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Resumen

Los cuásares son agujeros negros supermasivos rodeados de material muy caliente

que, mientras cae en espiral, emite una gran cantidad de radiación electromagnética.

Se encuentran en el centro de galaxias muy lejanas, y de las absorciones en sus

espectros, se puede extraer información sobre la densidad, temperatura y composición

del medio intergaláctico. Para ello, el continuo de estos espectros ha de ser estimado.

Presento dos métodos para reconstruir el continuo de cuásares: el cálculo de la

pendiente de la región UV de los espectros de cuásares y interpolación con splines

cúbicos. Con el objetivo final de tener la técnica de análisis de datos lista cuando

comience el catálogo de WEAVE-QSO a finales de 2022, uso el set de datos sintéticos

WEAVE-QSO OpR3b para testear la aplicabilidad de estos métodos reconstruyendo

el continuo de los de datos observados sintéticos y comparándolo con el continuo

teórico incluido en el set de datos. Encontré la región más apropiada para el cálculo

de las pendientes para este set de datos. La pendiente no mostró dependencia ni en

la magnitud aparente en banda r ni en el redshift. Adicionalmente, encontré una

cierta parcialidad (o ‘bias’) entre las pendientes observadas y teóricas, y para los

cuásares con S/N > 3 propongo un método para corregirla en aplicaciones futuras.

En cuanto a la interpolación por splines cúbicos, estudié los parámetros óptimos del

algoritmo seguido, en primer lugar visualmente para un número reducido de cuásares

y en segundo lugar minimizando ciertos residuos en varias situaciones incluyendo

distintas regiones (todo el espectro, a la izquierda y a la derecha de Lyman-α) y

posibles constantes de renormalización. Estos parámetros óptimos no dependieron

del redshift, pero śı de la magnitud aparente en banda r. Usé la dependencia con la

magnitud para proponer un algoritmo que lleva la magnitud aparente en banda r de

un cuásar en los parámetros optimos para la interpolación por splines cúbicos. Por

último, comprobé los resultados de este algoritmo haciendo un stack encontrando

errores del 16 %, y solo del 2.2 % para S/N > 3.
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Abstract

Quasars are supermassive black holes surrounded by very hot material that, as it

falls spirally, emits huge amounts of electromagnetic radiation. They are located in

the center of very distant galaxies, and from the absorption present in their spectra,

information about the density, temperature and composition of intergalactic medium

can be extracted. For that, the continuum from these spectra must be estimated. I

present two methods to reconstruct quasar continua: computation of the slope of the

UV region of QSO spectra and cubic spline interpolation. With the final objective

of having the analysis pipeline ready when the WEAVE-QSO Survey starts in late

2022, I take advantage of the WEAVE-QSO OpR3b mock dataset to test the extent

of the applicability of these methods by reconstructing the continuum with the mock

observed data and comparing it with the theoretical continuum included in the data

set. I found the most appropriate the region for the computation of the slopes in

this dataset. The slope of mock and theoretical spectra did not depend on neither

r-band apparent magnitude nor redshift. Additionally, I found certain bias between

observed and theoretical slopes, and for S/N > 3 quasars I propose a method to

correct it for future applications. Regarding the cubic spline interpolation, I studied

the optimal parameters of the algorithm followed, first visually for a reduced number

of quasars and secondly minimizing certain residuals in a number of situations

including different regions (whole spectrum, bluewards and redwards of Lyman-α)

and possible renormalization constants. These optimal parameters did not depend

on redshift, but did depend on r-band apparent magnitude. I used the dependence

on magnitude to propose an algorithm mapping QSO r-band apparent magnitude to

optimal parameters for the cubic spline interpolation. Lastly, I checked the results

of this algorithm by stacking finding errors of 16 %, and only 2.2 % for S/N > 3.
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1. Introduction

The name ‘quasar’ is an abbreviation of ‘quasi-stellar’, for they were referred to as

‘quasi-stellar radio sources’ in the past (similarly to stars, they are point sources, therefore

they are star-like or ‘quasi-stellar’ celestial objects). Nowadays, both the term quasar

and quasi-stellar object (or QSO, for short) are used interchangeably. They are the most

powerful and widely studied type of AGN or active galactic nuclei (see Kembhavi and

Narlikar, 1999).

A quasar consists, basically, on a supermassive black hole located in the center of a

galaxy, surrounded by very hot material that emits huge amounts of ‘light’ (electromagnetic

radiation). This allow us to observe them through telescopes in spite of the fact that

they are very far away. The light they emit, as it travels towards the Earth, may suffer

some absorption from the matter in the line between the quasar and us. As the universe

is expanding, the wavelengths of this light travelling towards us stretch, and therefore

so does the spectrum or flux against wavelength (see Condon and Matthews, 2018). As

this occurs gradually, an absorption at a certain wavelength produces different changes in

the spectra depending on the moment it occurred. Once the light reaches us, from these

different absorptions, information about the density, temperature, composition and more

about the clouds of gas that produced the absorptions can be obtained. In particular, with

enough absorption features the density field can be reconstructed. However, in order to do

so, the emitted, absorption-less spectra must be estimated, which is not a straightforward

task (see Dall’Aglio et al., 2008 as an example of continuum reconstruction techniques).

Different methods for this estimation will be presented and analyzed using a mock data

set with the objective of testing their applicability in the WEAVE-QSO Survey, which is

intended to start by September 2022.

I structured this work as follows. In section 2, I establish the theoretical framework

strictly necessary to understand this work. In particular, I define magnitude and redshift,

and introduce the typical QSO spectrum in the region of interest (basically UV and

visible wavelengths). In section 3, I explain the procedure to generate mock data and, in

particular, the characteristics of the OpR3b data I use in the following sections. In section

4, I explain the two methods I will be testing on the data set, namely the computation of

the slope of the UV spectra, and the cubic spline interpolation. In section 5, I present the

results obtained after applying them. In particular, for the slopes in the UV, a study of

the slope distribution is performed, and whether obtaining this slope from real data is

possible or not is discussed; and for the spline interpolation, a study of the distribution of

the optimal parameters of these splines is included, and the method proposed is tested by

stacking a particular group of quasars. Lastly, in section 6, I show the conclusions I could

reach, along with some ideas for the further development of these methods.
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2. Theoretical framework

In this section, I will introduce ‘magnitudes’ as the usual convention for the measuring

of luminosities and fluxes, I will talk about redshift and why the main redshift component

for QSO is the cosmological one, I will define quasars both observationally and theoretically

via the unification theory for AGN, and I will explain what the typical QSO spectrum

looks like, in particular in the UV region (the region of the data I will analyse in sections

4 and 5). For general astrophysical concepts, I recommend consulting Geller et al. (2019)

and Carrol and Ostile (2017), and for quasar-specific concepts, Kembhavi and Narlikar

(1999).

2.1. Magnitude

Let me begin by saying that the word ‘flux’ is used for different physical properties in

astrophysics depending on the criteria followed by the writer. I will use it to refer to the

monochromatic flux1, Fλ, measured in [J/(sm2Å)]2 (that is, energy per unit time, per unit

surface and per unit wavelength). As I will only use Fλ and not Fν (|Fλdλ| = |Fνdν|), I
will get rid of the sub-index from now on.

Nevertheless, for historical reasons, it is very common to use magnitudes instead of

fluxes. In general, one may define the difference between apparent magnitudes m of two

objects ‘1’ and ‘2’,

m1 −m2 = −2.5 log
F1

F2

(1)

Note that, analogously to potential energy, it is defined save an additive constant. It is

common to set it to 0 for the star Vega, for example. Also note how more luminous objects

have lower magnitude, and that F1 = 10 F2 =⇒ m1 = m2 − 2.5. Absolute magnitude

M , on the other hand, is defined as the apparent magnitude the object would have if it

were at a distance of 10 parsec (becoming, thus, independent of the distance). These two

equations can be easily derived:

M1 −M2 = −2.5 log
L1

L2

(2)

m−M = 5(log d− 1) (3)

Here, d is the distance, L is the luminosity (L = 4πd2F , constant in vacuum), and

‘m−M ’ is called the distance modulus (they obviously refer to the same object). Moreover,

back to equation (1), it defines apparent magnitude in a specific wavelength. In the real

1In the literature, it can sometimes be seen as spectral flux density, using flux without adjectives to
refer to luminosity.

2Dividing by ℏν = ℏc/λ, it becomes the photon density.
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world, usually a continuous range of wavelengths is measured, and it is also necessary to

take into account the filter used. Filters are accesories for telescopes or cameras used to

improve the observation of celestial objects and the photon counting in a specific range of

wavelengths. Their wavelength range is called the band-pass. In particular, taking into

account the transmission function TX of the band-pass filter used, ‘X’,

m1 −m2 = −2.5 log

∫
F1(λ)TX(λ)dλ∫
F2(λ)TX(λ)dλ

(4)

In my case, I will use the AB magnitude system, defining the zero point as follows.

m = −2.5 log

∫
F (λ)TX(λ)dλ∫

c
λ23631 JyTX(λ)dλ

(5)

Here, Jy stands for janskys, defined as 1 Jy= 10−26 W m2 Hz−1. The c/λ2 factor is

due to the definition being originally for frecuencies, ν, not for wavelengths λ = c/ν.

Figure 1: Filter response function for different filters in the ‘ugrid’ system. Through this
work, only the r-band will be used. SDSS stands for Sloan Digital Sky Survey, see York
et al. (2000).

Ideally, the filter transmission function, or filter response, would be rectangular-shaped,

to measure only an interval of wavelengths, but uniformly well (no individual wavelength

should be more important than another). However, real-life filters are not perfect, and

have smooth limits, as is represented in figure 1. Note that the area below the curves is

not 1, but it can be observed from equation (5) that the normalization of these curves is

3



not very important, as it simply cancels out in the quotient. The letters that represent

the five pass-bands stand for ‘ultraviolet’, ‘green’, ‘red’, ‘near infrarred’ and ‘infrarred’, in

order. In particular, in this work I will use the apparent AB magnitude in the r-band only,

which is part of the information the data I will work with provides.

2.2. Redshift

The parameter z, called ‘redshift’, represents the spectral shift from the wavelength

emitted, λem, and the wavelength measured in another part of the universe, λobs, and its

expression is:

z =
∆λ

λem

=
λobs

λem

− 1 (6)

That is, 1 + z = λobs

λem
. As QSO have strong emission lines, corresponding to electronic

transitions between states with tabulated energy, they can ultimately be identified, and

thus redshift can easily be determined.

Now, the natural question is what the nature of this redshift actually is. There are

three candidates: Doppler shift, which is due to the relative movement between the emitter

and the observer; gravitational redshift, which is due to gravity, which in this case would

be that of the emitter; and cosmological redshift, due to the expansion of the universe. I

am going to argue why the latest is the only non-negligible one for quasars.

The first candidate is the Doppler shift. If a source of light moves with speed v⃗ away

from the observer in their rest frame, the spectral shift of the light measured by the

observer will be

1 + z =
1 + (v/c) cos(θ)√

1− (v/c)2
(7)

θ is the angle made by v⃗ with respect to the radial vector between source and observer.

This equation is relativistic, but in astrophysical terms, the Newtonian limit (v ≪ c) may

be more useful. Via Taylor expansion, its easy to prove that z = vr/c, where vr = v cos(θ)

is the (positive or negative) radial component of the relative velocity.

This Doppler shift has long been confirmed in stellar motion within our galaxy. Note

that Doppler shift delinks redshift from distance: large redshifts do not imply large

distances from us. One of the first theories suggested to explain quasars assuming Doppler

shift as important stated that quasars were celestial objects ejected from violently active

galactic centers. However, Kembhavi and Narlikar (1999) argue that this component of

the redshift is negligible for quasars: the amount of energy required for such phenomena is

problematic, and there is also the problem of blueshift: it can be proven that, under the

asumption of isotropic ejection, the number of blueshifted quasars (those ‘heading towards

us’, vr < 0) would be around 81 times the number of redshifted quasars (moving away

4



from us, vr > 0). Observations discard this, serving as proof that Doppler shift is not the

main component of the QSO redshift measured.

The second candidate is the gravitational redshift. Assuming spherical symmetry, from

Schwarzschild’s solution to Einstein field equations the following expression can be derived:

1 + z =

√
1− rS

Robs

1− rS
Rem

(8)

Here, Robs and Rem are the radius where the observer is and where the photon is emitted,

respectively. The Schwarzschild radius, rS = 2GM
c2

is the event horizon radius of a

Schwarzschild black hole with mass M. In astronomical terms, Earth is at infinity, that is,

Robs ≫ rS, and equation (8) simply becomes

1 + z =

(
1− rS

Rem

)−1/2

(9)

It may seem possible, then, to obtain large redshifts by approaching Rem to rS. However,

as H. Bondi showed in 1964 (Kembhavi and Narlikar, 1999), any realistic equation of state

(relation between the pressure, the density and the temperature as functions of r)3 in

a spherically symmetric object gives a ‘surface redshift’ (z from equation (9)) lower or

equal than 0.62. Consequently, the gravitational redshift cannot be accounted for the high

redshifts the QSO had.

The third alternative is due to the cosmological effects. There are multiple observational

proofs that the universe is expanding, and redshift of distant objects, such as other galaxies

or extragalactic objects, may be explained as a consequence of space and time dilation.

The Friedmann-Robertson-Walker (FRW) metric is the most general metric solution

to Einstein’s field equations that satisfies homogeneity and isotropy (Garcia-Bellido, 2005).

It is given by:

ds2 = c2dt2 − a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
(10)

Here, a(t) is the scale factor, related to the physical size of the universe, dΩ2 = dθ2 +

sin2 θdϕ2, and K characterizes the ‘spatial curvature’: K = −1 gives an open universe,

K = 0 gives a flat universe and K = +1 gives a closed universe (conveying r < 1, while

the other cases do not convey any such restriction).

Now assume, as a first approximation, that galaxies behave like point particles that

follow space-time trajectories that are geodesics, with fixed comoving (that is, expanding

along with space) coordinates (r,θ,ϕ) in the so-called cosmological rest frame4. Now

3I.e. the speed of sound cannot surpass the speed of light.
4In reality, galaxies show peculiar movement, that is, movement relative to the cosmological rest-frame.

In the case of QSO, it is virtually negligible in most cases.
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consider a beam of light travelling from a galaxy at r = r1 to our galaxy at r = 0

(homogeneity of the universe allows us to choose an arbitrary origin of coordinates). For

the light trajectories, ds = 0, and so

dr√
1−Kr2

= − cdt

a(t)
(11)

The negative sign indicates that as time passes (dt > 0), r decreases. Let’s work, for now,

with each monochromatic component of emitted wavelength λem, that will ‘stretch’ as the

universe expands. Consider two consecutive crests emitted at tem and tem + λem/c that

reach us at tobs > tem and tobs + λobs/c > tem + λem/c, respectively. Integrating (11),

∫ r1

0

dr√
1−Kr2

=

∫ tobs

tem

cdt

a(t)
=

∫ tobs+λobs/c

tem+λem/c

cdt

a(t)
(12)

The left side, is a function of r1, with analytical expression:

∫ r1

0

dr√
1−Kr2

= f(r1) =


arcsin(r1), if K = 1

r1, if K = 0

arcsinh(r1), if K = −1

(13)

But what matters is that it remains constant, that is, the second and third integrals in

equation (12) are equal. Dividing them in intervals,

∫ tem+λem/c

tem

cdt

a(t)
+

∫ tobs

tem+λem/c

cdt

a(t)
=

∫ tobs

tem+λem/c

cdt

a(t)
+

∫ tobs+λobs/c

tobs

cdt

a(t)
(14)

The second integral of the left-hand side cancels out with the first integral of the right-

hand side. It can be assumed that the periods are small enough, λ/c ≪, and therefore

a(t) is approximately constant in the integration intervals. This way,

λem

a(tem)
=

λobs

a(tobs)
=⇒ a(tobs)

a(tem)
=

λobs

λem

def
= 1 + z (15)

This is the definition of the cosmological redshift. Hubble’s law can be easily derived

from here. If K = 0, or K ̸= 0 but r1 ≪ 1, and a(t) varies slowly in the interval (tem,tobs),

r1 ≈ f(r1) ≈
c(tobs − tem)

a(tobs)
(16)

On the other hand, the slow variation of a(t) allow us to expand its Taylor series and

6



neglect O((tobs − tem)
2).

a(tem)

a(tobs)
≈ 1−H0(tobs − tem) (17)

Here, H0 =
ȧ(tobs)
a(tobs)

is the ‘Hubble constant’, that must be calibrated observationally5. On

the other hand, also assuming z ≪ 1,

1− z ≈ 1

1 + z
=

a(tem)

a(tobs)
≈ 1−H0(tobs − tem) =⇒ z ≈ H0(tobs − tem) (18)

Therefore, substituting (tobs − tem) in equation (16),

r1 ≈
cz

H0a(tobs)
=⇒ H0DL(r1)

def
= H0a(tobs)r1 = cz = vH (19)

Where DL is called the luminosity distance, and represents how the ‘original distance’

r1 has been enlarged by the expansion of the universe, quantified by a(tobs)
6; and vH is

the recessional velocity of the galaxy that would explain the redshift as a non-relativistic

Doppler effect. Note how, as z approaches and even surpasses 1, this approximation and

the velocity assumption are manifestly false: the galaxy cannot travel faster than the

speed of light. For higher redshifts, Hubble’s law still applies (redshift is proportional to

distance), but with a non-constant Hubble parameter H(t), with t = t(z) the look-back

time (see Condon and Matthews, 2018 and Goswami et al., 2015 for more details on this).

A technical remark before going on. With high enough redshift, one must be careful

with how the transformation of space and time affects the value of the physical quantities.

By the very definition of redshift, we already know that λ′ = (1 + z)λ is the relation

between wavelenghts received on Earth (left side, λ′) and actually emitted (right side, λ).

A similar correction may be applied to the (density) flux in [J/(s m2Å)]. Following the

steps in Kembhavi and Narlikar (1999) and Condon and Matthews (2018), one can get

that:

F ′(λ′) =
F (λ)

1 + z
(20)

This correction will be applied both ways throughout this work.

2.3. Quasars

The first definition for quasar was given in G. Burbidge and M. Burbidge (1967) and

goes as follows: a quasar (or QSO) is a point source (not resolved) with radio source,

5According to Riess et al. (2019), the value is between 65.5 and 75.5 km/(s Mpc). Its units are
velocity/distance, for it gives a linear relation between our distance to the object and the recessional
velocity of the galaxy.

6Strictly speaking, both DL and H0 depend on time (r1 did not), that is why H0 is usually termed as
H(t), the Hubble parameter.
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variable light, large ultraviolet flux of radiation, large redshift7 and broad emission lines in

their spectra, usually showing absorption lines as well. Later on, the radio source property

became obsolete, as only a small percentage (around 10 %, according to Kembhavi and

Narlikar, 1999) of QSO showed it. For my own purposes, the definition does not require

the radio source property.

Quasars are part of the more generic group of active galactic nuclei (AGN), which

include other stellar objects, such as Seyfert galaxies or blazars, usually distinguished

by certain observational traits. A strong bias towards observational definitions can be

noted through the literature, partly for its convenience in the analysis of great amounts of

data, and partly for the lack of a complete and satisfactory theoretical framework for such

objects until recently (as opposed to stars and their blackbody-like spectra)

One may then try to, if not define QSO by their physical properties, establish a plausible

theory of QSO that supports the observational definition given. The most extended model

of QSO postulates that QSO, and AGN in general, are spinning supermassive black holes

with accretion disks that emit a huge amount of energy (‘active’) of gravitational source,

located in the center of galaxies (‘galactic nucleus’). The current unified models propose

that all AGN are a single type of physical object, merely observed from a different relative

orientation, as represented in figure 2.

In figure 2, the structure of AGN according to current unified models is shown. Note

that they are (approximately) symmetrical around their axis and with respect to the plane

that contains them: the AGN may have or not have the jets, but if it does, it has two. The

representation of figure 2 simply includes radio-loud (those with jets, as they are the main

radio source for AGN; upper half) and radio-quiet AGN in the same image (lower half).

An AGN consists on a supermassive black hole, surrounded by an accretion disk and a

torus-shaped dusty region, and sometimes two huge jets (even bigger than the diameter

of an entire galaxy). The material closer to the black hole emits broad lines, as it spins

rapidly and suffers a lot of Doppler effect, and the material farther away from the black

hole emits narrow lines. This structure finds justification in the accordance between its

predictions and the actual data measured.

Straightforward computations, either analytical or computational give us an estimate

of the order of magnitude of some QSO properties. Using the period T of the variations

of the flux over time and arguing that the size of the QSO is of the order cT , one gets

that their size is approximately that of the Solar System. Their lifespan8 is very short,

astronomically speaking: it is of the order of ten million years. For a standard redshift

value of z = 2 (see section 2.2 for more details on redshift), one gets that the order of

7According to Chapter 6 of Kembhavi and Narlikar (1999), z≥ 0.1, although in the data I treat z≳ 2.
8Defined as the period of time where there is sufficient gas to form an accretion disc similar to that of

figure 2.
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Figure 2: Structure of an AGN (left side, from jet to dusty torus) and different types of
AGN (right side, from Radio-Loud Quasar to Radio-Quiet Quasar) as proposed by the
unified theory. The types of AGN are merely differentiated by the angle of vision. Not to
scale. Image from Urry and Padovani (1995).

magnitude of their distance from us is around 1026 m, and that they existed around 3 · 109

year since Big Bang (that is, 20 − 30 % of the age of the universe). We are looking at

the QSO as they were back in the past, for they are most likely extinct nowadays, as is

suggested by the representations of QSO density vs age of the universe based on current

surveys, which can be seen for example in Geller et al. (2019). The peak of this density

is close to z = 2. Knowing their apparent magnitude and distance from us, I can also

estimate the QSO luminosity (see subsection 2.1), getting that it is as high as that of

an entire galaxy of around 1011 stars!). Obviously, for different z these numbers vary

significantly, and the uncertainty of these numbers is high, but it gives an idea of the real

numbers and therefore how astonishingly exotic these celestial bodies are.

The spectra of a QSO consists, basically, on a continuous spectrum and a series of

emission lines of the elements it has, along with some absorption lines originated in the

source or between the source and us.

The continuous component comes from the broadening of the emission lines of the

material surrounding the black hole (in other words, the interactions between atoms, ions

and molecules spread out the initially discrete emission lines of the QSO material, so

they become no longer distinguishable). It is believed to be originated via relativistic

processes like Doppler effect caused by movement in our line of sight, or via inverse
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Compton scattering, which consists on a low-energy photon interacting with a high-energy,

ultrarelativistic electron, gaining energy from it. This continuum can roughly be estimated

by a rather simple power-law in the ultraviolet region (between 100 Å and 4000 Å):

F (λ) = Aλα (21)

The power α is usually called the ‘slope’ of the QSO, as it becomes the slope of a line

equation after applying logarithms on both sides (it is the slope of the line in logarithmic

representation). Its values are usually between −2 and −1, as stated in Kembhavi and

Narlikar (1999). The reasons why equation (21) is used are, mainly, that the continuum

varies slowly for most QSO, and the power-law was experimentally proven to be valid at

first order in this region of the spectrum. Additionally, as is showed of Kembhavi and

Narlikar (1999), in some regions and under certain assumptions, power laws can in fact be

derivated analytically. More details on the origin of the power law and other characteristics

of QSO spectra are out of the scope of this work, and can be found in of Kembhavi and

Narlikar (1999).

Figure 3: Main emission lines around the Lyman-α peak. This figure is from Suzuki
(2005). Arbitrarily normalized flux is represented against wavelength, for the mean of
50 QSO spectra (the author uses Dirac notation for the spectra). The FE II and Fe III
multiplets are indicated below the spectrum. The ‘*’ in ‘CIII*’ indicates that there are
several emission lines close to that wavelength. These lines will be present in the OpR3b
data I will treat, their relative height varying for each QSO. To consult a broader range
of wavelengths, if needed, check figure 2 of Francis et al. (1991). The dotted line is the
power-law regression of the continuum component.

The emission lines are originated from the desexcitation of atoms which are accelerated
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to relativistic velocities and acquire very high temperatures due to collisions and friction as

they fall spirally towards the black hole. The line emission is very strong in QSO, causing

that part of them stay as broad emission lines instead of completely blending in with the

continuum, as would happen with most stars.

As hydrogen is the main component of the orbiting and falling material surrounding the

black hole of a QSO (which causes the absorption and emission of radiation), I may remind

here Bohr’s formula for the wavelengths of the emitted photons after electric transitions

inside a hydrogen atom:
1

λ
= R

(
1

N2
− 1

n2

)
(22)

Here, R = 1.097 · 107 m−1 is Rydberg constant, and N and n are the numbers of the inner

and outer orbit, respectively. In particular, for N = 1, it gives the Lyman series, which

lays in the ultraviolet region. Starting from n = 2, the spectral lines are called Lα (short

for ‘Lyman-α’, at 1215.67 Å), Lβ (at 1025.72 Å)... For the rest of the elements, values

showed in figure 3 are empirically measured and have long been tabulated.

Lastly, as chapter 13 of Kembhavi and Narlikar (1999) points out, absorption lines can

be classified into three categories:

Broad absorption lines, trough-shaped. These are believed to be caused by the disk

of accretion and the gas close to the black hole.

Heavy element (carbon, magnesium, oxygen...) absorption lines. If the redshift of

this absorption line is comparable to that of the quasar, then it may be attributed

to the quasar itself. If it is considerably smaller, galaxies or their halos are believed

to cause these lines.

Lyman-α forests. Neutral hydrogen is, by far, the most abundant element in the

universe. As light travels between the quasar and us, clouds of neutral hydrogen

in the IGM (intergalactic medium) produce absorption lines in the Lyman-α line

wavelength at their redshift. As the density of the universe is not uniform, a trough

is not formed, but rather a series of absorption lines bluewards of the redshifted

Lyman-α. That is the reason why this configuration is a ‘forest’: its rather messy

shape.

Lyman-α forests are precisely one of the reasons why it is interesting to reconstruct the

continuum. If precise information of this continuum is know and precise measurements

are available, one can calculate how much was absorbed at every redshift (that is, at every

distance from the Earth), and therefore obtain estimates of the density of the universe

in the line between the quasar and us. This data is very valuable as it can be used to
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constrain the cosmological model we live in, constituting one of the main reasons why

quasars are interesting to both theoreticians and observational astronomers.

In this work, I will focus exclusively on the UV part of a QSO spectrum. For an

explanation on the shape of the rest of the spectrum of QSO, please refer to Leipski et al.

(2014) or Harrison (2014).

3. Mock spectral data for WEAVE-QSO

In this section, firstly, I will introduce the WEAVE-QSO Survey, and secondly, I will

introduce mock data. In particular, I will introduce why and how mock data, such as the

one I work with in this work, is generated. The sketched procedure (subsections 3.2 and

3.3) will explain some of the features of the OpR3b data that will be treated in sections 4

and 5, which will be first presented at the end of this section (subsection 3.4).

3.1. WEAVE-QSO

Let me review and briefly summarize the objectives of the WEAVE-QSO survey. For

further details, please refer to Pieri et al. (2016). The aim is to observe around 400.000 high-

redshift (z > 2) quasars with magnitudes m < 24 as part of the broader WEAVE survey,

using the William Herschel Telescope (WHT, in Roque de los Muchachos Observatory,

La Palma, Canary Islands). The WEAVE Survey consists of 3 galactic Surveys and 5

extra-galactic Surveys, one of them being WEAVE-QSO. It will use 70 % of WHT time and

will have its first light presumably in the last months of 2022 (it is planned for September

1st).

The goal of the WEAVE-QSO Survey is to shed some light to big questions about the

nature of dark matter and energy, the reionization of the universe after the Big Bang and

the formation of galaxies.

3.2. Usages of mock data

There are two main usages of the mock data for new astronomical instruments and,

in particular, new telescopes. The first one is, mainly, to evaluate what science could be

done with that specific instrument. For instance, in this case, the data generated for the

WEAVE Survey focuses on quasars on a specific region of the sky. How much information

one can get from these data serves as an estimation of how much information one will

actually be able to gather using the telescope, and therefore helps deciding whether the

observational project is worth investing in or not.
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The second one is to already have the analysis pipeline ready when actual data from

the real instrument is available. For example, this work will show whether adjusting the

slope α will be plausible and useful or not, and will study the best set of parameters for

certain spline interpolations (see section 5).

3.3. Generation of mock data

3.3.1. Survey generation

I am going to explain the process by which mock data is generated for any instrument

(and therefore, in particular, how the data I study in this work was generated) as it may be

illustrative to understand certain characteristics of the data before its treatment. Please,

refer to Bautista et al. (2015) for more detailed information about this topic.

The first step is to create a survey of the objects which are going to be studied in

particular. In this case, those objects are quasars, located in the center of distant galaxies.

In order to do so, the following procedure is carried out:

1. After choosing a cosmological model, using the cosmological equations, an initial

density field is evolved (either analytically or through numerical situation).

2. Using the density field and a model for the location of QSO, a number of quasars is

obtained, along with their positions and their magnitudes.

3. These QSO are filtered by the region of the sky and the magnitudes the instrument

will study.

This way, one may obtain as many surveys as one wants for the chosen cosmological model.

3.3.2. Observation modelling

To each and every QSO generated in this survey, a QSO template9 is asigned. In

the particular case of OpR3b (the data set I treat), exactly 452 templates were used. I

will refer to this spectra with the sub-index ‘temp’ (from ‘template’). Note that these

templates give the shape of the spectrum, proportional to the real spectrum actually

emitted. Specifically, they are stored in arbitrary units.

Each QSO is associated to a certain redshift and apparent magnitude in r-band. Using

the template associated to the QSO, the appropriate cosmological absorption lines (which

are dependent on redshift) are added either analytically or through simulation. The

resulting spectrum will be referred to with the sub-index ‘model’ (as it embodies the effects

of the chosen cosmological model in the previous template).

9Based on theoretical models or previous observations. Further details are out of the scope of this
work, and can be found in papers like Lusso et al. (2015) and Vanden Berk et al. (2001).
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In order to generate the final ‘mock’ data resembling actual measurements with the

new instrument, first of all, the quasar’s flux renormalized in order to match the required

magnitude and redshift. Now, to all of these mock spectra, it is simulated how the spectra

would be observed through the instrument, recreating atmospheric effects, night-dependent

effects, the different nuances of the instrument itself...

This is some raw data, similar to the data one would get directly using the instrument

when it is available. At this step, one may forget that these are artificial data, and act

as if they were real measurements. Therefore, to interpret these data, one must correct

all of these undesired or ‘artificial’ features: the instrument’s effect through its efficiency

function, the atmospheric noises... This process is called ‘reduction’, it cleans most of the

contamination effects and quantifies the uncertainties of the data. These final data will be

referred to with the sub-index ‘mock’ (these are the data one would actually work with in

real-life observations).

It is interesting to point out how the atmospheric corrections are carried out. Basically,

the empty night sky spectrum, conveniently normalised, is subtracted from the measured

spectra. This night sky spectrum is season-dependent, vary between the different regions

of the sky and, of course, is also dependent on the location in the Earth, but its main

features are the ones represented in figure 4.

Figure 4: Spectrum from a moonless night sky in La Palma. Figure from Benn and
Ellison (1998). The intensity Iν is represented against wavelength. The flux F = Fλ

can be obtained as the integral of Iν over the solid angle used and taking into account
|Fλdλ| = |Fνdν|. The horizontal lines such as ‘U’ and ‘B’ represent filter bands.

Different features can be noted, such as oxygen lines and mercury lines, the NaD

doublet and the OH Meinel Bands (transition between rotational-vibrational levels within

the OH ground state). These features are mostly due to airglow (emissions from atoms and
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molecules excited by solar ultraviolet radiation during the day), streetlight contamination

and zodiacal light (sunlight scattered by interplanetary dust). A small component of

scattered light from faint stars is also relevant.

As these features have some variation and inherent uncertainty, correcting the atmo-

spheric effects leads to considerably higher uncertainties and noisier data in certain regions

(for example, those corresponding to the OI lines and the OH Meinel Bands). In the panels

in figure 5, the direct correlation between the errors in the typical spectra from the data I

will treat and these regions from figure 4 becomes apparent.

(a) Typical shape of a QSO spectrum. Flux
is represented against wavelength. Note
the lack of physical meaning of the lower
wavelengths.

(b) Typical shape of a QSO UV spectrum,
using base e logarithms for both flux and
wavelength. Note that it has a linear be-
haviour.

Figure 5: Typical spectra from the OpR3b mock data. The ‘mock’ data represents
observations, the ‘template’ data represents the theoretical spectrum and the ‘model’ data
represents this theoretical spectrum after the cosmological absorptions. The errors of the
‘observed’ (that is, ‘mock’) are included as well in panel 5a.

In figure 5, one of the quasar spectra from the files is represented in both linear and

logarithmic scale. Its redshift is z = 2.96 and its magnitude m = 22.92. In both figures,

the Ly-α peak, as well as the noise properties I mentioned before can be observed. Around

1400 Å and 1900 Å a ‘flux drop’ can be seen (the ‘mock’ flux is 0 in those regions). These

are the regions where the noise is so high that the data is not reliable, and is therefore

disposed-of. It can be seen as in the logarithmic representation as well: the parts without

data (as the logarithm of 0 is not defined, those points are not represented). These flux

drops will be cumbersome, as they do not occur in the same ranges of wavelengths for

every QSO, thus eliminating them for my analyses is one of the challenges to overcome.

The renormalization used for this and all other representation follows the steps from

subsection 4.1. Note how the true continuum (from either the ‘template’ or the ‘model’)

follows a power law (in figure 5b, this is very clear). However, also note how such a
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dependence in the ‘mock’ spectrum is not that clear due to the noise, and how obtaining

the red line from the blue data, which is my objective in sections 4 and 5, is not exactly

trivial.

3.4. The OpR3b WEAVE-QSO mock data catalog

As may be inferred from the previous subsections, data may be presented in different

frames of reference. In the so-called ‘QSO rest frame’, the values of wavelength and flux

(along with its uncertainties, if applicable) are those one would measure if one were where

the QSO is. Therefore, in this frame the Lyman-α peak is located at a wavelength of

1215.67 Å. On the other hand, data may be presented as they are (or would be) measured

here on Earth. In this frame of reference, the Lyman-α peak is located at a wavelength of

1215.67 · (1 + z) Å, which is obviously dependent on the quasar. In order to clarify the

frame of reference I am working on, I will adopt the following convention: the super-index

‘rf’ will refer to the ‘QSO rest frame’ (λrf , F rf), while its absence will denote that the

data is in our rest frame.

The data I worked with is the OpR3b WEAVE-QSO mock data (Operational Rehearsals,

version 3b), and it consists on 3196 QSO unevenly divided in 19 files, each of them

corresponding to an ‘observational block’ (certain amount of time, one hour in the case of

WEAVE-QSO, dedicated to obtaining the relevant data from a small portion of the sky,

which is different for every block, and corresponds to 2◦ diameter sections for WEAVE-

QSO). For each of the quasars, there is the following information in the file:

The r-band apparent AB magnitude of the QSO.

The redshift of the QSO.

The template spectra: A vector of uniformly-spaced wavelengths, which I will denote

as λrf
temp, and another vector of the values of the F rf

temp corresponding to those

wavelengths. These are given in the QSO rest frame, and λrf
temp ranges from 1020 Å

(approximately at Lyman-β) to 5100 Å, increasing approximately 0.1 Å every pixel

(a total of 40800 points). These and all other values of the flux are given in J/(s

m2Å)

The cosmological model spectra: A vector of uniformly-spaced wavelengths, which

will be denoted as λrf
model (not necessarily coinciding with any wavelength from λrf

temp),

and another vector of the values of the F rf
model corresponding to those wavelengths.

These values are given in the QSO rest frame, and covering different ranges (although

always containing those from the observed or ‘mock’ data) in each QSO with a total

of 5397 points.
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The observed spectra: Three vectors this time. A vector of equally-spaced wave-

lengths (not coinciding with the wavelenghts from the other two wavelenght sets), de-

noted as λmock, a vector of the values of the Fmock corresponding to those wavelengths,

and a vector of uncertainties ∆Fmock associated to those values of the ‘measured’

flux. The λmock vector is always {3676 Å, 3676.25 Å, 3676.50 Å,..., 9593.75 Å}, it
corresponds to the wavelengths that will be measured by the WEAVE spectrograph.

This way, the observed spectra covers a total of 23672 data points for each QSO. It

must be noted that due to the noise and the subsequent corrections, in regions where

the flux is small, Fmock may become non-negative, which holds no physical meaning

(although it is consistent with positive, close to zero flux taking errors into account).

Furthermore, due to the shape of the telescope’s efficiency, the values of the flux

corresponding to the wavelengths closer to the lower bound have great uncertainty,

more so with high magnitude (less luminous) quasars.

An important variable that is not included in the data but is easily computable is the

‘signal-to-noise ratio’ S/N is defined at any wavelength λmock as:

S/N =
Fmock(λmock)

∆Fmock(λmock)
(23)

Figure 6: S/N is plotted against r-band apparent AB magnitude for the 3196 quasars of
the WEAVE-QSO OpR3b dataset (blue points). The regression curve is plotted as well
(orange line).

It is basically the inverse of the relative error, and gives an idea of the reliability of

that data point: the higher, the more reliable. It is obviously dimensionless (as so are
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magnitude and redshift). For convenience, I will also define the average signal-to-noise

ratio in a region as the average of the S/N values for that region. If the region is the

whole measured range of wavelength, this new quantity (which, by convention, will be

denoted as S/N too), shows the quality of a QSO spectrum as a whole. It is expectable

that S/N will be directly correlated to the observed flux (therefore, higher for smaller

apparent magnitudes). In fact, figure 6 may be obtained with the 3196 quasars from the

data set.

The relation between the two variables of figure 6 seems to be an exponential (implying

that S/N is proportional to a power of the integral flux, at least in the r-band). After

a regression is done in the form of y = A+ Be−cx, with (x,y) = (m,S/N), I present the

following results:

A B c
0.00± 0.03 (37± 4) · 105 0.674± 0.005

Table 1: Results of the curve fitting to an exponential function between S/N and r-band
apparent AB magnitude. The result is consistent with the shape showed on figure 6.

In particular, A = 0, as it should, because as the QSO becomes fainter, m → ∞, and

the spectrum must tend uniformly to 0, implying S/N → 0.

An important matter is that, when analyzing the data, I will have to take into account

the fact that the samples are not uniformly distributed, neither in redshift nor in magnitude

or S/N , as is shown in histograms 7 to 10. I am left, then, with a fairly heterogeneous data

set (corresponding, however, to the distribution expected for the WEAVE-QSO catalog).

In figures 7 and 8, histograms for the redshift and the r-band AB apparent magnitude

of the QSO are represented. They are not uniformly distributed, nor follow a normal

distribution. They reflect what the telescope will be measuring in the specific section of

the sky it will point at.

On the one hand, figure 9 represents the QSO density, while its x and y coordinates

represent its redshift and r-band apparent AB magnitude, respectively. One can see that

the quasars of the data files have redshift z > 2, and that there is a region (2 < z < 2.45,

21 < m) where there are no quasars. This is due to the scope of the survey: In order

to sample the Lyman-α forest, higher redshift is necessary, as the wavelengths of the

forest must be redshifted enough to be covered by the instrument’s range of measurable

wavelengths (basically λmock). However, absorption studies can be done with the rest of

absorption lines (redward of Lyman-α), which means some quasars with 2 < z < 2.45 will

also be included in the survey, but for them more reliable data (higher S/N , that is, lower

magnitude) is preferred, so in particular only m < 21 are included.

On the other hand, the redshift and magnitude distribution of the data (figures 7
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and 8) are due to the actual densities already known from previous (real) surveys. In

particular, figure 7 has the same shape as the QSO density vs redshift distribution I

mentioned in subsection 2.3 (I remind it can be checked in Geller et al., 2019), save for

the pit at z ≈ 2.25 which can be explained by the absence of QSO in the 2 < z < 2.45,

21 < m region seen in figure 9.

Figure 7: Redshift distribution (histogram)
of the WEAVE-QSO OpR3b dataset. Note
the discontinuity around z ≈ 2.45.

Figure 8: R-band apparent AB magnitude
distribution (histogram) of the WEAVE-
QSO OpR3b dataset.

Figure 9: Joint distribution (2D his-
togram) of redshift and magnitude within
the WEAVE-QSO OpR3b dataset.

Figure 10: S/N distribution of the WEAVE-
QSO OpR3b dataset. Most quasars have low
S/N (74.4 % have S/N ≤ 3).

4. Methodology

In this section, I will focus on introducing two continuum reconstruction techniques,

namely computation of the UV slope (also referred to as power-law extrapolation) and

cubic spline interpolation. The first one is a classical one, although nowadays, more

sophisticated methods are becoming increasingly preferred, such as the spline interpolation

or principal component analysis (PCA). The latter will not be discussed in this work
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(although some characteristics will be briefly mentioned in section 6). However, before

explaining the two methods (slope of the UV spectrum and spline interpolation), I will

present the method I followed for the renormalization of the ‘template’ spectra.

4.1. Renormalization of the template spectra

The aim of this section is to describe how to obtain the renormalization constant for

the ‘template’ flux. Let me begin by claiming that I cannot simply make its magnitude

coincide with that of the ‘mock’ spectrum, as absorption lines make the magnitude bigger

and are present in the ‘mock’ but not the ‘template’. However, the ‘model’ spectra do

include these absorption lines, so I can begin by normalizing it. First, to transform

Fmodel to F rf
model in the QSO rest frame, I use equations (6) and (20). The data F rf

model is

now renormalized multiplying by a constant Cmodel such that its magnitude equals the

magnitude required, mr, which is included as part of the data in the files. Such constant

may be easily determined:

0 = mnew
model −mr = −2.5 log

Cmodel

∫
Fmodel(λ)Tr(λ)dλ∫

Fmock(λ)Tr(λ)dλ
= −2.5 logCmodel +mold

model −mr

Therefore, the constant is simply calculated as:

Cmodel = 10
mold

model−mr
2.5 (24)

With the now normalized ‘model’ spectra, I can obtain the normalization constant for

the ‘template’. As I mentioned above, it is better to not use the same idea to obtain the

Ccont, as absorption lines make this calculation imprecise in most QSO. A more correct

approach is to impose that Fcont is as close as possible to Fmock in certain absorption-free

regions, using the following lemma, which I include as will come in handy a few more

times.

Lemma 1. Let v⃗, w⃗ ∈ Rn, and consider the real variable function f(C) = |Cv⃗ − w⃗|2 =∑n
k=1(Cvk − wk)

2. Then f(C) attains its absolute minimum at C0 =
v⃗·w⃗
v⃗·v⃗ . Also, if both v⃗

and w⃗ are non-negative, then C ≥ 0.

Proof. f(C) is a convex second degree polynomial, so the minimum is the C0 such that

the derivative is 0.

f ′(C) = 2
n∑

k=1

vk(Cvk − wk) = 2(Cv⃗ − w⃗) · v⃗ = 0 ⇐⇒ C =
v⃗ · w⃗
v⃗ · v⃗

The non-negativity is trivial.
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Note that I am basically assuming a dependence of the form y = Cx to the data

{(vk,wk)}k=1,...,n and applying least squares just like I would on a standard linear regression,

but with interception 0.

The vectors of the lemma are the values of F rf
model (already normalized) and those of

F rf
temp, as w⃗ and v⃗, respectively. Linear interpolation is performed in the latest in order to

have both fluxes evaluated at the same wavelengths, precisely those of equation (25).

4.2. Slope of the UV spectra of the quasars

As I previously explained in subsection 2.3, the continuum part of the spectrum of a

QSO can be fitted by a rather simply power law, F (λ) = Aλα in the UV region. Through

this part of the work, I will explore the slope distribution of the data and the correlation

between these slopes and the rest of the properties of the QSO. Afterwards, I will check to

which extent this power law is applicable, and whether it is actually possible to obtain

consistent results with only the actual measurements or not, depending mainly on the

S/N of the QSO. In order to do so, I will apply the fitting to both the ‘template’ and the

‘mock’ data. The fitting to the ‘template’ will show that this approximation is justified,

and a comparison between both fittings will show under which circumstances this method

of continuum reconstruction is advisable in real life.

Firstly, I may recall here that my main goal is to estimate the continuum of the quasars,

especially in the Lyman-α forest region. That way, as this region is mostly emission-free,

the continuum corresponds to the spectrum minus the absorption, and thus absorption

may be estimated at every distance (or redshift) from the QSO to the Earth, as one may

associate it with only Lyman-α absorption. In order to estimate the continuum in this

region, an extrapolation from a different region shall be done.

Therefore, a subset of the λtemp and λmock must be chosen where the regression will be

performed. It cannot be the whole set in both cases for a number of reasons. Firstly, the

slope is dependent on the region. In fact, some authors propose two or more power laws

(at different regions) for each QSO (for example, in Bosman et al., 2021 or Tytler et al.,

2004)10. However, I will fit only one slope (following the line of works like Dall’Aglio et al.,

2008 or Meyer et al., 2019). Secondly what I am reconstructing is the continuum, and

therefore I must eliminate the absorption (dominant in the Ly-α forest: the selected region

will be redwards of Ly−α) and emission lines, whose inclusion would distort my analysis.

Different regions in the spectra were tried to fit the slope, always taking into account

the spectral shapes, represented in figure 5 for one of the QSO, and different articles where

10I checked this in the OpR3b data: By using a union of intervals between 1340 Å and 4800 Å (in the
QSO rest frame), the slopes were higher than expected, the reason being an increment in the slope some
quasars presented between 3000 Å and 4000 Å. Therefore, the region selected had to be narrowed to avoid
this.
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similar fittings were performed to a number of quasars (for example, Bosman et al., 2021

for a rather advanced but very complete article on these kinds of continuum reconstruction

techniques). The one that returned the best results is the following (expressed in the QSO

rest frame):

(1350 Å,1370 Å) ∪ (1440 Å, 1470 Å) (25)

This region was selected taking into consideration three factors:

The dispersion of the slopes for both the ‘template’ and the ‘mock’ (the lowest

possible that is physically acceptable is desirable). Usually, the dependence of the

slopes with the intervals used were mostly seen in the ‘mock’ spectra rather than in

the ‘template’, given the smoothness of the latest. Nevertheless, some dependence

was observed in the ‘template’ depending on the criteria followed to choose where the

emission ‘lines’ begins and ends. A balance between the safer choice of eliminating

more points near the line (physically, I am including the points which are closer to

the assumed dependence, but mathematically the regression result is less reliable

as less data points are used) and the more robust choice of having more points for

the regression (quite the opposite, as some points are farther from the assumed

dependence but the result is mathematically more reliable) was sought.

The accordance between the ‘template’ and ‘mock’ slopes (that is, how accurate

the predictions could be with each choice of region. The method I am proposing is

meant to be the optimal regarding usefulness.

The physical meaning of the fittings obtained. Are they really ‘good fits’ (usually,

but not always, conveying higher r2 values), or, despite complying with the first two

points, the results are not what they are expected to be (most of the slopes must lay

between -2 and -1, as stated in subsection 2.3)?

Additionally, in order to obtain a slope that fits better near the Lyman-α forest, I

decided it was best to only keep intervals that were closest to it (diminishing extrapolation

error and excluding regions with different slopes).

In any case, the condition S/N > 0.1 was added to the fitting of the ‘mock’ data. It

excludes some of the points, but is mainly added to avoid using meaningless points and

flux drops (as null flux obviously implies null S/N), should they happen to intersect that

region for some QSO.

The simple functional dependence F (λ) = Aλα guarantees that it is not important

whether the ‘template’ data is normalized (a multiplicative constant can be grouped with

A), or whether both are expressed in the same frame of reference or not (the difference is
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only a multiplicative factor (1 + z)±(1−α), which again can be grouped with A). However,

to plot the comparison of the results, consistency in both is required. In this section,

for the sake of convenience, I will work in the QSO rest frame. In order to obtain the

normalization constant of the ‘template’ flux, I use the procedure from 4.1.

One may apply logarithms11 to the assumed dependence F (λ) = Aλα:

lnF (λ) = lnA+ α lnλ (26)

I will use linear regression (via least squares), of the form y = mx+n, where y = lnF (λ)

and x = lnλ first to the ‘template’ and later to the ‘mock’ observations. Therefore, the

slope will give us the value of α. I will make use of the uncertainties (27) as weighs ‘w’ in

the regression, using the convention w(λ) = 1
∆(lnF (λ))

, where, by the usual propagation of

uncertainties,

∆(ln(F (λ)) =
∆F (λ)

F (λ)
(27)

The weights are, therefore, the S/N values at each wavelength. Another possibility,

however, is directly applying least squares to F (λ) = Aλα, which, contrary to popular

belief, is not completely equivalent to the previous, simpler12 way. In fact, as can be read

in works like Xiao et al. (2011), the one that is more appropriate for positive-valued vectors

depends on the weighs, that is, the distribution of uncertainties of the data. Moreover, in

order to compute the linear regression with the logarithms, data points where the flux is

smaller or equal to 0 (as I mentioned when explaining the data set, in regions where the

‘real’ flux is small, the measured flux may become non-positive) must be removed, and

therefore information is being lost using this choice. However, computation is easier and

faster with the linear choice, so to perform the almost half million analyses of the real

quasars WEAVE will measure, if results are acceptable, it may be preferable. I checked

both approaches with the WEAVE-QSO OpR3b mock dataset and, although with little

nuances, in the end they present identical conclusions.

4.3. Cubic spline interpolation

In this part of the work, cubic spline interpolation will be performed through selected

points obtained from each spectrum. A method for the optimal selection of points is

sought making use of the ‘true continuum’ stored in the ‘template’ variables, so that the

interpolation is as close as possible to it, in a sense that I will define. If such a method

11Any basis works for this procedure, as the slope ‘α’ is the same for any of them. In the literature, it
is frequent to use basis 10, but in this work, natural logarithms will be used.

12As there is an analytical solution, while there is not for minα,A
∑

i (F (λi)−Aλα
i )

2, which is solved
numerically.
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is found, it can be used for real-life applications, as I have tested that the continuum

reconstructed with it is close enough to the real continuum, and the error may be estimated

(assuming it is similar to those using my data set).

In this case, my aim is not simply to reconstruct the naked continuum, but rather the

continuum with the emission lines, basically ‘fixing’ all the absorption. Let me recall that,

in emission-free regions, these two coincide, but maintaining the emission lines ensures

richer information can be obtained.

First of all, let me define cubic splines. Given a set of n points in R {(xk,yk)}k=1,...,n,

x1 < x2 < ... < xn, we are looking for a piecewise third grade polynomial function

f(x) = pk(x), x ∈ [xk,xk+1] such that f(xk) = yk ∀k = 1,...,n and f and its first

and second derivatives are continuous. Now, as there are n − 1 intervals [xk,xk+1],

k = 1,...,n − 1, there are also n − 1 polynomials, and therefore 4 · (n − 1) constants to

determine (as each polynomial, referred to as ‘spline’, has third degree, has four constants

to determine). On the other hand, f(xk) = yk ∀k = 1,...,n are 2 · (n − 1) conditions

(pk(xk) = yk = and pk(xk+1) = yk+1 ∀k = 1,...,n− 1), and the conditions on the derivatives

are p′k(xk+1) = p′k+1(xk+1) and p′′k(xk+1) = p′′k+1(xk+1) ∀k = 1,...,n− 2, a total of 2 · (n− 2)

constraints. The system of linear equations that must be solved in order to obtain the

coefficients of the polynomials, then, lacks two more equations. A frequent choice is the

natural cubic splines, where the second derivatives at the extreme points are set to 0:

p′′1(x1) = 0 = p′′n(xn). In this case, the matrix is tridiagonal and symmetric, and it can be

proven that there exists only one solution to the linear system, and therefore only one

natural cubic spline.

Nevertheless, as stated before, I am not going to simply apply interpolation between

all the points of the ‘mock’ data, which would not solve the problems with its noisy shape

and its absorption. By applying it to a different, smaller set of points carefully created to

not represent any absorption line or region, some smooth estimation of the continuum

component of the spectrum can be attained. Of course, some methods for smoothing noisy

data already exist, such as the moving average, part of the more general Savitzsky-Golay

filters, but such smoothing does not produce the best results near emission lines, and most

importantly, does not exclude absorption, yielding a fake continuum. The procedure used

with splines, thus, aims to solve these two issues.

The algorithm followed is based on Young et al. (1979) and Carswell et al. (1982),

and has been implemented before in works such as Dall’Aglio et al. (2008). It divides the

spectra in wavelength bins of two different sizes (before and after the Lyman-α peak) and

either selects the ‘best points’ (closer to the average) from it or divides it in two bins if

it intersects an emission line, finally using the resulting bins to compute their average

wavelength and flux to use them as the points for the spline computation. Let us go
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over the algorithm in more detail. The following variables and parameters are needed:

the vector of wavelengths, not necessarily equally-spaced, in Angstrom; the vector of the

observed (‘mock’) fluxes corresponding to each wavelength; the vector of the the errors

(uncertainties) corresponding to each of these flux values; the redshift ‘z’ of the QSO;

‘∆pix1’, representing the width of the bins in pixels (or number of points) blueward of

Lyman-α (that is, for wavelengths smaller than Ly − α, 1215.67 Å); ‘∆pix2’, representing

the width of the bins in pixels (or number of points) redward of Lyman-α (that is, for

wavelengths bigger than Ly − α); ‘minpix’, or minimum number of pixels in a bin for the

computation of the mean flux, which does not vary if there are less than minpix pixels left;

‘slopethresh’ or threshold for smaller bin sizes in the Lyman-α forest, so that if the slope

between two spline points is larger than slopethresh, the bin is divided in two; ‘fluxthresh’,

another threshold for the flux, used to detect and eliminate flux drops; and ‘fluxscale’, scale

factor to be applied to the flux density and errors in order to avoid numerical problems

with large or small numbers, which is corrected at the end of the computation, but is not

really needed for the data I treat.

The algorithm itself consists on the following steps:

1. The spectrum is divided in bins of sizes ∆pix1 blueward and ∆pix2 redward of

Lyman-α.

2. The average noise is computed in each bin, which will generally be smaller than the

standard deviation of the data in that bin.

3. On each of the bins redward of Lyman-α, deselect the pixel with the largest deviation

from the mean of the bin. On the bins blueward of Lyman-α, only deselect the pixels

with negative deviation, as they correspond to absorption lines (Lyman-α forest),

which are obviously not part of the desired continuum. Repeat this procedure with

the rest of the points of each bin, until either the flux standard deviation is less than

the average noise or the number of pixels left is lower than the parameter minpix.

4. Divide the bin size (number of points) by two if the absolute value of any of the

slopes between the mean points in consecutive bins is greater than slopethresh.

5. Repeat the third step on the refined bins, and this time directly clip spikes that are

more than two times the standard deviation away from the mean of the bin.

6. By comparing each bin with its neighbours, flux drops (see 5) may be detected (if

the neighbours have roughly the same mean flux and it is significantly higher than

the central bin’s) and therefore corrected (replacing the central bin’s flux by the
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mean flux of the neighbours). This works better for greater bin sizes13.

7. The mean value of the wavelengths and the fluxes at each bin is calculated, and

spline interpolation is performed with these points. In the introduced vector of

wavelengths, the new flux value is obtained by merely substituting in the polynomial

of the interval it is in. For the formulas to come, this spline-interpolated continuum

will be referred to as Fspl(λ) (‘spl’ for ‘spline’).

This spline interpolation was visually and statistically tested for many of the quasars

of the data, hardly showing any dependence with ‘minpix’, ‘slopethresh’, ‘fluxthresh’

and ‘fluxscale’, and thus I kept them fixed at the following default values: minpix=4,

slopethresh= 0.033, fluxthresh= 0.99 and fluxscale= 1.0. However, strong dependence of

the resulting splines with the values of ∆pix1 and ∆pix2 could be noted, which roughly

represent how smooth the reconstructed continuum is in each zone (bluewards and redwards

of Lyman-α): the higher these values are, the smoother the splines result. This is due to

the fact that bigger bins imply less points I am computing the interpolation with.

Therefore, the only parameters I am going to change are ∆pix1 and ∆pix2. After

trying a fine set of values up to 150, the results indicated that the best values seemed

to surpass the 150 limit (because most of the selected optimal (∆pix1,∆pix2) were 150).

Therefore, and taking into account the very long running times of my code, I opted to

obtain a crude estimate but over a large range of values. In particular, I will show results

where both independently run over the eleven values:

{10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. (28)

This set was selected to cover the usable range for these parameters with a sufficient

amount of values, without adding too many and simply getting way higher running times

for the code14. I coded in Python a program that runs this analysis and, for every couple

of values, computes certain residuals that quantify how close the interpolation was to the

true continuum. Three different residuals were computed:

resid1 =
∑

λmock∈R

|Ftemp(λmock)− Fspl(λmock)| (29)

13In this work I propose additional steps to reduce the influence of these flux drop: I exclude them from
the data before calculating the splines, filtering only those points with S/N > 0.1, and I also exclude
them from the definitions of residuals (29), (30) and (31).

14The following fact endorses my choice: the splines’ shape vary slowly and continuously moving the
∆pix values, and thus, most QSO where, say the optimal value for one of the ∆pix is in the (250,350)
interval will return the result ‘300’. Therefore, to see the global tendency of the optimal paramenters, it
suffices to restrict oneself to these possible values.
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resid2 =
∑

λmock∈R

(Ftemp(λmock)− Fspl(λmock))
2 (30)

resid3 =
∑

λmock∈R

∣∣∣∣Ftemp(λmock)− Fspl(λmock))

Ftemp(λmock)

∣∣∣∣ (31)

Note that I do not have Fcont(λmock), but can be estimated through linear interpolation,

which may be performed as long as the restriction min(λtemp) ≤ λmock ≤ max(λtemp)

is imposed. Due to the high sampling in λtemp, no relevant effect (error) from this

interpolation is expected, and it was checked to be the case. From the 11× 11 matrices of

residuals, I pick the minimum values, and select the pairs (∆pix1,∆pix2) that generated it

as the optimal for the QSO and residual I am working with in particular.

The wavelength region R is, still, unspecified. It has to be the region of the spectrum

of interest. In this work, I focused on three specific regions:

Rtotal = {λmock| min(λtemp) ≤ λmock ≤ max(λtemp)}, (32)

which is basically the whole usable spectrum, in case the information needed is global,

R1 = {λmock| 1040 Å < λrf
mock < 1190 Å,min(λtemp) ≤ λmock ≤ max(λtemp)} (33)

which corresponds to the Lyman-α forest, without the influence of the Lyman-α and

Lyman-β lines, and

R2 = {λmock| 1275 Å < λrf
mock,min(λtemp) ≤ λmock ≤ max(λtemp)} (34)

The region redwards of the Lyman-α line and avoiding its influence. The reason the Lyman-

α line was removed from these last two regions is that its flux is usually comparatively

higher and its sides are steeper than the rest of the spectrum, producing greater residuals

for fittings that were otherwise good enough in the rest of the spectrum. In any case, I

remind here that both in the spline computation and in the residuals values, the wavelength

filter S/N > 0.1 was also applied.

The first residual is the sum of absolute errors, unweighted as the others. The second

residual is the sum of absolute errors squared, which penalizes bigger errors more than

smaller errors. The third residual is the sum of relative errors, which returns better

results if what is sought is the bare continuum, rather than the emission lines (gives less

importance to bigger Ftemp).

Let me remind here that Ftemp was renormalized as explained in the previous section

(see equation (24) and lemma 1). However, this method may not necessarily return the
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best results possible for every QSO (see figure 26). Besides, the splines oscillate (sometimes

being above and below the ‘template’ flux in consecutive regions). Furthermore, some

global absorption may be present in the ‘mock’ spectra (mainly in the Ly-α forest), causing

the calculated splines to be systematically below the real ‘template’ spectra. Therefore, it

seems natural to adjust new normalization constants to both these fluxes, Ftemp and Fspl.

Nevertheless, in residuals (29), (30) and (31) one of the constants may become a common

factor, and thus only one constant is needed. That is why I tried replacing Ftemp with

C · Ftemp with a conveniently computed C15 (for every spline computation, that is, every

couple (∆pix1,∆pix2) of the 10× 11 matrix), which is expected to have a value close to

one.

Several methods for computing this constant were tried as well. The first idea is:

the constant shall be the one that minimizes the corresponding residual. It is easy to

compute the constant for resid2, as applying lemma 1 yields the desired result (which

will be referred to as C2). Determining such constant for the other residuals, however, is

not an easy task, as computing the minimum of the L1 distance (or taxicab metric) is

a non-differentiable problem with worse properties than least squares, and solving it for

the 121 couples of (∆pix1,∆pix2) for the 3196 quasars would yield higher running times

for my code, which already takes days. Furthermore, the constant that minimizes resid2

already minimizes the (euclidean) distance between the two vectors, and thus using it for

resid1 and resid3 is justified as well.

In any case, for resid1 and resid3 I also tried two more different constants: For resid1,

I tried imposing that the absorptions in the Lyman-α forest were similar in Fspl and Ftemp,

in a sense that:

∑
λmock∈R1

(C1 · Ftemp(λmock)− Fmock(λmock))
2 =

∑
λmock∈R1

(Fspl(λmock)− Fmock(λmock))
2

However, as is apparent from the fact that the equation is quadratic in C1, for some

QSO this had no solution, and for others it had two solutions, although only one could be

the optimal. In any case, the results with this C1 (on the QSO where it works) will be briefly

commented as well in the results (section 5.2.1). On the other hand, for resid3 although

minimizing this residual itself was not a good idea, minimizing the same summatory but

with its terms squared becomes an easily-solvable problem, again by lemma 1, and the

minimum constitutes the constant C3.

One last comment regarding these renormalization constants. As splines are oscillating

functions, and the bin sizes used are the same irrespective of the QSO in question, for

15In real life application, a constant multiplying Fspl is sometimes used (of course, in these application
Ftemp is not known), which is computed differently as explained here (more details are out of the scope of
this work), and thus adjusting a constant as I do in this work is completely justified.
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a small portion of QSO some fits may cause the return of a constant with no physical

meaning (for example, a negative constant). Those cases are directly discarded by filtering

the values of these constants to be between 0.5 and 1.5.

Another important remark. If Lyman-α lays on 1215.67 Å, when the emitter is at

redshift z, the perceived wavelength is 1215.67 · (1 + z) Å. If the lower limit the telescope

can perceive is 3676 Å, in order to detect this peak,

z ≥ 3676

1215.67
− 1 ≈ 2.024 (35)

This is a necessary condition for the program to run properly (it requires a certain

range both bluewards and redwards of Ly-α). However, this just is not enough for an

analysis with ∆pix1 as a parameter. Depending on the scope, of course, different lower

bounds for z could be used. In my case, I opted for:

z ≥ 2.5 (36)

The reasons are mainly the following two. As I stated when explaining the redshift

distribution of the data (see figure 7), Lyman-α forest is best sampled when the quasars

have z ≳ 2.45, and the procedure I come up with must be useful for the Lyman-α

forest analyses. The other reason is that, as there are 4 pixels per Ångstrom, a total of

4 · [1215.67 · (1 + 2.5) − 3676] ≈ 2315 pixels is enough to have more than two bins for

any ∆pix1 ∈ {10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. This way, from the 3196

quasars, only 2397 will be considered due to this redshift cut.

Running the previously explained analyses on these 2397 z > 2.5 quasars from the

data, I will study the dependence of the optimal parameters and the residuals with, say,

the redshift, the S/N and the magnitude. In fact, I will suggest an algorithm that maps

‘certain QSO properties’ −→ (∆pix1,∆pix2), where these are the optimal parameters and

the properties given are none but the redshift, magnitude and S/N .

In any case, a side result will also be shown in subsection 5.2: before running the

analyses with the residuals, I represented and visualized hundreds of combinations of

∆pix1 and ∆pix2 for quasars of different S/N (therefore different magnitudes), selecting

the best couple of parameters for each myself (visually). After running the analyses, this

selection fell, as expected, in the global tendency that the residual minimization gives.

As the last point to this section, I would like to properly define what a ‘good’ spline

interpolation is in the context of QSO spectra. After representing a number of spline

interpolations along with the associated ‘template’ spectra, I am able to confidently assert

that minimization of the residuals defined do produce very good results, but sometimes

one of the following cases may unexpectedly occur:
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Figure 11: I the upper panel, mock flux, its uncertainties, the spline interpolation and the
‘template’ flux, renormalized using the constant C2 over the whole usable spectrum. Note
that these ∆pix = (∆pix1,∆pix2) = (10,10) are not the optimal. In the lower panel, the

signed relative error (
Fspl−Ftemp

Ftemp
with Ftemp normalized) is represented in parts per unit.

The numbers between brackets in the title are simply the file (of the 19 in total) and
position within that file. Cut at a wavelength of 7500 Å for display purposes.

In this first figure, although the residual is very low, the little oscillations are not natural,

that is, the real spectrum (‘template’) is globally smooth, while the spline interpolation is

not as smooth (this is even more evident bluewards of the Ly-α region, where the splines

undesirably pass through many emission lines). Therefore, this fit is not physical. It could

be assumable, depending on the usage one wants from the constructed splines, but in

this case, this does not even constitute the optimal fit for any residual. Note that it is

a luminous, high S/N quasar, therefore these ‘wiggles’ affect the spline interpolation for

any quasar. Also note that the renormalization constant makes the splines be below and

above the ‘template’ bluewards and redwards of the Lyman-α line, respectively (it could

be the other way around in some QSO). This suggests that better results can be obtained

restricting the wavelength interval where the constant is computed to one of those regions.

The results would be better, however, only in that region, but worse in the other, and

therefore this restriction must be used only if the information needed is strictly contained

in the region in question (for global information, the whole spectrum must be used to

compute the constant, as in this figure 11). In any case, and back to the oscillations, in

order to avoid them, one must set the parameter in question (depending on the region

that presents them) to be ≥ 150 (depending on the QSO, for some it could be enough

with ≥ 100, while for others even ≥ 200 could be necessary for more certainty that they

are gone, if needed; 150 is some kind of mean value to establish a clear threshold).
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Figure 12: Same as figure 11 but with different ∆pix = (1000,1000).

In this figure, however, a different kind of error is shown. For bin sizes too big, the

corresponding spline will basically ignore most of the data points, sometimes returning

an ‘unphysical’ continuum (look at the 60 % relative error in the Lyman-α forest). For

quasars with lower S/N (this one has high S/N), however, the great fluctuations may not

be present, as the spectrum is ‘mostly plain’ (see figure 5a), so the spline interpolation,

computed with these points, will also be plain, and therefore big bin sizes could return the

optimal results (in fact, bigger bin sizes are the expected in low S/N quasars, although

not necessarily as high as 1000).

Figure 13: Same as figure 11 but with different ∆pix = (150,150).

A good fit, then, may be defined as one having the same shape as the ‘template’, no
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visible unphysical oscillations and small relative errors, if conveniently renormalized. An

example of this is, for the same QSO as figures 11 and 12, is figure 13:

As this is one of the highest S/N quasars, a first result is that relative errors of around

10 % are the minimum expected. Note that the ‘wiggles’ seen in the signed relative error

plot are due to wiggles present in the template, not the splines in this case (contrary to

figure 11). In any case, in appendix C more examples of handpicked optimal fits can be

found.

5. Results

In this section I will present the results for the two methods that have just been

described in section 4: the slope of the UV spectra of the quasars (subsection 5.1) and the

cubic spline interpolation (subsection 5.2).

5.1. Slope of the UV spectra of the quasars

I will analyze the data thoroughly in this section. After I obtain the estimations of the

slopes of the ‘template’ and the ‘mock’, I will try to check whether classifying QSO by

slopes is plausible with the data, I will study some properties of the data (in particular, the

dependence of the slopes with the rest of the variables, such as magnitudes and redshift),

and most importantly, I will check whether the regressions are good, and whether the

continuum component from ‘template’ can really be reconstructed from the ‘mock’ data.

Unless specified otherwise, the linear regression (26) will be used. To visualize some of the

casuistry, check the appendix B.

For the uncertainties and, in general, the presentation of the results, I follow the

conventions that are taught in the Degree of Physics, University of Seville.

5.1.1. Classification by slopes

Once I ran the linear fitting for the 3196 QSO of the WEAVE-QSO OpR3b dataset for

the couples (λ,F (λ)) in the wavelength region (25), for the ‘template’, ‘model’ and ‘mock’,

the first thing I did was check the distribution of slopes of the quasars (admitting that

the real slope is the obtained from ‘template’), to see if it followed the expected tendency

(laying around −1 and −2) and if more than one different population (that is, group of

QSO with similar slopes that are somewhat different from those of other groups) could be

clearly distinguished or not. In order to do so, I represented a histogram of the vector

of ‘template’ slopes, αtemp, only to check that it roughly follows a normal distribution. I
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tried, then, to adjust a Gaussian,

y = Ae−
(x−µ)2

2σ2 , (37)

to it, which is represented in figure 14.

Figure 14: In blue, the histogram (in 100 bins) of the QSO ‘template’ slopes obtained
from the data as explained in the previous subsection 4.2. In red, Gaussian fit to this
histogram.

Mean slope Standard deviation A µ σ r2

-1.501 0.689 93± 3 −1.645± 0.022 0.508± 0.022 0.8

Table 2: This table includes the mean slope and the standard deviation of the 3196 QSO
slopes (directly calculated from the data), as well as the results of the Gaussian fit.

Obviously, this distribution will be dependent on the region chosen for the line regression.

Even if 3196 is a big number of quasars, it is not enough to define a smooth Gaussian

(or to show that the slopes do not follow such a law). In any case, the median is −1,576,

which is smaller than the average. Such asymmetry can already be perceived in figure (14):

some QSO present positive slope, disrupting the symmetry, and constituting a dilemma

themselves: slopes are expected to be negative. It can be checked that the reason for these

positive slopes is that the QSO spectrum strongly differ from the power-law approximation

that others do follow to some extent. See figures from appendix B for an example of this.

On the other hand, should one be able to recognise different populations of QSO by

their slope, a sum of more than one normal distribution would produce a better fit. I tried
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from two to five, and only the bimodal (as the sum of two normal distributions) produced

a physically plausible result that in fact adjusted the curve better.

Figure 15: In blue, the histogram of the QSO slopes. In red, the bimodal fit to this
histogram. The two Gaussian are represented in dotted lines.

A1 µ1 σ1 A2 µ2 σ2 r2

85± 7 −1.65± 0.03 0.44± 0.04 11± 7 −1.4± 0.7 1.6± 1.0 0.9

Table 3: Fitting the sum of two normal distributions, I get the results showed. The r2 is
slightly bigger, conveying this may be closer to the ideal distribution of slopes.

In any case, the overlapping between the two normal curves suggest that they do not

correspond to two different populations of QSO, but rather to the same population that

may not be exactly normally distributed (either that or that the secondary populations do

not have enough representation to be clearly distinguished from the obvious −1.5-centered

one; the errors of the parameters of the second Gaussian are substantially higher than

those of the first Gaussian, supporting this idea). Furthermore, it should be noted that this

distribution doesn’t take into account the regression errors, which could change slightly

the distribution.

5.1.2. Dependence of the slope with magnitude and redshift

In this subsection, I show the results of the statistical study of the correlation between

r-band apparent magnitude and slope, and between redshift and slope. I refer to appendix

A at the end of the work for the complete study. The results simply indicate that there is
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no correlation whatsoever between slope and redshift or magnitude. This is the expected

result, however, for the following reasons:

Redshift represent both distance from us and time since the light was emitted or,

equivalently, time at which the light left the QSO measured since the Big Bang. As

the QSO lifespans are very small, redshift is not related to the QSO age, which may

have an impact on the slope. This way, assuming space-temporal homogeneity, there

is no reason why redshift should affect the QSO’s physical properties and therefore

its slope.

Apparent magnitude represents the QSO’s integral flux. This depends on their

distance from us and on the amount of luminosity actually emitted. As I argued, no

dependence with distance is expected. The only dependence the slope could have

with magnitude is through luminosity, but at least in the data such dependence is

not apparent.

This is an important result because it indicates that magnitude or redshift are not

needed to be taken into account when stacking quasars, and that no method for the

continuum reconstruction based on the slope of quasars could use solely the magnitude

and redshift of the quasars.

5.1.3. Continuum reconstruction

Figure 16: Again, the slopes roughly follow a normal distribution. The Gaussian fit is
included along with the histogram of the ‘mock’ slopes.
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In this section, the ‘mock’ slope distribution will be studied, and these slopes will be

correlated to the ‘template’ slopes. Plotting the histogram of ‘mock’ slopes yields the

result of figure 16. Again, a Gaussian of the form y = Ae−
(x−µ)2

2σ2 may be adjusted, with

the following results.

Mean slope Standard deviation A µ σ r2

-1.077 2,968 353± 8 −1.67± 0.03 1.10± 0.03 0.96

Table 4: This table includes the mean slope and the standard deviation of the 3196 QSO
“mock’ slopes, as well as the results of the Gaussian fit.

The parameters do differ: mean slope and µ parameter of the Gaussian do not coincide,

in fact the distribution seems more skewed to the right than before (the mean value is as

high as -1.077). That may be due to the information lost by cutting the non-positive fluxes

when taking logarithms. In fact, I checked the distribution of the slopes using directly

the power law for the fitting, and the mean was −1.336, closer to the −1.501 from the

‘template’.

Figure 17: Comparison between the slopes of the ‘template’ and the ‘model’. The equation
of the regression line is y = (0.99975±0.00012)·x+(−0.00503±0.00020), with r = 0.99998,

It also is observed in figure 16 that values extend from −21 to 17, which is obviously

has no physical sense. By visualizing examples, one notices that the enormous oscillations

of some QSO ‘mock’ spectra cause some slopes to differ greatly from the real value, which

in some cases may not be clear at all in them. Let me remind that these oscillations are

mainly due to the atmospheric and instrumental effects and their subsequent corrections,

which are inevitable for the current Earthly instruments. This hypothesis can be proven
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by computing the slopes to the ‘model’ variable, which is the same as the ‘mock’ save these

corrections (that is, it roughly coincides with the ‘template’, save for the cosmological

absorptions). By doing so, slopes from ‘template’ and ‘model’ may be compared, obtaining

figure 17.

Therefore, the method for obtaining the slopes is correct, as it does avoid the absorption

regions as was intended, and the strong variation has been proven to be due to the noisy,

messy spectra of the QSO (see figures 5). In fact, a different check ultimately supports

this:

(a) Slope distribution against magnitude. (b) Slope distribution against S/N .

Figure 18: Each point represents one QSO. Clearly, higher magnitude and lower signal to
noise ratio S/N (which are correlated) imply more dispersion and considerable less reliable
‘mock’ slope values.

The less luminous (higher magnitude) produce less reliable results, which cannot be

helped, as it is directly related to lower S/N and the regression, whatever the region

chosen, yields worse results. In fact, the dependence of the dispersion with S/N is stronger,

and therefore the dependence of the dispersion with the magnitude is simply a consequence

of this and the fact that magnitude and S/N are correlated.

In what follows I state the main results of this subsection.

In figure 19, the ‘template’ slopes were divided in 20 bins of the same size (the horizontal

error bars of the blue data points are as big as this bin size), and the median of the ‘mock’

slopes corresponding to the quasars laying in each bin is computed; this corresponds to the

blue data. Its vertical error bars are the 68th percentile of the vector of distances between

this median and the rest of the data (one σ). In red, the line representing the theoretical

dependence between these two variables, y = x. In purple, the regression line of the blue

data, which slightly differs from this dependence (note that the red line is graphically

compatible with the blue set of points). The points that laid outside of the error bars were

included in two different colors: green for those with S/N > 3 (a total of 60 points) and
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orange for those with S/N ≤ 3 (a total of 968). Note how most of the high S/N points lay

either inside or very close to the vertical error bars. In fact, this is (another) visual proof

that the lower S/N QSO are definitely the cause of the huge dispersion in the ‘mock’ slope

distribution. The results of the regression with the blue data points is shown in table 5.

Figure 19: Results of the slope comparison. ‘Mock’ slopes are plotted against ‘template’
slopes, after binning the data points in ‘template’ slope. The data points that lay out
of the error bars have been included to offer an overview of the great dispersion of the
data: the orange represent quasars with S/N ≤ 3 and the green represent quasars with
S/N > 3. The line y = x (bisector of the first quadrant) and the regression line of the
binned data is also included.

Slope Intercept r
(0.62± 0.03) (−0.59± 0.04) 0.98

Table 5: Slope, intercept and Pearson correlation coefficient of the linear regression of the
binned pairs (αtemp,αmock).

The slope and the intercept do differ significantly from the expected values (1 and 0,

respectively). The difference, however, is not very visually noticeable, and must be due

to the effects of the atmosphere and the instrument and their correspondent corrections

(the way they are carried out probably accounts for this difference), as such a difference in

these two values is not present in the ‘model’ slope distribution (see figure 17). The most

important fact is that the two variables are obviously correlated, and that, on average (or

‘on medians’, because, as commented before, both returned similar results), the method

for obtaining the slope does work and give consistent results, although worse so in lower

S/N quasars.
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Nevertheless, in order to establish a proper procedure to be used when final data comes

out (which will be the equivalent to the ‘mock’, exclusively), the opposite regression is

more appropriate (the real slopes, equivalent to my ‘template’ slopes, will be sought, and

the observed slopes, equivalent to the ‘mock’ slopes, will be the available data). However,

as could be inferred from figure 19, the high S/N quasars could lead to values of slopes

that have no physical meaning (those in orange), and obtaining the real slope of, say, a

measured slope of 10 from a problematic QSO just is impossible.

If the number of QSO is small enough, of course, the slope can be determined in a

one-by-one basis, obtaining optimal results. However, let me remind here that the objective

is to obtain results for a number of quasars of the order of a million: one-by-one analysis

is not an option. Therefore, in order to obtain a straightforward method for obtaining the

slope of tons of quasars, I suggest utilizing the higher S/N quasars only, with a threshold

depending on the reliability of the results sought. In particular, for a threshold of S/N > 3,

the following results may be obtained:

Figure 20: Regression line (orange) for the mock slope-binned S/N > 3 QSO couples
(αmock,αtemp) (blue). The last point does not follow the general tendency, and therefore
was excluded from the regression line.

Slope Intercept r
(0.53± 0.03) (−0.50± 0.07) 0.98

Table 6: Slope, intercept and Pearson correlation coefficient of the linear regression of
binned couples (αmock,αtemp).

In figure 20, the bins were selected, in this case, to have the same amount of data points
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(19 bins of 43 data points each). The median and the 68th percentile of the desviations from

it were used as the (x,y) coordinates of the data points and their vertical and horizontal

error bars. The regression of the table 6 was carried out excluding the last point (that is,

the positive slopes, which do not follow the general tendency). Note that the slope and

intercept are not 1 and 0, as a result of the atmospheric and instrumental noises and their

subsequent corrections, but what is important is that the regression is good (r = 0.98)

and predictions can be made with it. With these results I am able to conclude with the

following.

Method: Once the real data comes out, in order to carry out a slope analysis of it,

first, filter the QSO by a S/N threshold. The regression from figure 20 and table 6 used

S/N > 3, being therefore only advisable for this threshold (if a different threshold needs

to be used, I suggest running a similar analysis to mine with these mock data and the new

threshold to calibrate the regression line again). Once this filter has been applied, run the

linear regression of equation (26) on every QSO. Later, bin the QSO by slopes in the same

fashion as the figure 20. Now, apply the map αmock −→ αtemp from table 6 to get a more

reliable value of the slope16. Although I suggest tossing the positive slopes before binning

the data, in case a positive value is needed, simply extrapolate this line to cover it. Lastly,

extrapolate the power-law obtained to the rest of the spectrum. The constant A from

F = Aλα may need an adjustment after changing the slope (simply minimize the distance

between this extrapolated power law and the measured spectrum in the same points the

regression took place using lemma 1, for example). In any case, this procedure will only

bring good results if enough quasars are used and the results averaged to eliminate the

statistical error that is being committed with it.

5.2. Cubic spline interpolation

This section is structured as follows. Firstly, I will present the results for all the

combinations of residuals, regions and constants defined on section 4.3. Secondly, selecting

the best choice of these three for the data based on certain criteria, I will propose a method

to be used for the real WEAVE-QSO Survey. Lastly, the method will be checked stacking

the punctual residuals of all z > 2.7 QSO and (separately) those with S/N > 3 within

these.

5.2.1. General results

As I mentioned above, in the methodology section (subsection 4.3), I ran the code

for 3 different residuals, both with and without a moving ‘renormalization’ constant,

16Of course, the αmock values could be used directly too, but, as I checked, this slope is not the real
slope for most cases due to the data treatment (noises and corrections) prior to the spectra analyses.
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conveniently computed in several different ways as well. The amount of results to present

is, then, very wide, and thus I will try to summarize them in table 7.

The optimal parameters did not show any dependence on the value of the redshift ‘z’,

as expected: only magnitude or S/N may change the smoothness needed (the messier the

data, the more smoothness is needed, implying larger bin sizes), redshift may only stretch

the shape of the spectra, but does not convey higher noise. Therefore, the dependence

was only studied between the optimal parameters and magnitude. Both magnitude and

S/N are easily computable for any spectrum, and follow the relation given in table 1,

therefore composing the line equations given in table 7 with the relation from table 1

yields exponential relations between the optimal parameter in question and the S/N value.

Of course, a regression can be performed directly between the optimal parameters and the

S/N . However, one thing must be kept in mind: the roughly linear behaviour between

optimal parameters and magnitude does not apply to magnitudes below approximately

19 − 20 (the exact limit depends on the case), where saturation can be observed when

representing all data points. Nevertheless, only 43 quasars from the WEAVE-QSO OpR3b

dataset have magnitude lower than 19: quasars so luminous are not abundant. In the case

of S/N , the shape of the curves obtained representing the optimal parameters against it

somewhat resembles a very steep negative exponential, or a negative-sloped line followed

by a horizontal line of value oscillating between 200 and 100 (there are not many quasars

with high S/N to define it clearly). The choice of using magnitudes instead of S/N is

based on the facts that the linear tendency was clearer with them and that the quasars

were distributed more sparsely over a broader range in magnitude than in S/N , which

makes the regression more reliable.

Note that the intercepts are very prone to high uncertainties. This is due to the fact

that the magnitudes of these QSO range between 17 and 24, therefore m=0 is far from

the data points and the theoretical ∆pix for a hypothetical m=0 (for the intercept) is not

a reliable value. Obviously, the optimal parameters obtained from these regression lines

will not be integer: the value must be rounded to be usable.

The regression lines were computed between with magnitude-binned data (bins of equal

number of data points)17. The number of bins was chosen to be a number close to 10 which

divides the value in the column length in each case (to use all quasars). It was checked

that computing the regression lines without binning (raw data points) returned similar

results (with, however, considerably lower - in absolute value - r values), but the binning

was performed to obtain the statistical tendency, avoiding possible statistical deviations

from it.

17Similarly to section 5.1, the medians were used.
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Residual
Region

(parameter)
Constant N Slope Intercept r

resid1

Rtotal (∆pix1)
None 2397 27± 17 (−4± 4) · 102 0.4
C1 321 79± 25 (−16± 6) · 102 0.8
C2 2394 78± 16 (−15± 4) · 102 0.8

Rtotal (∆pix2)
None 2397 15± 3 (−32± 6) · 102 0.8
C1 321 (19± 5) · 10 (−41± 10) · 102 0.9
C2 2394 145± 17 (−29± 4) · 102 0.93

R1 (∆pix1)
None 2937 (16± 4) · 10 (−32± 9) · 102 0.7
C1 223 35± 25 (−6± 6) · 102 0.6
C2 2181 95± 14 (−18± 3) · 102 0.92

R2 (∆pix2)
None 2397 (20± 3) · 10 (−42± 6) · 102 0.9
C1 912 (21± 4) · 10 (−44± 9) · 102 0.91
C2 2394 148± 11 (−288± 25) · 10 0.97

resid2

Rtotal (∆pix1)
None 2397 −3± 6 (26± 14) · 10 -0.1
C2 2392 73± 13 (−14± 3) · 102 0.9

Rtotal (∆pix2)
None 2397 122± 20 (−25± 4) · 102 0.8
C2 2392 137± 6 (−28± 5) · 102 0.9

R1 (∆pix1)
None 2397 130± 23 (−25± 5) · 102 0.8
C2 2180 95± 14 (−18± 3) · 103 0.92

R2 (∆pix2)
None 2397 164± 20 (−34± 4) · 102 0.91
C2 2393 156± 6 (−31± 3) · 102 0.96

resid3

Rtotal (∆pix1)
None 2397 (136± 18) · 10 (−27± 4) · 102 0.9
C3 2386 120± 17 (−24± 4) · 102 0.9
C2 2397 57± 8 (−105± 19) · 10 0.9

Rtotal (∆pix2)
None 2397 200± 25 (−41± 5) · 102 0.9
C3 2386 158± 11 (−307± 25) · 10 0.97
C2 2397 144± 10 (−278± 22) · 10 0.97

R1 (∆pix1)
None 2397 (18± 4) · 10 (−36± 9) · 102 0.8
C3 2264 39± 13 (−5± 3) · 102 0.8
C2 2221 106± 16 (−20± 3) · 102 0.92

R2 (∆pix2)
None 2397 (19± 3) · 10 (−39± 6) · 102 0.9
C3 2385 31± 9 (−9± 21) · 10 0.7
C2 2396 125± 11 (−232± 23) · 10 0.95

Table 7: The results of the regression lines between the relevant bin sizes and the
magnitude are included (slope, intercept and Pearson correlation coefficient). The column
‘N’ indicates the number of quasars that satisfy both z > 2.5 and 0.5 < C < 1.5, C being
the renormalization constant, if applicable.

Note that the number of quasars (column ‘N’) for Rtotal(∆pix1) and Rtotal(∆pix2)

coincide (it is the same analysis), that for the analyses without renormalizing this ‘N’ is

precisely the total number of quasars with z > 2.5 (2397), and that the number of those

whose renormalizaton constant was unphysical rarely surpasses 100 in any row. There are

only two exceptions. The first one is the region R1. It is a smaller and considerably more

problematic region (noise and absorptions are both strong and can be hardly differentiable),
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thus worse results are expectable. The second is those cases where the constant C1 is

used. As it was computed solving the quadratic equation (4.3), in some cases it was

not a real number, and in other it was, but also was unphysical. This shows that this

way of ‘equalizing’ absorptions is not entirely correct. In fact, I may remind here that

an absorption produced near the QSO will stretch along with the rest of the spectra as

light travels towards us, and therefore will cover a bigger part of the spectrum than an

absorption produced near us (which, then, has not stretched at all). Thus, giving all

absorption features the same ‘weight’ is very imprecise. The definition of more accurate

weights is not an easy task, and is beyond the scope of this work.

Another important remark that was visually checked for a sample of QSO is that,

fixing one of the ∆pix and changing the value of the other, the region corresponding to the

fixed value did not show important changes. This is due to the fact that, mathematically,

in that region, the same linear system is being solved to compute the splines save for the

equations corresponding to the point of union, and therefore the change in the matrix of

the linear system is small, implying that the change in the solution (computed splines in

that region) is also small. This justifies the fact that, in Rtotal, the regressions for ∆pix1

and ∆pix2 are computed independently.

Lastly, if no renormalization constant is used, the optimal parameters have greater

tendency to be the extreme values (10 and 1000, which, as I just argued, are not desirable)

and also have greater residuals. Therefore, renormalization is strongly recommended.

All of the results in 7 are included for the interested reader. I recommend only using

the fits where a renormalization constant is used, in particular those using C2 seem to

produce both the best results (visually, and also note that this constant’s values are the

most physical in most cases) and the most reliable fittings. I will also make this remark:

The lines with worse r values were not clear lines, and I suggest that they should be

replaced with horizontal lines of some mean value (for example, (resid1, Rtotal, None) with

∆pix1 ≈ 200 and (resid3, R2, C3) with ∆pix2 ≈ 500).

In any case, a detailed analysis of the best residual to use (which probably depends

on the spectra and the scientific objectives of the interpolation) is not the main goal of

this section, butit is rather to give an applicable method to real data of the WEAVE-QSO

Survey, likely coming out on late 2022. For that purpose, in the next subsections, I will only

use the third residual (resid3), for the following reasons. It penalizes the emission lines

in favor of the continuum component, which is the most interesting to study absorption,

especially the Lyman-α forest. Furthermore, the residuals have more physical meaning. It

can be checked that the residuals from resid1 and resid2 follow increasing tendencies with

S/N , therefore decreasing as the magnitude increases. This is simply due to the fact that

the most luminous quasars have bigger fluxes, and these residuals represent absolute errors,
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so even though the relative errors may decrease the more definite the QSO spectrum is

(higher S/N), the absolute errors increase. However, the residuals from resid3 show the

opposite tendency, as will be presented in subsection D. It is more assumable that most

luminous (less noisy) quasars produce less residuals.

5.2.2. Proposed methodology to analyze the WEAVE-QSO dataset

(a) Medians of the magnitude-binned best
parameters (blue), along with the recom-
mended ∆pix1 (orange) for Rtotal.

(b) Medians of the magnitude-binned best
parameters (blue), along with the recom-
mended ∆pix1 (orange) for R1.

(c) Medians of the magnitude-binned best
parameters (blue), along with the recom-
mended ∆pix2 (orange) for Rtotal.

(d) Medians of the magnitude-binned best
parameters (blue), along with the recom-
mended ∆pix2 (orange) for R2.

Figure 21: The results of the four relevant modified regression lines between optimal
parameters and magnitude, along with the original binned best parameters, is included.
The magnitude is, as in the rest of the work, the r-band apparent AB magnitude.

When time comes to use the results of these analyses to the real WEAVE-QSO data,

I suggest using resid3 (better for continuum, worse for emission lines, as discussed in

5.2.1; this decision is supported by works like Meyer et al., 2019). Furthermore, the

renormalization constant is mostly used in real-life applications for the Lyman-α forest

44



region (that is, R1), because it is the splines what is renormalized (remember, no such thing

as ‘the template’, a theoretical continuum, is known in these cases, in fact the purpose

is estimating it) and is mostly needed where global absorption may be present (only in

the Lyman-α forest). However, as I am doing a comparison with a theoretical ‘template’

that has a norm (subsection 4.1) prone to some error, even if small, the comparison is

more exact renormalizing it irrespective of the region. The choice I recommend is to

use C2 (which, remember, was computed by minimizing the distance between Fspl and

Ftemp in the region being considered), as explained in subsection 5.2.1. Therefore, on the

region Rtotal one regression for ∆pix1 and another for ∆pix2 is included below, while for

R1 (respectively R2) only the regression for ∆pix1 (respectively ∆pix2) is included, as the

other parameter is not important.

The mean value of the relative error by using this method is expected to be below 5 %

irrespective of the region for magnitudes lower than 20, and up to 20− 25 % (with more

dispersion) for the highest magnitudes of the data set. See appendix D for more details on

this.

These four regressions were performed in the same way. The data is divided in

magnitude bins of the same number of data points (the number of resulting data bins

was chosen to be a value close to 10 that divides the number of usable quasars, from the

column ‘N’ of 7). In each bin, the median in both magnitude and ∆pix (1 or 2) was

computed to form the blue dots of the figures, while the 68th percentile of the deviations

from this median were chosen as the error bars. The regression lines (orange) are forced

to saturate at ∆pix = 150 (they are ‘modified’ regression lines), to avoid errors as the one

in figure 11 (see subsection 4.3 for the full explanation). As the highest values lay around

600, no concern for the error in figure 12 is needed. The green crosses are the three QSO

for which I handpicked the optimal parameters, from figures 13, 30 and 31.

Note that the regressions in figures 21c and 21d are similar, but the one in figure 21a

is not similar to the one in figure 21b. To understand what is happening, I recall that in

figure 21a the regression is done with best fits after minimizing resid3 and adjusting C2 in

the whole spectrum, Rtotal. As Rtotal \R1 is a considerably bigger set than R1, or in other

words, there are many more points redwards than bluewards of Lyman-α, it is no surprise

that the global residual value is dominated by the residual in the R2 region.

The slopes and intercepts of the regression lines are given in table 7, along with their

uncertainties. Taking into account all of this, I may conclude the subsection with the

following:

Method: Given a QSO whose spectrum has meen measured, compute its r-band AB

magnitude. Use the line equations from 7 (corresponding to resid3, C2 and the region and

parameter of interest) to obtain the optimal parameters. If the obtained value is less than
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150, substitute it by 150. If the region is R1 (respectively R2), then set ∆pix2 (respectively

∆pix1) to 200. Use the algorithm explained in subsection 4.3, for instance through the

spline interpolation code from Dall’Aglio et al. (2008), with these parameters (and the

other four, whose value was specified in subsection 4.3, minpix=4, slopethresh= 0.033,

fluxthresh= 0.99 and fluxscale= 1.0). Specially if the region is R1, adjust a constant to

the resulting splines, using the most convenient method depending on the situation (one

possibility is minimizing the distance to the measured spectrum in absorption-free regions,

if the region is not R1). These renormalized splines should, in average, give the optimal

(best possible) results.

As a check of the extent of the applicability of this method, I performed a stack of

more than half of the total number of quasars of the OpR3b data set, presented in the

following subsection 5.2.3.

5.2.3. Stacks for z > 2.7 quasars

Figure 22: Stacks in the Lyman-α forest region (in the QSO rest frame, it corresponds to
1040 Å < λ < 1190 Å). In blue, the stack for the 1665 z > 2.7 quasars. In orange, the
stack for the 190 z > 2.7 and S/N > 3 quasars. The greater goodness of the fits for higher
S/N quasars is apparent, as the stacked errors are considerably smaller in spite of having
stacked approximately 10 times as less quasars. The mean values of the blue and orange
curve are 4 % and −0.5 %, and the mean of the absolute values of the blue and orange
curve are 16 % and 2.2 %.

In this subsection, I will use the regression line from table 7 corresponding to resid3,

R1 and C2 to compute the optimal spline interpolation for the spectra of the quasars with

z > 2.7. The reason for this threshold is that, in order to be able to stack in the whole
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interval [1040 Å, 1190 Å] (in the QSO rest frame), the redshifted 1040 Å must be measured

with the telescope, that is, 1040 · (1 + z) > 367618, so z ≳ 2.53, but the closer wavelengths

to 3676 Å are prone to higher errors due to the drop in the instrument’s precision near its

observable limits (see figure 5), and so to avoid them I chose z > 2.7.

Once all the splines are computed, for each 1040 Å < λrf
temp < 1190 Å the following

average is what is called the stack of the signed relative errors of the spline interpolation:

1

N

∑
j∈QSO

(
Fspl − Ftemp

Ftemp

)
j

(38)

N is the number of QSO (i.e. terms in the summatory). Note that, if errors are

purely statistical, by stacking enough quasars they should average to 0, or close, for any

wavelength, that is, the stack is expected to be close to 0. The result is shown in figure 22.

The blue line represents the stack of all > 2.7 quasars, 88.6 % of which are low S/N

quasars (S/N ≤ 3). A certain bias can be seen in the right half of the graph, seemingly

implying that splines tend to give high negative errors near the Lyman-α line. However,

the orange line, that only stacks the N = 190 quasars with S/N > 3 (that is, the ‘best’

spectra in terms of S/N), although does not directly discard this hypothesis (the errors

on the right are indeed negative), seem to blame the almost 40 % relative error value on

the low S/N of the quasars rather than the method itself. In fact, as the relative errors of

the orange line do not even reach 10 % after stacking only 190 quasars, the errors seem to

be indeed statistical, and thus it is possible to eliminate them with stacking, expecting

better results as the number of quasars increases. Therefore, if averaging 1665 quasars

did not lower the stacked errors below 10 %, the complete WEAVE-QSO Survey, with a

number of quasars with z > 2.7 of the order of 200,000, would probably accomplish it.

As a final conclusion, what is certain is that the S/N > 3 cut lowers the errors below

10 % on the Lyman-α forest region, which is the most problematic region observationally

but is also the most scientifically interesting. Depending on the precision needed a different

cut at perhaps higher S/N is recommended.

6. Conclusion

In this work, I defined magnitude (in particular, r-band AB apparent magnitude) as a

measure of the luminosity of celestial objects, and redshift as a measure of the difference

between emmited and received wavelengths. In particular, in quasars, black holes in the

center of very distant galaxies surrounded by very hot material that fall spirally towards

it emitting an enormous amount of light, I showed that this redshift is cosmological, i.e.,

18This was the lower limit for the telescope’s range of wavelengths, check 3.4.
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it is due to the cosmological hypothesis that the universe is expanding. I also defined the

continuum component of a QSO spectrum, arguing that in the UV part it roughly follows a

power law, F = Aλα. Rich information about the distribution of matter between the QSO

and us can be extracted from absorption features if this continuum is known, and in this

work I presented two different approaches to its reconstruction from observational data:

computation of the slope (α) of the UV part of the spectra and cubic spline interpolation.

To show the extent of the applicability of these methods, I used the OpR3b WEAVE-QSO

mock data catalog (see subsection 3.4), consisting in 3196 mock quasar observed spectra

along with their ‘theoretical’ continuum (‘template’), which allowed me to find the best

way to apply these two methods to the real WEAVE-QSO data expected to come out on

September 2022.

To apply these two methods to the OpR3b mock dataset, I wrote the analysis pipeline

as several thousand lines of Python code (in order to do that, the first part of the work

consisted in learning Python in the first place). These codes presented the problem of

high running times. In particular, the slope computation for all quasars lasted around 3

hours, while the splines analysis lasted up to 3 days. Therefore, a first conclusion is that

fast computers will be required to treat the WEAVE-QSO Survey, when available, and to

perform more sophisticated analyses than the ones I present.

Regarding the slopes, firstly in subsection 4.2, I argued that applying linear regression

to (ln(λ),ln(F )) in the region (1350 Å,1370 Å) ∪ (1440 Å, 1470 Å) (filtering S/N > 0.1

for the observed or ‘mock’ spectra, and after correcting the redshift, that is, in the QSO

rest frame) was the best choice for the computation of the slope of a given spectrum,

as it excludes the less reliable points with the condition S/N > 0.1 and the emission

and absorption lines that would distort the result of the regression, and also minimizes

the error of the extrapolation to the Lyman-α forest region, (1040 Å, 1190 Å), given its

proximity. In order to test the slope approach, the slopes were computed, for every QSO,

for both the observed (‘mock’) spectrum and the theoretical (‘template’) spectrum. The

results indicate that the slope computation approach is not recommendable for low S/N

quasars (in particular, I suggest S/N > 3).

Secondly, the slopes of the ‘template’ were studied. The power law proved to adequately

fit most quasars, while others seemed to differ from such a behaviour (around 5 %). The

cause is not in the method, but rather that these QSO showed exotic profiles. More

research on how to detect the quasars that significantly differ from this expected behaviour

could be useful for future analyses of this kind. The distribution of slopes showed a single

population of quasars with normally distributed slopes centered in α = −1.5. Furthermore,

any correlation between the value of these slopes and the redshift or the magnitude of the

quasars was statistically discarded with the discussion made in subsection 5.1.2. Therefore,
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no ‘check’ for the slope value can be based solely on these physical quantities, but no

caution has to be taken about them when grouping quasars to study their slopes, either.

Thirdly, the slopes of the ‘mock’ (both ‘mock’ and ‘template’ slopes are computed with

the same method and region, save the S/N > 0.1 condition for the ‘mock’) followed a

similar distribution, merely with more dispersion, due to the noise and the oscillations of

the data caused by atmospheric and instrumental traits and their subsequent corrections.

By comparing the slopes of the ‘template’ and the ‘mock’ quasar by quasar, the usability of

the method to make predictions was tested. In particular, I showed that the slopes of the

‘template’ spectra were in good agreement, on average, with the slope of the corresponding

‘mock’ spectra (more so with higher S/N quasars). This result, along with other checks

that were presented in subsection 5.1.3, serve as proof that the region choice is satisfactory.

Finally, both slopes for each QSO did, in general, coincide, taking into account that

certain bias was present mainly due to data treatment prior to these analyses (atmospheric

and instrumental noises and their corresponding corrections). For real-life applications, I

proposed a method to correct this bias, consisting on assigning, to the measured αmock,

a theoretical αtemp ̸= αmock, given by the regression line from 6 (being, by construction,

closer to the real slope value, at least in the OpR3b data set). In order to do so, unphysical

values of αmock had to be discarded by filtering quasars by S/N > 3 (as I stated, I do not

recommend using the slope computation method for low S/N quasars). Different cuts

to quasars based on S/N can be applied, and in case another is needed instead of the

presented S/N > 3, I suggest to perform the linear regression 6 again. In appendix B,

along with other representations for the slope approach, there are two examples where

this bias correction method produces better results than directly assigning αtemp = αmock.

As further remarks for the slope computation analysis, some ideas for further develop-

ment of the proposed method are the following. Similarly to in cubic spline interpolation,

stacking and error estimation are future areas to continue the research I carried out

throughout this work. In fact, works like Dall’Aglio et al. (2008) conclude that cubic

spline interpolation produce more reliable results, and thus building a numerical test to

mathematically tell how much better it is using the OpR3b data constitutes a matter of

interest for future studies following this work.

Regarding the cubic splines, I used the algorithm described in Young et al. (1979) and

Carswell et al. (1982). This algorithm uses certain parameters and variables, in particular

the quasar spectrum, and basically bins it in wavelength, eliminates the points that are

further away from the mean behaviour in the bin (dividing the bins near emission lines

and removing null flux regions), computes the mean wavelength and flux of each resulting

bin and returns the spline continuum reconstruction using these points (emission lines

included), interpolating in the rest of the spectrum. The input variables are wavelength,
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flux, error of the flux and redshift, and the most important parameters are ∆pix1 and

∆pix2, which represent the size of the bins in which the spectrum is divided bluewards and

redwards, respectively, of the Lyman-α line (1215.67 Å in the QSO rest frame), in order

to filter the most adequate points from them, compute their mean wavelength and flux,

and use these points to construct the cubic splines. My objective was to find a procedure

to give the optimal ∆pix1 and ∆pix2 parameters based on the QSO characteristics.

To find this method, firstly, I selected some quasars with different S/N to determine

what a good fit is using them. In order to do so, I visually analyzed hundreds of

combinations of (∆pix1,∆pix2) as they ran over a fine parameter space to select, by hand,

the best fit. This approach, however, is not efficient for large number of quasars, and

is definitely not feasible for the whole WEAVE-QSO dataset. In order to automatically

extrapolate this to the rest of the quasars of the OpR3b data (only those with z > 2.5

to better sample the Lyman-α forest), I defined three residuals, with different objectives,

that can be computed after interpolation using a couple (∆pix1,∆pix2) on a spectrum

has been carried out. The (∆pix1,∆pix2) (both changing independently in a grid ranging

from 10 to 1000) that gives the lowest value of the selected residual is the optimal couple.

For the region on which the residual is computed, I also covered three possible choices:

the whole spectrum, bluewards of Lyman-α and redwards of Lyman-α. Furthermore,

the relative normalization between the ‘template’ and the computed splines was also

adjusted (as a multiplicative constant close to 1 on ‘template’, in particular) to produce

better fits. Depending on the usage, different choices for the residual, the region and the

renormalization can be needed, and thus I included all the options I considered on table

5.2.1. No dependence between the optimal parameters and redshift was found, while a

linear behaviour between the optimal parameters and the r-band apparent magnitude was

observed, allowing me to construct the method based on a linear regression between the

parameters and the magnitude.

Finally, I focused on the residual resid3 (given that it gives more importance to the

continuum rather than the emission lines) and the renormalization constant C2 (defined

on subsection 4.3), on all the three regions, and the results were presented in detail

on subsection 5.2.2. The proposed algorithm to obtain the optimal parameters for any

quasar works on average by definition, and this can be checked in subsection 5.2.3. In

that subsection, a stacking was performed: the average value of the relative errors of

the cubic spline interpolation using resid3, C2 and R1 was represented, performing this

average on all 1655 z > 2.7 quasars and the 190 S/N > 3 (best quasars in terms of

signal-to-noise ratio) among those. The errors of the first stack went up to 30-40 % (with

average of the absolute value 16 %), while those of the second stack, in spite of being

computed with less quasars, did not reach the 10 % in any specific wavelength (its absolute
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values averaging 2.2 %). In WEAVE-QSO, around 200,000 z > 2.7 quasar spectra will

be measured, and around 24,000 z > 2.7, S/N > 3 (based on the distribution on the

OpR3b, and assuming it is representative). With more than 100 times as many quasars,

the stacked error is expected to be considerably lower. Therefore, my results indicate that

statistical density, temperature and distribution of matter between the quasars and the

Earth will be determined with high precision, on average (the stacking procedure returns

statistically average results).

In addition to the aforementioned analyses, further ideas arose that remained untried

due to lack of time, but I am willing to explore these possibilities in the near future. Some

of them are presented below.

The bins length being fixed at each side of the Lyman-α peak (unless line emission

is detected) may become a problem for some QSO where the oscillations of the splines

become prominent for some values of (∆pix1,∆pix2). In order to solve this problem, I

suggest more adaptability on the bins sizes. In fact, working directly on the QSO rest

frame (transforming between this and the observed is easily done following equations (6)

and (20)) could allow to localize most of the possible emission lines, which could help

define restrictions for the bin sizes near them in order to produce a better fit in them.

One (more advanced) method to obtain better results in the spline analyses could be to

add weights on the residuals. For example, instead of simply running the analyses and

compute the residuals on the Lyman-α forest, it could grant better results to run it on the

entire spectra, but with different weights on the Lyman-α forest, the Lyman-α line and

the rest of the spectrum. In fact, this could become as sophisticated as one wants, because

redwards of the Lyman-α forest more sub-regions could be considered (for example divided

by the stronger carbon lines). In any case, and using the unweighed regions I used in

this work, more possible values for the ∆pix parameters’ grid would define better their

distribution (against magnitude as presented, for example). For that, however, either more

efficient codes or access to faster computers would be needed.

Another typical method with growing interest is PCA or Principal Component Analysis

(see Suzuki, 2005 and Pâris et al., 2011). It consists on, using a number of quasars

(considered representative of the quasar population), diagonalizing the matrix of covariances

of their spectra to obtain the principal components and replacing each of the spectra by

the mean spectrum plus a linear combination of these principal components. The principal

components (PCS) are orthonormal by construction (therefore attaining negative values

at some points), and the first PCS (ordered by eigenvalue) hold physical meaning (for

example, in Suzuki, 2005, the first PCS take the Lyman-α line, the Lyman-β line and

other emission lines). Therefore, the coefficients of these PCS in a particular spectrum

(when expressed as sum of the mean spectrum plus a linear combination of the PCS) shed
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light into the importance of these particular features in that particular QSO. One key

advantage of this method is that, similarly to the UV slope method, the continuum in the

Lyman-α forest can be reconstructed from information at higher wavelengths than the

Lyman-α emission line. In the article Bosman et al. (2021), a comparison between the

two methods I applied in this work and PCA is carried out. A similar comparison using

the OpR3b data is definitely of interest for my near-future studies.

7. References

Bautista, J. E. et al. (May 2015). ((Mock Quasar-Lyman-α forest data-sets for the SDSS-III

Baryon Oscillation Spectroscopic Survey)). J. Cosmology Astropart. Phys. 2015.5, 060,

p. 060.

Benn, C. R. and S. L. Ellison (Nov. 1998). ((Brightness of the night sky over La Palma)).

New Astronomy Reviews 42.6-8, pp. 503–507.
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A. Dependence of the slope with r-band apparent AB

magnitude and redshift

In this section, I aim to solve the following questions: does the distribution of slopes

depend on redshift or magnitude? In order to answer them, the scatter plots do not offer a

clear answer, and 2D histograms are not the best idea either, as the quasars are not evenly

distributed in neither redshift nor magnitude. The choice I finally made was to divide

the redshift (respectively, the magnitude) in 100 equally-spaced bins, and represent the

medians (percentile 50) of the slopes at each bin. The error bars added are the percentile

68 of the distances between the median slope and the rest of the slopes in each bin (as

a generalization of the σ, standard deviation, of normally distributed random variables).

Mean values and standard deviations produced graphically similar results, but are not

used for the sake of consistency, because as the distribution of slopes (in each bin) is not

symmetrical (slopes bigger than the mean or median reach farther than the smaller ones),

these median and associated error bars are more statistically representative. In blue, the

slopes, along with their regression errors are included as well. Note that their errors are

very small and can hardly be noticed at all; in fact the bigger slope error is 0,09.

Figure 23: Slopes of the ‘template’ against redshift, z. The original slopes, in blue, their
medians in uniformly distributed bins, in orange, and the regression line of these, in green.
Note that some bins are empty (no median is shown in those) and some other, those at
higher redshift, have very few (less than 5) points, so neither the median nor the mean
really represent the real value that would be obtained with a higher number of cuasars in
those bins.

In order to check whether there is some dependence between the slopes and the redshift,
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a linear regression is performed with all the data points (in blue in figure 23), having the

following result:

α = (0.024± 0.024) · z + (−1.57± 0.07) (39)

The usual notation α for the slope and z for the redshift was used in this line equation.

The Pearson correlation coefficient19 has the value r = cov(z,α)
σzσα

= 0.02. Let us remind

that this coefficient measures how strongly correlated20 this values are: positive values

imply a co-growing tendency (the greater one variable is, the greater the other is expected

to be) while negative values imply just the opposite (the greater one variable is, the

smaller the other becomes). Its absolute value ranges between 0 and 1, 0 being completely

uncorrelated and 1 implying they follow an exact functional dependence (therefore r gives

no information of the slope of the regression apart from its sign). Both are very unlikely

to be obtained with any real data set, given the uncertainties intrinsic to the measuring

instruments and procedures21. In any case, the value obtained r = 0.02 is very small,

implying no correlation is apparent between these two variables. In fact, the slope of the

line equation, along with its error, is compatible with 0, and the intercept is compatible

with the mean value. However, one may argue that there is indeed a dependence, hidden

behind the great dispersion of the slopes, and therefore the coefficient obtained accounts

for this dispersion rather than this hidden dependence. Nevertheless, this asseveration

may be quickly discarded, as such dependence is not observed eliminating the dispersion

using the medians or the means in a bin division of the redshift (orange data). In fact,

repeating the linear regression but with these orange data22,

α = (−0.01± 0.03) · z + (−1.51± 0.12). (40)

Again, this is compatible with the slope being null and the intercept being the mean

value of α. Furthermore, the correlation coefficient is r = −0.05 (negative as the slope),

sufficiently small (in absolute value), and it cannot be blamed on the dispersion in this

case. Therefore, these two variables are completely uncorrelated.

A similar analysis can be carried out with the magnitude:

19The usual r2 value is just this value squared.
20In a linear sense, but no dependence other than linear is recognisable from neither the scatter plot

nor the medians.
21In the case of an exact functional dependence of α = constant, the coefficient would in fact be

undefined, as σα = 0. However, this is obviously not the case.
22No weighs were used (that is, all points were given the same weighs), because the data points with

less error are, ironically, the less reliable ones, as they clearly do not follow the global tendency, given that
they are the median of a considerably smaller data bin.
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Figure 24: Slopes of the ‘template’ against r-band apparent AB magnitude. The original
slopes, in blue, their medians in uniformly distributed bins, in orange, and the regression
line of these, in green. Again, note that some bins are empty (no median is shown in
those) and some other, those at smaller magnitude, have very few (10 or less) points, so
neither the median nor the mean really represent the real value that would be obtained
with a higher number of cuasars in those bins.

The result of the linear regression using all the points yields the following result:

α = (−0.005± 0.010) ·m+ (−1.40± 0.23). (41)

As usual, ‘m’ stands for the r-band apparent AB magnitude. The correlation coefficient

has the value r = −0.008. No correlation can be inferred by this regression. The same

argument as with the redshift applies, although the intercept has bigger error and a value

further away from the mean (but the value along with its error is compatible with the

mean), the reason being the values in the x-axis are farther away from the origin than

with the redshift, so the value at 0 can only be less reliable than in that case. Lastly, as

before, I may do the regression with the medians,

α = (−0.004± 0.020) ·m+ (1.5± 0.4) (42)

Therefore, any dependence may be mathematically discarded (it could not be noted

visually, either).

To sum up, the slope of the quasars (the real one, as it was calculated using the

‘template’ data) has no dependence on neither redshift nor magnitude.
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B. Some representations of the UV slopes

In figures 25 to 29, the title should read ‘QSO (file, number in the file), magnitude,

redshift and signal-to-noise ratio. The yellow bands indicate the range of wavelengths used

for the regression. The wavelengths are expressed at the QSO rest frame. Different cases

are presented here, for the sake of completeness, in using both (λ,F ) (‘linear spectrum’)

and (ln(λ),ln(F )) (‘logarithmic spectrum’, the one used for the regression lines to compute

the slopes). Note how the errors on the slopes of the ‘mock’ are always bigger.

(a) Linear spectrum. (b) Logarithmic spectrum.

Figure 25: The values of the slopes are αtemp = −1.567± 0.017 and αmock = −1.4± 0.4.
This is an example of how a seemingly different slope produce very similar results visually.

(a) Linear spectrum. (b) Logarithmic spectrum.

Figure 26: The values of the slopes are αtemp = −2.914± 0.009 and αmock = −3.88± 0.06.
This is an example of a very high (in absolute value) slope, which, even if far from the
expected [−2,− 1] range, is correct. The difference between the curves is mainly due to
the normalization constant: the method in 4.1 is good, but not perfect, and sometimes
cases like this are produced. However, and especially in the Ly-α forest, the slope itself
does not produce a great difference, only the normalization constant. A change of slope
can be perceived, especially from 26b.
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(a) Linear spectrum. (b) Logarithmic spectrum.

Figure 27: The values of the slopes are αtemp = 1.087± 0.020 and αmock = 1.3± 0.3. This
is an example of positive slope. In the linear spectrum, the fit seems appropriate, because
I cut the rest of the model, that extends up to 9000 Å. However, the whole spectrum is
represented in the logarithmic spectrum, and one can see that the fit was only good locally,
the QSO does not follow a power law.

(a) Linear spectrum. (b) Logarithmic spectrum.

Figure 28: The values of the slopes are αtemp = −0.569 ± 0.025 and αmock = 0.4 ± 0.4.
This is an example of a slope not well predicted. The reason is purely the low S/N of the
QSO in question. Using the method from section 5.1.3 yields the estimation α ≈ −0.288,
considerably better.
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(a) Linear spectrum. (b) Logarithmic spectrum.

Figure 29: The values of the slopes are αtemp = −2.046± 0.008 and αmock = −3.18± 0.13.
This is another example where the method from section 5.1.3 evokes better results, as the
estimated ‘new’ slope is α = −2.18, pretty close to the ‘true’ value (αtemp).

C. Other visual inspections of optimal spline fits

In figures 30 and 31, two additional examples of handpicked optimal parameters for

medium and low (respectively) S/N are included. These two, along with the one from

figure 13 are mentioned in the figures of subsection 5.2.2.

Figure 30: I the upper panel, mock flux, its uncertainties, the spline interpolation and
the ‘template’ flux, renormalized using the constant C2 over the whole usable spectrum.
These ∆pix = (∆pix1,∆pix2) = (200,200) were selected ‘by hand’ to be the optimal. In

the lower graph, the signed relative error (
Fspl−Ftemp

Ftemp
with Ftemp normalized), in parts per

unit. The numbers between brackets in the title are simply the file (of the 19 in total) and
position within that file.
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Figure 31: Same as figure 30, but in semilogarithmic scale to appreciate the shape of the
template and the splines, that could not otherwise be noticed due to their very small
values.

D. Mean value of the relative error using splines

Figure 32: Mean relative error against r-band apparent magnitude for the region Rtotal.
By adjusting err = A + BeCm, I obtain A = (0,029 ± 0,005), B = (5 ± 4) · 10−8 and
C = 0.65± 0.04.

As for real data the ‘template’ variable is not available, estimating the uncertainties of

the results derived from continuum reconstruction is not an easy task. In this appendix,
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I suggest a method for its estimation in the case the continuum is reconstructed using

spline interpolation with the optimal of ∆pix1 and ∆pix2 minimizing resid3 and using C2.

By dividing equations (29), (30) and (31) by the number of terms in the summatory and

computing it for the optimal ∆pix1 and ∆pix2, an estimation of the corresponding mean

uncertainty is obtained. In particular, with resid3, the mean relative error is obtained.

Binning in magnitude in the same fashion as in figures 21a to 21d, the following figures 32

and 33 may be obtained.

(a) Mean relative error against r-band ap-
parent magnitude for the region R1. By
adjusting err = A + Bm, I obtain A =
(−0.39±0.03), B = (0.0214±0.0015) ·10−8

and r = 0.98.

(b) Mean relative error against r-band ap-
parent magnitude for the region R2. By
adjusting err = A+ BeCm, I obtain A =
(0,035 ± 0,003), B = (2 ± 3) · 10−11 and
C = 0.97± 0.06.

Figure 33: Fittings of the relative errors bluewards (left) and redwards (right) of Lyman-α.
In R1 (left), a line equation produced a better fit.
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