Fourth International Conference on Networked Computing and Advanced Information Management

Distributing OSGi services: The OSIRIS Domain Connector

Jose Manuel Marquez

Telvent
Jjose.marquez@telvent.abengoa.com

Abstract

This paper presents a way of providing remote
capabilities to OSGi services in order to build a
distributed environment based on cooperative services.
The OSGi Service Platform Specification delivers an
open, common architecture for service providers,
developers and operators to develop, deploy and
manage services in a coordinated fashion. The OSGi
Framework forms the core of the OSGi Service
Platform Specification. It provides a general-purpose,
secure, and managed Java framework whose
extensible and downloadable units of deployment,
called bundles, can export services and resources
(such as packages and classes). However, the
mechanisms of synchronization and communication of
services allocated in different Service Platforms do not
concern to the OSGi Service Platform Specification.
This paper presents a new distributed service oriented
architecture and its possible industrial applications
and it benefits from previous European R&D projects
in which the authors have participated.

1. Introduction

owadays the adaptation in information systems

is an open problem, in particular, how to

dynamically adapt different services to the
user's needs. This is one of the main reasons of the
huge impact that SOA has had. But the heterogeneity of
these services makes necessary the definition of a
consistent way of integrating their business logic
through an intuitive and rich application interface.

The support of a wide variety of client devices is an
obstacle that current information systems must solve.
One of the most important tasks of this support is
related to the adaptation of the presentation layer for
rich Internet applications deployed on different
devices, specially mobile (resource-constrained)

Javier.alamo@telvent.abengoa.com

Javier Alamo
Telvent

Juan Antonio Ortega
University of Sevilla

ortega@lsi.us.es

devices. Besides, today more than 55% of all Web sites
contain JavaScript. This dramatically affects the ability
of people with disabilities to access Web content [1],
making the adaptability a mandatory issue. In this
context, XHTML 2 is evolving as an application
middleware layer which can be used to generate
(X)HTML content for a variety of mobile devices and
user agents [2].

Information systems are constantly evolving and
user needs are continuously changing, specially in
contexts such as lifelong learning'. Patterns of learning,
living and working are changing apace. This does not
only means that individuals must adapt to change, but
equally that established ways of doing things must
change too [3].

How to dynamically deploy, integrate and
orchestrate services is an interesting challenge that
could have a major impact in the information systems
focused on this changing reality. Projects like
OSMOSE? and OSIRIS® address these problems within
two different contexts respectively: stand alone and
distributed services platform.

2. Scenario

The proposed scenario is given by an e-learning
system built on top of an OSGi framework such as it is
presented in [4]. In this scenario, educational contents,
packaged as the IMS-CP specification defines, are
delivered as OSGi bundles. These bundles are

' The European Commission and the Member States have defined
lifelong learning, within the European Employment Strategy, as all
purposeful learning activity, undertaken on an ongoing basis with
the aim of improving knowledge, skills and competence.

2 OSMOSE: Open Source Middleware for Open Services in Europe,
was a project of the Eureka-ITEA program financially supported by
the Spanish Ministry of Science and Technology through the
PROFIT program. www.itea-osmose.org/

* OSIRIS: Open Source Infrastructure for Real-time Integration of
Services, is a project of the Eureka-ITEA program financially
supported by the Spanish Ministry of Industry, Commerce and
Tourism through the PROFIT program. www.itea-osiris.org/

considered the nodes of a variable learning itinerary
that can be adapted to each student's needs from the
information provided by the rest of students. The
adaption process uses Ant Colony Optimization and
Bayesian Networks.

A smart LMS could recommend or impose the next
course, taking into account the most recent results of
the user in his/her passed courses and the most
successful path taken by most of the users. This
artificial intelligence based on the collective behavior
of decentralized, self-organized systems has been
named as swarm intelligence, an expression introduced
in the context of cellular robotic systems [5] by
Gerardo Beni and Jing Wang, inspired in the social
behavior of animals [6].

Let us suppose that an enterprise wants to prepare a
worker to employ him in a vacancy of higher
responsibility. This vacancy requires a set of
competences being owned by the applicant, and the
way to achieve these competences is to pass some
specific courses. With this goal, the company’s
pedagogical team has designed the following graph
with several alternative learning paths (Figure 1) in
which all the available learning paths a learner may
follow is given. So, nodes represent courses and arcs
are transitions between courses. Arcs rounded a curved
arrow labeled with an ampersand (&) indicate that their
children have to be crossed in the order expressed by
the arrow (e.g. deep-first and from left to right) and
finally, arcs rounded with a curved arrow labeled with
a plus sign means that one of the children paths has to
be chosen. Each node contains educational contents
and exercises, usually embedded in web pages, and an
evaluation test, which will send the final qualification
of the student to the LMS.

Figure 1: Sequencing graph with alternatives learning
paths

Behold the stand alone context. Now, let us think in
the system's architecture: How many requests the web

server will have to attend? Which impact will have the
calculation of the fitness function of each arc?
Summarizing, how much CPU load and, consequently
response time, will increase? Thus, in order to maintain
a good scalability factor, all the process that have to be
carried out in the server side to calculate the fitness
function defined in [4] should be allocated in different
nodes, then defining a distributed architecture, just like
is proposed by the OSIRIS project. This distributed
service oriented architecture permits the nodes to be
continuously enhanced with new plug-ins (OSGi
bundles), resulting in a distributed system with
dynamically adaptive functionality.

The solution proposed consists of a set of OSGi
nodes that acts like specialized processors and a one
OSGi-based web server node which gets all the user
requests and delegates the process of the learning graph
in the rest of those specialized OSGi nodes within the
same local area network. Besides, OSGi services may
invoke a remote service in a transparent way, so that
developers do not have to differentiate which kind of
service are they going to use (local or remote). This
approach, addressed in the OSIRIS project, has to
overcome problems related with the connectivity
middleware needed to inter-communicate services
allocated in different nodes. In order to solve them, the
OSIRIS Domain Connector was defined within the
OSIRIS project and how to use it in the scenario
presented in [4] is explained next in this work.

3. The OSIRIS Domain Connector

The goal of the OSIRIS project is to define and
implement an across-domain open source service
platform that will provide support for services
provisioning, aggregation, delivery, = dynamic
adaptation to the context and lifecycle management. It
also try to define a mechanism for integrating several
OSGi Service Platforms within the same local area
network so that services are able to invoke any other
remote service in a similar way as OSGi defines for
local services. This is the main reason which RMI has
been chosen. The OSIRIS Domain Connector uses
RMI to offer a transparent way of using OSGi
services as if they were placed in the local OSGi
framework. This idea holds the concept of the OSIRIS
Domain.

3.1 Vocabulary

The OSIRIS Domain is composed of a set of nodes
sharing a multicast address-port pair. These nodes
contain an OSGI framework implementation with

several remotely accessible services running on top of
them. These are what we call OSIRIS Services.

As we have conceived it, an OSIRIS service is
slightly different from an OSGI service. Within OSGi,
any object can be registered as service, but in the
purposed scenario, we need to be able of remotely
invoking services allocated in different nodes, so a way
of remote access has to be given to this kind of
services. A way of achieving it could be just
implementing the java.rmi.Remote interface. This
could be enough to establish the basis in order to build
a distributed system based on OSGi.

RMI (Remote Method Invocation) is part of the core
Java APL It allows the programmer to call methods
from a remote object without the need of socket
handling, which reduce the overall complexity. RMI is
used by the most widely accepted multicast Java tools,
such as JGroups*, in order to synchronize data among
servers of the same cluster.

In a similar way, the OSIRIS Domain Connector
(ODC) was developed to make possible having a
cluster of OSGi nodes collaborating within the same
local area network.

Each node must have the ODC service running in
order to be automatically connected to the rest of the
nodes. The ODC is based in the concept of “a virtual
bus” made up of two properties: a multicast ip address
and a port number, defined by the properties
odc.bus.ip and odc.bus.port respectively. Using
this bus all the nodes may send and receive messages
(point to point messages or broadcast messages).

3.2 Features

— Life cycle control: The ODC provides an API
to control the services' life cycle with methods
for starting, stopping, registering, unregistering
and publishing services.

— Domain search: The ODC also provides
methods for looking up services and browsing
(request all the service names) nodes of the
domain. Developers may find services by
service name, by node name or both.

— Remote invocation: It allows to get a remote
reference of any OSIRIS service, in order to
remotely invoke it.

— Synchronization of information: The ODC
ensure the real-time synchronization of available
services, sending broadcast messages containing
the event occurred (new service registered,
service started, service stopped, service
published, node added, node removed from the
domain, etc).

* http://www.jgroups.org

— P2P Communication: The ODC make possible
the communication among several nodes using
peer to peer messages. A simple chat tool could
be implemented in an very easy way using the
ODC.

— OSGi-like implementation: The way to register
OSIRIS services is similar to the way of
registering OSGi services. OSIRIS services are
just a special kind of OSGi services. In order to
accomplish with this premise, the OSIRIS
Domain Connector registers several OSGI
services, that can be used by developers for
requesting OSIRIS services (through the
ServiceResolver interface), registering its
own OSIRIS services (using the
ServiceRegister interface), etc. The OSGi
service named OSIRISService provides
references to mentioned interfaces, and it can be
considered the entry point of the ODC.

The ODC uses RMI to send messages and to
access remote services, so RMI| registry has to be
activated before registering and publishing remote
services.

4. Using the ODC

4.1 Registering and resolving remote services
First of all, the OSIRISService instance have to
be obtained querying to the bundle's context:

ServiceReference ref =

context.getServiceReference (
OsirisService.class.getName()) ;

OsirisService os = (OsirisService)
context.getService (ref);

Using the OsirisSpace used by the object
OsirisService we can get both ServiceRegister and
ServiceResolver as explained next:

ServiceRegister register =
os.getSpace () .getRegister () ;

ServiceResolver resolver =
os.getSpace () .getResolver () ;

4.1.1 The ServiceRegister interface

The ServiceRegister interface define methods for
adding and removing services, and for making them
public to any node present in the service network

e addService (Service impl)
. removeService (Integer instanceld)
(] publish (Integer instancelId)

[unpublish (Integer instancelId)

ServiceRegister interface offers the needed
functionality for controlling the life cycle of services
with remote communication capabilities.

4.1.2 The ServiceResolver interface
In the other hand, ServiceResolver define
methods for discovering and getting instances of
remote services:
e findService (String service)
e findLocalService(String
service)
e getNodes ()
e getServices (String node,
String service)
e browseNode (String node)

Two first methods return the instance of the service
whose name is passed as parameter. The first one finds
it around the whole domain and the second method
only look for the local node. The third method gets an
array containing the names of all the nodes running in
the domain. The getServices method returns all the
instances compliant with the service name passed and
running in the given node.

Finally, the last method returns the name of each
service running in the given node.

ServiceResolver interface provides the needed
functionality for searching the domain.

Both interfaces, ServiceRegister and
ServiceResolver, are implemented by the same
class, ServicesManager, which consequently is the
entry point of ODC for any other bundle. In any case,
third parties may code their own implementations.

4.2 How to implement an OSIRIS service

The only extra thing to be done while programming
a bundle in order to implement an OSIRIS Service
consists on implementing the Service interface, which
extends from java.rmi.Remote and it have just only
one method:

e getName(): returns the name of the service.

The main goal of this service is to be able of
differentiating Osiris services from other common
OSGi services when casting a ServiceReference
instance. An important concept that developers should
have in mind is that the Service interface extends the
java.rmi.Remote interface, so they will have to
throw RemoteException in every method you will
define. Also, developers will have to make a client
bundle that could be given to anybody who were
interested in the use of that OSIRIS Service. This client
bundle must contain all the remote interfaces and any

class used on them. Just like developing an RMI
application.

4.3 Invoking an OSIRIS service

In order to invoke an OSIRIS service, running on a
remote OSIRIS node, the first thing to be done is to use
the remote interface of the service to obtain the service
name:

String name =
RemoteService.class.getName () ;

Then, this service name can be used with the class
ServiceResolver to obtain a remote instance of the
object and call its methods directly. There is several
options for choosing the remote service from the right
node.

a) If the name of the destiny node is specific then

just request to ServiceResolver one of the
instances running there:

resolver.getServices (node, service) ;

b) If the service is running on the local node, just
indicate it to the ServiceResolver and all the
local instances of the given service name will
be returned:

resolver.getLocalServices (service);

¢) When the remote node where service's instance
remote will be obtained from does not mind,
then the method findService may be used:

resolver.findService (service) ;

All these methods returns an instance of the required
service (whose name is passed as a parameter) or throw
NotSuchObjectException if any instance is found.
The instance returned may be used as if it was a local
one, invoking its methods normally.

5. Synchronization of information

In the proposed scenario we have a network with
nodes that public a set of services (OSIRIS Domain).
Each node must have information about the available
services on the web. For that purpose each node has a
table with the needed web information. This
information must be synchronized so often’ by a
polling process. We must notify changes in the states of
any OSIRIS service, to all the nodes just in runtime.

*To learn more about the frequency of synchronization process,
please refer to [8]

This implies the design and implementation of a
synchronization mechanism. This synchronization
mechanism can be designed and implemented based on
very simple bus. Using this bus, it can be created one
or more multicast sockets that all the nodes must know
in order to send and receive messages (point to point
messages or broadcast messages).

The obDCActivator is the activator of the ODC
bundle. It implements the
interface. Its start method creates an OsirisSpace
object and pass it as parameter to start an
OsirisService. represents the
execution space of the ODC, while OsirisService is
responsible of starting and stopping the services
registry of the ODC. The OsirisService will be
registered as OSGi service by ODCActivator after
being started. This service is responsible of catching up
all the existing remote instances of Osiris Services, and
maintaining it in a well ordered structure. This structure
has been named ServiceTable.

A ServiceTable object contains the information
of the running instances of each service, allowing
searches of these by node or by service. In order to be
registered in the ServiceTable a Service have to
implement the Service interface. This is a very basic
interface and its unique purpose is to ease the
identification of Osiris Services and its differentiation
from other non specific Osiris services.

The ServiceResolver and ServiceRegister
interfaces are focused on managing instances of
services, that is adding, removing, publishing and
unpublishing services, as well as searching them and
getting references to any service in any node of the
service network. These interfaces define the
functionality needed to implement the OSIRIS Service
Registry, so third parties may implement its own
Service Registry. In any case, the ODC provides a
default implementation in the ServiceManager class.
Another functionality of the ODC consists on
periodically polling the network in order to know how
many nodes are connected and sending broadcast
messages to advertise the changes produced by the
management process.

The ServiceRegister interface define methods
for adding and removing services, and for making them
public to any node present in the service network. In
the other hand, ServiceResolver define methods for
discovering and getting instances of remote services.

Both interfaces,
ServiceResolver are

BundleActivator

OsirisSpace

ServiceRegister and

implemented by the
ServiceManager class. This class manages the
services registration and localization. In order to
accomplish this task it uses a helper class for storing

the information related with the different instances of
services. This helper class is ServiceTable.

ServiceTable deals with Instances, both
LocalInstances and RemotelInstances, and, if the
node is public, it can be periodically caught up by the
Synchronizer. The ServiceTable is constructed
by the OsirisService for each node and passed to
the ServiceManager and Synchronizer in order to
have a synchronized copy of it in each node.
Obviously, instances references to Osiris services, that
is, they contain an attribute with the implementation of
the Service interface. They also contain the RMI
registry where the service resides.

The Synchronizer object is responsible of the
synchronization among all the ServiceTables in the
service network. To do it, Synchronizer trust on two
controller classes: BusController which implements
MessagelListener in order to process incoming
messages, and TimerController which implements
TimerListener in order to trigger events for polling
the service network and sending synchronization
messages.

o) o

Servi i Senvicell

Hodelnformation
N
- mmiRegistry \

Reg \
rmiReqistry \

- sRrvirRTANIR
#implementation

. S SeniceTania
Service
=7 T
Locallinstance

SenviceManager

- seniceTahle

i
i

I

i

I

I

Remotelnstance - - - -~ ;
I

i

i

I

i

Figure 2: The Regservice's class diagram
6. Applying ODC in a e-learning scenario

With the ODC running in every node, an OSGi-
based application may distribute its tasks around its
local area network, making development of OSGi
services easier for programmers. This approach is
specially useful in those cases where execution of a
huge amount of arithmetic operations and many
simultaneous threads are considered critical system's
requirements, when specialized functionalities have to
be placed in separated and dedicated servers. Thus,
very complex tasks, such as calculating the amount of
pheromones to be dropped and the suitability factor of
each arc, as it is explained in [4] can be carried out by

different processors, working simultaneously with the
same goal: to calculate the fitness function. Thanks to
the discretization of the time, described in a later work
[7] by the same authors, synchronization of these tasks
turn easier and make possible a collaborative work
between that servers and the LMS.

ACO Server uses an Ant Colony Optimization
algorithm in order to calculate the best path in a the
learning tree of the Figure 1. It considers learners as
ants moving from one node to another in the tree,
dropping a variable amount of pheromones in the arc ij,
depending of the level of success reached by the user in
the course of the node i. The total amount of
pheromones dropped by all the users in a concrete arch
will be helpful for other users stayed in a node with
more than one output arc they could choose.

By the other hand, the Bayesian Server applies the
Bayes Theorem to calculate the most suitable path that
a learner should take, taking into account the historical
performance of his/her equals in previous academical
courses/training experiences.

The results given by both servers will be added and it
will return the final value of the fitness function for
each arc. The system is finally made up of three OSGi
nodes whose have been provided with the ODC bundle
that offers them communication capabilities through
the ODC bus. This bus is used mainly for sending
multicast messages but also for requesting specific
measures and data, taking advantages of the fast
protocol used.

Scalability of the OSIRIS domain is granted by the
ODC, because any OSIRIS node may join the bus, and
consequently, it may be added to the OSIRIS domain at
any time. for each arc taking the learning tree and
historical data of the learner in the involved course
(tracking information), taking the historical data and
learner profiles as inputs, and other tasks

7. Conclusions and further work

ODC is only the base piece for transparent cooperation
among the OSIRIS nodes. Other services may use its
API for implementing more complex tasks. This is the
case of ISIS, a sub-project that is currently being
developed within the OSIRIS Project. ISIS is
responsible of the high-level integration of services in
order to share data. Data and events may be added in a
declarative way, just in run-time, making easy the
integration of services from different bundles in order
to cooperate. This solution was designed to avoid
dependencies among data consumers and data
producers. These kind of dependencies differs from

bundle dependencies because of they are not a matter
of a Java package or Java Classes dependency but they
depends of the existence of some kind of data. Some
times, this kind of data cannot be predicted, and it
depends only in the kind of data provided by the data
producer. This problem will be solved by a data and
event publication mechanism implemented by the ISIS
Project.

Other future steps will be: to implement ISIS wrappers
providing a http and Web Service-based access to the
OSIRIS Domain's services, data and events through the
Proxy Node, applying security policies based on digital
certificates and identity federation.

8. References

[1] M. Birbeck, J. Axelsson, S. Pemberton, B. Epperson, S.
McCarron, M. Ishikawa, A. Navarro, M. Dubinko.
XHTML™ 2.0. W3C Working Draft (work in progress), 26
July 2006, http://www.w3.0org/TR/2006/WD-
xhtml2-20060726/

[2] W3C. Roadmap for Accessible Rich Internet Application.
(WAI-ARIA Roadmap). W3C Working Draft 4 February
2008. http://www.w3.org/TR/2008/WD-wai-aria-
roadmap-20080204/

[3] Commission of the European Communities. 4
Memorandum on Lifelong Learning. Brussels, october 30",
2000.
http://ec.europa.eu/education/policies/lll/life/memoen.pdf

[4] José Manuel Marquez, Juan Antonio Ortega, Luis
Gonzalez-Abril, Francisco Velasco. Creating adaptive
learning paths using Ant Colony Optimization and Bayesian
Networks. In proceeding of 2008 IEEE World Congress on
Computational Intelligence (WCCI 2008). Hong Kong, June
2008.

[5] G. Beni, J. Wang. Swarm Intelligence in Cellular
Robotic Systems. In Proceedings of NATO Advanced
Workshop on Robots and Biological Systems, Tuscany, Italy,
June 26-30 (1989)

[6] P. Miller. Swarm Theory. National Geographic
Magazine. July 2007

[7] José Manuel Marquez, Juan Antonio Ortega, Luis
Gonzalez-Abril, Francisco Velasco. Defining adaptive
learning paths in competence-oriented learning. In
proceeding of IADIS International Conference e-Learning
2008. Amsterdam, 22nd-25th July, 2008.

[8] J. Cho, H. Garcia-Molina. Synchronizing a database to
Improve Freshness. In Proceedings of 2000 ACM
International Conference on Management of Data
(SIGMOD) Conference, May 2000.

