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1 Motivation

The interoperability between the different systems of an company constitutes
a fundamental aspect to foment the competitiveness. This competitiveness is
maximum in the telecommunication sector, because in this case it must take
into account not only the competence between companies but also the involved
interests of the holdings which manage them. The increasing regulations of the
European Commission which implies the entry of the new competitive tele-
vision operators have hugely increased the necessity in this sector of offering
quality services to the users and auspicious economic results to its manage-
ment committee. It is necessary to define new techniques for intra-systems
interoperability of any company and specifically, in the TV sector. Several
works may be found in [6].

In this paper, we introduce a new tool to improve the decision support
systems of an company. It helps us to compare time series in an efficient way
and with a low computational cost. These techniques are applied to improve
the interoperability of two intra-systems of a TV enterprise. They are the
programming and merchandising systems.
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On the other hand, automated processing and knowledge extraction from

data is an important task performed by machine learning algorithms. Hence,
the generation of classification rules from class-labelled examples is possible.
Instances can be described by a set of numerical, nominal, or continuous fea-
tures. Several of these algorithms are expressly designed to handle numerical
or nominal data; other algorithms perform better with discrete-values features,
despite the fact that they can also handle continuous features [13]. Meanwhile
a certain number of algorithms developed in the machine learning commu-
nity focus on learning from nominal feature spaces. Real-world classification
includes patterns with continuous features where such algorithms can not be
applied, unless the continuous features are firstly discretized. Discretization
is the process of transforming a continuous attribute into a finite number of
intervals associated with a discrete, numerical value –a number, symbol or
letter. This is the usual approach for learning tasks that use mixed-mode –
continuous and discrete- data. The Discretization process is developed in two
stages: given the range of values for the continuous attribute, first the number
of discrete intervals is found; then, the width or boundaries for the intervals.

In [14] it was shown than even on purely numerical-valued data, results for
text classification on the derived text-like representation outperforms the more
naive numbers-as-tokens representation and, more importantly, is competitive
with mature numerical classification methods such as C4.5[15], Ripper[2] and
SVM[1, 3, 8, 17]. The most straightforward way is to treat each number that
a feature may take on as a distinct “word”, and proceed with the use of a
text classification method using the combination of true words and tokens-for-
numbers words. However, this makes the numbers 1 and 2 as dissimilar as the
numbers 1 and 100 –all three values are unrelated tokens to the classification
methods. An approach to applying text-classification methods problems with
numerical-valued features would be desirable so that the distance between
such numerical values can be discerned by the classification method. Most of
the methods translating a continuous feature into symbols –letters– in order
to deal with texts –letters chains– lose part of their efficient since they are
not designed for this task.

The kernel proposed in this paper is specifically designed to work with
letters chains coming from a discretization process of a continuous feature
and it highlights the properties of these features. To cope the effectiveness of
this kernel, it will be used on words from a dictionary where a distance exists
between letters of the alphabet. The kernel was firstly proposed to compare
among time series that had been converted into symbol chains –words– [4, 5].
Thus, the similarity measure between words quantified a distance between
original time series.

The rest of this paper is structured as follows: first, both a kernel and
a distance between finite intervals are defined. Distance is used to define a
real function measuring the similarity between two words and if words have
the same length, this function is a Kernel because it fulfills the Mercer con-
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dition. Next, one example about classification rules is developed. Finally, the
conclusions and ideas for future works are enumerated.

2 Interval distance from a kernel

In essence, the goal in the construction of kernel functions is to guarantee the
existence of an application φ, defined from the working set, X to a vectorial
space endowed with a dot product, F . From this function φ the kernel function
is defined, denoted k(·, ·), over pairs of elements of the working set as the dot
product of their transformations into the feature space, k(·, ·) = 〈φ(·), φ(·)〉F ,
where 〈·, ·〉 is denoted a dot product. The kernel function let us k(·, ·) establish
similarities between the original elements from their transformed ones, so a
distance between the points in the input space can be defined. It must be
considered, when elaborating a similarity and distance measure, that the φ
application must be able to highlight the essential characteristics of the initial
set of elements[7].

Following the ideas presented in [11], let

I =
{

(c − r, c + r) ⊂ R : c ∈ R, r ∈ R
+
}

be the family of all the open intervals contained in the real line of finite
dimension (in default, we are working with open intervals, but it is posible to
translate the study to closed intervals naturally). A function φ1 : I → R

2

is defined as: φ1(I) = P (c, r)t and the kernel k and a distance d2
1 between

intervals are:
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(
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where I1 = (c1 − r1, c1 + r1), I2 = (c2 − r2, c2 + r2), Δc = c2 − c1 and
Δr = r2 − r1, and P must be a non singular matrix (S = P tP ). Thus,
the discretization of a continuous feature in symbols representing different
intervals, allows us to use as a distance between symbols the distances defined
between intervals as it will be showed.

3 Kernel

From this point, we always consider that the symbols are letters (A, B,· · · )
because the ordinal scale is reflected in the alphabetical order. Let A =
{A1, A2, · · · , Aℓ} be an alphabet of ℓ letters and let P be a set of the
words obtained from this alphabet. Let P1 = P11P12 · · ·P1n and P2 =
P21P22 · · ·P2m be words from P where P1i, P2j ∈ A and n ≥ m. A map
Kλ is defined as follow:
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Kλ(P1, P2) = max

{

m
∑

i=1

λd2(P1i+k,P2i), k = 0, · · · , n − m

}

where 0 < λ < 1 and d(·, ·) is a distance between letters.

Property 1. For all P1, P2 ∈ P and 0 < λ1 < λ2 < 1, then: Kλ1(P1, P2) ≤
Kλ2(P1, P2).

Property 2. For all P1, P2 ∈ P and 0 < λ < 1, then: Kλ(P1, P2) ≤ m. This
upper bound is attained: If P2 = P11P12 · · ·P1m, and Kλ(P1, P2) = m.

Property 3. Let r = maxij d(Ai, Aj), with Ai, Aj ∈ A. For all P1, P2 ∈ P

and 0 < λ < 1 then: mλr2

≤ Kλ(P1, P2). This lower bound is attained: Let
A = Ai and B = Aj be such that d(A, B) = r2. If P1 = AA · · ·A and P2 =

BB · · ·B with size of P1, n, and size of P2, m, then Kλ(P1, P2) = mλr2

.

Thereby, for all 0 < λ < 1:

m λr2

≤ Kλ(P1, P2) ≤ m, ∀P1, P2 ∈ P

Property 4. Let A be an alphabet obtained from a discretization process of
a continuous feature and P = {P1P2 · · ·Pn, Pi ∈ A} the set of all the words
having length n, then:

Kλ(P1, P2) =

n
∑

i=1

λd2(P1i,P2i)

is a Kernel.

The proof of these properties are in [9].

3.1 Generalized similarity

Let P1 and P2 be two words of the same length n from the set P . In the
definition of similarity between words, Kλ(P1, P2) =

∑n

i=1 λd2(P1i,P2i), all
the letters have the same interest. It is possible to generalize this similarity
by weighting each letter in such a form that the sum of the weights is equal
to n.

Let w1, w2, · · · , wn ∈ R be scalar numbers accomplishing wi ≥ 0 and
∑n

i=1 wi = n. The generalized similarity can be defined in two different ways:

K1
λ(P1, P2) =

n
∑

i=1

λwi·d
2(P1i,P2i) K2

λ(P1, P2) =

n
∑

i=1

wi · λ
d2(P1i,P2i)

It is no difficult to prove that both are kernels (the sum and the product of
kernels is a kernel [3]); however the second one has a more intuitive meaning
for the weights. Also, using the properties of the exponential function we have:
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K1
λ(P1, P2) =

n
∑

i=1

λwi·d
2(P1i,P2i) =

n
∑

i=1

w′

i · λ
d2(P1i,P2i)

where w′

i = λ(wi−1) d2(P1i,P2i). Although it is no necessarily true that
∑n

i=1 w′

i 
=
n. For this we propose as a generalization of similarity the function K2

λ(·, ·) .

4 Implementation

In the current television, the programming is implemented taking into ac-
count the response of the audience according to the inversion carried out.
This is known as ”share”. The interoperability between the programming and
exploitation systems is a fundamental aspect in these enterprises. Therefore,
it is necessary to dispose of good tools which allow to identify the response of
the audience according to the executed programming. The comparison must
be done with the responses obtained by the channel in the previous weeks in
order to prove if the expected results have been achieved. Besides, the achieved
results must be compared with those obtained by the competitive channels.
These decision support systems have been designed taking into account that
they may be defined by means of a mathematical base. The proposed tech-
niques and methods verify this requirement. The techniques allow to optimize
the exploitation of the information systems, by providing comparison mecha-
nisms between the different channels. In particular, this comparison has been
made between opened broadcasting channels in Andalucia (Spain).
An example of the classification rule is developed. Data to be considered is a
set of television shares from the seven main television stations in Andalusia,
Spain. It has been provided by Canal Sur Televisión and it has been collected
from [18]. Time series represent the average share for 15 minutes blocks, so
the daily series are 96 elements length.

We are going to use several discretization methods and will see that the re-
sults are good in all them. A variety of discretization methods can be found in
the literature. From the unsupervised algorithms: equal interval width, equal
frequency interval, k-means clustering or unsupervised MCC; to supervised
algorithms like ChiMerge, CADD, 1RD, D-2 or maximum entropy. An exten-
sive list can be found in [13]. The methods to be evaluated in this work are:
i) Equal Width Intervals or EWI, ii) Equal Frequency Intervals or EFI, iii)
CAIM (Class-Attribute Interdependence Maximization) [13], iv) Ameva [12],
v) CUM [10], and vi) DTW [16].

In the following step several related task are accomplished: i) The dis-
cretization methods are applied over the learning subset producing a set of
landmarks, ii) The landmarks are used as the limits of intervals and a symbol
is assigned to each one, and iii) the series are translated into symbol chains.

The series are labelled with the name of the corresponding television sta-
tion. We have selected the first 32 Wednesdays of year 2003 (32 · 7 = 224
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series) as the input set of series. Other 20 Wednesdays are used as work set
(140 series) to be predicted.

In the Equal Width, Equal Frequency and CUM methods, the user must
specify the number of intervals to be computed. As no rule for an optimal
value exist, all those methods will be calculated from 2 to 9 intervals. All the
methods are applied to the learning subset and a list of interval boundaries are
obtained. Individual letters are assigned in alphabetical order to each interval.

The learning system evaluates (a complete study can be found in [5]) the
number of successful identifications on the test subset using the k-neighbours
algorithm for each discretization method. The application of the presented
methodology achieves a 95% correct identification rate for the work set series,
133 over 140. The best discretization method for this data set was Equal
Frequency Interval with 3 labels. Table 1 shows the average percentage and
variance for all the methods in 200 draws for 1, 3 and 5 neighbours.

In Table 1 can be observed that, although the discretización methods
build the intervals following different approaches, except for some anomalous
case, the results are similar, that is, the kernel is very robust in front of the
discretization methods.

With respect to the parameter λ used in the kernel, it does not signi-
ficantly affect to the average of correct identification. Table 2 shows that only
the CAIM method is affected by the variance of λ.

5 Conclusions and further work

A new similarity function for symbol chains has been proposed, generating in
some cases a kernel. This function measures similarities between words in a
dictionary when a distance measure between symbols is defined. In the near
future, we will focus on the extension of this methodology to time series with
multiple attributes and other kinds of data. At the same time, we will use
new data sets to extend its validation. Finally, it must be mentioned that this
kernel has certain implications in the type of considered similarity that will
be studied in future researches. The small influence of the λ parameter in
identification tasks must also be argued.
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Table 1. Identification Average (%) and Standard Deviation in Test Subset (200
Draws) vs. Number of neighbours

Neighbours
1 3 5

Method Labels Avg. StDev. Avg. StDev. Avg. StDev.

CAIM 7 90.5 4.26 89.4 4.56 89.1 4.74

AMEVA 3 91.6 2.74 89.4 2.77 89.7 2.81

2 90.7 2.86 88.4 2.91 89.0 2.98
3 85.9 4.04 85.1 4.20 86.1 3.88
4 75.9 6.01 71.3 5.29 70.9 5.59
5 73.2 5.41 71.0 5.42 72.3 5.52

CUM 6 82.4 4.21 80.8 4.03 80.8 4.95
7 83.2 3.56 80.0 3.69 80.0 4.28
8 85.2 3.33 82.8 2.95 82.1 3.36
9 86.4 3.15 84.9 2.60 84.6 3.13

2 91.1 2.88 90.9 2.65 90.7 2.87
3 95.5 2.13 95.4 1.98 95.1 2.02
4 88.8 3.07 87.6 3.15 87.4 3.40
5 85.2 3.87 85.1 4.14 85.4 3.85

EFI 6 80.2 4.11 77.6 4.71 76.4 4.90
7 74.6 4.78 71.7 5.31 71.0 5.37
8 75.7 4.32 71.2 4.91 70.6 5.01
9 74.7 5.26 70.4 5.27 69.1 6.20

2 71.0 11.5 65.2 13.2 66.5 12.9
3 46.0 8.08 36.3 8.26 35.0 8.90
4 71.9 11.9 67.3 14.2 68.8 14.3
5 74.9 10.7 71.0 13.0 71.9 11.9

EWI 6 72.3 10.9 68.3 13.7 70.3 13.6
7 85.8 7.76 84.7 8.22 85.9 8.28
8 75.3 9.32 73.3 10.3 74.2 11.0
9 88.1 4.90 87.4 5.76 88.0 5.27

DTW - 80,2 3,74 78,0 4,44 76,4 4,27

Table 2. Percentage of correct identifications in the Work Set for each method vs.
value of λ.

Lambda
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CAIM 0.88 0.88 0.88 0.86 0.86 0.84 0.84 0.82 0.80
AMEVA 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87
CUM02 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.88
EFI03 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.90
EWI09 0.85 0.85 0.85 0.85 0.84 0.84 0.85 0.87 0.85
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