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Abstract— The scoring of sleep stages is an essential 
part of sleep studies. The main objective of this research is 
to provide an algorithm for the automatic classification of 
sleep stages using signals that may be obtained in a non-
obtrusive way. After reviewing the relevant research, the 
authors selected a multinomial logistic regression as the 
basis for their approach. Several parameters were derived 
from movement and breathing signals, and their 
combinations were investigated to develop an accurate and 
stable algorithm. The algorithm was implemented to 
produce successful results: the accuracy of the recognition 
of Wake/NREM/REM stages is equal to 73%, with Cohen's 
kappa of 0.44 for the analyzed 19324 sleep epochs of 30 
seconds each. This approach has the advantage of using 
the only movement and breathing signals, which can be 
recorded with less effort than heart or brainwave signals, 
and requiring only four derived parameters for the 
calculations. Therefore, the new system is a significant 
improvement for non-obtrusive sleep stage identification 
compared to existing approaches. 

Index Terms—biomedical signal processing, regression 
analysis, sleep stages, sleep study. 

I. INTRODUCTION

EVERAL studies show the importance of sleep for 

maintaining good health [1, 2, 3]. They emphasize its 

duration as an essential key factor to good physiological 

function [2] and warn about the harmful consequences resulting 

from abnormalities in the sleep duration [3]. These can be 

physical and psychological problems, several disease states, 

and even higher mortality. In this regard, we look to the 

formulated conclusion given by [2], whereby sleep quantity and 

sleep quality determine its restorative function and allow us to 
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maintain a good health state. Several aspects should be 

quantified to assess the quality of sleep, including identifying 

different stages, their sequence, and the duration of each of 

them. A standard procedure allows evaluating each sleep stage. 

This procedure is called polysomnography (PSG), and it is 

performed following the guidelines of the American Academy 

of Sleep Medicine (AASM) [4]. 

During PSG, electroencephalography (EEG), 

electrocardiography (ECG), electromyography (EMG), and 

electrooculography (EOG) signals are recorded continuously 

during sleep [5]. This set of parameters is established because 

each of the signals changes during each phase of sleep. Thus, 

the combination of the obtained results allows classifying the 

subject's stage at each moment.  

Although PSG provides an environment for sleep recording 

and analysis, its implementation is faced with a set of 

limitations related to: 

• logistical and economic cost problems due to the

requirement of at least 22 analysis connectors for usual

implementation [5, 6];

• the high effort of time and personnel for processing and

analyzing of data [7];

• non-natural sleep environment in a sleep lab as well as

discomfort due to several electrodes, sensors, and cables

attached to the subject’s body affecting sleep pattern [8].

Furthermore, there is a limited number of sleep medicine

specialists and sleep laboratories [9], which leads to delays in 

starting the care of patients with sleep disorders. This care is 

critical because of the large number of undiagnosed sleep 

disorders resulting in serious problems, even in death [3]. 

Because non-invasive sleep stage classification is a relevant 

research topic, many scientific publications can be found on the 
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subject (e.g. [10-16]). However, they use different vital signals 

as the input for the classification algorithm. A relatively small 

part of algorithms can work with only movement and breathing 

signals, as it is done in our approach. We will present several 

publications relevant to this research case. The main focus will 

be on research studies conducted using body movement and 

respiration as vital signals to recognize sleep stages. Scientific 

papers utilizing other input signals (e.g., heart rate variability 

(HRV) in [12] or EEG in [15]) are beyond the scope of this 

literature review. 

Using body movement data for the identification of sleep 

stages is proposed in [13]. Sixteen healthy people have 

participated in the experiment. They slept through the night 

with electrodes attached to their bodies. NapVIEW with an 

infrared motion sensor was used as the device to detect body 

movements, placed about nineteen inches away from the 

subject's head. With this device's help, the body movement 

density (BMD) was calculated as the number of body 

movements per time unit to be used as an index of sleep 

transitions. The results of this study have confirmed the strong 

relation of BMD with sleep stage transitions. Besides that, the 

argument has been made that a BMD cycle is less affected by 

individual variations, and it is, for this reason, a more accurate 

index for sleep cycle identification than the absolute value of 

BMD. 

Body movement and breathing can be used to classify sleep 

stages, as presented in [17]. Twenty-five features based on the 

respiratory signal (depth-based and volume-based) were 

designed, and the accuracy of 72.3% with Cohen's kappa of 

0.34 was obtained for the classification of Wake/NREM/REM 

stages without subject-specific normalization. If only fourteen 

best features were used, the accuracy of 71.7% and Cohen's 

kappa of 0.32 are reported. A considerable correlation between 

the respiratory signal and sleep stages was demonstrated in 

[17], a study that constitutes its importance as research on non-

invasive sleep phase identification. 

Moreover, ultra-low-power reflected radiofrequency waves 

could be used to determine sleep/wake states according to [16]. 

The proposed algorithm is based on an analysis of movement 

and, to a lesser extent, respiration signals. The system's 

evaluation was performed on 113 subjects (94 males, 19 

females with an average age of 53±13years). The accuracy of 

78% and Cohen's kappa of 0.38 compared to PSG measurement 

were achieved. 

One study [14] presents the comparison of wrist and chest 

actigraphy combined with HRV to identify sleep stages. Even 

if this approach uses HRV and movement signal, it is relevant 

for our work because of a movement role in identifying sleep 

stages. A support vector machine (SVM) was proposed as the 

approach for the classification of sleep and wake stages. The 

methodology was tested on a group of 18 healthy adult subjects. 

The accuracies of about 77% for wrist and 78% for chest 

actigraphy combined with HRV were achieved. 

As the respiration signal is analyzed to identify sleep stages, 

it is essential to know if obstructive sleep apnea (OSA) affects 

identification accuracy. Otherwise, an algorithm providing 

accurate results for the patients without OSA could have 

decreased accuracy for the persons with OSA. This research 

point was investigated in [18], where the accuracy of 70.9% was 

achieved, and no significant differences in the identification of 

sleep stages for non-OSA and OSA groups were noticed. This 

matter allows transferring the classification results obtained 

with non-OSA test groups to OSA patients. However, the 

difference cannot be excluded entirely due to different possible 

sleep phase identification algorithms. 

In [11], an approach of identification of Wake/NREM/REM 

states is presented. The input signals are respiration and 

movement, and the extracted out of these signals features used 

for the classification of sleep stages are the following: 

respiration rate variability, respiration rate, leg movement, body 

movement, posture, and body orientation features. The signals 

used for the algorithm's functioning can be obtained in a non-

obtrusive way, for example, using the pressure-sensitive e-

textile bed sheet, as it was done in [11]. The experiment with 

seven subjects (3 male, 4 female, age: 21-60 years old) was 

performed to evaluate the approach using three different 

classifiers: K-nearest Neighbor, Support Vector Machines, and 

Naïve Bayes. The best classification results were achieved 

using the Naïve Bayes classifier with the precision of 70.3%, 

recall of 71.1%, and total accuracy of 72.2%. 

To overcome the limitations and the problems of a classical 

PSG approach mentioned above and of alternative presented 

solutions, the main research aim of this study is defined as a 

development of techniques for pre-processing and analyzing 

data in order to detect sleep-related pathologies, with simplified 

procedures apt even for personnel who are not especially 

qualified and without the need of expensive laboratory 

installation. In sum, the diagnostic system under examination is 

low-cost, and its minimally invasive data collection methods 

help maintain normal sleep conditions, which in turn increase 

the accuracy of results. 

Considering these premises, we have developed a technique 

to analyze and classify the sleep stages. The main innovations 

of our proposal are:  

1) reduce the directly recorded signals exclusively to

breathing and body movement. Thus, we can reduce the

invasive action (compared to EEG or ECG measurement)

on the subject to a minimum. Furthermore, these signals

may be obtained without necessity of involving trained

staff;

2) only four parameters, derived from measured signals, to

characterize the sleep stages. This aspect represents a

quantitative advantage over existing techniques in which

up to more than ten parameters are required [5, 10];

3) develop a new derived parameter, based on the premises

of logistic regression that relates two of the primary

biological signals: the patient's breathing as well as

movement.

The Materials and Methods section contains three 

subsections. In the Statistical Methods subsection, we will 

explain the quantitative basis to evaluate the parameters 

characterizing sleep stages. Once we have described our 

proposal's quantitative scope, we describe our proposed method 

in the Proposed Model subsection, justifying both the selection 
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of the parameters and the coefficient proposed to optimize the 

results obtained. In the Implementation subsection, we describe 

the details of the implemented model. The obtained results are 

then presented in the Results section and discussed in the 

Discussion section. Finally, we mention the possible 

improvement options and plans for future research in the 

Conclusion and Outlook section. 

II. METHODOLOGY

A. Statistical Methods

This section describes the statistical methods used in our

sleep analysis model and justifies this study's preference for 

statistical methodology. Furthermore, a qualitative explanation 

of the statistical method is carried out, and the equations used 

in our model are defined. 

The proposed software system is designed to identify sleep 

stages out of breathing and movement signals. For that, a set of 

sensors measuring both these signals (e.g., as described in [19, 

20]) can be used to quantify a subject's biosignals. These 

sensors generate numerically quantifiable electrical impulses, 

the sample values, which change at each of the sleep stages. 

However, although the values change at each stage, it is only 

possible to perform a sleep analysis after numerical processing 

using statistical methods. After processing, a set of the derived 

parameters is obtained, with which it is possible to analyze the 

evolution of sleep.  

From a statistical point of view, the derived parameters are 

independent variables, while the sleep stages are identified as 

dependent variables. A research review was conducted to select 

the appropriate statistical approach. It showed that several 

studies had proposed different statistical methodologies to 

determine the correlation between independent variables 

(derived parameters) and dependent variables (sleep stages), 

with regression-based analysis providing the best results 

compared to other statistical approaches [21, 10]. Notably, in 

regression-based analysis, the dependent variable is predicted 

or obtained from a modulated weighting of the available 

independent variables [22].  

Regardless of whether a specific correlation can be 

established between independent variables, the main objective 

in the field of regression analysis is to establish a mathematical 

relationship between dependent and independent variables [22]. 

Depending on the numerical characteristics of the independent 

variables, there are different statistical methods to obtain this 

relationship between dependent and independent variables. In 

our study, we are going to focus on multinomial logistic 

regression (MLR). MLR is an extension of the logistic 

regression with which it is possible to manage independent 

variables (the derived parameters) in multiple categories. This 

choice is due to two factors: the first is that the outcome of a 

multicategory variable (a variable that can achieve a limited 

number of categories) needs to be predicted as a function of the 

independent variables; the second is that these independent 

variables form a random conditional field or set [23]. In the case 

of sleep studies, a set is related to vital functions such as 

breathing or movement of the subject under study. Another 

advantage of MLR compared to many other algorithms is the 

fact that the output is not presented as just one value with the 

detected sleep stage but as a set of probabilities for all sleep 

stages for each epoch. This allows a further processing and 

adjustment of the results. 

Quantitatively in MLR, the odds ratio is the logistic 

regression coefficient's antilogarithm, which simplifies the 

calculations and allows a better obtaining of the dependent 

variables. It should be noted that the odds ratio presents 

information on how the change of independent variable 

influences the probability of being in a category versus being in 

the reference group. If an odds ratio value is greater than 1, then 

as an independent variable in the interval increases, so does the 

probability value. Otherwise, if the odds ratio is less than 1, then 

there is an opposite scenario - the probability value decreases 

as an interval-independent variable increase [24]. 

To quantify the description made of MLR, we will introduce 

the equations that we will implement in our study. To carry out 

this task, we will designate the results of the categorical random 

dependent variables as Y ∈ {0, 1, 2 ... k}.  

According to MLR, the conditional mean of the dependent 

categorical variables is defined as a logistic function, of a 

related combination, of independent variables, usually called x. 

The relationship is defined as 

𝐸[𝑌|𝑥] = 𝜎(𝑐𝑇𝑥), (1) 

where c is the vector of unknown coefficients and where the 

logistic function, σ, satisfies:  

𝜎(𝑥) =
1

1+𝑒−𝑥. (2) 

Considering (1) and (2), it is possible by means of MLR to 

determine the coefficients vector c that maximizes the 

probability of observations. This operation is defined as 

∏ 𝑃𝑟(𝑌 = 𝑌𝑖|𝑋𝑖)
𝑛
𝑖=1 , (3) 

which is equal to the maximization of the probability of 

registration, which is estimated as 

∑ 𝑙𝑜𝑔 𝑃 𝑟(𝑌 = 𝑌𝑖|𝑋𝑖)𝑛
𝑖=1 .  (4) 

This expression is used to formulate the simplified function 

to maximize the probability:  

𝑙(𝑐) = − ∑ 𝑙𝑜𝑔(1 + 𝑒−1𝑦𝑖 ∗𝑐𝑇𝑥𝑖)𝑛
𝑖=1 . (5) 

Additionally, in MLR, the standard error coefficient is of 

particular importance, which is calculated as 

𝑠𝑒(𝑐𝑖) = ((𝑋𝑇𝐴𝑋) − 1)𝑖𝑖, (6) 

where the Hessian of H = -XTAX and A = diag(a1, ..., an) is 

the diagonal matrix with ai = σ(cTx) * σ(cTx) [25]. 

Finally, to know the maximum probability, it is necessary to 

test the predictors' meaning in the logistic regression [23, 10]. 

For this purpose, the Wald z-test [25] defined by the equation is 

usually used: 

𝑧𝑖 =
𝑐𝑖

𝑠𝑒(𝑐𝑖)
. (7) 

Knowing this last coefficient, it is necessary to demonstrate 

the predictors' meaning in the logistic regression. The value of 

the so-called Wald p-value for the coefficient i is used. The 

probability of obtaining a value at least as extreme as the 

observed one is determined, for which the null hypothesis has 
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to be imposed, that is, (ci = 0). 

The formula for the value of the Wald p-value for the 

coefficient i is 

𝑝𝑖 = 𝑃𝑟(|𝑍| ≥ |𝑧𝑖|) = 2 ∗ (1 − 𝐹(|𝑧𝑖|)), (8) 

where F is the cumulative density function of a standard 

normal distribution [25]. 

B. Proposed model

The characteristics of the proposed model are described here.

We will justify the choice of the parameters derived for 

identifying each of the three sleep stages and how we can 

drastically reduce the number of these parameters from 10 to 4 

compared to the previous research [10]. We will also introduce 

a new coefficient that allows us to compare two sources of 

information, breathing and body movement; we will justify the 

formulation of this coefficient and describe how this new 

coefficient can improve the accuracy of the results obtained. 

Several investigations have revealed a relevant fact from the 

analytical point of view: there is a direct correlation between 

biosignal patterns, quantifiable using electronic sensors, and 

the different sleep stages. Thus, from this correlation of sleep 

stages-biosignal patterns, it is possible to detect and quantify 

the wakefulness-sleep situation in which a subject of study can 

be found. To carry out this task, it is necessary to implement 

recognition algorithms analyzing parameters obtained from 

biosignals, quantify and detect the different sleep stages. Some 

of the essential characteristics of biosignals are summarized in 

Table 1 extracted from [26-29]. 
TABLE I 

RELEVANT CHARACTERISTICS OF SLEEP STAGES [26-29] 

 As a result, we have developed a minimally invasive 

identification approach in which we only need two sources of 

biosignal data: (a) body movement, (b) respiration. 

This selection is based on specific changes in physiological 

features of the human body caused by sleep. When moving 

from the wake stage to deeper sleep, both a body's movement 

(amplitude and frequency) and, at the same time, a heart rate 

are being decreased [26], so only one of these two data sources 

needs to be used. To achieve our goal of using signals that can 

be obtained with less effort and more comfort, we have decided 

to use a movement signal and refrain from using a heart signal. 

Furthermore, after a transition from NREM to REM stage, body 

movement is typically decreased even more or absent [27]. The 

absence of movement in the REM stage also helps distinguish 

it from the WAKE stage with a high level of accuracy. 

Additionally, to obtain more accurate results, we use a 

respiratory signal and have developed a new derived parameter, 

integrating body movement and breathing. This will be 

described later and presented in (16). It is known from [26] that 

respiration becomes more frequent and less rhythmical in the 

REM stage, leading to changes in respiratory volume and 

supports the differentiation between NREM and REM stages. 

To quantify body movement in our model, which builds on 

the research developed by [10], the average value of the 

position changes for all three axes will be calculated according 

to the equations: 

𝑋 =
1

𝑛
∑ |𝑥𝑖 − 𝑥𝑖−1|𝑛

𝑖=1 (9) 

𝑌 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖−1|𝑛

𝑖=1   (10) 

𝑍 =
1

𝑛
∑ |𝑧𝑖 − 𝑧𝑖−1|𝑛

𝑖=1 ,    (11) 

where xi, yi, zi and xi-1, yi-1, zi-1 are the sensor coordinates in 

the current and correspondingly previous moment. 

From the (9), (10), (11), we calculate the instantaneous 

position of the body at the moment i as the modulus of the 

changes in coordinates, i.e.: 

𝐵𝑜𝑑𝑦𝑖 = √𝑋2 + 𝑌2 + 𝑍2, (12) 

where X, Y and Z are the signal values for each axis of a 3D 

activity sensor used in the study. If the signal provided by the 

sensors measuring movement is 1-dimensional, it can be 

directly used as the input for (13). 

The derived body movement parameter is defined as the 

mean value of the body movement (BM) signal. It is defined as 

𝐵𝑀(𝑘) =
1

𝑛
∑ 𝐵𝑜𝑑𝑦𝑖

𝑛−1
𝑖=0 ,  (13) 

where n is the number of body movements and Bodyi is 

described in (12).  

Additionally, to quantify respiration, we will consider the 

recommendations given by [17, 10]. In these studies, up to four 

parameters are formulated from the data provided by the 

breathing sensors. The innovation of our proposal is that we 

only need two of these parameters to obtain satisfactory results. 

Performed tests with different sets of breathing-related 

parameters have indicated no significant improvement of the 

classification rate in increasing the number of used derived 

parameters. Therefore, in our proposal, we will only need 

• Mean respiratory depth of exhalation (Tsdm)

• Median respiratory volume during inhalation (Vin)

The choice of these parameters is conditioned by several

clinical studies in [17, 26] in which the importance of 

considering mean respiratory depth, mainly in terms of 

exhalation, is highlighted, so we have chosen Tsdm, as well as 

the Median respiratory volume during inhalation, should 

already reflect the changes of respiratory effort signals and 

these, in turn, are related to the stages of sleep [26]. Selecting 

only two parameters instead of the four proposed by [26] does 

not imply loss of information since the biosignal data are related 

to each other [30], so a proper selection allows knowing all the 

information, as we will demonstrate in the Results section. 

Stage Characteristics 

Wake 

Respiration is typically stable and more frequent than in the 

NREM (especially in Deep Sleep) stage. 

Typically, more movement than in NREM (especially in Deep 
Sleep) and REM stages. 

NREM 

When sleep deepens from the WAKE stage, body movements 

become smaller and less frequent. 

The deeper the sleep, the less frequent the heart rate and 
respiration. 

After some instability in respiration during the Light Sleep 
stage, respiration becomes more stable when sleep deepens. 

REM 

Heartbeat and respiration become more frequent and less 

rhythmical. 

Body movement is typical for the epochs just before and 

directly after the REM stage. 

Anti-gravity muscles lose the tension, and therefore, the 

movement is typically absent. 
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Here is the mathematical representation of the derived 

breathing parameters, 

𝑇𝑠𝑑𝑚(𝑘) =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑡1,𝑡2,...𝑡𝑛)

𝐼𝑄𝑅(𝑡1,𝑡2,...𝑡𝑛)
,  (14) 

𝑉𝑖𝑛 = (𝑘)𝑚𝑒𝑑𝑖𝑎𝑛 (∑ 𝑠𝑥 ,𝑠𝑥∈𝛺1
𝑖𝑛 ∑ 𝑠𝑥 , . . . , ∑ 𝑠𝑥𝑠𝑥∈𝛺𝑘

𝑖𝑛𝑠𝑥∈𝛺2
𝑖𝑛 ),(15) 

where t = t1, t2, ..., tn are the sequences of peaks and troughs 

of a selected time window, IQR is the interquartile range for the 

given sequences of peaks, the kth inhalation and exhalation 

cycle is defined through Ωin
k with k consecutive breathing 

cycles (k = 1, 2, ..., K) and Sx is the respiratory effort value. 

It is important to note that not absolute values of the derived 

from respiratory signal parameters are significant for the correct 

functioning of the proposed algorithm, but their changes over 

time. Furthermore, all signals are being subject-normalized and 

do not contain raw values. Therefore, even not calibrated 

sensors (e.g., inductive plethysmography) can be used for signal 

recording. 

However, with these three parameters, defined in (13), (14), 

and (15), it is impossible to obtain precise results that allow the 

determination of the sleep phase. In order to avoid this problem 

and achieve a higher precision from the three derived 

parameters, we formulated a new derived parameter 𝐵𝑉𝑖𝑛 which

represents the combination of the inhalation parameters 𝑉𝑖𝑛  and

the 𝐵𝑀(𝑘)  according to the equation, 

𝐵𝑉𝑖𝑛 = 𝑙𝑛
𝐵𝑀(𝑘)

𝐵𝑀(𝑘)+𝑉𝑖𝑛
. (16) 

This choice is not arbitrary but is based on two fundamental 

conclusions: the first is that when the subject under study 

evolves from the waking stage to that of a deep sleep, the 

movement of the body decreases, and the depth of breathing 

increases [17, 26] so that the combination in the form of a 

coefficient will improve the accuracy of detecting the sleep 

stage. The amplitudes of the breath and body movement signals 

can vary significantly between subjects. To standardize these 

deviations, BM(k) is divided by BM(k) + Vin The second is that 

using the coefficient as an argument for a logarithmic function 

reduces the large fluctuations associated with body movement, 

as highlighted by [26]. 

Tests were also conducted in which all selected parameters 

were excluded from the algorithm one by one. This resulted in 

a reduction in accuracy of about 10-15%, with no clearly 

detectable differences depending on which parameter was 

excluded. 

Thus, by calculating three derived parameters and a fourth 

obtained from them, we will demonstrate that accurate results 

are obtained, as presented in the section Results. 

C. Implementation

In our study, we have implemented a classification model

based on the statistical technique of MLR, in which we identify 

as dependent variable (Y) the various stages of sleep, while the 

independent variables (X1, X2, ..., Xn) are the biosignal 

parameters which in our case are derived out of breathing and 

body movements, as described in the section Proposed Model. 

To calculate the derived parameters, the data obtained with a 

sampling rate of 32Hz was split into epochs of 30 seconds each. 

The general structure of the system modules is presented in 

Figure 1. First, the input signals are pre-processed to facilitate 

further elaboration, then the derived parameters are calculated, 

and the calculation of probabilities of sleep phases for every 

epoch is performed. After each step, the results of the 

calculations are saved in a separate file to enable a subsequent 

analysis of the operations carried out and simplify the exchange 

of system modules if required. The next step is to determine the 

most probable sleep phase for each epoch and finally to 

visualize the results. 

The input signals can be recorded independently or as a part 

of a polysomnography study. For breathing signals, a chest 

inductive plethysmography (RIP) record may be used. Other 

sensors that can record respiratory signals, including changes in 

their amplitude, can also be applied [e.g. 19, 20]. Body 

movement signals can be replaced by a signal monitored by a 

3D acceleration sensor in a recording device placed on the 

subject's chest. Another option for the measurement of 

movement signal could be pressure sensors placed under the 

mattress [19]. The baseline wandering should be excluded from 

the lower frequency range and not be significant for the final 

results, as only the changes in the signal will be analyzed and 

not its absolute value. Also, the baseline shift has a much 

smaller amplitude than body movements. A median filter was 

applied to the respiratory signal to remove short, high-

amplitude body movements. Afterward, a rolling mean filter 

was applied to get a cleaner signal, which was beneficial for 

calculating the selected derived parameters. 

To increase the accuracy of the classification results, the 

Fig. 1. System structure. 
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transition patterns between the different sleep stages were taken 

into account in implementing the algorithm described in this 

work. As shown in [31], some transitions between sleep stages 

are much more likely than others, and at the same time, some 

transitions have a very low probability.  In the first 

implementation of the algorithm, the emphasis was placed on 

non-probability transitions. As the algorithm works with 

probabilities, it allows additional adjustments, increasing 

accuracy without having to comply with strict rules. In this 

case, the algorithm reduced the probability of the examined 

sleep stage by 10-15% (a higher percentage would negatively 

affect the total classification accuracy if the previous stage were 

incorrectly classified) if its probability of occurrence according 

to the transition pattern is almost zero. This approach has led to 

an increase in the proposed algorithm's accuracy by up to 3% 

compared to implementation without considering transition 

probabilities. 

III. RESULTS

The evaluation of the algorithm's work was performed with 

the use of the dataset provided by the Charité1 clinic in Berlin. 

The experimental procedures involving human subjects 

described in this paper were approved by the Institutional 

Review Board of the Charité-Universitätsmedizin Berlin 

(application number: EA1/320/114). The overnight recordings 

of 35 persons (with a total length of about 260 hours) were 

available for evaluation. The participants' average age was 38.6 

+/- 14.5 years old, and the BMI averaged 24.4 +/- 4.9 kg/m². 

The number of male and female subjects was similar, and no 

significant health disorders were known for the test persons. 

The used PSG recordings were previously manually analyzed 

by sleep medicine physicians, and every 30-second epoch was 

tagged with the corresponding sleep stage (Wake, N1, N2, N3, 

REM). As the classification algorithm operates with three 

stages (Wake, NREM, REM), the stages N1, N2, and N3 from 

the PSG recordings were merged to the evaluation's NREM 

stage. 

The available dataset was strictly separated into training and 

test subsets. The training dataset consisted of sleep data of 

randomly selected subjects (after separation male/female) with 

a total amount of about 100 hours of recordings. Typically, the 

NREM sleep stage is the prevalent one during sleep, resulting 

in classification errors due to unbalanced classes in the training 

dataset. Therefore, it was necessary to balance the subset used 

for the system training, which was performed during the 

1 Initial study was carried out in Charité - Universitätsmedizin Berlin Center 

of Sleep Medicine Charitéplatz 1, D-10117 Berlin (Germany). 

evaluation preparation phase. The test dataset included about 

160 hours of overnight recordings of 20 subjects, which 

corresponds to 19324 epochs, 30 seconds each. Both subsets 

had a similar male/female ratio, and the average BMI of the 

included subjects did not have a significant discrepancy. 

Visual representation of sleep stages estimation is presented 

in Figure 2. It can be seen that there are multiple rapid 

transitions from one state to another at some points in time. It 

happens because there is no algorithm for averaging the results 

of sleep stage classification implemented, and every single 

epoch is directly visualized according to calculated values.  

Table 2 represents the classification results of the developed 

algorithm compared to the expert classification. The rows of the 

table contain the number of epochs corresponding to each sleep 

stage according to the expert’s evaluation, whereas the columns 

represent the results of classification by the developed 

algorithm. The main diagonal indicates the number of sleep 

epochs, where the results of both classifications (by experts and 

algorithm) are in accordance. 

The achieved general accuracy is equal to 73% following 

the expert's classification. More statistical measurements are 

presented in Table 3. 

In addition to the classification accuracy, we estimated 

Cohen’s kappa parameter, which is commonly used to measure 

agreement between several observers (in this case – methods). 

Its calculated value for the developed classification algorithm 

compared to the results of experts' classification is 0.44.  

TABLE II 
CLASSIFICATION RESULTS 

Stage 
Expert 

Stage developed system 

Wake NREM REM Total 

Wake 1256 862 604 2722 

NREM 1104 11081 1691 13876 

REM 211 730 1785 2726 

Total 2571 12673 4080 19324 

TABLE III 
STATISTICAL MEASUREMENTS 

Overall accuracy 73.0 % 

Recall Precision 

Wake 46.1 % 48.9 % 

NREM 79.9 % 87.4 % 

REM 65.5 % 43.8 % 
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IV. DISCUSSION

This manuscript research aimed to provide a scientific base 

for the development of a sleep study system that could be used 

in medical or home environments. Monitoring movement and 

breathing of recumbent subjects in a non-obtrusive way is less 

challenging than monitoring heart signals (especially HRV) 

[32]. It was imperative to develop an algorithm that could 

classify sleep stages relying on only these two signals for input, 

the target of the performed research.  

The achieved general accuracy of algorithm function of 73% 

indicates that the goal of this challenging task was met. The 

developed algorithm recognized the NREM stage with high 

recall of about 80%, which is higher than for both other stages 

– Wake and REM. The overestimation of the NREM phase can

partially explain its prevalence in a typical sleep pattern. Even

using a balanced training dataset did not completely solve this

problem. Another critical point is that human respiration and

movement during the Wake stage just before falling asleep and

during the NREM1 stage, which is a part of the NREM stage

performed in this work evaluation, are very similar [33]. It may

lead to misclassification of the Wake stage as the NREM stage

and vice versa. Significant differences in accuracy for different

sleep stages are also typical for other systems (e.g. [11, 40]).

Another factor that has a strong influence on the results is the 

quality of the input signals. When analyzing the recognition rate 

per person, it was detected that there are some recordings where 

the results are significantly worse than the average. 

Accordingly, such exceptional cases have driven down the 

average accuracy and average Cohen's kappa value. After a 

thorough analysis of such recordings, it was found that the 

signals had significant differences from other typical 

recordings. Figure 3 shows a comparison of two recordings of 

approximately 130 minutes each of the respiratory signal 

compressed in time. The upper graph in Figure 3 illustrates a 

typical recording (accuracy of classification 76%) in which the 

amplitudes of the respiratory signal have few outliers and can 

therefore be adequately analyzed by the algorithm. However, 

when looking at the lower graph in Figure 3 (classification 

accuracy 49%), one can notice that the signal is volatile and 

contains many disturbances that make it almost impossible to 

analyze the amplitude of the signal (and also its volume) in 

numerous signal sections. 

Nevertheless, the developed algorithm has proven that the 

accuracy of the classification of sleep stages remains adequate 

even with the inclusion of such limiting cases. If we would 

exclude this kind of cases, we could significantly increase the 

accuracy. However, the presented work aimed to test the 

functionality of the developed system under natural conditions, 

which also means the inclusion of low-quality signals. 

Cohen's kappa value of 0.44 (which is “fair to good” 

according to [34]) may be considered a good result because a 

very high value can be challenging to achieve for epoch-by-

epoch sleep stage identification. To clarify, even for the AASM 

scoring standard, the evaluation by different experts has an 

overall level of agreement of 82% with Cohen's kappa equal to 

0.76 [35]. It is, however, important to mention that in [35], five 

stages were considered. It is expected that a sleep stage 

identification with only movement and breathing signals as 

input will have lower levels of accuracy and Cohen's kappa than 

the gold standard, which uses PSG signal as input.  

The main novel point proposed in this study's approach is that 

it uses only the signals that can be obtained in a non-obtrusive 

way: movement and breathing [19, 20], for which a unique set 

of parameters was designed. For that purpose, comprehensive 

literature research and statistical analysis were performed. The 

new combination of derived parameters and MLR-approach, 

extended by algorithms for considering transition probabilities 

from one sleep stage to another, has led to the development of 

a new unique software solution for identifying sleep stages. 

A significant amount of research on automatic sleep stage 

classification is based on using the EEG signal as the 

algorithm's input [36-38]. As EEG can be recorded only in an 

obtrusive way with electrodes attached to the subject’s head, 

these researches are not directly comparable with that presented 

in this article’s approach.  

Another large subset of sleep research considers the 

identification of sleep stages, having the heart rate or ECG 

signal as the input. In [39], the authors used the ECG signal and 

respiration effort. The accuracy of 80% for the classes Wake, 

Fig. 3. Respiration signal. Normal (upper) and faulty (lower) recordings. 
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NREM, and REM is slightly higher than in our approach. 

However, it would not be possible to perform the measurement 

described in [39] in a non-obtrusive way because the ECG 

signal is being measured directly by placing electrodes on the 

human body. Therefore, our method has a significant advantage 

as the necessary signals may be measured in a contactless way 

as described in [19, 20], while reporting only a slight reduction 

of accuracy. Another crucial advantage of our approach is using 

only four features, compared to 80 in [39], which means faster 

processing and less computing power needed, which is essential 

for the embedded systems. 

To continue, the approach described in [40] uses the HRV 

signal derived from the ECG. The achieved accuracy of 72,6% 

for subject independent classifier is slightly lower than the 

accuracy of the method presented in our paper. Though the 

accuracy is comparable, our method is preferable since it uses 

only respiration and movement signals (which can be obtained 

contact-free). Furthermore, the algorithm's number of features 

used is significantly lower than proposed in [40] (4 against 41). 

Breathing and body movement signals are used as the input 

in [16] approach, making it similar to our method concerning 

analyzed signals. However, only Wake/Sleep states are 

recognized in [16], whereas our system identifies Wake, 

NREM, REM sleep stages. The accuracy of 78%, with a 

Cohen’s kappa of 0.38 stated in [16], compared to 73% of 

accuracy with a Cohen's kappa of 0.44 in our experiment, 

confirms the quality of our results. The number of recognized 

stages in our method is higher, albeit with a marginal decrease 

in accuracy, and it achieved a better Cohen's kappa value. 

The reported results in [17] regarding the accuracy of 72.3% 

with Cohen's kappa of 0.34 (25 features), and accuracy of 

71.7% with Cohen's kappa of 0.32 (14 features) for the 

classification of Wake/ NREM/REM stages without subject-

specific normalization is lower than in our work. Our work also 

presents data using fewer used features (4 against 25/14), 

another advantage over other studies. The respiratory signal is 

used in [17] as the input for the algorithm. 

Compared to the approach presented in [11], our method uses 

the same input signals but indicates better results: 73% accuracy 

against 72%, using only four features compared to more than 

30 in [11]. Furthermore, a significantly higher number of 

overnight recordings was used to evaluate our experiment (20 

against 7), which illustrates the results' stability. 

It is important to note that a reduction in the number of the 

used features is especially relevant when it does not have any 

negative impact on the accuracy of detection because the effort 

required to calculate the features is moderate. The results of the 

comparison with state-of-the-art solutions presented above 

confirm that our system can use a small number of parameters 

and demonstrate high accuracy at the same time. 

Although the results of the work carried out are promising, 

some limitations should be addressed: 

• The number of recordings for the training was limited, and

therefore it cannot be excluded that with a significantly

larger quantity, the training results could be different.

• Changes in the signal in the process of recording (e.g. due

to the displacement of the RIP belts) can lead to a reduction

in accuracy.

• The available recordings were divided into 30-second

intervals, which is also typical for sleep analysis. However,

transitions from one sleep stage to another can also occur

within these intervals, which was not considered in the

current implementation of the algorithm.

• Although the possibility of substituting the devices for

recording the movement and respiration signals is pre-

planned, it was not possible to use and compare several

alternative devices for the recording within the scope of the

study conducted. Therefore, it cannot currently be claimed

that the results of the algorithm's work will be identical for

different signal sources.

V. CONCLUSION AND OUTLOOK

The development of an algorithm for identifying 

Wake/NREM/REM sleep stages was performed, and the 

accuracy of 73% with the Cohen's kappa value of 0.44 was 

obtained. These results confirm the proposed approach's 

appropriateness for the defined use case with only breathing and 

movement signals as the input. Further investigation on this 

method promises the algorithm's improvement and, 

consequently, more accurate results of system work. 

One possible way to enhance the algorithm's performance is 

to continue investigating the best set of used derived parameters 

and the development of new ones. However, this needs an in-

depth investigation of the importance of different features and 

values in the general sleep stages recognition algorithm. This 

work was done, but further improvements should still be 

possible and are planned for future projects. 

Moreover, other sleep stages recognition approaches could 

be combined with the one proposed in this study to get an 

extended algorithm, which would obtain the final identification 

results as a mix of two or more methods, e.g., MLR + neural 

network. In this case, the epochs with the same identified stages 

by both approaches could be used as "trust-anchors," and the 

epochs before and after them could be identified more 

precisely, considering the transitions between the different 

sleep states [28]. Having three or more combined approaches, 

the decision system could be implemented, determining the 

final sleep stage identification result as the election by the 

majority of algorithms.  

As shown in the Discussion section, the quality of the input 

signal plays an essential role in the correct classification of 

sleep stages. Therefore, in the future version of the system, it is 

planned to label the recordings with the disturbed signals and, 

if necessary, to remove some parts of the signal from the 

analysis and to provide a corresponding notification if no signal 

correction should be possible.  

Signal reconstruction for improving the quality of the signal 

is a topic in itself and could also be included in future research. 

This would make it possible to perform a good detection of 

sleep phases even in parts of the signal where no reliable 

evaluation was initially possible. 

Another possible direction of future work is to develop a 

standalone system tuned to a home environment [41], which 

requires developing a hardware part of the system to 

complement the software. This development's significant 

progress is already made and presented in several scientific 

publications [19, 42]. The final aim is to gain a system that 
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would recognize sleep stages and sleep apnea, available for use 

in a home environment without high financial and personnel 

costs. Furthermore, the system should be comfortable to use, 

which has led to selecting the signals that can be obtained in a 

non-obtrusive way – movement and breathing. This kind of 

system could be widely used to provide the necessary 

information to medical professionals, thus enabling early 

detection of sleep problems and ultimately improving the 

population's quality of sleep. 
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