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Abstract

In the area of human digital twins, the designed model should be as close as possible to the reality. The weight variable is one of
the interested parameters of these mathematical models, as well as its interaction with other vital signals. The aim of this paper is
including the information gathered from weight sensors of a person in its digital twin. To do this it is described an algorithm that
filters and forecasts the human weight to use it in indexes such as BMI. It has been applied to a real sample and the results obtained
are good.
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1. Introduction

The creation of a human digital twin requires different vital signals, calculated indexes and some metrics. For
complex models like these it is necessary to divide in simpler models which in turn can be related each other.

The monitorization [1] of the humans and the early disease prevention is the final aim of the human digital twins,
trying to align the target of state machine of the model with the patterns of the human-machine [2]. The latest Internet
of Things (IoT) developments [3] focused on the fitness provides to the market a sort of commercial ubiquitous devices
[7], in particular smart bands and smart watches. Some examples such as the real time heart rate, the walking or resting
heart rate, and the sleeping hours are stored in the smart watches like Apple HealthKit and cloud databases. This raw
information can be queried by mobile applications as well as complex backend systems.

On the other hand, the increment of overweight and obesity [4, 5] has also opened the market to new smart devices,
for instance smart scales. The weight or the body fat can be measured and recorded whenever the users want.
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In a model, the body mass index [6] is widely used to measure the status in fitness models. Some actions can be
suggested when the user is underweight, overweight or more.

Due to the information is gathered from several devices and every device can have one or more sensors; therefore,
the collection of samples have different time frequencies. To relate the signals and therefore the collections of samples
need to exist in a specific moment, so the model is split in steps.

The body mass [13] or commonly called weight has a tiny recurrency compared to heart rate so it is needed a
forecast mechanism to match the values in one time step. This paper will be focused on the extrapolation of the
weight received from a smart scale. After this standardization process the resulted samples can be used as dataset of
machine learning models or cloud computing calculations.

The paper is organized as follows. Section 2 exposes the properties of the weight to get a picture of the problem.
Secondly, in Section 3 the time intervals is defined. Then, in Section 4 the extrapolation algorithm is described. The
acknowledgements are in Section 6. Finally the conclusions and further works are detailed in Section 5.

2. Properties of weight

Based on the anonymous survey “habits of weigh yourself” made for this paper on internet over 58 people on
March 4, 2021; the following properties can be inferred from its results and they justify discretizing the signal of the
weight and taking the values based on the closer samples.

2.1. Recurrence

The high variability of the hour of weigh yourself shown in Figure 1 does not allow to predict the moment when
the sample of the weight is gathered.

Table 1. Common weigh yourself hour.

Hour Count Percentage

None 8 13.8 %
7 5 8.6 %
8 19 32.8 %
9 9 15.5 %

10 2 3.4 %
11 4 6.9 %
12 1 1.7 %
19 2 3.4 %
20 5 8.6 %
21 3 5.5 %
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Fig. 1. Common weigh yourself hour from Table 1.

The recurrency per week is also highly variable, shown in Figure 2. Consequently, it is not possible to predict how
often the samples are gathered.

Table 2. Number of weighing yourself per week.

Frequency Count Percentage

(Weekly) 1 14 17.7 %
2 6 7.6 %
3 12 15.2 %
4 4 5.1 %
5 15 19.0 %

(Daily) 7 28 35.4%

Weekly
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Fig. 2. Number of weighing yourself per week from Table 2.
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2.2. Variability

The variability throughout a day the weight could increase or decrease significantly based on the quantity of liquid
or food, basal metabolic rate [8], activity [9], hormone levels [10], the frequency of bowel movement [11]... So, it is
not possible forecasting more accurate for an specific day.

In the opposite case, it might be possible measure to the weight few times in a short period of time and it should
represent the same moment. In some cases, mobile applications [16] linked to the smart scale ask for a confirmation
when the difference is too big. For the current proposal, the value of the weight in a step will be the average of the
values inside the same time step.

3. Time interval

As it was exposed before, during the creation of a model the samples of the vital signals are in different frequencies,
so it is necessary to standardize in time intervals. The complex structure [14] has to be converted into a time interval
defined by [start, end].

The parameter stepSize is the number of minutes of one step. For this algorithm will be 1 min. So a time interval
can be defined as the period of time [ti, ti+1] where ti is the beginning of the step and ti+1.

ti+1 = ti + stepS ize (1)

In the forecasting algorithm some time interval methods will be used, they are intersect and expandMinutes.

3.1. Method intersect

An interval x intersects with an interval y when they share part of their time. It is shown in Figure 3.

intersect(x, y) = y.end ≥ x.start ∧ y.start ≤ x.end (2)

t ---------------->

x -----S-----E-----

y1 ---------s---e--- y1 intersects with the right boundary of x

y2 --s-----e-------- y2 intersects with the left boundary of x

y3 -------s-e------- x contains y3

y4 --s----------e--- y4 contains x

Fig. 3. Possible cases of intersect is true.

3.2. Method expandMinutes

Date types are specific of the programming languages, so it is recommended the usage of a common representation.
Henceforth the dates will be represented in ticks1[15] format. Due to some systems like Apple devices include the
second precision and it is not needed, the smallest precision is minute and the seconds component can be ruled out.

The constant ticksPerMinute is the number of ticks in one minute, that is 600 000 000, and it is necessary to
convert time difference in minutes.

An interval i is expanded in m minutes when the field start in moved m minutes before it and the field end is moved
m minutes after it. This method is used when there are not any samples for a time interval and it is need to expand the
search radius.

expand(interval,m) = [i.start − (ticksPerMinute × m), i.end + (ticksPerMinute × m)] (3)

1 One tick is 100 ns (nanoseconds) and date is the number of ticks since 12:00, January 1, year 1 in Gregorian calendar.
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4. Procedure

Below, the involved methods and the resampling process are described. The extrapolation itself is part of the
method searchSamples(samples, interval) and the general method to standardize all the samples is the method
getAllStandardSamples(samples1, samples2, ... samplesn).

4.1. Filtering of bounding values

When information is extracted from a smart device, a potential problem could happen, users can add manually
values and consequently that action could be a source of possible errors.

Based on a dataset [12] of 40 400 samples of height of 18 years old people, the bounding values depending on the
gender have been obtained using BMI the formula can follow:

bmi = weight[kg] ÷ height[m]2 (4)

weighti = bmi × height2
i (5)

weight = average(weighti) (6)

Table 3. Extreme values for weights depending on the gender.

Gender Threshold

Weight(kg)
Extreme
Underweight
BMI 16

Weight(kg)
Moderate
Underweight
BMI 16

Weight(kg)
Obesity III
BMI 40

Weight(kg)
Obesity IV
BMI 50

Female Minimum 39.50 41.97 - -
Female Maximum - - 98.74 123.43

Male Minimum 45.38 48.22 - -
Male Maximum - - 113.46 141.83

The BMI values for extreme underweight and obesity IV have been taken as limits maximum and minimum re-
spectively due to there are no more extreme categories. The categories moderate underweight and obesity III could be
taken in a more restrictive model because more values are out of range. All the samples whose weight is out of range
should be discarded. This filter can be applied in early steps in our process, so it is not needed to spend space and
processing time.

4.2. Identify time forecast boundaries

All the samples extracted from the devices usually are within a time interval, so they have at least a tuple of three
values: start date (samplei.start), end date (samplei.end) and the signal value (samplei.value).

In addition to the samples of weight there are also other samples like heart rate or height, and that boundaries
belong to the model itself, so the entire set of samples is needed. One modification could be including the current time
in this limit calculation so it will try to extrapolate until then.

The boundaries will be a tuple of the minimum date of all the samples of all the signals for the current model and
the maximum date of all the samples.

getForecastBoundaries(samples1, ..., samplesn) = [min(x.start|x ∈ samplesi),max(x.end|x ∈ samplesi)] (7)
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4.3. Definition of all intervals

It is needed to create a collection of time intervals, one per step. The method getAllIntervalsPerStep is defined
in Algorithm 1.

The result is a collection of steps. Every step is followed by the immediate next step, and all the steps have the
same size.

Algorithm 1: getAllIntervalsPerStep(samples1, samples2, ... samplesn)
samplesi: Input. Set of samples.
Result: The set of all intervals.

1 (globalS tart, globalEnd)←
getForecastBoundaries({x.start|x ∈ samples1}, {x.start|x ∈ samples2}, ..., {x.start|x ∈ samplesn})

2 interval.start ← globalS tart
3 interval.end ← globalS tart + (ticksPerMinute × stepS ize)
4 intevals← ∅
5 while interval.end < globalEnd do
6 intevals← intevals ∪ {interval}
7 interval.start ← interval.end
8 interval.end ← interval.end + (ticksPerMinute × stepS ize)
9 end

10 return intevals

4.4. Look for a possible value

Once the raw values are filtered, Algorithm 2 describes the process where the weight is assigned to every interval
as well as the rest of the sets of samples.

It is possible to find more than one samples, however those values should be closer to each other so the average

method is used.
Algorithm 2: getAllStandardSamples(samples1, samples2, ... samplesn)

samples: Input. Set of samples. Every sample has a start time, an end time and a weight value.
Result: The set of all weight samples.

1 intervals← getAllIntervalsPerStep(samples)
2 result ← ∅
3 foreach interval in intervals do
4 samplesInInterval← searchSamples(samples, interval)
5 if |samplesInInterval| > 0 then
6 currentS ample.start ← interval.start
7 currentS ample.end ← interval.end
8 currentS ample.value← average(x.value|x ∈ samplesInInterval)
9 result ← result ∪ {currentS ample}

10 end
11 end
12 return result

Below in Algorithm 3 the method searchSamples is defined. The result is a set of samples that are close to that
interval.

The first part of the algorithm covers the corner cases of having a reduced number of samples. This case could
happen when it is the first time that the standardization process is executed.

The second part tries to filter all the values that intersect with the current interval, so we could say that they belong
to this interval.



2766	 Pablo Caballero  et al. / Procedia Computer Science 192 (2021) 2761–2768

In the third part it tries to increase the window time to catch a value. The increment is defined by the parameter
searchStep, it is the number of minutes to be incremented (by default is 60). The limit of the search is defined by
the parameter searchRate constant (by default its value is 4, so the maximum search will be a quarter of the total
time). These parameter are visually explained in Figure 4.

Fig. 4. Visual explanation of the parameters.

A drawback of stopping the search using maxSearchStep (Algorithm 3, line 20) is when there are a small set of
samples close in time then the difference between lastInstance and firstInstance is tiny, and it is also reduced
by searchRate so the window time maybe is not enough. A possible solution less restrictive could be set a minimum
of maxSearchStep or the least restrictive solution is removing that condition so it always will find at least one sample.

Algorithm 3: searchSamples(samples, interval)
samples: Input. Set of samples. Every sample has a start time, an end time and a weight value.
interval: Input. Current interval to evaluate.
Result: The set of samples for a given interval.

1 if |samples| = 0 then
2 return ∅
3 else if |samples| ≤ 1 then
4 return samples
5 end
6

7 samplesInCurrentWindowTime← {x|x ∈ samples ∧ intersect(inteval, x)}
8 if |samplesInCurrentWindowTime| > 0 then
9 return samplesInCurrentWindowTime

10 end
11

12 f irstInstance← min({x.start|x ∈ samples})
13 lastInstance← max({x.end|x ∈ samples})
14 maxS earchS tep← ((lastInstance − f irstInstance) ÷ ticksPerMinute) ÷ searchRate
15 intervalS ize← stepS ize
16 do
17 intervalS ize← intervalS ize + (2 × searchS tep)
18 expandedInterval← expandMinutes(expandedInterval, searchStep)
19 samplesInExpandedInterval← {x|x ∈

samples ∧ intersect(expandedInterval, castSampleToInterval(x))}
20 while samplesInExpandedInterval = ∅ ∧ intervalS ize ≤ maxS earchS tep
21

22 return samplesInExpandedInterval
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4.5. Algorithm example

An example of this algorithm is in Figure 5. The initial data is 5 intervals, from I0 to I4 defined in Table 4. The
algorithm parameters are stepSize as 15 (min), searchRate as 4 and searchStep as 60 (min).

Table 4. Extrapolation example data.

Interval Start Start (Date) End End (Date) Weight (kg)

I0 6 374 678 400 108 01/21/2021 00:00 6 374 678 406 108 01/21/2021 00:01 99.0
I1 6 374 687 040 108 01/22/2021 00:00 6 374 687 046 108 01/22/2021 00:01 98.0
I2 6 374 695 680 108 01/23/2021 00:00 6 374 695 686 108 01/23/2021 00:01 98.0
I3 6 374 704 320 108 01/24/2021 00:00 6 374 704 326 108 01/24/2021 00:01 99.0
I4 6 374 712 960 108 01/25/2021 00:00 6 374 712 966 108 01/25/2021 00:01 96.0

After running the standardization code it will generate 384 intervals of 15 minutes per interval.
In t0, t1, t2 and t3 the values are original values. Between t0 and t1 there are 2 intervals whose values are 98.5 kg,

this situation happens due to searching a value, the window time intersects with I0 and I1. Between t2 and t3 the same
thing happens as well.

time

weight (kg)

I0 (99.0)

I1 (98.0) I2 (98.0)

I3 (96.0) I4 (96.0)

t0 t1 t2 t3 t4

Fig. 5. Extrapolation example.

5. Conclusion and further work

The difficulty to forecast the weight inside a day due to its recurrency and variability has been exposed.
Some threshold values were proposed depending on the gender to filter possible wrong values. Cases of extreme

underweight or extreme obesity would be non-allowed values.
The proposed algorithm is ready to be used and it extrapolates the weight value to moments close to the original

instant. Every step will have a discrete value of the weight so it can be used to create a digital twin model in conjunction
with other signals. If the value is out the search range then that time interval could be discarded if the weight is needed.

In a general perspective the forecasted values are valid, nevertheless for an specific moment the value will depend
of how far in time is from a real value.

A future modification could be a second pass day by day and converting the discrete values in a curve. In every
day, the variations at lunch or dinner could be also considered nevertheless a research on nutritional habits would be
necessary.
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