in 0.5.

The variable that contributes the most towards the prediction is FDG in a positive
way for all methods, but we find discrepancies on the contributions of the other fea-
tures. In the causal Shapley value nearly no other variable has influenced the decision.
As for the marginal Shapley value, age seems to be of some relevance. Differences are
found in both asymmetric Shapley values, since PTAU pushes to decrease the predicted
probability but seems to have no influence when using symmetric methods. We also
see that there are discrepancies in the way the rest of the variables contribute across all
methods, but since they are not very relevant this can be disregarded.
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Figure 5.9: Individual plots for the different Shapley values in the XGBoost model

5.4 Differences in models

This second experiment aims at showing if there are differences in Shapley values
across models. To this end, we will compare the four Shapley values dealing with
the causal structure obtained before for the XGBoost model with the obtained for a
logistic regression model, a type of Generalized Linear Model. The other methods are
not presented since they posed computational problems.

Predicted

DP CN

A
ct

ua
l DP 130 8

CN 32 5

Table 5.10: Confusion matrix for the logistic model
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In the model evaluation metrics for the logistic regression we get an accuracy of
77.1%, a sensitivity of 80.3% and a specificity of 38.5%. See also Table 5.10. The
summary plots of the four Shapley values are shown in Figure 5.11

Figure 5.11: Sina plots for the different Shapley values in the logistic model

In general, we see that in this case a relationship between the Shapley values and
those of the variables is best observed compared to what happened in the XGBoost
model. For the categorical variables, both symmetric and asymmetric Shapley val-
ues separate the different categories, whereas this only happened in the asymmetric
Shapley values of the XGBoost model. In the logistic model, the three categories of
APOE4 are better differentiated in the asymmetric case. Additionally, the two genders
are clearly separated in the PTGENDER variable, and all individuals corresponding to
one of the categories obtain the same Shapley value in this variable.
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As for the continuous variables, in the XGBoost model it was difficult to tell
whether a given value of a feature would correspond to a low or high Shapley values.
For some variables, such as PTAU or PTEDUCAT this was impossible. In the case of
the logistic model, the PTAU variable is still difficult to read, whereas for the rest, it is
intuited that low feature values will correspond to negative Shapley values and vicev-
ersa. It is also observed that the variables were more spread out on the Shapley value
axis for the XGBoost whereas in this case they are more clustered. This difference
is particularly noticeable in the case of the AGE variable. Finally, within the logis-
tic model there are no significant differences between Shapley values for continuous
variables.
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Chapter 6

Conclusions

In this work we have shown how Shapley values, which were born 70 years ago in
the context of Game Theory, can be an useful tool when addressing a recent issue in
Machine Learning, that of model explainability. They are thus the idea behind SHAP,
a technique that allows local interpretability but whose results can also be extrapolated
to explain models globally.

At first, SHAP values were developed assuming feature independence. In this text,
we present the original technique, as well as later developments that focused on re-
moving this assumption with the objective of getting accurate explanations efficiently.
Three methods are described, which work with Gaussian distributions, Gaussian cop-
ulas and empirical conditional distributions - a non-parametric approach.

Additionally, we aimed at introducing the problem of causality. With models be-
ing increasingly used in different areas of society and taking part in decision-making
processes, it is essential that they accurately reflect and model the reality of the world
we live in. In that sense, we present two methods to calculate Shapley values when
knowing the underlying causal struture of the variables, thus introducing causality into
the realm of explainability. One of this methods relies on Pearl’s axiomatic system, the
do-calculus, whereas the other works with the symmetry property of Shapley values.

In order to illustrate these concepts, we chose the ADNI (Alzheimer’s Disease
Neuroimaging Initiative) dataset to carry out different experiments. The choice for
this dataset was motivated by the fact that some authors had proposed a causal structure
for its features, thus allowing to calculate Shapley values that need this information.
We have compared seven different techniques for calculating Shapley values for the
XGBoost model.
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In general, it can be seen that the main discrepancies are found between sym-
metrical and asymmetrical Shapley values. These differences are best noticed when
analysing prediction explanations for specific individuals, as it can be observed that
the methods sometimes differ in highlighting the variables that contribute the most to-
wards the prediction. Finally, it is also observed that the explanations change with the
models. In this case, we have compared XGBoost with logistic regression, finding that
the latter separates better the variables.

The question that arises now is how to go beyond. We have seen that taking into
account the causal structure of the data changes explanations. The problem is that this
causal relationships cannot be formally found directly from data so far. Some attemps
have been made in this sense [29], but it seems there is still a long way to go in the
quest of translating reality of the real world into that of formality.
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