
© 2018 Institute of Physics and Engineering in Medicine

Introduction

The human body is more fragile than people think. In order to survive, it requires sleep just as much as food, 
water, or oxygen. This is a basic principle of human physiology that has been borne out by thousands of research 
studies.

In general, sleep is a state where our bodies and minds rest and rejuvenate (Spriggs 2009). It is obligatory for 
our normal physiological, mental and emotional functioning during awake hours. The belief that it is possible to 
have just a couple of hours of sleep a night over a long period of time without suffering any negative consequences 
is a common misconception (National Heart Lung and Blood Institute (NHLBI) 2011). It is categorically beyond 
doubt that when sleep contains even slight abnormalities, the aftermath can lead to physical illness, psychological 
problems or an untimely death (Lee-Chiong et al 2012).

A popular misconception is that adults have to sleep at least 7–8 h every night to be rejuvenated properly, while 
children require far more hours of sleep (National Heart Lung and Blood Institute (NHLBI) 2011). However, this 
is only standard recommended advice; sleep requirements are individual for every person (National Heart Lung 
and Blood Institute (NHLBI) 2011). In addition, getting many hours of sleep does not always guarantee a healthy 
and rested state, because the crucial point here is not the quantity, but the quality (National Heart Lung and 
Blood Institute (NHLBI) 2011).
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Abstract
Objective: This paper presents an algorithm for non-invasive sleep stage identification using 
respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-
term monitoring in a home environment, which should support experts analysing sleep. Approach: 
As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic 
regression was chosen for categorical distribution of sleep stages. Several derived parameters of three 
signals (respiratory, heart rate and movement) are input for the proposed method. Sleep recordings 
of five subjects were used for the training of a machine learning model and 30 overnight recordings 
collected from 30 individuals with about 27 000 epochs of 30 s intervals each were evaluated. Main 
results: The achieved rate of accuracy is 72% for Wake, NREM, REM (with Cohen’s kappa value 0.67) 
and 58% for Wake, Light (N1 and N2), Deep (N3) and REM stages (Cohen’s kappa is 0.50). Our 
approach has confirmed the potential of this method and disclosed several ways for its improvement. 
Significance: The results indicate that respiratory, heart rate and movement signals can be used for 
sleep studies with a reasonable level of accuracy. These inputs can be obtained in a non-invasive way 
applying it in a home environment. The proposed system introduces a convenient approach for a 
long-term monitoring system which could support sleep laboratories. The algorithm which was 
developed allows for an easy adjustment of input parameters that depend on available signals and for 
this reason could also be used with various hardware systems.
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In order to get reliable data on the quality of a person’s sleep, the sleep stages and their sequence and durations 
have to be analysed. Usually such studies are executed in sleep laboratories. The established standard procedure 
for sleep stage quantitative evaluation is the overnight polysomnography (PSG) following the guidelines of the 
American Academy of Sleep Medicine (AASM) (Chokroverty and Thomas 2013).

Motivation
The execution of PSG generally means that during sleep a human body will be connected to at least 22 laboratory 
wire attachments (Chokroverty and Thomas 2013), which explains why the PSG is quite a costly and time-
consuming procedure (Ettinger and Feldman 2010). Moreover, being in the sleep laboratory is always unfamiliar 
and disturbing for the subjects, so there could be some discomfort because of the electrodes and the issue of 
movement limitation. All of these conditions would impact the person’s regular sleep behaviour (Le Bon et al 
2001). It is safe to say that the sleep during the PSG monitoring often has differences compared to sleeping at home.

Moreover, the fact, that different sleep stages have an appreciable effect on heart rate, breathing and move-
ment (Hayet and Slim 2012, Kurihara and Watanabe 2012, Long et al 2014), provides good reason to combine 
these parameters to develop the sleep stage classification algorithm.

Furthermore, there are a limited number of sleep medicine specialists who can provide healthcare and 
support sleep study (Singh et al 2015). Additionally, in order to conduct sleep studies for all the patients who 
require them without incurring long waiting periods, the number of sleep laboratories and experts would have 
to be immense. At the same time one of the most important health problems that humanity faces lies in the 
terribly high amount of undiagnosed sleep disorders (Lee-Chiong et al 2012). Besides that, PSG-based sleep 
scoring is a very expensive procedure (Berry and Wagner 2015). This is why low-cost, non-invasive, home-based 
diagnostic systems for sleep study, in particular for categorical distribution of sleep stage parameters, would 
provide substantial additional support for stationary sleep laboratories.

Objective
This project aims to develop a new approach to the classification of sleep stages. The novelty of this approach 
would be the set of parameters (including the derived parameters) used for the sleep stage recognition. Whereas 
traditional testing (e.g. PSG) requires examining many parameters, our aim is to develop a system which uses as 
few appropriate parameters as possible for input. Choosing the parameters would require serious consideration 
of the two main points:

 •  the chosen parameters must differ by behaviour patterns during the particular sleep stages; 
 •  these patterns have to be represented by mathematical equations and then converted to algorithms.

As a result, a software application to implement the sleep phase analysis and automatic evaluation will be 
designed. The foundation for the sleep stages recognition should be provided by mathematical description and 
transformed into programming code.

The developed algorithm should work with the bio vital parameters that must be available to be collected 
by using non-invasive methods. In an effort to get recordings of sleep states that are natural and genuine, the 
experimental subjects must be provided with a feeling of sleeping in their usual environment (Gaiduk et al 2018).

The system for sleep phase classification described in this article should be designed to classify the sleep stages 
using the signals from PSG recordings.

State of the art
Research on the topic of non-invasive sleep stage classification methods has been discussed in a number of 
scientific publications (Hayet and Slim 2012, Kambayashi and Hagiwara 2012, Kurihara and Watanabe 2012, 
Long et al 2014, Tataraidze et al 2015, Penzel et al 2016) around the globe. This case study is focused on just those 
few publications that provide the relevant content for this work. Research studies that were conducted by using 
heart rate, body movement or respiration as vital signals for sleep classification and sleep cycles investigation are 
of particular value. The scientific papers listed below mostly dealt with these complex issues, so only the parts 
significant to this project will be described.

The ECG itself, heart rate and heart rate variability (HRV) can be used to analyse and detect sleep stages 
(Penzel et al 2016).

In Aktaruzzaman et al (2017) wrist and chest actigraphy were compared in combination with HRV for sleep 
classification. In this study a support vector machine (SVM) was used for the automatic identification of sleep 
and wake stages. The achieved accuracies for the group of healthy adult 18 subjects are nearly equal—78% for 
chest and 77% for wrist actigraphy jointly with HRV.

One study Hayet and Slim (2012) describes a method for the sleep and wake stages classification based on just 
the ECG signals and a neural network algorithm. To develop and analyse the obtained results, they used 16 PSG 
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recordings from the MIT-BIH polysomnographic database. First of all, to pre-process the data they built the RR 
series from the QRS annotation files to help calculate the HRV. At the next stage, the extreme learning machine 
(ELM) neural network algorithm with a single hidden layer was used to classify the wake and sleep phase (Guang-
Bin et al 2006). In order to distinguish between wake and sleep phases, the algorithm was trained on two scenarios:

 •  subject-specific classification; 
 •  subject-independent classification.

In the first scenario, the time periods were selected from every single night’s recording and fed into the ELM 
algorithm. Two-thirds of the whole sample recording was used for that. Next, one-third of the night recordings 
were used to test the algorithm’s performance. As for the subject-independent classification, the researchers used 
epochs from all subjects to train the ELM. After training the algorithm, a recognition rate of approximately 90 
percent was achieved. Predictably, the subject-specific rates are a bit better (93.33%) than the subject-independ-
ent ones (90.03%).

An automatic algorithm to determine REM sleep on the basis of the autonomic activities reflected in heart 
rate variations was developed in Yoon et al (2017). The HRV was calculated from ECG using R–R intervals and an 
adaptive threshold was applied to ascertain the REM stage. The average accuracy was 87% for the evaluation of 25 
healthy and OSA subjects.

In another scientific study the concept of using data about body movement for sleep cycles estimation was 
investigated (Kambayashi and Hagiwara 2012). The experiment was conducted by studying 16 healthy people 
who slept through the night with electrodes attached to their bodies. A detection device (NapVIEW) with a 
NaPiOn infrared motion sensor was used to detect body movements. It was placed on the bedside 50 cm from 
the subject’s head. Along with this, the body movement density (BMD) was defined as the amount of body 
movements per time unit as an index of sleep transition. In sum, this study showed that BMD cycle is strongly 
linked to sleep cycle. And to evaluate sleep cycles we can use body movement data instead of brain activity or 
other parameters. Moreover, it was concluded that a BMD cycle is less affected by individual variations and it is 
therefore a better index than the absolute value of BMD.

One particular research study Kurihara and Watanabe (2012) describes another two algorithms and methods 
for sleep stages estimation. Their classification experiment was conducted with the help of ten healthy adults 
with a mean age of 22.2 years. The main goal of this project was to find a non-invasive method to obtain the 
vital parameters and classify the subjects’ sleep stages into the categories WAKE, REM and NREM1—NREM4. 
To achieve this, the scientists developed an air mattress with a highly responsive pressure sensor. It allows the 
measuring of respiration, heartbeat and body movements. They created an algorithm based on the idea that all 
sleep stages have certain characteristics regarding body activity and that body signals behave differently in the 
different sleep stages. In tables 1 and 2 the different characteristics of REM and NREM sleep, which are important 

for this article’s purposes because of using similar features, are listed.
In the end, this experiment got 51.6% agreement with the classification results done by sleep experts within 

six stages (WAKE, REM, NREM1,2,3,4) and 77.5% within three stages (WAKE, REM, NREM).
Furthermore, there are various studies (e.g. Long et al (2014) and Tataraidze et al (2015)) where respira-

tion behaviour during sleep hours has been examined. One study Chung et al (2007) tried to classify REM sleep 
based on respiration rates. The researchers aimed to develop a new user-friendly method for the sleep-wake-
monitoring called ‘bed actigraphy’ (BACT), which was presented in an earlier study (Choi et al 2007). To achieve 
the goal, a system with four load cells fixed at the bottom of the bed legs was built. In order to assess the methods, 
the researchers studied three healthy participants—two males and one female between 27 and 32 years old. Their 
sleep cycles were analysed and classified in a specialized sleep center with PSG, according to the scoring manual 
of Rechtschaffen and Kales. There are peaks between expiration and inspiration during a fixed period of time 
called window size. It was determined to further compute the average respiration rate, after which the maximum 

Table 1. Characteristics of REM sleep (Kurihara and Watanabe 2012).

N Characteristics

1 Brainwaves similar to those in NREM1 and WAKE are found

2 Decreasing of incidence ratios of delta wave and spindle

3 Disappearing of the tension of anti-gravity muscles

4 Appearing of rapid eye movement

5 Increasing of frequency of heartbeat and respiration while 

simultaneously becoming less rhythmic, blood pressure becomes high

6 REM sleep occurs once every 90–100 min on average (adults)

7 Concentration of body movement before and after REM stage
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peak inside this window was outlined as a peak point. The comparison clearly illustrates that the respiration rate 
is more irregular and increased during REM sleep stage than in other categories. Using an appropriate threshold 
level, the researchers determined the REM stages for all three participants. The percentages of correct predictions 
for these stages were 87.9%, 69.1% and 69.7%. It was concluded that respiration is a suitable parameter to classify 
REM and NREM sleep.

All the studies explored above proved that the examination of the bio vital parameters, particularly respira-
tion and heartbeat, and additionally body movement during sleep has a potential to evaluate several sleep stages. 
However, the scientists tried to obtain multiple patterns of HRV and respiration during special sleep phases using 
different mathematical approaches. Moreover, one study has shown that the occurrence of body movement dur-
ing sleep provides the ability to make conclusions about the sleep cycles.

To evaluate the sleep stages, special sleep phases and sleep cycles, simple mathematical algorithms along with 
a more complicated neural network algorithm were used. The resulting findings were promising. But they have 
also indicated that the estimation of sleep stages without recording brain activity and eye movements (as is done 
in PSG) is too imprecise. In addition, a perfect match with estimated results of the experts is not possible because 
the judgment standards of the R–K method include ambiguities. Thus, it can lead to different sleep stage classifi-
cations in some parts of sleep recordings due to the subjective interpretations of particular sleep-stage evaluators 
(Kurihara et al 2010).

Nevertheless, it is still vital to develop a non-invasive and as accurate as possible solution for sleep stage 
recording and estimation, in order to support the complex PSG procedure in the future.

Statistical methods
To calculate the strength of correlation between one dependent variable and a series of other changing 
independent variables, regression analysis is used as a statistical measure. It is known that regression is the most 
widely used statistical evaluation and its applications occur in almost every field (Douglas et al 2012). In this 
method, the dependent variable, which has to be analysed or predicted, is usually denoted by Y. In order to do 
so, one or more other independent variables related to variable Y and denoted by X1, X2, ..., Xn must be estimated 
(Alexander Von and Christof 1998).

Though, it is not necessary for these independent variables to be statistically independent of each other 
(Belsley 1991). Therefore, the information about the dependent variable carried by the independent variables 
has to be presented through a mathematical function, which will define the existing relationship as accurately as 
possible (Alexander Von and Christof 1998). Such a mathematical function must be found.

When there is a need to analyse and adjust a nominal outcome for multiple independent variables, the 
multinomial logistic regression (MLR) is used. It is a special form of logistic regression that falls under the 
multiple regressions category. The usage of MLR presumes that one of the categories has to be designated as 
the reference. Which category is chosen as the reference will affect the procedure for reporting the results, but 
not the mathematical answer itself. The MLR model compares all categories of the dependent variable to the 
reference category for each of the independent variables. The number of such comparisons is equal to one minus 
the number of categories of the dependent variable. Basically, the MLR models the logit (logarithm of an odd) of 
being in one of the outcome categories compared to being in the reference group (Katz 2011).

In this case, the odds ratio is equal to the antilogarithm of the logistic regression coefficient. In multinomial 
regression, the odds ratio presents the information on how the probability of being in one category versus being 
in the reference group is influenced by the change of independent variable. If a value of the odds ratio is greater 
than 1, then as an interval-independent variable increases, the value of probability increases too. In other case, if 
the odds ratio is less than 1, then there is an opposite scenario in place—the value of probability decreases when 
an interval-independent variable increases (Katz 2011).

The outcomes of categorical dependent random variables denoted as Y ∈ {0, 1, 2 ... k}, are modelled by MLR. 
According to the model, a conditional mean of the dependent categorical variables is the logistic function of an 
affine combination of independent variables, which is usually denoted as x and is defined as

E [Y |x ] = σ
(
cTx

)

Table 2. Characteristics of NREM sleep (Kurihara and Watanabe 2012).

N Characteristics

1 The incidence ratio of delta waves is more frequent with the deeper sleep

2 In the NREM2 stage spindle waves are recognized

3 When sleep deepens from the WAKE stage, body movements become smaller and less frequent

4 The deeper the sleep, the less frequent the heart rate

5 NREM1 occasionally is found after NREM3, NREM4, or REM stages with large body movement

Physiol. Meas. 39 (2018) 124008 (14pp)
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for some unknown vector of c coefficients, and where

σ (x) =
1

1 + e−x

is the logistic function. Then, MLR finds the vector of coefficients c that maximizes the probability of observations.
In turn, maximizing the probability, which is defined as

n∏
i=1

Pr (Y = Yi |Xi )

is equal to maximizing the log-probability, which is estimated as

n∑
i=1

log Pr (Y = Yi |Xi ).

This leads to the simplified function for maximizing the probability:

l (c) = −
n∑

i=1

log
Ä

1 + e−1yi∗cT xi
ä

.

The standard error of coefficient i is calculated as

se(ci) = ((XTAX)− 1)ii,

where the Hessian of H  =  −XTAX and A  =  diag(a1, …, an) is the diagonal matrix with ai  =  σ(cTx) * σ(cTx) 
(Garson 2016).

Finally, the so-called Wald z-test defined as

zi =
ci

se(ci)

is necessary to test the significance of predictors in the logistic regression. In this case, the Wald p-value for 
coefficient i gives the probability of seeing a value at least as extreme as the one observed, considering that the null 
hypothesis (ci  =  0) is true.

The formula for Wald p-value of i coefficient is

pi = Pr (|Z| � |zi|) = 2 ∗ (1 − F (|zi|))

where F is the cumulative density function of a standard normal distribution (Garson 2016).

Methods

The existing research studies have confirmed that there is, indeed, a correlation between the various behaviour 
patterns of bio vital signals—respiration, heartbeat and body movement—and the different sleep stages. This 
correlation can be used as a base for sleep stage recognition with an appropriate algorithm. Not only does this 
include the aforementioned parameters themselves, but also parameters derived from them are able to be used in 
the algorithm for calculations. The selection of a convenient method and its application will now be described.

Approach
In order to build on the successful studies and promising results of several publications presented in part earlier 
in the section ‘State of the art’, this project aims to combine existing methods for the purpose of creating a new 
algorithm which will be able to analyse sleep phases based only on the following parameters of the human body:

 •  heartbeat; 
 •  respiration; 
 •  body movement.

The choice of these parameters is not accidental. Each of them can potentially be measured using non-inva-
sive methods. This method will help to ensure that the sleep recording process does not jeopardize the accuracy 
of results or disturb the subjects’ sleep.

All three signals mentioned below are taken from PSG records of the Charité dataset5. In this study, the heart-
beat signals were substituted by ECG and, for the respiration signals, a thoracic (VTH) inductive plethysmogra-

5 The Charité dataset consists of 230 h of sleep recordings from the Sleep Medicine Center at Charité Universitätsmedizin 
Berlin (Germany) Center of Sleep Medicine, in which 30 individuals (an equal number of male and female participants) with 
no significant health disorders were studied.

Physiol. Meas. 39 (2018) 124008 (14pp)
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phy record was used. The body movement signal was replaced by the signal called Beweg, which is monitored by 
a 3D acceleration sensor in a recording device placed on the chest of the subject. For that, a 3D actigraphy sensor 
integrated into a PSG-System ‘SOMNOscreen PLUS’ is used. It has the following properties: amplitude reso-
lution  =  16 bit, accuracy  =  ±5%, Sampling-rate  =  32 Hz, frequency range  =  0.07–1 kHz. Baseline wandering 
should be excluded by the lower frequency range and also not significant for the end results as only the changes of 
the signal and not the absolute value will be analysed and furthermore, baseline wander has a much lower ampl-
itude than significant movements. For every axis the mean value of movement for every second is calculated and 
stored:

X = 1
n

n∑
i=1

|xi − xi−1|

Y = 1
n

n∑
i=1

|yi − yi−1|

Z = 1
n

n∑
i=1

|zi − zi−1|

with n  =  32 (sampling-rate), and after that the activity was computed as

Bodyi =
√

X2 + Y2 + Z2.

The part of the software which is responsible for the classification procedure is based on the statistical regression 
method—MLR. Therefore, both dependent (Y) and independent (X1, X2, …, Xn) variables have to be estimated. 
The dependent variable Y signifies the several sleep stages. As for the independent parameters, they must be 
defined as derived parameters from the vital parameters mentioned earlier—heartbeat rate, respiration and 
body movements. In other words, HRV is a derived parameter from the heartbeat rate parameter and could be 
used as a predicting variable for parameter Y.

In this study, to implement the MLR model, ten derived parameters were selected, which would reflect the 
behaviour of a number of sleep phases. All derived parameters were calculated for 30 s time periods ki of the 
particular sleep recording.

The chosen derived parameters from the heartbeat signals are the following:

 •  Heart beat interval—mean RR interval between successive heart beats for every 30 s epoch (HBI).
 •  Number of heartbeats per 30 s (HB).
 •  HRV—mean difference of successive RR interval lengths per 30 s (HRV).
 •  R—algorithm (RA).

The RA algorithm stands for the R(k)-algorithm (Kurihara and Watanabe 2012). The values of R(k) increase 
during REM stage. The reason for this behaviour is that the frequency of respiration and heartbeat accelerate 
during REM sleep (see table 1), but at the same time these signals become less rhythmic (Kurihara and Watanabe 
2012). It is calculated as

R (k) =
1

2q + 1

q∑
i=−q

∣∣∣H former
k+i − Hlatter

k+i

∣∣∣,

where the discrete time for every 1 min (starting from the first minute of the record and ending at the last one) is 

defined as k, H former
k+i  and Hlatter

k+i  are the heart rate values from the former and latter 30 s of the time interval (k  +  i) 

and i represents the movement inside the window (moving average) with the size 2q. In this work according to 
(Kurihara and Watanabe 2012) q  =  10 was used

One parameter derived from body movement is the mean value of body movement (BM) signal. It is defined 
as

BM (k) =
1

n

n−1∑
i=0

Bodyi

with n equal 30 (the number of body-movement records for one 30 s epoch—one movement record per 
second—see above) and Bodyi is calculated as the square root of (X * X  +  Y * Y  +  Z * Z) with X, Y and Z the 
values of signals per axis of a 3D actigraphy-sensor as described above.

Furthermore, the mixed derived parameter from body movement and heartbeat signals, known as DA, was 
chosen. It represents the D(k)-algorithm (Kurihara and Watanabe 2012). This algorithm was developed based on 
the knowledge that when moving from the wake stage to deeper sleep, body movement decreases and at the same 
time its frequency drops (see table 2). DA represents the combination of changes in movement and heartrate and 
is calculated as

Physiol. Meas. 39 (2018) 124008 (14pp)
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DA (k) = log2

Abody
k

Aheart
k + Abody

k

.

Abody
k  and Aheart

k  are the mean amplitudes of the body movement and heartbeat signals for the time k. The 

proposed formula uses a logarithm to reduce the effect of large fluctuations in body movements and to enhance 
slighter movements of the body.

The derived parameters for the respiration signal are the following:

 •  Mean respiratory depth of inhalation (Psdm).
 •  Mean respiratory depth of exhalation (Tsdm).
 •  Median respiratory volume during breathing cycles (Vbr).
 •  Median respiratory volume during inhalation (Vin).

These parameters were chosen because these two variants of respiration characteristics are included in the 
sleep stage calculation. The Psdm and Tsdm features take into account the mean respiratory depth and its variability 
at the same time, in terms of inhalation and exhalation. The Vbr and Vin parameters are the volume-based features 
that should reflect the changes of respiratory effort signals (Long et al 2014).

Here is the mathematical representation of the derived respiration parameters:

Psdm (k) = median(p1,p2,...pn)
IQR(p1,p2,...pn)

Tsdm (k) = median(t1,t2,...tn)
IQR(t1,t2,...tn)

Vbr (k) = median
Ä∑

sx∈Ωbr
1

sx,
∑

sx∈Ωbr
2

sx, ...,
∑

sx∈Ωbr
k

sx

ä

Vin (k) = median
Ä∑

sx∈Ωin
1

sx,
∑

sx∈Ωin
2

sx, ...,
∑

sx∈Ωin
k

sx

ä
,

where p  =  p1, p2, …, pn and t  =  t1, t2, …, tn are the peak and trough sequences from a chosen time window (in this 
case—30 s), the kth breathing cycle is declared with Ωbr

k , the kth inhalation and exhalation cycles with Ωin
k  and Ωex

k  
with k consecutive breathing cycles (k  =  1, 2, ..., K).

The possibility that all derived parameters could in some way depend on each other is not problematic since 
there is no need for the independent variables to be statistically independent of each other (Belsley 1991).

Exploratory data analysis (EDA) was used to identify the significant features among 10 proposed derived 
parameters. According to its results, several classification attempts were executed with different sets of features. 
However, reducing the number of features to 7 or lower (e.g. excluding RA, VBR and HRV according to results of 
EDA) led to a reduction of accuracy (about 10%–30%). Excluding 1 or 2 parameters (e.g. VBR and RA) did not 
have any significant effect on accuracy (with the current amount of test persons). As a result, a decision was made 
to include all ten of the derived parameters because their calculation did not make the algorithm significantly 
more difficult, but did retain the high accuracy of the results. Furthermore, to accurately evaluate the influence of 
derived parameters on the system work, it wold be necessary to increase the number of test subjects in the study 
substantially. In other case, because of the individuality of each person and just minimal differences by excluding 
of 1–2 features, it is not possible to estimate the importance of every feature for the overall results.

To increase the accuracy of classification results, the transition patterns between different sleep stages were 
taken into consideration by the implementation of the algorithm described in this paper. As Schlemmer et al 
(2014) has proved, some transitions between sleep stages are much more probable than others and at the same 
time some of transitions have a probability of nearly zero. In the first implementation of the algorithm the 
emphasis was placed on the not probable transitions. As the algorithm works with probabilities, it allows the 
inclusion of additional adjustments, which increases accuracy without having to adhere to strict rules. In this case 
the algorithm decreased the probability of the examined sleep stage by 10% to 15% (a higher percentage would 
have a negative effect if the previous stage was incorrectly classified), if its appearance probability according to 
the transition pattern is almost equal to zero. This approach has led to an increase of the accuracy of the proposed 
algorithm by up to 3% compared to the implementation without considering the transition probabilities.

Implementation
In order to calculate the derived heartbeat parameters HB, HBI, HRV and RA, the exact time (in respect to the 
start of the record) of R-peaks, which occurred within 30 s epochs, must be identified and extracted. Therefore, 
to remove the disturbances (e.g. baseline wander) from the ECG, data filter techniques have to be used along 
with methods to remove artefacts. To achieve this goal, a linear high-pass filter (HPF) algorithm (Chen and 
Chen 2003) was implemented in the project. Due to the usage of HPF, the low-frequency noise sources of the 
ECG signals, such as P and T waves, and the baseline wander will be suppressed. The HPF-method used here is 
represented mathematically as

Physiol. Meas. 39 (2018) 124008 (14pp)
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y1 [n] =
1

M

M−1∑
m=0

x [n − m],

where x[n] is the input data and M represents the filter length. For the presented implementation the value of 
parameter M was determined to be 5 according to Chen and Chen (2003).

Figure 1 shows an overlap of the typically unfiltered (blue) and filtered (red) ECG signals for the same time 
interval. As the figure indicates, the key pillar of the HPF-method lies in the fact that the filter does not shift the 
signals on the axis X, which otherwise could cause the occurrence of incorrect time values of the R-peaks. There-
fore, the lower frequency noise sources of the ECG signal and the baseline wander will be suppressed with the 
help of the HPF-method.

After removing the artefacts from the ECG signal with a HPF-filter, the next stage of calculation is to identify 
the timestamps of all R-peaks. The following step is to estimate the derived parameters and to store, for further 
computations, the lists of all derived parameters for every subject in a CSV-File. The values from each list are cal-
culated in ratio to the derived parameter average signal. Each list is sorted in chronological order and every entry 
contains the values for a 30 s epoch. For instance, in the column HRV are determined values for every epoch, 
calculated as the difference (in ms) between HRV per actual 30 s and the average HRV of the full sleep record. The 
first 10 min of the recording of one subject are presented in table 3 to illustrate the possible deviation of derived 
parameters. As can be seen in the table, the deviations can be very diverse even for the same sleep stage, but the 
results of current research confirm that it is still possible to find some dependencies with appropriate mathemati-

cal model. This makes sleep stage recognition based on these parameters a challenging, yet promising method.
The list column ‘Index’ represents the consecutive number of sleep epochs, then values of derived parameters 

are listed. ‘AllStages’ contains the sleep stages obtained by the experts, according to the RK-method. The column 
‘Four-Stages’ shows more results of those specialists; however, the categorization is divided into the stages WAKE 
(1), Light- and Deep Sleep (2 and 3) and REM (4). The column ‘ThreeStages’ represents the experts’ results 
which are categorized into the stages WAKE (1), NREM (2) and REM (3).

Regression analysis is a complex process and difficult to implement in a research project. Furthermore, 
algorithms have already been implemented in various programming environments (Bochkanov 2018). 
Therefore, there was no need to develop completely new algorithms or implementation strategies. To achieve 
the goals of this project, free software and the programming language R (v.3.3.1) for statistical computing and 
graphics were utilized. The use of R was justified because of its ability to provide a wide range of statistical variety 
(classical statistical tests, linear and nonlinear modelling, time-series analysis, clustering, classification, etc) and 
various graphical techniques. Also, R is compatible with and runs on a wide variety of UNIX platforms, Windows 
and MacOS. Integration of R into the developed software was done using the corresponding free access libraries.

The merged derived parameter list of five files (representing five subject recordings) represents the train-
ing data, which then is used as a training set for the MLR model in R. In addition, category variables have to be 
set as factor variables. ‘Wake’ was chosen as the reference category for the MLR analysis because it is the only 
‘stage’ not included in the bigger category ‘Sleep’ containing REM, Light Sleep and Deep Sleep stages. The multi-
nom method of R software is used to fit the multinomial log-linear models to maximum probability estimations. 
Finally, the significance of the parameters can be analyzed with the 2-tailed Wald-z test. The most important part 
of this project is the R prediction-method, called predict. It requires the fitted model and the data frame to predict 
the probability of each stage belonging to a particular category. The predicted results are supposed to be stored in 
a separate .xls file.

Figure 1. Overlap of the same ECG signal interval.
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Results

This project is focused on analysing the sleep records from the Charité clinic in Berlin6. In the main study, about 
230 h of recordings from the Sleep Medicine Center at Charité were analysed. The data originates from the sleep 
recordings of 30 individuals (the amount of male and female participants is equal) with no significant health 
disorders. The average age was 38.5  ±  14.5 years old and the BMI of participants averaged 24.4  ±  4.9 kg m−2. 
The sleep stages of each PSG recording were manually measured in 30 s time intervals based on the Rechtschaffen 
and Kales method. As a result, the classification was made for three stages: WAKE, NREM and REM, and for four 
stages: WAKE, Light Sleep (i.e. NREM 1 and NREM 2), Deep Sleep (i.e. NREM 3 and NREM 4) and REM.

Using real data from a sleep laboratory for system evaluation can help to confirm the accuracy of the theor-
etically developed algorithm in a practical setting. Therefore, firstly, the results of the statistical estimations with 
regard to the mean and quartiles of the derived parameters were listed to show their behaviour in the four main 
sleep phases—WAKE (W), Light Sleep (LS), Deep Sleep (DS) and REM (R). In the next step, the MLR model fit-
ting process was described. Finally, the results of the regression analysis in 3 and 4 classification categories were 
displayed for the provided data.

In this project, the recordings were strictly separated into the types of data—training and tests. Firstly, the 
recordings of five subjects were entered into the model for the Charité dataset for the training. Then, for classifi-
cation, the recordings of the remaining 30 subjects were used. Average age, height, weight and state of health of 
subjects in both datasets had no significant differences. At the same time, the training dataset has also covered the 
values with deviation (in both directions but without outlier) from the average. The male/female ratio was also 
similar.

The proposed first version of the algorithm was implemented for the classification of sleep stages of healthy 
adults. The tests also used adult subjects with no record of sleep disorder.

In total, 27 662 time intervals were recorded, each with a length of thirty seconds. The classification matrices 
for the Charité subjects in sleep stages 4 and 3 are shown in the tables 4 and 5. In the end, the results for the overall 

classification rate were

 •  with 4 stages—accuracy: 58%, Cohen’s kappa: 0.50; 
 •  with 3 stages—accuracy: 72%, Cohen’s kappa: 0.67.

Each row of the matrix contains the rates for both the classified and misclassified time intervals. For example, 
the first row in table 4 indicates that 2649 intervals were correctly classified as the phase WAKE. The next entry 
displays the 1146 intervals classified as LS phase, but it was actually WAKE, and so on.

Tables 6 and 7 present the percentage of correct classification of sleep stages for each stage in particular. It can 
be seen, that in four stages, WAKE and Light Sleep is recognised with the highest accuracy, whereas the error rate 

at the Deep Sleep and REM stages is high, so an improvement in accuracy will be required.

Table 4. Classification results. Four stages.

Stage (developed SW-system)

WAKE LS DS REM

Stage (expert) WAKE 2649 1146 480 219

LS 1686 10 023 1700 942

DS 168 3041 2104 58

REM 628 1328 151 1339

Table 5. Classification results. Three stages.

Stage (developed SW-system)

WAKE NREM REM

Stage (expert) WAKE 2472 1642 380

NREM 2060 16 004 1658

REM 748 1101 1597

6 Thomas Penzel, Dr. rer. medic. Martin Glos; initial study was carried out in Charité—Universitätsmedizin Berlin Center of 
Sleep Medicine Charitéplatz 1, D-10117 Berlin (Germany).
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Discussion

Supporting sleep professionals with the help of non-invasive system for long-term sleep study in the home 
environment is the goal of this research. In particular, this paper discusses the software part of the system.

There are two main points, which represent the novelty of this work: the unique set of derived parameters 
which can be calculated from bio-vital signals and measured in a non-invasive way, and the use of multinomial 
logistical regression for the classification (which enables the possibility of easy algorithm adjustment—e.g. the 
consideration of transition patterns). The following paragraphs will elaborate on these points in more detail.

To implement an automatic sleep stage analysis and evaluation in this project, the appropriate software was 
developed. This program had the task of automatically classifying a sleep phase in 30 s time intervals based on 
the vital parameters—respiration, heartbeat and body movement signals from raw PSG recordings. Moreo-
ver, for this technique to be transferable into later studies with the sensor set mentioned above, the signals 
from them would not be translated with the raw values of the recordings. The goal was to create an algorithm 
which would present the parameter signals through the relation to parameter’s average signal. The reason for 
the development of this method is to make evaluations which consider the differences in individuals. After 
the experiment was finished, the classification results were compared with the pre-estimated whole-night PSG 
recordings.

The core of the software is the algorithm for sleep stage recognition using respiratory, heart rate and body 
movement signals. The results achieved so far are the following: 58% correct recognition rate for Wake, Light (N1 
and N2), Deep (N3) and REM stages and up to a 72% hit rate for Wake, NREM and REM stages. Sleep recordings 
of 30 subjects were used for the evaluation. The outcomes obtained are promising, but improvements are still 
possible and they will be developed in order to obtain results which are closer to PSG application.

There are several reasons for low accuracy of recognition in the REM stage. One of them is its similarity with 
WAKE sleep concerning breathing. Another more significant reason is that the REM stage is shorter than other 
sleep stages. Therefore, every incorrectly recognized epoch of REM sleep has percentagewise a high degree of 
influence on accuracy of recognition of this stage, whereas accuracy of the whole system will be less affected. Yet 
another reason for low accuracy of recognition is that the algorithm tends to recognise the next epoch as being 
the same as the previous one, if its features are similar. That being the case, since REM follows the LIGHT stage, 
the first ‘transitional’ epochs are often misclassified due to the presence of similar characteristics (heart rate and 
breathing).

The primary result of this project is that the selection of parameters (set of derived parameters from respira-
tion, heart rate and body movement) has proved its validity. The theoretical foundation described in the chapter 
State of the Art has inspired this line of thinking and the results of this study have justified it. It is important to 
keep in mind, that there are still conceivable improvements to be made to the algorithm which could increase the 
accuracy of results, but would not change the main concept. Furthermore, these parameters can be obtained in a 
non-invasive way with a hardware system (e.g. with sensors placed under the bed’s mattress) that can be installed 
by non-experts, which would be important for a home sleep study system.

Reducing the amount of derived parameters by using only three base features (heart rate, respiration rare 
and movement) will not lead to significant benefit for the proposed algorithm because the calculation of derived 
parameters does not need a high degree of computational power.

To evaluate the introduction of respiration as a bio vital signal for sleep stage classification, the test was exe-
cuted with the same dataset but without using the respiratory signal. The following results were achieved: general 

Table 6. Correctly classified stages. Four stages.

Rights 58 %

Mistakes 42 %

WAKE 59 %

LS 70 %

DS 41 %

REM 36 %

Table 7. Correctly classified stages. Three stages.

Rights 72 %

Mistakes 28 %

WAKE 56 %

NREM 81 %

REM 42 %

Physiol. Meas. 39 (2018) 124008 (14pp)
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accuracy for WAKE/LS/DS/REM decreased to 53% and WAKE/NREM/REM to 64% (compared to 58% and 
72% with respiratory signal). More importantly, the recognition rate of the REM stage diminished to about 15% 
for both sets of stages, which is not acceptable.

The first attempt to use the balanced proportion of classes in the training dataset was made (WAKE/
LIGHT/DEEP/REM  =  25%/30%/25%/20%), but the total accuracy was decreased by 2% for WAKE/LIGHT/
DEEP/REM and was not significantly changed for WAKE/NREM/REM stages. Nevertheless, the increase in the 
recognition rate of the REM stage has indicated the potential of this approach.

The classification into three (Wake, NREM, REM) and four (Wake, Light, Deep, REM) sleep stages had to be 
performed according to the research goal. Multinomial logistical regression (MLR) is the classification method 
that was chosen here because it allows a categorical distribution of values. One dependent variable (in this case—
sleep stages) has as input a set of different independent variables-parameters, and they may even overlap. More 
details are presented in the Statistical Methods chapter. Using MLR as a base for categorical distribution of sleep 
stage parameters will be used to enhance the process in the future, as it enables an easy and fast adjustment of 
the algorithm that depends on the requested input parameters. Even if just three bio vital signals are used in 
the method described, different derived parameters can be calculated when dependent variables are used in the 
regression model. Moreover, the adaptability of this algorithm allows for quick modifications if other bio vital 
signals are available for the study.

Though the selection of suitable parameters for the model was one of the challenging tasks, it has led to 
satisfactory results. However, some improvements are still possible, for instance the identification of other 
derived parameters that can be obtained in a non-intrusive way. Selection of the most suitable parameters can be 
proposed on the basis of theoretical research, but proof is only possible after analysing the results of numerous 
studies. Even with a distinguished background in qualitative analysis, it would be necessary to test the proposed 
set of parameters with real data in order to confirm the theoretical assumptions. The reason for this is the 
complexity of biological processes in the human body which have a variety of effects on bio vital signals, which 
can be used as inputs for the algorithm.

The consideration of transition patterns between different sleep stages was restricted to only one rule. 
Introducing other rules in respect to the transition matrix would increase the risk of reducing accuracy because if 
the previous sleep stage were incorrectly recognised, it would affect the classification of the next stages.

The strategy of this approach has been confirmed as being a highly credible method for yielding successful 
sleep stage classification with the help of a greatly reduced set of parameters. The number of test subjects could 
be increased in order to collect and evaluate a higher amount of data. For this reason, further studies with differ-
ent sets of input parameters and a higher number of subjects are in planning. During the study, several possible 
algorithm improvements were identified, and amongst others, the implementation of trust anchors will be inves-
tigated. The chapter Conclusions and Future Work focuses on this and other possibilities.

Comparing the results of this work with other studies, it is important to keep in mind that input signals for 
the system presented here could be obtained in non-invasive way. Most of the scientific articles on sleep stage 
classification (e.g. Supratak et al (2017) and Karimzadeh et al (2018)) describe systems using electroencephalog-
raphy (EEG) as input. Using EEG can provide higher accuracy, but requires placing the sensors direct on the test 
subject’s head, which would be not acceptable for a non-invasive system. Therefore, the most similar approach to 
use for comparison would be ballistocardiography or other methods using respiration, heart rate and movement 
signals as input. In Mendez et al (2010) an accuracy rate of about 0.79 was achieved, but only the classification 
of NREM and REM stages was determined and WAKE stage was excluded. The research system proposed here 
also includes WAKE stage, which explains the slightly lower total accuracy, but nevertheless provides increased 
usefulness as a sleep stage identification system.

Another paper Samy et al (2014) describes an unobtrusive sleep stage classification system using a pressure-
sensitive bed sheet which achieved 70% precision for WAKE, NREM and REM stages. With our system, we obtain 
a higher rate of accuracy and it was tested on a higher number of overnight PSG recordings (30 compared to 7).

The number of features used in Long et al (2014) is higher (14/13 compared to 10 in our method) and the 
results are equal without subject-specific normalization and just about 3% better with subject-specific normali-
zation, but as mentioned before with a higher number of included features.

In Aktaruzzaman et al (2017) an accuracy rate of about 0.78 was achieved with a lower number of features. 
However, the proposed method can identify only SLEEP/WAKE stages, and in addition, an assumption was made 
to include NREM1 as a part of the WAKE stage. In the proposed in this paper method not only SLEEP/WAKE, but 
also WAKE/NREM/REM and WAKE/LIGHT/DEEP/REM classification is done, which is a different and much 
more complicated task. However, a comparison with the results from Aktaruzzaman et al (2017) can be easily 
done using the already obtained results (having SLEEP  =  LIGHT  +  DEEP  +  REM). In this case even without 
adjusting the algorithm to recognise only SLEEP/WAKE stages, the approach presented in this paper got bet-
ter results: accuracy: 0.84, sensitivity: 0.59, specificity: 0.89 and kappa: 0.46 compared to Acc  =  0.78, Se  =  0.85, 
Sp  =  0.48 and K  =  0.30 in Aktaruzzaman et al (2017).

Physiol. Meas. 39 (2018) 124008 (14pp)
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The aforementioned results and the abundant opportunities for advancement in sleep stage classification 
prove the potential of the concept presented here and the necessity for further research on this approach. The 
comparison with the state of the art articles has confirmed the quality of achieved results, having a better relation 
‘amount of features’/‘correctly classified sleep stages’.

Conclusions and further work

The results obtained in this study (72% accuracy, Cohen’s kappa—0.67 for Wake, NREM and REM stages) prove 
that the algorithm developed for this project represents a truly promising method for sleep stage classification 
using just a few bio vital parameters: heart rate, respiration and body movement. It is also obvious that there are 
several ways to improve the classification algorithm. The first possibility is to define more derived parameters and 
examine them according to their significance in the MLR-model. For instance, the additional inclusion of sample 
entropy as an independent variable could potentially improve the model.

Also, the classification data could be revised in a second step. If a particular category is predicted with a lower 
percentage, the time intervals directly preceding and following it could be re-analysed in order to improve the 
overall classification rate. Besides this, the intervals which were classified with a high-confidence level could act as 
trust anchors. They could adjust the percentage values for the category membership of their neighbours.

Moreover, to further improve the software system, all the probabilities from the sleep stage transition matrix 
will be examined and two-step transitions (Schlemmer et al 2014) will be introduced.

Furthermore, an investigation is planned to study the effect of a currently unbalanced number of samples of 
different sleep stages on the accuracy of the method (Tilmanne et al 2009). One of the possible solutions could 
be to consider the balanced proportion of classes (WAKE, NREM, REM) for training dataset with executing of 
following test classification, but this point should be deeply investigated, as the first results have indicated.

The reduction of used derived features is also planned for the future when executing studies with higher 
numbers of test subjects would be possible.

Another approach to the classification of sleep phases is the implementation of a multi-layer neural network 
algorithm with the MLR model in the first layer, though it is still questionable whether the neural network analysis 
would improve the classification rates. Thus, it should be considered, but thoroughly examined and scrutinized.

A perfect match of the evaluated results with the findings of a sleep medicine professional is not possible 
due to the R–K method’s judgment standards, which include ambiguities. However, all in all it is still desirable 
to develop a more accurate and, more importantly, non-invasive solution for the problem of recording and esti-
mating the sleep stages. It would help to find alternative methods which could, in time, substitute for the more 
complex PSG procedure.

This research is part of an intended far larger study aiming to develop a monitoring system for home-based 
sleep analysis. It was particularly focused on designing a software solution that can classify the sleep stages. As 
mentioned earlier, the ultimate goal is to obtain the signals of particular bio vital parameters via a set of pres-
sure sensitive sensors placed under the mattresses of study subjects. This approach should presumably ensure 
that the sleep recording process does not disturb the sleep of the study participants. Furthermore, to get proper 
recordings of a natural sleep state, the subjects must feel as though they are sleeping in a normal bed in familiar 
conditions.

The planned system will include both software and hardware parts. The hardware portion will provide data 
collection and pre-processing. The data recording will be done through a set of sensors and necessary filters will 
be applied directly to the hardware to record movement, breathing and heart rate signals. After that the infor-
mation will be automatically transferred to a server, where the software will take care of further operations. It 
will be processed there and analysed by the developed sleep stage algorithm. The interpretation of the acquired 
results has to be made by medical professionals. After completing the development and integration of all the 
system parts, the resulting monitoring system could provide useful diagnostic support to sleep professionals 
and enhance the field of sleep medicine by offering a convenient way to perform preliminary sleep studies in the 
home environment.
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