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Abstract

This paper proposes a methodology to diagnose a tran-
sient state of a dynamic system using boosting. The method-
ology is composed by two steps: one off-line process and
another on-line process. The off-line phase begins gather-
ing data from the system, both when it is running free of
fault and when the system is running in each fault mode.
A segmentation and normalization algorithm is used to re-
duce the large amount of gathered data. The final step is the
generation of a decision tree by a classification tool. The
boosting technique is used with the aim of improving the
classification results. The on-line process of the method-
ology consists of evaluating a new reading of the system
sensors with the generated decision trees. The diagnosis of
the system is the result of this evaluation which has very
low computational cost due to the simplicity of the decision
trees. Also, the implementation cost is very low due to this
simplicity.

1 Introduction

A long variety of techniques, coming from Artificial In-

telligence among other, has been applied to diagnosis field

from their beginning [8]. Inside the Artificial Intelligence

techniques, data mining is about solving problems by an-

alyzing data already present in databases. Data mining is

defined as the automatic process of discovering patterns in

data. One of the fields of Data Mining is the Machine Learn-

ing, which is defined as the ability for a computer system to

generate new knowledge based on its past experiences. Ma-

chine Learning techniques have been applied to diagnosis

field, from a decade ago [3] to current years [9]. Inside

classification techniques, the boosting is part of ensemble

methods. The basic idea is that given a set of classifica-

tors, better results could be obtained using a combination

of all of them instead of using one alone, even if it is the

best. Boosting is a general method for improving the perfor-

mance of any learning algorithm. In theory, boosting can be

used to significantly reduce the error of any learning algo-

rithm that consistently generates classifiers which need only

be a little bit better than random guessing. Boosting works

by repeatedly running a given learning algorithm on vari-

ous distributions over the training data, and then combining

the classifiers produced by the weak learner into a single

composite classifier. The first provably effective boosting

algorithms were presented by [10].

Many diagnosis approaches have been focused to the di-

agnosis of the induction motors. These motors are very

common in industry due to their simplicity, rugged struc-

ture, cheapness and easy maintainability. It is very usual

that these motors were involved into larger industrial sys-

tems. Fault detection and diagnosis of these motors are very

important when they are working in on-line monitor condi-

tions. Several techniques has been applied in order to diag-

nose these motors: techniques based on the signal analysis

[11], based on the dynamic modelling of the motor [2] and

knowledge based techniques. Within the knowledge based

techniques, many tools have been used: expert systems [4],

neuronal networks [7] or automatic classification [5].

It is habitual that these motors work in a iterative mode

among several known set points. Also, it will be desirable

does not add additional sensors to diagnose the system. This

is the case treated in the present paper. The goal is to di-

agnose a DC Motor faults at known transient states. With

this purpose, a set of classification rules must be obtained.

This classification rules will be used when the system is be-

ing monitored to obtain the diagnosis. Classification rules

are obtained by boosting of a previous obtained fault modes

database. A complete methodology is proposed for this pur-

pose.

This is an important improvement to the methodology

presented in a previous work [1]. The complete methodol-

ogy is illustrated with simulations of a DC motor. Finally,

eight different faults have been considered in this system

and the results will be discussed.



2 General Methodology for Diagnosing Dy-
namic System by Classification

In this section, a general methodology for diagnosing dy-

namic systems will be exposed. First a set of assumptions

must be considered and it is necessary to specify the defini-

tions and notations used to explain the methodology.

2.1 Assumptions

The following assumptions are necessary to consider in

the present methodology:

• The system will be alternating between steady states

and transient states.

• The number of transient states is finite and they are

always produced between two known set points.

• When the system begins a transient state, if a fault ex-

ists it will be present fully since beginning of the tran-

sient to the steady state.

• Faults only will be detected at transient states, inde-

pendently of the time instant in which the fault occurs.

• All fault conditions must be observed first, before di-

agnostics can proceed.

2.2 Definitions and notation

In order to clarify the phases of the proposed methodol-

ogy, the following definitions are necessary

Definition 1. Trajectory. A trajectory can be defined as

a function s from a set of time instants T to a set of a system

sensor values V ⊆ IR.

s : T → V

where the values of T are to regular intervals, from the ini-

tial instant t0 to the final instant tn

T = [t0, t0 + ΔT, t0 + 2ΔT, ..., t0 + (n − 1)ΔT, tn]

t0 denotes the beginning of a transient state, and tn denotes

the establishment point. The element i of a trajectory will

be denoted as si. Thus a trajectory j will be represented as:

j = [j0, j1, ...., jn]

Definition 2. Labelled Trajectory. A labelled trajectory
is defined as a trajectory in which a label has been added.

The value of the label is added as the last element in the

trajectory and it represents the conditions in which the tra-
jectory has been obtained. Thus a labelled trajectory jl will

be represented as:

jl = [jl0, jl1, ...., jln, LABEL]

where label is a string(discrete value).

Definition 3. Trajectories Database. A trajectories
database is a collection of trajectories, belonging to the

same system and corresponding to the same time instant.

All trajectories must have the same numbers of elements.

This collection of trajectories must be stored in a file, where

each trajectory is represented by one line.

Definition 4. Labelled Trajectories Database. A labelled
trajectories database is a trajectories database where all

trajectories are labelled trajectories.

2.3 Phases of the methodology

The proposed general methodology has two phases

clearly different:

1. The first phase (fig. 1) is developed off-line. In this

phase the main objective is to obtain a set of decision

rules that characterize the system behaviour in the dif-

ferent fault modes which want be diagnosed.
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Figure 1. Off-line phase of the proposed
methodology

2. The second phase (fig. 2) is the diagnosis phase itself.

It is developed on-line, while the system is being mon-

itored. In this phase the generated rules are evaluated

with the system sensor measurements in order to ob-

tain a system diagnostic.
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Figure 2. On-line phase of the proposed
methodology

2.3.1 Off-line phase

The first task of this phase is to select the set of faults to

diagnose, and the transient states at which these faults will



be detected. Since the diagnosis process will be performed

at known transient states, the process below described must

be performed for all transient states in which the diagnosis

process must be performed. In this phase there are three

consecutive steps: data gathering, data treatment and deci-

sion rules generation.

Data gathering
In this step the goal is to obtain a collection of system

trajectories, for each fault mode and for the free fault run-

ning. Obtaining the free fault trajectories is not a problem

usually, but gathering the fault trajectories is another mat-

ter. For this purpose, two different options are considered:

• When it is possible to generate the modes, without

damaging the system, they are provoked and the trajec-
tories are gathered. This is, for example, the running

mode in which a system component is accidentally dis-

connected. Also, it is possible to use this method when

the system will be built in a series production. In this

scenario, a set of prototypes could be damaged to pro-

voke the faults and the trajectories could be obtained.

Therefore, the diagnostician will be useful for all prod-

ucts in the series.

• When the fault cannot be provoked in the real system

(because the system could be damaged or because it

is impossible to stop the running system), a system

model must be generated. Then, fault modes, which

cannot be provoked in the real system, are simulated

in the model, in order to obtain the corresponding tra-
jectories.

These two options are not excluding, and both can be

used at the same time. For each collected trajectory, a rep-

resentative label will be added. This label represents the

running mode of the system in which the trajectory has been

obtained: a concrete fault or free fault. Therefore, each tra-
jectory is transformed in a labelled trajectory. All labelled
trajectories are stored in a labelled database. The result is a

labelled trajectories database.

Data treatment
Usually, most of the gathered data are not relevant to dis-

tinguish among different behaviours. For example, data of

trajectories which are closer to the steady state will be very

similar, even if trajectories belong to different behaviours.

In this step, the aim is to reduce the amount of data that

represents each trajectory. It is performed by means of a

segmentation algorithm. The goal of this algorithm is to

characterize a trajectory by a succession of linear segments.

This succession of linear segments approximates the trajec-
tory with many less points than the original trajectory. In

[6] a comparative among segmentation algorithms can be

found. In our case, the selected algorithm is the sliding win-

dow algorithm 1. The reason for this selection is that it will

Table 1. Segmentation on-line algorithm

Algorithm Seg TS = Sliding Window(T ,max error)

fix = 1;

while not finished segmenting time series
i = 2;

while calculate error(T [fix: fix + i ]) < max error

i = i + 1;

end;

Seg TS =concat(Seg TS,make segment(T [fix:fix+(i-1)]);

fix = fix + i;

end;

be needed to perform this segmentation on-line in the next

phase of the methodology.

In this algorithm, a segment is growing until it exceeds a

determine error bound. When the error bound is exceeded,

a new segment begins to grow. The error is calculated using

the expression in equation 1.

Error =

√√√√
n∑

i=1

(xi − si)2

n
+ λmax |xi − si| (1)

The first term of the expression 1 represents the deviation

between the trajectory and the segment. The second term

ensures that the deviation in any point is not greater than

error. Lambda factor lets pondering each term.

In the segmentation algorithm, each trajectory has been

approximated with few segments, but the resulting database

is not a labelled trajectories database, because all tra-
jectories in database have not the same number of ele-

ments. After segmentation process, each trajectory is repre-

sented with a different amount of segments, and these seg-

ments start and finish in different time instants. In order

to solve this situation, and recover the labelled trajectories
database, new segments must be generated to homogenize

the numbers of elements in each trajectory. This will be

performed with a normalization algorithm 2.

Each normalized trajectory is saved in a new normalized
trajectories database and the label of trajectory is added.

Generating new segments from a existing segments is very

easy. Only it is necessary to applied the linear equation y =
mx + n. m and n are calculated for the current segment,

and a new y is generated for the new timestamp x.

The normalization algorithm returns a new database

in which all trajectories have the same number of ele-

ments and they correspond to the same timestamp. This

new database fulfils the definition of labelled trajectories
database.



Table 2. Normalization on-line algorithm

Algorithm Normalized DB = Normalize(Segmented DB)

timestamps = {}
trajectory = read from Segmented DB

while ∃ trajectories in Segmented DB

for each element in trajectory

if timestamp(element) ∈�timestamps

timestamps = timestamps
⋃

timestamp(element)

end
trajectory = read from Segmented DB

end
end

go top of Segmented DB

trajectory = read from Segmented DB

while ∃ trajectories in Segmented DB

for each element in timestamps

if element � in trajectory timestamps

generate a new segment with element

end
add new element to normalized trajectory

end
save normalized trajectory to Normalized DB

trajectory = read from Segmented DB

end

Many times, fault modes will be more differentiable by

the waveform of the evolution of a sensor measurement than

the read values by the sensor themselves. In the way that our

waveforms are represented by a succession of linear seg-

ments, it is important to know how steeply the segments go

up or down. With that purpose, the slope of each segment

will be calculated and added to the segmented and normal-
ized labelled trajectories database.

The cost that must be paid in normalization process is

that the new normalized trajectories have more segments

than the original ones. The increasing is duplicated when

slopes of each segments are added, but it is unavoidable

if we want use this information. In any case, the global

process has reached to reduce the dimension of the train-

ing database. This is possible because when trajectories are

closer of the steady state, all of them are very similar, and

segmentation process reduces a lot of information.

Decision Rules generation
The resulting database of the previous step fulfils all con-

ditions to apply to them a classification tool. Thus, the

normalized and segmented labelled trajectories database is

used as training set with the selected classification tool. The

output of this step is the set of generated decision rules.

In order to improve the accuracy of the learning algo-

rithm, boosting will be used. There are two ways of doing

boosting:

• Heterogeneous combination of classifiers. Several dif-

ferent classification methods are combined.

• Homogeneous combination of classifiers. An unique

classification method is used. This method is named

method or base classifier.

Any way, result of the classification process will gener-

ate as rule sets as the number of classifications performed

(fig 3).
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Figure 3. Boosting classification

2.3.2 On-line phase

The on-line phase of the methodology consists of evaluat-

ing an observation, of the sensor values of the monitored

system, with the set of decision rules obtained in the off-

line phase. In order to compare observed data with decision

rules, the same treatment must be applied to observed data.

Therefore, it is necessary to perform the on-line segmen-

tation of the trajectory which is being observed. This is

the reason because on-line segmentation algorithm was se-

lected. Also, it is necessary to generate new segments for

the normalized timestamps and calculate the slope of each

segment. After this treatment, observed values will be di-

rectly comparable with decision rules . All process has low

computational cost, and due to this the on-line process can

be quickly performed.

As the boosting has been used to generate several sets

of decision rules, the new observation needs to be evaluated

with all of the classifiers obtained in the off-line process

(fig 4). The result will be as classifications as existing clas-

sifiers. In order to obtain a unique result, a voting among all

results is done. This voting can be as simple as selecting the

more voted class, or it is possible to ponder each classifier

vote with some criteria.

Output of the voting is the class corresponding to be-

haviour of the system. This label indicates what is happen-

ing in the system.

Because a different set of decision rules have been gen-

erated for each transient state, it is necessary to know the

current setting point and the new reference, in order to se-

lect the appropriate set of decision rules.
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Figure 4. Evaluation with boosting

3 Application to a Chopper Controlled DC
Motor

3.1 System description

The proposed methodology has been applied to a sepa-

rately excited DC motor which is supplied by a three phase

rectifier circuit. The DC motor is fed by the three phase rec-

tifier through a chopper that consists of a IGBT transistor,

and a free-wheeling diode. The motor torque is controlled

by the armature current, which is regulated by a current con-

trol loop. The motor speed is controlled by an external PI

controller, which provides the current reference for the cur-

rent control loop (fig. 5).

The DC motor drives a mechanical load, that is char-

acterized by the inertia J , friction coefficient B and load

torque Tl. This motor performs a recurrent work, run-

ning from the stop state to reach the reference, always

with the same load torque. This could be the scenario

of a motor driving a centrifugal pump. This system has

been implemented with Simulink� using components of

the SimPowerSystems� Toolbox (fig. 5).

The DC motor is represented by its equivalent circuit

(fig. 6), consisting of inductor La and resistor Ra in series

with the counter electromotive force (EFM) E.

Vdc

IGBT

D1
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+
E

Ia

J, B, TLVa

+

Tm

Mechanical
Load

DC motor

Figure 6. DC Motor equivalent circuit

The DC source (Vdc) is the output of the three phase rec-

tifier circuit. The average output voltage is obtained by (2).

VAV =
3
π

VM sin
π

3
(2)

3.2 Faults isolation

The fault modes to diagnose are divided in two types:

Disruptive Faults. When these faults occur, the faulty

component stops totally. For the present system, the fol-

lowing disruptive faults will be considered:

• One phase fault. One phase voltage is missing.

• Two phases fault. Two phases voltage are missing.

• IGBT disruption. The IGBT transistor is always on.

• Free-wheeling diode is short-circuiting.

• Free-wheeling diode is open-circuiting.

Ageing Faults. This type of faults occurs when compo-

nents are loosing its properties gradually, and this produces

a progressive alteration in the working system. Next ageing

faults will be considered:

• Some turns in the armature winding are short-

circuited. This produces a decrement in the inductance

and resistance of the winding. The rate between the

number of short-circuited turns and the decrease in re-

sistance and inductance are given by equations 3 and

4.

Ω = K
L

S
(3)

L =
μrμ0N

2A

Lc
(4)

• Some turns in the field winding are short-circuited.

The fault is the same that the previous one, but applied

to the field winding.

• Bearing friction increasing. An excessive bearing fric-

tion, due to stress, produces an increasing in the fric-

tion torque.

3.3 Off-line phase

In order to obtain the labelled trajectories database, a

set of simulations have been done with the above described

system. Transient state simulated is from stop state to a ref-

erence of 50 rad/sec. Parameters for simulations are shown

in table 3

A tolerance interval is considered in nominal values of

each component. These components are considered free of

fault if its value persists inside this interval. This represents



Figure 5. Simulink� model of the system

Table 3. Simulation parameters
Nominal Power 3.9 KW

Armature resistance 0.6 Ω
Armature inductance 0.0012 H

Field resistance 240 Ω
Field inductance 120 H

Mutual inductances 1.8 H

Friction torque 0.5 N.m

Load torque 10 N.m

Inertia 1 Kg.m2

Viscous friction coefficient 0.05 N.m.s

PI Controller Proportional Gain 3 Kp

PI Controller Integral Gain 0.5 Ki

PI Controller current limit 200 A

Current controller hysteresis band 3 A

the little alterations that can be produced in a system with-

out a fault is considered. Tolerance rate has been established

in a 4% of the nominal value of the components.

Each disruptive fault simulation has been performed by

changing the system model to produce the fault.

For ageing faults, the nominal values of the faulty com-

ponent are changed. For short-circuiting of turns in wind-

ings, a decrease of inductance and resistance until 40% has

been considered. Friction torque rising to 10 N.m. has been

considered for bearing fault.

Thirty simulations per behaviour have been done by

Montecarlo selection of interval values. Data gathered cor-

responds to readings of the angular speed of the rotor (ω)

and the control signal Iref (Fig. 5).

After obtaining the simulations, the segmentation and

normalization process (tables 1 and 2) has been applied to

labelled trajectories database. With the aim of increasing

the available information, the value of the slope of each seg-

ment has been calculated after the normalization algorithm.

These values have been added to the segmented and nor-

malized labelled trajectories database.

Finally, the classification tool C5.0� has been ap-

plied to the segmented and normalized labelled trajectories
database.

The considered options have been without boosting and

with boosting. A single decision rules tree is obtained with-

out boosting. The size of the single tree is 10 nodes. In the

other side, three boosting trials have been tried and three

decision rules trees have been obtained. The size of the ob-

tained trees have been 13,11 and 9 nodes.

3.4 On-line Phase: Results

In order to evaluate the validity of the methodology, 10

simulations per behaviour have been performed. The new

simulations have been treated to be evaluated with the gen-

erated decision rules. This means that the segmentation and

normalization algorithms have been applied, and the slopes

of the segments have been calculated. For evaluating the

new simulations with the boosting classification, a equality

voting is performed among the three generated trees. The

obtained results with respect to the single classification tree

algorithm are shown in table 4.

As can be found in results table, never it is diagnose a

fault when it is not happening. In other words, never a false

positive is given.

It is important to highlight that faults F2 and DS are non-

discriminable, because both give the same sensor readings.

This causes that both evaluations return an erroneous diag-

nostic when the fault F2 is simulated. The rest of disruptive

faults are always correctly detected with both options.



Table 4. Diagnosis results
Fault Behaviour Single tree Boosting

diagnosis diagnosis
(OK) No Fault 100% OK 100% OK

(AW) Armature Windings 80% AW 90% AW

20% OK 10% OK

(FW) Field Windings 90% FW 90% FW

10% BF 10% BF

(BF) Bearing Friction 90% BF 100% BF

10% FW

(F1) 1 Phase Fault 100% F1 100% F1

(F2) 2 Phase Fault 100% DS 100% DS

(IG) IGBT Fault 100% IG 100% IG

(DS) Diode Short-circuit 100% DS 100% DS

(DO) Diode Open-circuit 100% DO 100% DO

With respect to the ageing faults the diagnosis is gen-

erally more imprecise. This imprecision is because sensors

readings are very similar when ageing values are very closer

to the correct ones. For example, AW fault is not detected

in 20% of cases when it is evaluated with the single deci-

sion tree, and in the 10% of cases when it is evaluated with

boosting. Also, the faults FW and BF are mistaken when

the sensor readings are very similar. Nevertheless, boost-

ing classification improves the obtained results by the single

classification tree.

4 Conclusions and Future Works

An automatic and general methodology to diagnose dy-

namic systems by boosting has been proposed. The pro-

posed technique is a general method for improving the ac-

curacy of any given learning algorithm and it has no param-

eter to tune. The presented segmentation and normalization

algorithms are able to reduce significantly the dimension of

the gathered data to treat.

This methodology is able to diagnose dynamic systems

when they are running in transient states that have been pre-

viously trained.

Models are not necessary when experimental data are

available; they are only used when real data are not avail-

able.

Obtained results with the chopper controlled DC motor

are very accurate, and it have been proven that boosting is

able to improve the results of a single classification.

When the rules have been generated, the diagnosis pro-

cess is very simple, and it can be performed with a linear

computational time with respect to the numbers of nodes in

the tree. This simplicity allows that it can be implemented

with low cost components.

Currently this methodology is been applied to a real im-

plementation of the modelled system. Some different faults

are being added, as eccentricity fault or brush fault. Also,

improvements in data treatment and classification step are

being tested.
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