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Abstract

Counterfactual Analysis is a recent field of Explainable Machine Learning focused
on the development of methods to provide human-understandable explanations
for the results of predictive models. Further research and advancement in the
area is deemed fundamental on account of the rapidly spreading usage of Machine
Learning algorithms in human-impacting automated decision-making processes.

In this work we present an approach to Counterfactual Analysis through the
formulation of optimization programs, posing single-objective and multi-objective
problems that lead to counterfactual generation. We then particularize them for
specific choices of classifier model and parameters, though further options are
outlined. Computational experiments are conducted and reported for the multi-
objective approach.
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Resumen

El Análisis Contrafáctico es un área de creación reciente dentro del Aprendizaje
Automático Explicable, que se centra en el desarrollo de técnicas que permitan
obtener explicaciones aptas para interpretación humana para los resultados de
modelos predictivos. Dada la rápida expansión de los algoritmos de Aprendizaje
Automático en sistemas de decisión automática que tienen consecuencias directas
sobre vidas humanas, la investigación en este campo se vuelve fundamental.

En este trabajo tratamos el Análisis Contrafáctico desde la formulación de progra-
mas de optimización matemática, proponiendo problemas de un solo objetivo y
multiobjetivo. Posteriormente los particularizamos para elecciones espećıficas de
modelo de clasificación y parámetros; aunque dejamos indicadas otras opciones.
Por último, presentamos resultados numéricos de la aplicación a un caso práctico
de problemas de la variedad multiobjetivo.
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Chapter 1

Introduction

1.1 Machine Learning in automated decision-

making

Machine Learning (ML) is the field that seeks to understand and build models
with the ability to learn, that is, models that are trained on data to improve
performance on some set of tasks [14]. As an extensively researched, computerized
and effective tool, it is nowadays used in large-scale automation in many domains,
which include but are not restricted to the objectives of Artificial Intelligence.

Its applications range from the extraordinary to the mundane, where ML algo-
rithms are often used to support decisions that directly impact human lives. Such
is the case of their usage in credit lending [17], medical treatment [6] or talent
sourcing [16].

However, Machine Learning algorithms can be wrong. In spite of the cleanness
of their theoretical formulation, training a ML model is a complex process which
requires a deep dive in the data at hand, good unbiased error estimators, and
many subtle adjustments of the parameters of the model. Even when correctly
trained, sometimes models will learn biases that, while present in the data, are
not acceptable as criteria for decision-making in certain domains, such as sex or
race. When there are hard consequences on the line for humans, these biases
need to be identified and accounted for.

More often than not this proves a challenging task due to the intricate complex-
ity of some models, especially those trained over large volumes of data. This has
led specialists in the field to coin the expression black box model, to refer to a
predictive algorithm whose internal functioning is completely obscured. But even
if no substantial bias is present, people deserve explanations about the machine-

9



10 CHAPTER 1. INTRODUCTION

informed decisions that affect their lives. In this sense, the EU recently extended
its General Data Protection Regulation to include a form of this right to expla-
nation [5].

The need for transparency in Machine Learning has led to the development of the
field of Explainable Machine Learning (XML), referring both to (i) ”inherently
transparent” ML algorithms that produce results understandable to humans, and
(ii) methods and techniques to generate post-hoc explanations for more opaque
ML models. The main objectives of XML techniques in social applications in-
clude [18]:

• To shed light on the internal functioning of the algorithm, providing a way
to detect and fix bugs and biases.

• To provide people with reasonable explanations about the decisions reached,
weighting the role of each of their attributes.

• To challenge an decision felt unfair by the implied parts.

• To inform an interested party about the changes to be accomplished in
order to alter an outcome.

Though the range of techniques included within XML is wide and varied, in this
work we focus on a post-hoc explainability-enhancing technique named Counter-
factual Analysis.

1.2 Counterfactual Analysis

The term counterfactual arises from the fields of philosophy, psychology and other
social sciences, where it refers to a conditional statement for which the antecedent
is false. It is an assessment of the supposed consequences of a situation or an
action that never occurred, hence ”counterfactual”: ”contrary to the facts”. An
example in this manner could be:

If there had been no World War II, then the UN would not exist today.

In those fields, counterfactuals are used as tools for the exploration of human
reasoning and decision-making. Thus, the unreal situations need not actually be
plausible at the time of the analysis, and can stay as removed from reality as one
desires.

That is not the case in the setting of Machine Learning, where they were first
proposed in 2017 by Wachter et al. [19]. As a method integrated in XML,
counterfactual analysis tackles the question: ”Given a trained classifier and an
instance of data, how would its predicted class change if the data was slightly



1.2. COUNTERFACTUAL ANALYSIS 11

different?”. Or, more often and conversely: ”How different must the datapoint
be (and in what manner) for the predicted class to be different?”

Thus, the counterfactuals we are interested in are not removed from reality, but
the opposite: they must represent realistic, attainable states, similar enough to
the original datapoint to be worth considering, but assigned a different label in
classification. A counterfactual statement of this type would be akin to:

If the applicant had a higher disposable income, they would be granted the credit.

An instance of counterfactual analysis for a particular datapoint offers new data-
points in the vicinity of the original whose predicted class is different from that of
the original. Such points are termed counterfactual explanations or counterfac-
tual instances of the original. They should present a set of desirable properties,
which include [18]:

(1) Validity. We say that a counterfactual instance is valid if its predicted
class is different to that of the original instance. If the number of possible
classes is greater than two, we will often designate a desired class. Validity
is fundamental to the definition of counterfactual instance.

(2) Proximity to the original instance. A counterfactual instance must stay
close to the original instance in order to be meaningful to the corresponding
user.

(3) Feasibility. We term a counterfactual instance feasible if it represents a
realistic combination of features. Surely this is essential for the analysis to
hold any meaning at all. Feasibility is enforced by banning all non-realistic
combinations and by attending to the causal relationships between features.
It can be further enhanced by accounting for data manifold closeness.

(4) Actionability. A feature of the data is actionable if it represents an at-
tribute that can reasonably be changed. Thus, it must be mutable and
under control of the person that it applies to. An example would be ”daily
protein consumption” as opposed to ”ethnicity”. A counterfactual instance
is likewise termed actionable if it only differs from the original instance in
actionable features. Actionability is necessary for counterfactual instances
to be useful to users.

(5) Sparsity. A counterfactual instance is termed sparse if it only differs from
the original in a few features. It has been found [13] that people under-
stand shorter explanations more easily, and they provide a clearer guideline
towards label change. The prioritization of features may also offer clearer
insight about the classifier’s functioning and biases.
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Figure 1.1: Counterfactual explanations for a given instance.

We present a simplified visualization of Counterfactual Analysis in figure 1.1,
where three counterfactual explanations are given for instance x. All three of
them are valid, though x3 is the closest for the euclidean distance, x2 is the
sparsest and x1 is closest to the data manifold, and thus probably the most
realistic. It is obvious that criteria must be developed to weight the desired
properties in order to choose an optimal counterfactual instance.

In this work we intend to describe general methods to generate counterfac-
tual instances that reasonably comply with all required properties, through the
formulation of appropriate mathematical optimization problems.

The present work is organized as follows. In chapter 2 we present some results
and notation to be used through the document. Then in chapter 3 we formulate
two different approaches to the counterfactual optimization problem, through
single-objective and multi-objective optimization respectively. In chapter 4 we
briefly describe and discuss three classifier models, for which we particularize the
previously posed problems in chapter 5. Finally, in chapter 6 we give practical
examples by applying the particularized problems to real data.



Chapter 2

Previous results

In this chapter we present some previous results and notation to be used through-
out this work.

2.1 Supervised Classification

A fundamental problem in Machine Learning [9] is that of Supervised Classifica-
tion, the task of defining procedures for classifying objects in a finite set Ω into
a set C of classes or labels.

Objects in Ω are usually described by a set of variables {Xj}, 1 ≤ j ≤ M ,
each of them taking real, integer or categorical values. We note the vector x =
(x1, . . . , xM) the predictor vector of each element of Ω.

If we note X the space of predictor vectors, then the task at hand is to arrive at
a classification rule, a function g : X −→ C assigning a class or label g(x) ∈ C to
each vector x ∈ X.

Rule g is sought to accurately label a set of given instances whose predictor
vectors and class membership are known, the training sample I ⊂ Ω. However,
g has the broader objective of correctly classifying any further instance of Ω.

From here on, we will relax the notation by referring to the classes as natural
numbers, this is, C = {1, ..., K} in multi-class classification; and C = {−1, 1}
in binary classification. We will also leave Ω behind to work directly with the
space X.

Models and training

A supervised classification model defines a rule gw dependent on a vector of pa-
rameters, termed weights w. It also defines a loss function L : C × C −→ R mea-

13



14 CHAPTER 2. PREVIOUS RESULTS

suring the accuracy of the classification that gw induces on the training sample,
to which a regularization term –measuring complexity of the rule– is frequently
added. An optimization problem is then posed to find the optimal parameter
vector ŵ, which minimizes the cost L. The classifier is then said to be trained,
and rule gŵ will be useful in classifying further elements of X, provided that the
training sample was representative enough.

As a foundational problem of the field, today we find a wide and rich range of
approaches to the supervised classification problem [3]. Nonetheless, all of them
require the usage of techniques from mathematical optimization to arrive at the
optimal rule gŵ within the specific method.

Scoring functions

A common approach to devising a classification rule is the usage of scoring func-
tions : a function fk : X −→ R is built for each class k ∈ {1, ..., K} as a measure
of the likelihood of point x belonging in class k. The classification rule is then to
assign the class corresponding to the highest score:

g : x 7→ g(x) = arg max
1≤k≤K

fk(x) (2.1)

If ties were to be found, a class would be chosen randomly among those at which
the maximum is attained.

The binary case is susceptible to further simplification: the prediction is en-
coded in the sign of f1(x) − f−1(x). Thus, we may define f : x −→ f(x) =
f1(x)− f−1(x) and state the classification rule as:

g : x 7→ g(x) = sign(f(x)) (2.2)

These methods are of interest to us because of how the scores offer a measure of
the certainty of classification, rather than just a label. These will be the focal
point of our multi-objective optimization problems.

2.2 Optimization problems

Mathematical Optimization problems –usually called programs– are frequently
classified in terms of their objective function and their constraints. This classifi-
cation allows for the formulation of general results and algorithms, so that they
may be applied to the resolution of problems that are similar enough to each
other.
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In this work we aim not only to formulate optimization programs, but to obtain
problems that are (i) solvable by existing and off-the-shelf tools and (ii) faithful
to the situations that may arise in practical applications. With this in sight, we
will be formulating Mixed-Integer Convex Quadratic Programs (MICQP); since
they are general enough for our purposes while sufficiently documented in the
literature.

Convex optimization problems are of the form (2.3), f0, f1, . . . fj being con-
vex functions. Convexity is enough to assure that any local optimum is a global
optimum [1], and this guarantees convergence and optimality of the local-search
algorithms employed.

minimize f0(x)
subject to fj(x) ≤ 0 j = 1, ..., p

(2.3)

Convex Linearly-Constrained Quadratic Programs also follow form (2.3),
while requiring f0 to be a convex quadratic function; and fi to be affine functions.
A more transparent formulation would be (2.4).

minimize (1/2)xTPx+ qTx+ r
subject to Gx ≤ h

Ax = b
(2.4)

where P is a symmetric and positive semi-definite matrix. As a subset of convex
problems, convex quadratic programs share the property of local optima being
global optima.

Mixed-integer programs are those in which some decision variables are only
allowed to take integer values. This condition requires the usage of completely dif-
ferent algorithms than the continuous case. Nevertheless the inclusion of integer-
valued variables in our description proves fundamental, as it is the natural way
of dealing with categorical and ordinal attributes.

2.3 Multi-objective optimization

As will be shown throughout this document, it is in our interest to consider Multi-
objective Optimization problems and some methods for their reduction to scalar
optimization problems.
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We will consider a multi-objective optimization problem of the form

minimize {f1(x), f2(x), ...fK(x)}
subject to x ∈ S

(2.5)

in which we have K ≥ 2 objective functions to minimize over a feasible set S.
For this problem to be of interest, the objective functions must be conflicting in
some way, which does not allow for the simultaneous minimization of them all.

We usually denote the image of the feasible region, the outcome set, by Z = f(S),
and its elements by z = (z1, z2, ..zK)

T . These are the outcome vectors.

We say a objective vector z∗ dominates another objective vector z if z∗i ≤ zi
∀i = 1...K and there is at least one j such that z∗j < zj. This is to say, z∗ offers
a better value for objective function fj, without prejudice to any other objective
function.

An ideal outcome would be feasible (z∗ ∈ Z) while dominating all other feasible
solutions. Such vector is, more often than not, non-existent. This is the case in
figure 2.1: z∗ dominates all feasible outcomes, but is not feasible itself.

Nonetheless, the notion of dominance gives rise the Pareto optimal set (POS). An
objective vector z is said to be Pareto optimal if it feasible and it is not dominated
by any other feasible objective vector. In figure 2.1, the Pareto optimal set is
represented in red, while vector ẑ is Pareto optimal.

Z

POS

f2(x)

f1(x)

ẑ

z∗

Figure 2.1: Representation of an outcome set.

Even when no ideal all-minimizing objective vector is available, it is sensible to
search for a solution to the multiobjective problem within the POS, since all other
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feasible outcomes are dominated, and so they would give rise to less-than-optimal
solutions.

2.3.1 The Weighting Method

A wide range of strategies used to obtain satisfactory solutions to problem (2.5)
involve the generation of (part of) the POS to choose a point from. These are
named a posteriori methods [12], since the choice of optimal solution is made
after the computations.

We will be applying one of these: the Weighting Method, where each objective
function is assigned a weight coefficient; and the weighted sum of the objectives
is minimized. In this way the problem is reduced to a scalar one, to be solved
through usual means. Problem (2.5) is thus modified into the following weighting
problem, where coefficients ωi are real, non-negative numbers that add up to one.

minimize
∑K

i=1wifi(x)
subject to x ∈ S

(2.6)

There are results assuring Pareto-optimality of the solution of problem (2.6) if
all weights are positive, or if the solution is unique. Furthermore, if the multi-
objective optimization problem is convex, then every Pareto optimal point is
solution to a weighting problem with an appropriate weighting vector [12]. Then,
under convexity assumptions, one can generate any PO vector by solving the
related weighting problem.

In the bi-objective case there is only one degree of freedom in the values of the
weights. This allows for an easy numeric exploration and representation of the
POS, in such a way that a decision maker could easily contrast PO solutions to
their preference.
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Chapter 3

Counterfactual Optimization
Problems

In this chapter we develop an approach to Counterfactual Analysis through math-
ematical optimization, proposing two alternative problems to pose and solve in
order to get counterfactual explanations [2].

3.1 A first approach

A first idea is to find, for a misclassified instance, the closest (for some notion of
closeness) feasible point in the desired region. Membership of such counterfactual
to the desired class may be somewhat weak, as it is very near or even sitting on
the border between classification regions. Thus, it might not be something to
recommend to a user searching to change their classification, but it would offer
insight on the classifier’s internal working.

Definition 3.1.1 Let X be a space of predictor vectors, and C = {1, . . . , K} a
set of K labels. Let g : X −→ C be a classification rule for the corresponding
supervised classification problem. Furthermore, let us have:

(1) A set of inequality constraints {hj(x) ≤ 0}1≤j≤p to be imposed on the coun-
terfactual.

(2) A distance D : X ×X −→ R

Finally, let us have a point x0 ∈ X and a desired label k ∈ C. Then the Simple
Counterfactual Optimization Problem (SCOP) for x0 into class k is

argminx∈X D(x,x0)
subject to g(x) = k

hj(x) ≤ 0, 1 ≤ j ≤ p
(3.1)

19



20 CHAPTER 3. COUNTERFACTUAL OPTIMIZATION PROBLEMS

Observation 3.1.1 When the classifier in question makes use of scoring func-
tions, the class condition in problem (3.1) may be written in terms of those scoring
functions:

g(x) = k ⇐⇒ k = arg max
1≤k≤K

fk(x) ⇐⇒ fk(x) ≥ fi(x), 1 ≤ i ≤ K, i ̸= k

(3.2)
Furthermore, if it is a binary classification problem, then the class condition is
written as a single inequality:

g(x) = 1 ⇐⇒ f(x) ≥ 0 (3.3)

3.2 A multi-objective approach

We will propose another way of handling the validity condition; since as already
stated, solutions to problem (3.1) are not likely to be robust. In the score-based
case, one or many of the K − 1 inequalities are likely to end up saturated while
solving the optimization problem. Counterfactual x is then on the border of the
desired region, and any slight change in the classifier’s internal settings may be
capable of letting x back into misclassification.

This is a concern, for instance, if the classifier in question is trained by a Online
Machine Learning algorithm. Online Learning methods –as opposed to the usual
Batch Learning methods– involve the sequential training of the model as new data
becomes available. It is a common technique in situations where the classifier has
a need to dynamically adapt to changes in the patterns of data [7].

Fortunately, we can find a solution for score-based classifiers, where scoring func-
tions offer a measure of the certainty of classification in each class. Thus, we
propose other formulation for the counterfactual optimization problem in these
situations: to (i) minimize the distance to the original point while (ii) maximizing
the difference between scores of the desired class and the rest.

Definition 3.2.1 Let X be a space of predictor vectors, and C = {1, . . . , K} a
set of K labels. Let {fk : X −→ R}1≤k≤K be the respective scoring functions for
a supervised classification problem. Furthermore, let us have:

(1) A set of inequality constraints {hj(x) ≤ 0}1≤j≤p to be imposed on the coun-
terfactual.

(2) A distance D : X ×X −→ R

. Finally, let us have a point x0 ∈ X; and for the sake of simplicity we will take
K as our desired label, without loss of generality. Then the Multi-objective
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Counterfactual Optimization Problem (MCOP) for x0 into class K is

argminx∈X {D(x,x0), f1(x)− fK(x), . . . , fK−1(x)− fK(x)}
subject to hj(x) ≤ 0, 1 ≤ j ≤ p

(3.4)

This is a multi-objective optimization problem with K objectives.

Observation 3.2.1 The binary case is written rather simply in terms of the only
scoring function as a two-objective optimization problem:

argminx∈X {D(x,x0),−f(x)}
subject to hj(x) ≤ 0, 1 ≤ j ≤ p

(3.5)

We propose the use of the Weighting Method as a tool to scalarize and solve to
MCOP. Iterative solving through a sweep in the space of possible weights gives
a variety of solutions from which to choose, attending to the trade-off between
distance and scores. Figure 3.1 shows a simplified representation of this method
for instance x.

desirable
region

x
x1

x2

x3

x4

x5

Figure 3.1: Different solutions to the MCOP for a given instance.

3.3 On the flexibility of the problems

The definitions given above are general enough to accommodate for a variety of
situations and approaches to the problem, as the choices of distance and con-
straints for a given problem are not unique; and different methods may report
results of varying interest. Moreover, they will likely change the character of prob-
lems (3.1), (3.4) and (3.5) as optimization programs, and thus the algorithms that
may be used to solve them. We first need to define space X, distance D, and
constraints hj.
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The predictor space X. In order to better handle and solve the classification
problem, categorical and ordinal variables are usually encoded as binary and
integer variables, respectively. Space X is thus a product of the form Rm1×Zm2×
{0, 1}m3 . This is, the (almost certain) presence of categorical or non-continuous
variables always implies a mixed-integer character of the proposed problems.

Distance D. The choice of distance between points is not free of consequence.
If we focus on Minkowski metrics, we find an interesting array of features:

• The L2 distance seems a natural choice of distance based on the geometric
intuition of proximity. If we use (L2)2 then the distance term is quadratic
in the predictor variables, which is a desirable feature for the optimization
problem.

L2(x,x0) =
∑
i

(xi − x0i)
2 (3.6)

• The L1 distance is similar to L2, but it assigns a greater distance to situa-
tions where the difference between points is spread between variables. This
makes it an asset for promoting sparsity of the counterfactual.

L1(x,x0) =
∑
i

|xi − x0i| (3.7)

The L1 distance can be linearized by means of a norm cone, in order to
keep the problem linear and convex. However, this introduces further real
variables ti and new constraints.

minimize L1(x,x0)
subject to x ∈ X

≡

minimize
∑M

i=1 ti
subject to x ∈ X

ti ∈ R 1 ≤ i ≤ M
xi − xi0 ≤ ti 1 ≤ i ≤ M
−(xi − xi0) ≤ ti 1 ≤ i ≤ M

(3.8)

• The L0 distance, as defined by expression (3.9), only reflects whether vari-
ables have the same value or differ. This makes it our best tool to promote
sparsity.

L0(x,x0) =
∑
i

I(xi, x0i), where I(x, x′) =

{
0 if x = x′

1 if x ̸= x′ (3.9)
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To linearize the L0 distance, we may use the big-M method. This way,
binary decision variables si and new constraints are introduced. The idea
is that for every variable i, si = 1 if xi ̸= x′

i, si = 0 otherwise.

minimize L0(x,x0)
subject to x ∈ X

≡

minimize
∑M

i=1 si
subject to x ∈ X

si ∈ {0, 1} 1 ≤ i ≤ M
xi − xi0 ≤ M ′si 1 ≤ i ≤ M
−(xi − xi0) ≤ M ′si 1 ≤ i ≤ M

(3.10)
where M ′ needs to be large enough to account for every possible variation
in a variable. A possible choice for it would be:

M ′ = 2max |(xi)j| (3.11)

A convex combination of the three of them will be used in the formulation of the
concrete problems that we will propose, so as to benefit from the features of all
three.

Furthermore, there is the question of standardization. Usually variables come in
very different units and numeric ranges, which are not indicative of the relative
difficulty of changing the value of the variable. If we think of the credit-lending
example, the difficulty in changing one’s disposable income by 10 (euros) is not
equivalent to that of changing one’s age by 10 (years). In the computation of
distances, variables must be weighted to account for the units scales that they
are expressed in –standardization– and their ”resistance to movement”. Thus, we
will consider the weighted versions of L2 and L1 distances. But far from being
an obstacle, this opens the door to new ways to further tailor the problems.

One could, for example, ask users about their perceived relative difficulty in
changing each variable; and use the input as a guide when computing weights
for the variables. This human-supervised method would account for users’ pref-
erences, which is a desirable feature for counterfactual generation.

On the other hand, there is an argument for replacing the weighted L2 distance
with the Mahalanobis distance, as the latter rewards closeness to the data mani-
fold; and thus is likely to present counterfactuals that are more realistic than the
former.

Constraints hj reflect conditions that must hold true for a counterfactual to
be feasible. For example, it would be nonsensical to suggest to an user that they
decrease their age; or get a higher-income job while maintaining the duration of
their current post.
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Constraints can also be used to impose limits on the change of variable values,
to prevent an excess of variation in any given one. They may also help enforce
sparsity, by setting a hard maximum on the number of features that can change.
For instance, a recent paper [11] sets the limit at 2 variables for a ”good” coun-
terfactual. Finally, some variables may not be considered actionable, and so their
values must stay fixed in the counterfactual generation.



Chapter 4

Classification models

In this chapter we give a brief presentation of the supervised classification models
on which we will apply counterfactual analysis. We begin by assessing the case
of logistic regression, as one of the simplest and most easily interpretable models.
We then keep on with the Support Vector Machine model (SVM), a powerful and
flexible method stemming from statistical learning. In SVMs, kernels methods are
used to increase the model’s flexibility, altering the shape of the boundary that
separates the two classes, and thus modifying the form of the validity condition
in our counterfactual optimization problems.

4.1 Variable encoding

Most classification models are designed to only accept numerical values as inputs,
the implication being that categorical and ordinal variables must be encoded prior
to their processing. Ordinal values are usually subject to integer encoding, which
maps the ordered categories to integers so as to preserve the order relations. In
contrast, categorical variables pass through one hot encoding.

One-hot encoding maps a categorical variable c with categories 1 . . . n to a vector
(c1, . . . , cn) ∈ {0, 1}n, in such a way that cj = 1 if c = j, cj = 0 otherwise.
This ensures a numerical codification in which no order relation is unwillingly
introduced. It is also a common approach to get rid of one of the new variables,
and let the null vector (0, . . . , 0) represent the corresponding category.

Subsequently, the predictor space X is mapped to a subset of RM ′
. We will take

this to be the case from now on.
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4.2 Linear Classifiers

Definition 4.2.1 We define a linear (score-based) classifier as one whose scoring
functions are affine transformations of the predictor vector. This is, the classifi-
cation rule is of the form:

∃{βk}1≤k≤K ∈ RM , {βk0}1≤k≤K ∈ R fk(x) := βT
k x+ βk0 ∀x ∈ X (4.1)

g : x ∈ X 7→ f(x) = arg max
1≤k≤K

fk(x) (4.2)

Observation 4.2.1 In the binary case only one affine function is needed, in
accordance with 2.2.

∃β ∈ RM , β0 ∈ R g(x) = sign(βTx+ β0) ∀x ∈ X (4.3)

When using a linear score-based classifier, the locus of points classified in any
class k is a polyhedron. Thus, it is convex and its boundary is piecewise linear. If
the bounds and further constraints to be added to the SCOP keep this convexity
and linearity, the resulting problem will be, at most, a Mixed-Integer Convex
Quadratic Program (MICQP). Thus, there is a variety of optimization techniques
that can be used to solve the problem which would not be applicable otherwise.

Similarly, affine scoring functions imply linear classification objectives for the
MCOP, so that any single-objective problem resulting from the weighting method
will also be, at most, a MICQP.

Thus, linearity plays an important enough role in our counterfactual problems
that it is desirable to classify methods by this criterion. Examples of linear
classifiers are the Logistic Regression classifier and the Support Vector Machine
with a linear kernel. The other (non-linear) classifiers present boundaries of
diverse shapes, which require either particular attention to each, or the usage of
more general (and less accurate) solving algorithms.

4.3 Logistic Regression

Logistic Regresion models are linear score-based classifiers based on the mod-
elling of posterior probabilities of the classes (P[k|X = x]) by means of the logit
transformation [9].

In multi-class classification problems, a class is taken as reference (here we will
take class K), in such a way that the logarithm of the odds of any class to the
reference class is modelled as an affine function of x.
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log

(
P[k|X = x]

P[K|X = x]

)
= fk(x) = βT

k x+ βk0, 1 ≤ k ≤ K − 1 (4.4)

This gives us K − 1 functions, though to comply with our original definition of
a score-based classifier, we could consider a K-th, which would be the constant
null function. It is easy to check that these functions preserve the order relations
showcased by the posterior probabilities that they correspond to:

P[k|X = x] ≥ P[k′|X = x] ⇐⇒ fk(x) ≥ fk′(x), 1 ≤ k, k′ ≤ K − 1 (4.5)

P[k|X = x] ≥ P[K|X = x] ⇐⇒ fk(x) ≥ 0, 1 ≤ k ≤ K − 1 (4.6)

Thus, we use these K − 1 affine functions for the first K − 1 scores, and the
constant null function for the last one. Note that this result is similar to the
simplification we found for score-function methods in the binary case, where one
of the classes was used as reference, leaving one less function (and its parameters)
to be obtained through optimization.

4.3.1 The binary case

The binary classification case is completely analogous to the multi-class one,
though now we may keep just one scoring function:

f(x) = βTx+ β0 = log

(
P[1|X = x]

P[−1|X = x]

)
= log

(
P[1|X = x]

1− P[1|X = x]

)
(4.7)

4.3.2 Computation

As we are able to express the posterior probabilities of the classes in terms of the
parameters {βk, βk0}k, it is appropriate to estimate these parameters by maximum
likelihood. This is the most common approach when training logistic classifiers,
giving rise to a non-linear optimization problem that is solved iteratively. A reg-
ularization term is frequently added to prevent weights from getting too large [9].

4.3.3 Implementation

For numerical illustration purposes, we will be working with Logistic Regression
classifiers in Python as implemented in the Scikit-Learn library [15], in particular
in module sklearn.linear model as function LogisticRegression().
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4.4 Support Vector Machines

Support Vector Machines (SVM) are statistical learning models first formulated
by Boser, Guyon and Vapnik in 1992. The have been successfully applied to a
variety of classification problems, such as handwritten digit recognition, text cat-
egorization, cancer classification and protein secondary-structure prediction [10].

They are score-based models, available in both linear and non-linear versions,
by means of kernel methods. Here we will first describe the original (linear)
formulation, which was built for binary classification, and then expand on the
usage of kernels.

The idea behind linear SVMs is to find an optimal separating hyperplane in the
predictor space. This hyperplane would not only completely separate instances
according to their class, but also maximize the margins between the plane and the
instances. If the datasets are not linearly separable, then intermission of points
into the margins or the opposite region is allowed but minimized; an approach that
has been dubbed soft-margin, as opposed to the original hard-margin strategy.

Figure 4.1: Hard-margin linear SVM Figure 4.2: Soft-margin linear SVM

As a binary linear score-based classification method, its classification rule is of
the form given by equation 2.2, this is:

g(x) = sign(f(x)) = sign(βTx+ β0), β ∈ RM , β0 ∈ R (4.8)
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4.4.1 Computation

As stated, parameters β and β0 in 4.8 are supposed to maximize the margin
between datapoints and the separating hyperplane. The optimization problem to
be solved is the following:

argminβ,β0

1
2
∥β∥2 + C

∑n
j=1 ξj

subject to yj(β
Txj + β0) + ξj ≥ 1 1 ≤ j ≤ N

ξj ≥ 0 1 ≤ j ≤ N
(4.9)

where the slack variables ξi measure the instances’ violation of the margins, and
are non-negative. C is a positive tuning constant which balances the width of the
margin and the number and depth of violations, affecting the ”softness” of the
margins.

The solving of problem (4.9) is of special interest, as it gives insight into the idea
of kernel methods. It is a quadratic linearly-constrained program, and so we can
describe a solution by using Lagrange multipliers. [9]

By means of the Lagrange primal and dual functions and the Karush-Kuhn-
Tucker conditions, the solution of problem (4.9) is characterized by expressions
(4.10 - 4.16).

β =
N∑
j=1

αjyjxj (4.10)

0 =
N∑
j=1

αjyj (4.11)

αj = C − µj, 1 ≤ j ≤ N (4.12)

αj

[
yj(β

Txj + β0)− (1− ξj)
]
= 0, 1 ≤ j ≤ N (4.13)

µjξj = 0, 1 ≤ j ≤ N (4.14)

yj(β
Txj + β0)− (1− ξj) ≥ 0, 1 ≤ j ≤ N (4.15)

αj, µj, ξj ≥ 0, 1 ≤ j ≤ N (4.16)

We see from equation (4.10) that β is written as a linear combination of the
observed instances xj, with nonzero coefficients αj only for those observations
that exactly meet constraint (4.15). These observations are the ones touching or
invading the margins, and are labeled support vectors. Those on the edge of the
margin verify ξj = 0, and so any of them can also be used to solve for β0 in the
equalities derived from (4.15):
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β0 = yj − βTxj for any xj lying on the edge of the margin (4.17)

An interesting remark to be made is about the absence of non-support obser-
vations in the expressions for β and β0. As it turns out, training instances far
enough from points from the other class have no influence whatsoever on the sep-
arating hyperplane. This feature characterizes SVMs, and is what gives support
vectors their name [10].

4.4.2 Non-linear SVM and kernel methods

The idea behind nonlinear SVM is to find an optimal separating hyperplane in
a high-dimensional feature space, where more flexible classifiers can be trained.
Computations would get much more expensive if it were not for the use of kernel
methods, which allow for the computation of the non-linear scoring function using
the original variable space [9].

Firstly, let us derive an expression for the value of the scoring function f at any
point x in the linear case. Using (4.10), we reach

f(x) = βTx+ β0 =
N∑
j=1

αjyjx
T
j x+ β0 (4.18)

The fundamental realization is about the way that the training points xj appear
in equations (4.11) - (4.18): only through inner products between pairs.

This way, there is an alternative to mapping the training sample into some high-
dimensional space and then working with its inner product: we only need to know
how to compute the higher-dimensional product in terms of the original vectors.

Such function is termed a kernel function, and should be symmetric and positive
semi-definite. This way calculations are reduced, even so that infinite-dimensional
spaces are available to improve the flexibility of the classifier.

Indeed, when using a kernel K(·, ·) : X×X −→ R, the scoring function is written
as

f(x) =
N∑
j=1

αjyjK(xj,x) + β0 (4.19)

where β0 is determined, analogously to (4.17), by

β0 = yj −
N∑
i=1

αiyiK(xi,xj) (4.20)

for any xj lying on the edge of the margin.
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Finally, some of the most common choices for kernel functions are

linear: K(x, x′) = xTx′ (4.21)

dth-degree polynomial: K(x, x′) = (1 + xTx′)d (4.22)

radial basis: K(x, x′) = exp (−γ∥x− x′∥22) (4.23)

These ideas are naturally extended to the multi-class classification problem through
the One-versus-one or the One-versus-rest approaches [10].

4.4.3 Implementation

For numerical illustration purposes, we will be working with Support Vector Ma-
chines in Python as implemented in the Scikit-Learn library [15], in particular in
module sklearn.svm as function SVC().
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Chapter 5

Particularization of
Counterfactual Problems

In this chapter we specify the forms of Simple Counterfactual Optimization Prob-
lem (3.1) and the Multi-objective Counterfactual Optimization Problem (3.4) for
the aforementioned classification methods. Furthermore, we aim to write for-
mulations that explicitly showcase every aspect of the problems, so as to ease
numerical implementation.

The feasible set Let us firstly consider the predictor variables. As stated in
section 4.1, features are codified so that only numerical variables remain. The
methods used to achieve this impose inherent constraints to the values that the
newly created variables can take. This is, just by considering the result of encod-
ing, we have for our problems:

• R continuous decision variables {r1, . . . , rR}.

• Z integer decision variables {z1, . . . , zZ}.

• O ordinal-turned-integer decision variables {o1, . . . , oO}.

• For each original ordinal feature, an lower and a upper bound to the values
that the corresponding integer variable may take, typically 0 and number
of levels - 1. This makes 2O bounds.

• For each original categorical feature cj with Nj classes, Nj binary decision
variables cj,1, . . . , cj,Nj

; making a total of B :=
∑

j Nj binary variables.

• For each original categorical feature cj, a linear equality restriction stating

33
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that exactly one of the categories must be applicable in each case:

Nj∑
l=1

cj,l = 1 1 ≤ j ≤ C (5.1)

This gives us a feasible set that is a subset of RR × ZZ+O × {0, 1}B, with 2O
bounds1 and C linear equality restrictions, that may be transformed into 2C
linear inequality restrictions if so desired. With these, we ensure that solutions
to the counterfactual problem are interpretable in terms of the original features.

Actionability and feasibility constraints These enforce the viability of the
counterfactual instances. We may face three different kinds in our formulation:
bounds, inequalities and immutability conditions. The former two can be directly
introduced in our model, while the last are a consequence of some features not
being actionable, and their presence makes it worth reconsidering the need for
some decision variables.

For instance, an immutable categorical feature cj needs not give rise to any binary
decision variable or extra constraint. It can just be used to calculate the values of
the scoring functions, and so the problems lose decision variables and constraints,
and become simpler.

We will choose to only formulate linear inequalities as part of the constraints, in
order to keep the boundaries piece-wise linear.

Note that for now our feasible space is a polyhedron intersected with a grid; as
all constraints imposed are affine.

The distance function As stated in section 3.3, we will propose a convex
combination of weighted distances L0, L1 and L2, appropriately converted to
provide a quadratic expression. The distance between an instance x0 and the to-
be-calculated counterfactual constitutes an objective function to be minimized.

A slight tweak is needed for the application of the L0 distance on the categorical
variables. In our current formulation, a change in value of a categorical feature is
represented as a change in two binary variables, practically giving double weight
to categorical features in the L0 distance. Thus, we will have to compensate for
this effect by introducing a 0.5 factor in the corresponding terms.

These comments are valid for all problems that we intent to formulate; but when
tackling validity of the counterfactual, we must specify to keep on developing.

1We distinguish bounds from linear inequalities because of the difference that most solver
softwares make between them.
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5.1 The Simple Counterfactual Optimization

Problem

The validity restriction In the Simple Counterfactual Optimization Problem,
classification in the desired class is ensured by a hard restriction, which in the
score-based case took the form of K − 1 inequality constraints, as expressed in
(3.2). We will take the K-th class as the desired one in the multi-class case, for
the sake of simplicity of notation.

The Simple Counterfactual Optimization Problem is then stated as:

minimize a0
∑M

i=1 cisi + a1
∑M

i=1 biti + a2
∑M

i=1 b
2
i (xi − x0,i)

2

subject to



rj ∈ R

zj ∈ Z

oj ∈ Z

cj,l ∈ {0, 1}

1 ≤ j ≤ R

1 ≤ j ≤ Z

1 ≤ j ≤ O

1 ≤ j ≤ C, 1 ≤ l ≤ Nj


0 ≤ oj ≤ uj∑Nj

l=1 cj,l = 1

Ax ≤ b

1 ≤ j ≤ O

1 ≤ j ≤ C

{
fk(x) ≤ fK(x) 1 ≤ k ≤ K − 1


si ∈ {0, 1}

xi − xi0 ≤ M ′si

xi − xi0 ≥ −M ′si

1 ≤ i ≤ M

1 ≤ i ≤ M

1 ≤ i ≤ M


ti ∈ R

xi − xi0 ≤ ti

xi − xi0 ≥ −ti

1 ≤ i ≤ M

1 ≤ i ≤ M

1 ≤ i ≤ M

(5.2)
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where we have noted x = (r1, . . . , rR, z1, . . . , zZ , o1, . . . , oO, c1,1, . . . , cC,NC
)T to

simplify the expressions. M is the dimension of x, and M ′ is the big-M constant
that we proposed in (3.11). Bounds uj reflect the number of categories of each
ordinal feature, as already stated. Weights bi are given and reflect the ranges and
resistance to change of the variables, as stated in section 3.3, while ci take values
on account of the interaction between the L0 distance and one-hot encoding.

ci =

{
0.5 if xi is a binary variable arising from a categorical feature
1 if it is not

(5.3)

Coefficients a0, a1, a2 for the distances are also presumed to be known.

For clarity, we have broken up the constraints into brackets, in such a way that:

• The first one states the nature of the decision variables.

• The second states the affine inequalities and bounds required for the well-
definition of the ordinal and categorical variables, as well as for feasibility
and actionability.

• The third presents the validity constraints, ensuring the desired classifica-
tion.

• The fourth and fifth are required for the linearization of norms L0 and L1,
respectively.

It is at the validity constraints that the problems for different classifiers behave
separately.

In the case of linear classifiers such constraints are affine, and so the re-
sulting feasible space keeps its polyhedral character. In a multi-class Logistic
Regression classifier setting, the validity condition takes the shape

fk(x) = βT
k x+ βk0 ≤ 0, 1 ≤ k ≤ K − 1 (5.4)

In the binary Logistic Regression and the binary linear SVM settings, taking +1
as the desirable class, we get

f(x) = βTx+ β0 ≥ 0 (5.5)

In both cases, problem (5.2) is a Mixed-Integer Convex Quadratic Program.
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In non-linear classifiers however these constraints may not even be convex,
resulting in the loss of both the linear and convex characters of the set. In the
binary non-linear SVM setting, the form of the validity constraint is

f(x) =
N∑
j=1

αjyjK(xj,x) + β0 ≥ 0 (5.6)

and it is the kernel K(·, ·) that determines the shape of the feasible region. In
general, problem (5.2) will not exhibit convexity or any other characteristic that
facilitates its solving.

Resolution may be accomplished by heuristic or local search methods, but these
do not ensure optimality of the reached counterfactual.
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5.2 The Multi-objective Counterfactual

Optimization Problem

The validity objective In the MCOP, classification in the desired class is not
enforced but encouraged through maximization of the difference between scoring
functions, which appear as separate objectives. The Multi-objective Counterfac-
tual Optimization Problem is then stated as:

minimize
{
a0

∑M
i=1 cisi + a1

∑M
i=1 biti + a2

∑M
i=1 b

2
i (xi − x0,i)

2,

f1(x)− fK(x), . . . , fK−1(x)− fK(x)
}

subject to



rj ∈ R

zj ∈ Z

oj ∈ Z

cj,l ∈ {0, 1}

1 ≤ j ≤ R

1 ≤ j ≤ Z

1 ≤ j ≤ O

1 ≤ j ≤ C, 1 ≤ l ≤ Nj


0 ≤ oj ≤ uj∑Nj

l=1 cj,l = 1

Ax ≤ b

1 ≤ j ≤ O

1 ≤ j ≤ C


si ∈ {0, 1}

xi − xi0 ≤ M ′si

xi − xi0 ≥ −M ′si

1 ≤ i ≤ M

1 ≤ i ≤ M

1 ≤ i ≤ M


ti ∈ R

xi − xi0 ≤ ti

xi − xi0 ≥ −ti

1 ≤ i ≤ M

1 ≤ i ≤ M

1 ≤ i ≤ M

(5.7)

The comments we made about the brackets in problem (5.2) are also in order
here, with the exception of those about validity constraints.



5.2. THEMULTI-OBJECTIVE COUNTERFACTUAL OPTIMIZATION PROBLEM39

When reducing problem (5.7) to a single-objective one through the weighting
method, the objective function takes the form

C(x) := w0

[
a0

∑M
i=1 cisi + a1

∑M
i=1 biti + a2

∑M
i=1 b

2
i (xi − x0,i)

2
]
+

+w1

[
f1(x)− fK(x)

]
+ . . .+ wK−1

[
fK−1(x)− fK(x)

] (5.8)

with weights w0, . . . , wK−1.

In the case of linear classifiers all scoring functions are affine, and so the
objective is a quadratic function of x. The resulting problem is then a Mixed-
Integer Convex Quadratic Program. Furthermore, if the classification problem is
binary, expression (5.8) is simplified to

C(x) := w0

[
a0

M∑
i=1

cisi + a1

M∑
i=1

biti + a2

M∑
i=1

b2i (xi − x0,i)
2

]
−w1

[
βTx+β0

]
(5.9)

The optimal values for w0 and w1 can be determined a posteriori, as a user
decides how to balance both objectives. In this sense, it is useful to account for
the interpretation of the scoring function in each setting:

• The scoring function of a Logistic Regression classifier is a monotonous
transformation of the probability of belonging to the desired class.

P[1|X = x] =
exp(βTx+ β0)

1 + exp(βTx+ β0)
(5.10)

Expressing the counterfactual instances in terms of ”changes to be made”
and ”probability of belonging to the desired class” may then be the most
intuitive way to approach the choice.

• The scoring function of a SVM takes value 0 at the border between classes,
and ±1 at the edge of the margins; so a score in (0,1) is classified in the
desirable class, but remains somewhat atypical; while a score greater than
1 rests safely inside the desirable region.

For non-linear classifiers the scoring objectives may not be convex, which
again prevents an easy approach to the problem. In the binary SVM case, we
have

C(x) := w0

[
a0

∑M
i=1 cisi + a1

∑M
i=1 biti + a2

∑M
i=1 b

2
i (xi − x0,i)

2
]
+

−w1

[∑N
j=1 αjyjK(xj,x) + β0

] (5.11)
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Optimal weights w0 and w1 can be determined through the same strategy as the
linear case; as the interpretation of the SVM scoring function does not vary when
non-linear kernels are introduced.



Chapter 6

Numerical Illustration

In this chapter we apply the aforeposed problems to the generation of counter-
factuals for a concrete dataset and classifiers. In order to do this, we previously
encode categorical features and train a linear classifier of each type considered:
Logistic Regression and linear SVM. Multi-objective Counterfactual Problems are
then formulated and solved for various training instances and different values of
the weights, offering a range of possible counterfactuals with associated measures
of the certainty of classification.

Our purpose here is to showcase a direct implementation of these problems and
the obstacles and peculiarities that may arise as a result.

6.1 The German Credit Data dataset

We have worked with the Statlog (German Credit Data) Data Set, as found at
the Machine Learning Repository of the University of California, Irvine [4]. This
dataset was collected by professor Dr. Hans Hofmann at Universität Hamburg
in 2000. It classifies people described by a set of attributes as good or bad
credit takers, intending to help banks and other credit-lending institutions predict
whether an application for a credit is worth the risk.

The dataset contains 1000 instances of data, 700 of them labeled as good credit
takers with the remaining 300 being bad. Variables included in it are categorical,
ordinal, integer or continuous in nature; as described in table (6.1).

Categorical features labeled with (*) lack instances in one of the categories. This
absence of data may cause some coefficients to be undetermined during training,
and so we have removed the empty categories for the sake of simplicity.
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Variable Type Levels
1 Status of existing checking account ordinal 4
2 Duration in months integer -
3 Credit history ordinal 4
4 Purpose of the credit categorical 11*
5 Credit amount in DM continuous -
6 Savings account ordinal 5
7 Duration of present employment ordinal 5
8 Installment rate in percentage of disposable income continuous -
9 Personal status and sex categorical 5*
10 Other debtors / guarantors categorical 3
11 Duration of present residence integer -
12 Property ordinal 4
13 Age in years integer -
14 Other installment plans categorical 3
15 Housing categorical 3
16 Number of existing credits at this bank integer -
17 Job level ordinal 4
18 Number of people to provide maintenance for integer -
19 Telephone number? categorical 2
20 Foreign worker? categorical 2
21 Goodness of the credit application target 2

Table 6.1: German Credit Data variables

The dataset also suggests the use of specific costs for misclassifications during
training: a bad client classified as good is considered five times worse than a good
client classified as bad. The direct consequence is an imbalance in the resulting
classifier’s accuracy, as will be shown shortly; but we have decided to abide by
the suggestion. We find it to be a more realistic problem, since it is sensible that
a real credit-lending institution would want to penalize mistakes in such a way.

6.2 Training the classifiers

We train a Logistic Regression classifier and a linear SVM. Variables are pre-
viously standardized to ease convergence of the training processes, and the sug-
gested misclassification errors are applied. The parameters and accuracy of train-
ing –tested optimistically on the training set– can be read in table (6.2).
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Classifier Settings
(-) class
accuracy

(+) class
accuracy

Total
accuracy

Logistic Regression
L2 regulariz.

C=1
0.89 0.56 0.66

Linear SVM C=0.1 0.91 0.57 0.67

Table 6.2: Accuracy of different classifiers

6.3 Constraints and other settings

We give a brief retell of the actionability and feasibility constraints, weights and
other parameters that we have considered for the Counterfactual Problems.

Constraints. Firstly, we have considered variables purpose of the credit (4),
personal status and sex (9), number of people to provide maintenance for (18) and
foreign worker (20) to be immutable; as they represent things that an applicant
cannot change or at least is not likely to change in order to get a credit. The only
exception being the change between Purpose: new car and Purpose: old car as
we believe it to be a sensible suggestion.

We have imposed logical bounds: age in years (13) may only increase its value,
while credit amount (4) may not step below 90% its original value, as it is rea-
sonable that applicants may not be interested in a credit under such conditions.

After some preliminary results, we found some quirks of the classifiers that moved
us to introduce new constraints. In the linear case, there is a tendency to suggest
a change for the worse in variables credit history (4) and job level (17). This is
likely due to correlation between variables causing indeterminate coefficients in
the training problems, and could be solved by enforcing sparsity on the classifier.
However, our main concern here is not the training of supervised classifiers, but
the generation of realistic counterfactual instances. For this reason we will keep
using the classifiers are they are, and impose bounds on these variables: credit
history and job level cannot be worsened.

There is also a clear mathematical dependence between credit amount (5), dura-
tion in months (2), installment rate as percentage of disposable income and the
disposable income, which is not itself a variable. If we want these to stay coherent,
a quadratic bound should be introduced in the form

CreditAmount− C × InstallmentRate×Duration = 0 (6.1)

where C represents the disposable income as calculated from the original instance.
The introduction of quadratic equality bounds is not prohibited in the problems’
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original formulation in chapter 3, but it is not desirable in the concrete versions
we have developed since. Luckily, the preliminary results show that there is little
to no tendency to alter the duration in months variable in the counterfactual
instances; and so we propose a simpler (and linear) constraint: proportionality
between credit amount and installment rate. This enforces relation (6.1) as long
as there is no change in the duration of the credit, which is the norm in the
generated counterfactual instances.

Other settings. We have used the inverse of standard deviations as weights bi
for the variables within weighted distances, in the non-binary variables. As stated
in section 3.3, these could be tweaked to account for resistance to movement
and/or personal preference of the applicant; but we have kept them as they are
for the sake of simplicity. Finally, coefficients (a0, a1, a2) = (1, 1, 2) are used, as
they have been found to give reasonable results.

6.4 Results

MCOP problems have been posed for a variety of instances with different values
for the pair of weights (w0, w1), setting w0 = 1−w1, so as to explore the trade-off
between the proximity and validity objectives. The validity weight w1 has taken
values in [0.8, 0.99), as every lower value has been found not to encourage validity
enough, and thus gave the original point as counterfactual.

Optimal solutions have been attained by means of the Gurobi Optimizer solver [8],
under a named-user student academic license. Library gurobipy in Python 3.9
has been used as interface for the formulation.

Typical sets of counterfactual instances are presented below in tables (6.3) -
(6.10). These have been calculated on training instances that were classified as
bad credit applications, with the intent to show what changes need to be made
in order to increase probability of classification as good credit applications. The
first counterfactual to be valid within each set is marked in green.

Interestingly, all sets have been found to be stable: as the validity weight increases
its value, counterfactual explanations get further from the original instance in a
monotonic way. All changes proposed by a counterfactual are also proposed –
and expanded upon– by those with higher validity weights. This is an extremely
desirable characteristic for the results.
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Instance A Married or divorced woman, 22 years old, asking for a 5951 DM
credit in order to buy a radio or television. Installment rate is 2% of disposable
income. The actual label is bad application.

w1 Changes to be made Probability
0.00 None 0.13
0.87 Level increase in checking account status 0.22
0.90 Get a guarantor 0.40
0.92 Level increase in checking account status 0.55
0.93 Reduction in credit amount : 5355.90 DM 0.59

Reduction in installment rate: 1.80%
0.95 Supply a telephone number 0.67
0.96 Level increase in savings account status 0.71
0.97 Level increase in current employment time 0.74
0.98 Resolve 1 of 1 existing credits 0.84

Level increase in savings account status
Level increase in current employment time

Table 6.3: Counterfactuals for instance A, Logisitic Regression classifier.

w1 Changes to be made Score f
0.000 None -1.38
0.895 Level increase in checking account status -0.85
0.910 Get a guarantor -0.14
0.935 Level increase in checking account status 0.37
0.945 Reduction in credit amount : 5355.90 DM 0.48

Reduction in installment rate: 1.80%
0.960 Level increase in savings account status 0.64
0.975 Level increase in current employment time 0.95

Supply a telephone number
0.980 Level increase in savings account status 1.12
0.985 Level increase in current employment time 1.39
0.990 Level increase in savings account status 1.76

1-year increase in current residence time

Table 6.4: Counterfactuals for instance A, Lineal SVM classifier.
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Instance B Married or widowed man, 28 years old, asking for 5234 DM in
order to buy a new car. Installment rate is 4% of disposable income. The actual
label is bad application.

w1 Changes to be made Probability
0.00 None 0.06
0.80 Change purpose to used car 0.29
0.87 Level increase in checking account status 0.44
0.90 Reduction in credit amount : 4710.6 DM 0.69

Reduction in installment rate: 3.6%
Get a guarantor

0.92 Level increase in checking account status 0.80
0.95 Supply a telephone number 0.86
0.96 Level increase in savings account status 0.88
0.97 Level increase in current employment time 0.89
0.98 Resolve 1 of 2 existing credits 0.84

Level increase in savings account status
Level increase in current employment time
Level increase in property

Table 6.5: Counterfactuals for instance B, Logisitic Regression classifier.

w1 Changes to be made Score f
0.000 None -2.04
0.870 Change purpose to used car -0.97
0.885 Level increase in checking account status -0.45
0.910 Get a guarantor 0.26
0.925 Reduction in credit amount : 4710.6 DM 0.39

Reduction in installment rate: 3.6%
0.935 Level increase in checking account status 0.91
0.960 Level increase in savings account status 1.07
0.975 Supply a telephone number 1.38

Level increase in current employment time
0.980 Level increase in savings account status 1.54
0.985 Resolve 1 of 2 existing credits 1.82

Level increase in current employment time
0.99 Supply a telephone number 2.30

Level increase in current employment time
Level increase in savings account status
1-year increase in current residence time

Table 6.6: Counterfactuals for instance B, Lineal SVM classifier.
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Instance C Married or divorced woman, 44 years old, asking for a 12579 DM
credit in order to buy a used car. Installment rate is 4% of disposable income.
Actual label is bad application.

w1 Changes to be made Probability
0.00 None 0.15
0.86 Reduction in credit amount : 11591,57 DM 0.18

Reduction in installment rate: 3,69%
0.88 Reduction in credit amount : 11321,1 DM 0.31

Reduction in installment rate: 3,6%
Level increase in checking account status

0.90 Get a guarantor 0.51
0.92 Level increase in checking account status 0.66
0.96 Level increase in savings account status 0,77

Change housing from renting to owning
0.98 Resolve 1 of 1 existing credits 0.85

Level increase in savings account status
Level increase in property

Table 6.7: Counterfactuals for instance C, Logistic Regression classifier

w1 Changes to be made Score f
0.000 None -1.27
0.885 Level increase in checking account status -0.75
0.900 Reduction in credit amount : 11516,12 DM -0.57

Reduction in installment rate: 3,66%
0.905 Reduction in credit amount : 11408,73 DM -0.55

Reduction in installment rate: 3,63%
0.910 Reduction in credit amount : 11321,1 DM 0.18

Reduction in installment rate: 3,60%
Get a guarantor

0.935 Level increase in checking account status 0.70
0.960 Level increase in savings account status 0,86
0.975 Change housing from renting to owning 1.04
0.980 Level increase in savings account status 1.21
0.985 Resolve 1 of 1 existing credits 1.37
0.990 Level increase in savings account status 1.74

1-year increase in current residence time

Table 6.8: Counterfactuals for instance C, Linear SVM Classifier
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Instance D Single man, 36 years old, asking for a 1374 DM credit in order to
buy furniture or equipment. Installment rate is 1% of disposable income. Actual
label is good application.

w1 Changes to be made Probability
0.00 None 0.38
0.87 Level increase in checking account status 0.53
0.90 Get a guarantor 0.86

Resolve other installment plans (banks)
0.92 Level increase in checking account status 0.92
0.95 Level increase in savings account status 0.96
0.96 Reduction in credit amount : 1236.6 DM 0.96

Reduction in installment rate: 0.9%
Level increase in savings account status

0.97 Level increase in current employment duration 0.97
0.98 Resolve 1 of 1 existing credits 0.98

Level increase in savings account status
Level increase in current employment duration

Table 6.9: Counterfactuals for instance D, Logistic Regression classifier

w1 Changes to be made Score f
0.00 None -1.35
0.87 Resolve other installment plans (banks) -0.30
0.885 Level increase in checking account status 0.22
0.910 Get a guarantor 0.93
0.935 Level increase in checking account status 1.45
0.955 Level increase in checking account status 1.97
0.960 Level increase in savings account status 2.14
0.975 Reduction in credit amount : 1236.6 DM 2.29

Reduction in installment rate: 0.90%
Level increase in current employment duration

0.980 Level increase in savings account status 2.45
0.985 Resolve 1 of 1 existing credits 2.73

Level increase in current employment duration
0.990 Level increase in savings account status 3.01

Table 6.10: Counterfactuals for instance D, Lineal SVM classifier



6.5. SOME COMMENTS ON THE RESULTS 49

6.5 Some comments on the results

The Logistic and the linear SVM classifiers are sufficiently alike to offer very
similar counterfactual instances. The most popular recommendations for the
first steps seem to be:

• Increasing the level of one’s checking account.

• Getting someone to act as a guarantor for the credit.

• Reducing the credit’s amount.

Not that there are not minor-scale trends: all applicants stating new car as
the purpose of the credit are recommended to change it to used car as their
first suggestion, as is the case of instance B. Similarly, applicants with other
installment plans are generally told soon to resolve them, as we see in instance D.

Note that while these may seem obvious suggestions, they happen to achieve
the greatest improvement in the score function with the smallest change in input.

For instance, increasing the level of one’s savings account or resolving other ex-
isting credits are also reasonable courses of action, but appear consistently later
as suggestions since they do not imply a sufficiently large increment in the score.

An important aspect of the generation of these counterfactuals is the step size
in the w1 sweep. It would be ideal if each new counterfactual introduced changes
in just one variable, so that we could isolate and weight the effects of each further
change. Nevertheless this is often not the case. As an example we have table (6.5),
wherein the same counterfactual is obtained for values w1 = 0.87, 0.88, 0.89 but
there is a sudden change in three variables for w1 = 0.90. A smaller step size
may have been able to generate an intermediate counterfactual, but would also
have increased significantly the number of computations.

We have chosen different values for our classifiers –0.1 for the Logistic, 0.05 for
the SVM– to further showcase this effect, which is visibly more prevalent in the
Logistic tables than in the SVM ones. Moreover, higher values of w1 seem to
need a smaller step size.

The numerical results here given are supposed to serve as an illustration of
both the capabilities of the method and the process of implementation. There is
surely room for improvement in a finer tuning of the distance weights a0, a1, a2, a
greater insight in the causal relations between variables, or in a deeper assessment
of the resistance to movement of variables.
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We aim to show that, in general, the direct application of Counterfactual Prob-
lems to concrete classifiers is not uniquely defined, as there is room for subjectiv-
ity. Familiarization, direct handling of the database and a complete assessment
of the situation at hand have proved to be essential to arrive at this formulation,
able to give rise to sensible results.
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